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Abstract  

 

This thesis examines the efficiency and sustainability of Swedish agriculture, with 

a particular focus on fertilizer use, through a two-stage stochastic frontier analysis 

(SFA) framework. Using farm-level panel data from the EU Farm Accountancy 

Data Network (FADN), technical efficiency (TE) is estimated for field crop, dairy, 

and grazing livestock farms via Translog production functions. To account for 

structural and technological heterogeneity, a meta-frontier approach is applied, 

yielding Technology Gap Ratios (TGR) and Meta-Technical Efficiency (MTE) 

scores. 

Fertilizer Use Efficiency (FUE) is derived from a Cobb-Douglas specification to 

evaluate input-specific performance and is complemented by the estimation of 

Meta-FUE (MTFUE) and Fertilizer Overuse Efficiency (FOUE). These indicators 

enable a multidimensional assessment of both economic and environmental 

efficiency. 

The results indicate that dairy farms exhibit high TE and MTFUE, while field crop 

farms show the lowest fertilizer efficiency and the highest overuse. Grazing 

livestock farms display moderate input efficiency but face the widest technology 

gaps. The study also explores how structural and policy-related variables—such as 

subsidies, farm size, and regional location—affect inefficiency. 

Overall, the findings reveal substantial heterogeneity across farm types in both 

productivity and sustainable input use, offering evidence-based insights for more 

targeted and differentiated agricultural and environmental policy design in Sweden. 

Keywords: Stochastic Frontier Analysis, Fertilizer Use Efficiency, Meta-Frontier, 

Technical Efficiency, Technology Gap Ratio,Sustainable Farming, Panel Data, 

FADN  
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1. Introduction 

Sustainable intensification is increasingly seen as the cornerstone of agricultural policy across 

Europe. For countries like Sweden—where agriculture is both highly productive and 

environmentally scrutinized—the challenge lies not in producing more, but in producing 

efficiently and responsibly. Fertilizer management, in particular, sits at the intersection of 

productivity and environmental stewardship. Overuse of fertilizers has been linked to nitrogen 

leakage, groundwater contamination, and greenhouse gas emissions, placing pressure on 

Sweden’s ability to meet national environmental targets and its obligations under the EU 

Common Agricultural Policy (CAP) (Swedish Board of Agriculture, 2012). 

Swedish agriculture is marked by substantial heterogeneity in climate, farm structure, and 

policy exposure (Liu et al., 2021). From intensive arable farms in the south to extensive grazing 

systems in the north, structural variation shapes resource use and production efficiency (Alem, 

Lien, & Hardaker, 2018). Adding to this complexity, Sweden's reliance on imported fertilizers 

(Jordbruksverket, 2021) and its vulnerability to global price fluctuations make it vital to 

evaluate how efficiently farms use fertilizer inputs across different systems. 

To investigate these challenges, this study applies Stochastic Frontier Analysis (SFA) using a 

flexible translog production function to estimate technical efficiency (TE) across three main 

farm types defined in the EU Farm Accountancy Data Network (FADN): field crops (TF8 = 

1), dairy (TF8 = 5), and other grazing livestock (TF8 = 6) (European Commission, 2024). A 

meta-frontier framework is then used to account for technological heterogeneity, allowing the 

comparison of group-specific frontiers with a common technology frontier. This step yields the 

Technology Gap Ratio (TGR) and Meta-Frontier Technical Efficiency (Meta-TE) scores, 

quantifying how far different farm groups are from the technological potential. 

To complement this, the study also estimates Fertilizer Use Efficiency (FUE) using a Cobb-

Douglas specification that isolates the responsiveness of output to fertilizer input. From this, a 

Fertilizer Overuse Efficiency (FOUE) index is derived to capture potential excess application. 

Together, these measures—TE, TGR, Meta-TE, FUE, and FOUE—offer a multidimensional 

view of both performance and sustainability in fertilizer use. 

This two-stage approach, inspired by Huang & Jiang (2019) and Liu et al. (2021), first 

estimates farm-level efficiency and technology gaps, and then explains observed inefficiencies 

using a rich set of structural and policy variables, including subsidy types, regional location, 

and economic size. 

Sweden presents a compelling case for such analysis not only due to its agro-ecological 

diversity and environmental policy ambitions, but also due to the regionally differentiated 

subsidy structures under the CAP (European Commission, 2023; Jordbruksverket, 2021). Yet, 

despite its advanced farming systems, micro-level analysis of fertilizer use efficiency remains 

limited. Existing studies often assume technological homogeneity and rarely integrate 

environmental inputs like fertilizers into frontier efficiency frameworks. This thesis addresses 
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these gaps by explicitly modeling fertilizer inputs, incorporating a meta-frontier structure, and 

analyzing the role of subsidies and structural conditions in shaping inefficiency. Accordingly, 

the thesis is guided by the following research questions: 

(1) What are the technical efficiency and fertilizer use efficiency levels across Swedish 

farm types and regions? 

(2) How do farms perform relative to their group-specific frontiers and a common meta-

frontier, and what does this reveal about technology heterogeneity? 

(3) What role do selected structural and policy factors play in explaining farm-level 

inefficiencies? 

This study contributes to the literature in three ways. First, it offers new empirical insights from 

Sweden, a context underrepresented in the efficiency literature. Second, it advances 

methodological applications by integrating fertilizer-specific measures with meta-frontier 

SFA, allowing for the decomposition of technology gaps. Third, it evaluates the differentiated 

impact of subsidy types and structural characteristics on efficiency, offering nuanced, policy-

relevant insights for promoting sustainable agriculture. 

The remainder of the thesis is structured as follows: Chapter 2 reviews the relevant literature 

on efficiency, sustainability, and meta-frontier models. Chapter 3 presents the data and variable 

definitions. Chapter 4 outlines the empirical methodology. Chapter 5 discusses the main 

findings. Chapter 6 concludes with policy implications and directions for future research. 
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2. Literature Review   

2.1 Efficiency and Sustainability in Agriculture: The Case for 

Fertilizer Use Efficiency 

Improving the sustainability of agricultural production has become a central priority for both 

researchers and policymakers due to the environmental risks of intensive input use. Among 

these inputs, mineral fertilizers—especially nitrogen-based—play a dual role: enhancing 

productivity while contributing to environmental degradation (Zhang et al., 2015). Fertilizer 

Use Efficiency (FUE) thus emerges as a critical metric that links input optimization with both 

output performance and sustainability outcomes. While technical efficiency (TE) assesses the 

general capacity to transform inputs into output, it may not capture overuse of specific inputs 

like fertilizers. Huang and Jiang (2019), using SFA on Chinese crop farms, show that farms 

with high TE can still have low FUE, suggesting that fertilizer input use may exceed agronomic 

needs. This supports the argument for evaluating FUE as a distinct efficiency dimension. 

 

Environmental costs of fertilizer overuse have also been quantified. Dakpo et al. (2023), for 

example, estimate a marginal abatement cost of €21 per kilogram of excess nitrogen on French 

wheat farms. They simulate an EU-wide expansion of the Nitrates Directive to include 

synthetic fertilizers, estimating a 9.5% reduction in nitrogen use with only a 3.1% decrease in 

revenue—indicating the feasibility of targeted sustainability policies. Zhu et al. (2023), 

applying a dynamic DEA model to Dutch dairy farms, emphasize that environmental 

inefficiency often exceeds economic or social inefficiency. Their findings highlight the need 

to separately measure FUE, especially in high-input sectors like dairy and field crops, where 

trade-offs across sustainability dimensions are common. 

 

At the macro level, Expósito and Velasco (2020) use DEA-Malmquist methods to evaluate 

trends in fertilizer-related environmental efficiency across EU countries. Their results show 

only modest improvements, with persistent inefficiencies in countries such as Sweden. They 

argue that input reduction alone is insufficient, and more efficient fertilizer management is 

necessary to reduce eutrophication risks. Finally, ecological policy reforms can have mixed 

short-term effects on TE. Huang et al. (2025) find that environmental policies may initially 

reduce efficiency due to compliance costs and adaptation time, highlighting the importance of 

analyzing both TE and FUE to assess policy trade-offs. 

 

Taken together, these studies justify a dual-efficiency framework. TE reflects the overall 

production capacity, while FUE reveals whether input use aligns with environmental and 

economic efficiency. In a Swedish context—characterized by high productivity and strict 

environmental standards—this combined analysis is essential. This thesis contributes by 

estimating TE and FUE through translog SFA and extending the analysis with meta-frontier 

and technology gap approaches to examine structural differences in sustainability. 
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2.2 Measuring Technical Efficiency in Agriculture: Methodological 

Developments and Debates 

Measurement of technical efficiency (TE) in agriculture has commonly relied on two frontier 

approaches: Data Envelopment Analysis (DEA) (Nowak et al., 2015; Zhu et al., 2023; Expósito 

& Velasco, 2020) and Stochastic Frontier Analysis (SFA). While DEA offers a non-parametric 

and flexible benchmarking framework, it assumes that all deviations from the frontier are due 

to inefficiency, making it sensitive to noise and outliers. In contrast, SFA explicitly separates 

inefficiency from statistical noise, which is particularly important in agricultural settings where 

random shocks—such as weather variability—can affect output independently of managerial 

performance (Coelli et al., 2005; Kumbhakar & Lovell, 2000). Given the availability of farm-

level panel data and the need to control for such noise, SFA is the more appropriate framework 

for this study, especially when paired with the estimation of inefficiency determinants using a 

one-step approach (Battese & Coelli, 1995). Recent developments such as Greene’s (2005) 

“true” fixed/random effects models and Belotti et al.’s (2013) sfpanel command in Stata have 

expanded the flexibility of SFA to include heteroskedasticity, time-varying inefficiency, and 

multiple distributional assumptions. These features are particularly valuable for modeling 

heterogeneous farm systems under varying regional and policy conditions. 

 

Functional form selection also shapes efficiency estimates. While the Cobb-Douglas function 

is commonly used for its simplicity, it imposes restrictive assumptions about input 

substitutability and constant returns to scale. In contrast, the translog production function 

allows for flexible elasticities and interaction effects among inputs, making it more appropriate 

for diverse farm types (Belotti et al., 2013). Given the structural variation in Swedish 

agriculture, a translog specification is adopted in this study, with Cobb-Douglas used as a 

robustness check. 

 

The modeling of inefficiency effects is another key consideration. The one-step approach 

introduced by Battese and Coelli (1995) simultaneously estimates the production frontier and 

links inefficiency to farm-level characteristics, reducing potential bias found in two-step 

models. This approach is widely adopted in the literature (e.g., Huang & Jiang, 2019; Liu et 

al., 2021) to evaluate policy-relevant determinants such as subsidies, farm size, and regional 

context. Finally, the choice of inefficiency distribution (e.g., half-normal, truncated-normal) 

can affect the interpretation of TE scores. Testing alternative distributions, as recommended 

by Greene (2005) and implemented via sfpanel, improves model robustness and accounts for 

heterogeneity in inefficiency patterns. 

 

This thesis applies a translog panel SFA model using a one-step inefficiency specification to 

jointly estimate the production frontier and farm-level determinants of inefficiency. Both 

Cobb-Douglas and translog functional forms are compared, and a half-normal distribution is 

adopted for the inefficiency term—reflecting the classical assumption that inefficiency is non-

negative and most farms operate close to the frontier. These modeling choices balance 
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flexibility with tractability and enable a more context-sensitive assessment of technical 

inefficiency in Swedish agriculture. 

2.3 Fertilizer Use Efficiency and Environmental Impacts in 

Agriculture 

Fertilizer Use Efficiency (FUE) has become an important metric for assessing both the 

economic and environmental performance of farms, especially in input-intensive systems like 

arable and dairy production. Unlike traditional technical efficiency (TE) measures, which may 

overlook excessive input use, FUE provides insight into whether fertilizers are applied 

proportionally to output gains—thereby capturing potential environmental inefficiencies 

embedded in high-yield systems. 

 

Huang and Jiang (2019) provide one of the most direct empirical contributions to this literature. 

Using a stochastic frontier framework with Chinese farm-level data, they estimate both TE and 

FUE (fertilizer overuse index) as the ratio of predicted optimal fertilizer use to actual fertilizer 

use. Their results indicate substantial overapplication, showing that fertilizer input could be 

reduced by an average of 23.1% without sacrificing output. Crucially, they find that farms with 

high TE are not necessarily efficient in fertilizer use, revealing a disconnect between 

production efficiency and input-specific sustainability. This underscores the importance of 

evaluating fertilizer use as a distinct dimension of farm performance. 

 

This thesis applies a comparable approach by estimating FUE through stochastic frontier 

models, using a Cobb-Douglas specification to obtain predicted fertilizer demand. These FUE 

scores are then further adjusted using the Technology Gap Ratio (TGR) to derive Meta-

Fertilizer Use Efficiency (MTFUE), reflecting both input-specific efficiency and cross-group 

technological heterogeneity.  The term MTFUE in its construction aligns with the meta-frontier 

frameworks applied by Liu et al. (2021) and O’Donnell et al. (2008), where meta-efficiency 

scores are estimated to benchmark performance across heterogeneous production technologies. 

 

Approaches to quantifying FUE vary widely—from output-to-input ratios to simulations of 

optimal fertilizer levels—highlighting the conceptual and methodological complexity. The 

frontier-based approach adopted in this study offers a robust alternative that accommodates 

production heterogeneity, enables farm-level benchmarking, and integrates sustainability 

concerns into technical efficiency measurement. 

 

In sum, the literature underscores that TE alone is insufficient to assess environmental 

performance. By integrating FUE and MTFUE within a stochastic frontier and meta-frontier 

framework, this study aims to provide a comprehensive and policy-relevant assessment of 

sustainability in fertilizer use. 
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2.4 Meta-Frontier and Technology Gap Analysis in Agricultural 

Efficiency Research 

Traditional efficiency models often assume a common production frontier, which may obscure 

structural disparities across diverse agricultural systems. The meta-frontier approach addresses 

this limitation by estimating group-specific frontiers (e.g., by farm type or region) alongside a 

global meta-frontier. This enables the computation of Technology Gap Ratios (TGRs), 

quantifying how far each group operates from the best-practice technology. This distinction is 

crucial in agricultural contexts where heterogeneity in resources, climate, or access to 

technology is prevalent. 

 

Despite the conceptual appeal of meta-frontier models, empirical applications remain relatively 

rare in Nordic and European agriculture. One notable exception is a study of Norwegian grain 

farms using a stochastic meta-frontier SFA (published in Economies, 2021), which classified 

farms by region and found significant regional Technology Gap Ratios (TGRs)—

demonstrating technology gaps even within a single country (Flaten et al., 2021). The study 

used Greene's (2005) true random effects model and reported average group-specific TE scores 

between 0.70 and 0.75, with TGRs as low as 0.52 in some regions. 

 

This evidence aligns with findings from Liu et al. (2021) on Chinese farm heterogeneity, 

providing cross-regional empirical support for the use of meta-frontier methods. The 

Norwegian case is particularly relevant to the Swedish context, illustrating how farm 

technology adoption and regional characteristics can create measurable inefficiencies. A meta-

frontier analysis thus serves not only as a theoretical solution but also as a practical tool to 

quantify technological disparities in agriculture. 

 

Harimaya et al., (2022) show that structural conditions like infrastructure and market access 

shape cost frontiers in Japanese cooperatives, supporting regional decomposition in meta-

frontier models. Zhu et al. (2023), while not using a meta-frontier, acknowledge technological 

heterogeneity by grouping farms in DEA-based sustainability assessments. Their findings 

highlight that peer-group efficiency (high TE) may still fall short of broader benchmarks (low 

FUE), reinforcing the case for meta-efficiency analysis. DEA-based meta-frontiers (Makieła et 

al., 2025) risk distortion from noise, whereas SFA-based models (Liu et al., 2021) offer greater 

robustness and accommodate inefficiency determinants. 

 

A key insight from the meta-frontier literature is that low TGR values may reflect structural 

constraints rather than managerial inefficiency (Garzón Delvaux et al., 2020; O’Donnell et al., 

2007; Huang and Jiang, 2019). For instance, extensive grazing farms receiving targeted 

subsidies may operate below the meta-frontier by design. This underpins the inclusion of policy 

and regional controls in the inefficiency model to disentangle structural disadvantage from 

suboptimal input use. 
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In summary, meta-frontier analysis enhances efficiency evaluation by distinguishing between 

within-group performance (TE) and cross-group technological potential (TGR). The use of this 

methodology—particularly in linking Meta-FUE scores to regional and structural factors—fills 

a notable gap in the current literature, where fertilizer-specific efficiency comparisons across 

farm types remain rare, especially in the Nordic context. 

2.5 Structural and Policy Determinants of Farm Inefficiency 

Understanding farm-level inefficiency requires looking beyond input-output relations and 

considering structural, regional, and policy-related constraints. The inefficiency effects model 

in SFA allows technical inefficiency to be expressed as a function of such contextual variables 

(Battese & Coelli, 1995), offering insight into how external conditions affect a farm’s ability 

to convert inputs into output efficiently. Subsidies, farm size, and regional characteristics are 

frequently cited as important inefficiency determinants.  

 

Liu et al. (2021), in a meta-frontier study of Chinese farms, show that access to extension 

services significantly improves efficiency, while the relationship with farm size is nonlinear—

mid-sized farms perform better than small or very large ones. Similarly, Huang and Jiang 

(2019) report that subsidies may reduce efficiency by weakening incentives for input 

optimization. This supports decomposing total subsidies into environmental, LFA, and rural 

development components in order to examine their differential impacts. Makieła et al. (2025) 

and Kusz & Kusz (2024) further confirm that regional variation—linked to infrastructure, input 

prices, and ecological conditions—remains a strong determinant of technical efficiency even 

after controlling for farm characteristics. 

 

Farm structural features are also pivotal. Economic size, production orientation (e.g., field 

crops, dairy, grazing), and geographic region determine input intensity, specialization, and 

technology access. Kusz & Kusz (2024) find larger farms tend to be more efficient due to 

capital-labour substitution and economies of scale. However, Nowak et al. (2015) caution that 

these results are conditional on soil quality, age, and farm type.  

 

Specialization may improve efficiency through better resource allocation (Makieła et al., 

2025), though environmental trade-offs exist in highly specialized systems (Zhu et al., 2023). 

The type of production (e.g., field crops, milk, grazing livestock) plays a particularly important 

role in Sweden. In Makieła et al. (2025), the authors use regional FADN data to compare crop 

farm efficiency across countries and note that specialized farms tend to outperform mixed 

systems. Conversely, Zhu et al. (2023) show that intensive specialization in Dutch dairy farms 

can lead to higher economic efficiency but worse environmental performance due to increased 

input density.  

 

Moreover, regional differences influence both technology adoption and policy exposure. 

Expósito & Velasco (2020) highlight that fertilizer efficiency varies more with institutional 

and environmental conditions than with farm-level inputs alone. Liu et al. (2021) find 

significant cross-province TGR differences in China, reinforcing the value of regional dummy 
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variables. These findings justify modelling group-specific frontiers and including region and 

farm type as both grouping and inefficiency variables in this thesis. 

 

In addition to core structural indicators, this study includes the share of family farm income—

defined as the ratio of SE420 (Family Farm Income) to SE410 (Net Value Added)—to capture 

the degree to which a farm’s generated value is retained by the family unit. This metric reflects 

internal profitability, managerial autonomy, and the economic sustainability of family-based 

production. A higher ratio may indicate strong internal cost control and low reliance on external 

labor or capital, while a lower ratio could suggest more commercialized or externally 

dependent operations.  Davidova and Thomson (2014) emphasize that family farms’ 

sustainability often hinges on how income and labor are internally managed, particularly in 

smaller-scale or diversified systems. Including this ratio allows the inefficiency model to 

capture a nuanced structural dimension of performance that is often overlooked in purely input-

based assessments. 

 

Production frontiers must account for specialization and regional constraints; otherwise, 

efficiency comparisons lose validity (Harimaya, et al., 2022). Thus, together, these studies 

provide strong support for the inclusion of structural and policy variables in the inefficiency 

model. Region dummies, TF8 farm type, and decomposed subsidies are essential not only for 

explaining heterogeneity in technical efficiency and FUE, but also for distinguishing between 

managerial inefficiency and structural disadvantage—crucial for formulating effective, 

targeted agricultural policy. 

2.6 Integrating Sustainability into Efficiency Analysis: Economic, 

Environmental, and Social Dimensions 

The growing urgency around environmental degradation and agricultural restructuring has led 

to an expanded view of farm performance that goes beyond traditional technical or economic 

efficiency. Recent literature emphasizes the need to incorporate environmental—and to a lesser 

extent, social—dimensions into efficiency assessments to capture sustainability more 

holistically. 

 

Zhu et al. (2023) offer one of the most comprehensive examples by applying a dynamic DEA 

by-production model that distinguishes between economic, environmental, and social 

inefficiency in Dutch dairy farms. Their findings show that environmental inefficiency is 

consistently higher than economic inefficiency, indicating that profit-maximizing farms may 

still misuse inputs in ways that harm the environment. This supports this thesis's dual focus on 

technical efficiency (TE) and fertilizer use efficiency (FUE), positioning FUE as a core 

sustainability indicator. 

 

Moreover, Expósito and Velasco (2020) also highlight environmental inefficiency, using 

dynamic DEA to assess fertilizer use efficiency across EU countries. They show persistent 

underperformance in nitrogen-intensive systems, even in economically productive regions. 
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This aligns with the use of Meta-FUE in this thesis to capture sustainability gaps across farm 

types and regions. 

 

Other studies provide additional insights into sustainability integration. Huang et al. (2025) 

assess ecologization policies and find that participation in environmental schemes can increase 

inefficiency due to compliance burdens. This justifies analyzing the effects of environmental 

subsidies (SE621) separately in the inefficiency model. Dakpo et al. (2023) contribute by 

estimating shadow prices of excess nitrogen, highlighting the economic cost of environmental 

inefficiency—a concept parallel to this thesis's use of FUE as a measurable link between 

environmental performance and input management. 

 

The social dimension is less developed in the literature. While some studies include proxies 

such as labour intensity or entrepreneur age, social inefficiency remains difficult to 

operationalize. Although this thesis does not model it explicitly, it engages indirectly with 

social sustainability by examining subsidy types and structural characteristics that reflect farm 

resilience and policy dependency. 

 

In conclusion, while sustainability integration into efficiency analysis is conceptually accepted, 

empirical implementation varies. This thesis contributes by embedding Fertilizer Use 

Efficiency (FUE) directly within a stochastic frontier framework, positioning it as a core 

sustainability metric rather than a supplementary indicator, and by analyzing its determinants 

through structural and policy-related inefficiency effects 
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3. Method 

3.1 Theoretical Framework and Model 

Agricultural production involves the transformation of multiple inputs—land, labour, capital, 

and intermediate goods—into outputs under conditions of uncertainty and environmental 

constraint. Evaluating the efficiency of this transformation is central to both microeconomic 

analysis and sustainability assessment, particularly where excessive input use, such as 

fertilizers, can generate economic waste and environmental harm. This study applies a 

Stochastic Frontier Analysis (SFA) framework to assess the technical efficiency (TE) of 

Swedish farms, with special attention to fertilizer use efficiency (FUE) and fertilizer overuse 

efficiency (FOUE). 

Building on the approach of Huang and Jiang (2019), who applied a panel SFA model with 

time-varying inefficiency in Chinese agriculture, this study adapts the Battese and Coelli 

(1995) framework to a cross-sectional design suited for meta-frontier analysis. The 

methodology integrates parametric frontier estimation, a one-step inefficiency effects model 

based on Battese and Coelli (1995), and a meta-frontier analysis that enables a comprehensive 

decomposition of performance gaps across heterogeneous farm types and regions. Importantly, 

the SFA models are estimated using cross-sectional snapshots rather than panel data. This 

approach is methodologically aligned with the study’s goal: to estimate group-specific frontiers 

for different farm types (TF8 = 1, 5, 6) and to calculate technology gap ratios (TGR) and meta-

technical efficiency (MTE). 

Unlike standard panel SFA models, which assume a shared production technology across all 

units, the cross-sectional design accommodates structural heterogeneity in production 

technologies—an essential requirement for the meta-frontier framework. Temporal dynamics 

are addressed by including a normalized time trend and its square in the production function, 

which helps capture broad time-related effects without requiring a panel specification. 

Although a panel SFA was explored as a robustness check, it was not pursued further, as it 

neither supported meta-frontier estimation nor yielded additional insights relevant to the 

study’s central questions on structural and input-specific efficiency. 

Through the combination of TE, TGR, MTE, and input-specific measures such as FUE and 

FOUE, the study provides a diagnostic framework to distinguish between managerial 

inefficiency, technological disparity, and potential input overuse—thereby supporting more 

targeted strategies for sustainable and efficient agricultural production. 

3.1.1 Technical Efficiency and the Stochastic Production Frontier 

Technical efficiency refers to a farm's ability to obtain the maximum possible output from a 

given set of inputs. Following Farrell's (1957) foundational work, a technically efficient 

producer lies on the production frontier, while inefficient producers fall below it. Unlike 
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deterministic frontier models, which attribute all deviations from the frontier to inefficiency, 

SFA introduces a composed error structure, distinguishing between random shocks (e.g. 

weather, measurement error) and systematic inefficiency. This feature makes SFA particularly 

suitable for agricultural applications, where stochastic elements are inherent in production 

processes (Coelli et al., 2005; Kumbhakar & Lovell, 2000). 

The stochastic production frontier for output yit of farm i in year t is specified as: 

                               lnyit=f(xit;β)+vit−uit  

where 𝑥𝑖𝑡 is a vector of logged inputs, F (⋅) is the production function (e.g., Cobb-Douglas or 

Translog); 𝑣𝑖𝑡 ∼ N (0, 𝜎𝑢
2) represents statistical noise; and 𝑢𝑖𝑡 ≥ 0 captures technical 

inefficiency. In this study, the inefficiency term is assumed to follow a half-normal 

distribution 𝑢𝑖𝑡 ∼\𝒩(0, σ𝑢
2 )\, consistent with standard practice and the default assumption in 

Stata’s frontier command (Belotti et al., 2013). This implies that inefficiency is non-negative 

and right skewed, with most farms operating near the frontier. 

3.1.2 Functional Form: The Translog Production Function 

The choice of functional form is critical in frontier estimation. While the Cobb-Douglas 

function easily interpretable, it imposes constant elasticities of substitution and unitary returns 

to scale—assumptions often unrealistic in heterogeneous farm systems. This study therefore 

adopts a Translog production function, which provides a second-order approximation to any 

twice-differentiable production technology and allows for input interactions (cross terms), 

variable returns to scale, and nonlinear relationships between inputs and output. 

 

The Translog specification takes the form: 

 

          ln 𝑦𝑖𝑡 = β0 + ∑ β𝑘𝑘 ln 𝑥𝑘𝑖𝑡 +
1

2
∑ ∑ β𝑘𝑗𝑗 ln 𝑥𝑘𝑖𝑡 ln 𝑥𝑗𝑖𝑡𝑘 + β𝑡𝑡 +

1

2
β𝑡𝑡𝑡2 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 

 

Where Xk ∈ {land, labour, fixed assets, energy, other inputs, fertilizer}; t is a normalized time 

trend; βkj  represent second-order interaction terms. 

 

The inclusion of both squared and interaction terms enhances model flexibility. Empirically, 

the Translog specification was statistically preferred over the Cobb-Douglas alternative based 

on log-likelihood values and likelihood-ratio (LR) tests, confirming the presence of significant 

nonlinearities in the data (LR statistic = 1989.14, p<0.001). 

3.1.3 Inefficiency Effects Model 

 

To explain differences in inefficiency across farms, the study employs the Battese and Coelli 

(1995) one-step model, which specifies the inefficiency term uit as a function of farm-specific 

characteristics: 
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uit=zitδ+wit 
 

where zit includes normalized determinants of inefficiency (subsidies and region); δ is a vector 

of parameters; 𝑤𝑖𝑡 ∼ 𝒩(0, σ𝑤
2 ) is the error term in the inefficiency equation. This formulation 

allows for simultaneous estimation of the production frontier and the influence of explanatory 

variables on inefficiency, ensuring statistical consistency and avoiding bias inherent in two-

stage procedures (Kumbhakar & Lovell, 2000).  

3.1.4 Meta-Frontier Approach and Technology Gap Ratios (TGR) 

While the standard SFA model estimates a single production frontier, it assumes a 

homogeneous technology across all observations. However, in heterogeneous agricultural 

systems—such as Sweden’s field crop, dairy, and grazing livestock farms—this assumption 

may obscure structural differences. To address this, the study applies a meta-frontier 

framework, allowing for group-specific frontiers and an overarching meta-frontier (Battese et 

al., 2004). In the first stage, separate stochastic frontiers are estimated for each farm type {TF8} 

=1,5,6. In the second stage, a pooled frontier is estimated for the full sample, representing the 

meta-frontier against which each group is benchmarked.  

 

 The Technology Gap Ratio (TGR) is computed for each farm as: 

 

TGR𝑖𝑡 = exp (𝑦𝑖𝑡
group̂

− 𝑦𝑖𝑡
metâ) 

 

A TGR of 1 indicates that the farm’s group-specific technology is equivalent to the meta-

frontier, while values below 1 indicate technology constraints or lagging technological access. 

This decomposition allows us to differentiate between managerial inefficiency (TE) and 

technology-related inefficiency (TGR), culminating in a meta-technical efficiency score: 

 

Meta-TEit=TEit×TGRit 

 

This approach is particularly important for identifying structural constraints and policy-

relevant inefficiency, especially where technological adoption differs across production 

systems (Liu et al., 2021). 

3.1.4 FUE, FOUE, and MTFUE Using Cobb-Douglas 

To evaluate input-specific efficiency, this study estimates fertilizer use efficiency (FUE) using 

the Cobb-Douglas functional form. Unlike the translog specification, which allows for flexible 

substitution among all inputs but complicates marginal analysis, the Cobb-Douglas model 

enables direct derivation of input elasticities and marginal productivities. Following the 

approach of Huang and Jiang (2019), FUE is computed as the ratio of optimal to observed 

fertilizer use, where the optimal level is derived from the farm’s technical efficiency and the 

estimated output elasticity of fertilizer. Fertilizer Overuse Efficiency (FOUE) is derived further 

by comparing predicted optimal fertilizer use to actual observed use. This measure specifically 
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identifies the extent of fertilizer overapplication, offering a more targeted perspective on input 

sustainability. 

This method captures how effectively fertilizer is converted into output, while holding other 

inputs constant. 

     FUEi =TEi / βfertilizer  

 

To extend the analysis, fertilizer overuse efficiency (FOUE) is calculated using the 

expression: 

 FOUEi = (1 / FUEi) - 1 

providing a direct measure of the extent to which fertilizer input exceeds the technically 

efficient level. FOUE is particularly relevant in cropping systems, where overapplication 

contributes to both economic inefficiency and environmental pressure (Huang & Jiang, 2019; 

Dakpo et al., 2023). It highlights cases where farms may appear efficient in aggregate but 

misallocate key inputs.  

Furthermore, a meta-level fertilizer use efficiency measure (MTFUE) is introduced to account 

for technological heterogeneity across farm types. MTFUE is calculated as the product of 

Cobb-Douglas FUE and the group-specific Cobb-Douglas technology gap ratio (TGR), 

analogous to the construction of meta-technical efficiency (Battese et al., 2004).  

 

MTFUEi =TGRi ×FUEi    

 

This measure reflects both within-group efficiency and a farm’s access to frontier technologies 

in fertilizer application. It is especially useful for identifying farms that are efficient within 

their group yet remain disadvantaged in relation to the meta-frontier. This dual-layer metric 

supports a more equitable and informed interpretation of fertilizer efficiency by recognizing 

both input misallocation and structural constraints (Garzón Delvaux et al., 2020; Latruffe, 

2010). 

 

Taken together, the integration of FUE, FOUE, and MTFUE enables a multi-dimensional 

assessment of fertilizer performance—capturing technical inefficiency, overuse behaviour, and 

technological disadvantage in a unified framework. 

3.2 Data and Descriptive Statistics 

This study utilizes farm-level panel data from the Swedish subset of the Farm Accountancy 

Data Network (FADN), covering the period 2007 to 2021. The dataset includes observations 

for three farm types based on the TF8 classification: field crop farms (TF8 = 1), dairy farms 

(TF8 = 5), and other grazing livestock farms (TF8 = 6). After excluding observations with 

missing, zero, or implausible values for key variables—such as output, fertilizer expenditure, 

or land area—the cleaned dataset forms a consistent and balanced sample suitable for reliable 

efficiency estimation. 
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All continuous variables used in the production and inefficiency effects models were 

normalized by dividing each by its sample mean, and log-transformed where appropriate. This 

preprocessing step reduces skewness, facilitates elasticity interpretation within the Cobb-

Douglas and translog functional forms, and mitigates scale-related heteroskedasticity. Such 

standardization enhances comparability across variables with differing units and magnitudes 

and follows established best practices in SFA estimation (Kumbhakar & Lovell, 2000; Belotti 

et al., 2013). 

So the final sample structure supports both cross-sectional SFA by farm type and meta-frontier 

estimation across heterogeneous technologies, allowing for decomposition into technical 

efficiency, technology gaps, and input-specific performance measures. 

3.2.1 Data and Descriptive Statistics 

The dependent variable in the production function is total output, denoted as y, measured in 

euros and sourced from variable SE131 in the FADN dataset. This variable captures the farm’s 

total economic output, including all market revenues from both crop and livestock production, 

adjusted for on-farm consumption and inventory changes. As a value-based measure, it reflects 

the farm’s overall financial performance rather than physical yields, which are not directly 

comparable across heterogeneous farm types. 

To prepare the variable for estimation, total output was normalized by its sample mean and 

then log-transformed (resulting in lny). This transformation addresses skewness and facilitates 

elasticity interpretation in the Cobb-Douglas and translog functional forms. Using a monetary 

output measure ensures consistency across farm types and aligns with standard practice in 

stochastic frontier modeling (e.g., Coelli et al., 2005; Kumbhakar & Lovell, 2000). 

3.2.2 Input Variables 

The production frontier includes six key input variables, selected based on their theoretical 

relevance, data availability in the FADN system, and empirical precedence in the farm 

efficiency literature (Coelli et al., 2005; Kumbhakar & Lovell, 2000; Latruffe, 2010; Huang & 

Jiang, 2019). 

These inputs are (1) Land (SE025) defined as total utilised agricultural area (hectares); (2) 

Labour (SE010) defined as total labour input measured in annual work units (AWU); (3) 

Capital (SE441) defined as fixed assets in euros, serving as a proxy for capital stock; (4) Energy 

(SE345) defined as total expenditure on fuel and electricity; (5) Other intermediate inputs 

calculated as SE281 (specific costs) minus SE295 (fertilizer), isolating non-fertilizer 

intermediate expenses; (6) Fertilizer (SE295): crop-specific input costs for fertilizers. 

This specification reflects an input-oriented view of the production process and enables precise 

estimation of input-specific efficiency measures such as fertilizer use efficiency (FUE). 

Moreover, Fertilizer expenditure (SE295) is excluded from intermediate inputs to model it as 

a distinct environmental input. This separation not only aligns with the study’s sustainability 



   

 

22 

 

focus but also reduces potential multicollinearity with other cost variables in the production 

function. Log-transformed and normalized versions of these variables are used in the frontier 

estimation to ensure comparability and to allow for elasticity interpretation. The selection is 

consistent with established frontier modeling practices, while the decomposition of 

intermediate costs allows the model to isolate fertilizer-specific effects more cleanly (Huang 

& Jiang, 2019; Latruffe, 2010). 

Table 1 presents the summary statistics for the raw inputs, output, and time across the full 

sample. The variables exhibit considerable variation, particularly SE441 and SE131, which 

show high standard deviations, indicating substantial differences in scale among observations. 

The time variable spans from 2007 to 2021, with a mean year of approximately 2014. 

Table 1- Summary Statistics for Raw Output, Inputs, and Year 

Variable Mean SD Min Max 

SE131 296645.84 487312.26 669.97 13079698.00 

SE025 143.64 153.96 1.00 2671.90 

SE010 1.99 2.19 0.04 76.51 

SE441 967077.97 1225772.66 1084.33 18656006.00 

SE345 23168.97 30007.45 66.69 515815.53 

SE281 145280.51 232281.45 322.84 4368531.00 

SE295 12539.52 23884.66 0.00 601104.00 

Year 2014.16 4.27 2007.00 2021.00 

 

Table 2 shows the summary statistics for the log-transformed variables used in the estimation. 

The log transformation reduces the scale of the data and helps to normalize distributions, as 

seen in the narrower range of values. All variables have been mean-centered, and their 

distributions show reasonable variability, making them suitable for regression analysis. 

Table 2 - Summary Statistics for Log-Transformed Inputs, Output, and Time 

Variable Mean SD Min Max 

lnx1 -0.351 0.816 -4.967 2.923 

lnx2 -0.267 0.712 -3.906 3.650 

lnx3 -0.495 1.019 -6.793 2.960 

lnx4 -0.473 0.960 -5.850 3.103 

lnx5 -0.721 1.268 -8.295 3.469 

lnx6 -0.524 1.275 -8.867 3.870 

lny -0.620 1.110 -6.093 3.787 

lnt -0.151 0.736 -1.968 0.671 

Observations 12328 
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3.2.3 Inefficiency Variables 

To explain variation in technical inefficiency, the model incorporates several farm-specific 

determinants, selected based on findings from previous efficiency studies and their relevance 

to Swedish agricultural policy and structural diversity. These variables enter the inefficiency 

effects model (the z-vector in the Battese and Coelli, 1995 specification), and all are centered 

(demeaned) prior to estimation, following standard practice in one-step stochastic frontier 

analysis. 

The inefficiencies variables include (1) Total subsidies (SE605); (2) Environmental subsidies 

(SE621); (3) Less Favoured Area (LFA) subsidies (SE622); (4) Other rural development 

subsidies (SE623); (5) Share of family farm income, calculated as the ratio SE420 / SE410; 

(6) Region (Southern, Middle, Northern). 

The choice of inefficiency determinants is grounded in established SFA literature. Subsidy 

variables (SE605, SE621, SE622, SE623) are included due to their well-documented impact 

on technical and allocative efficiency (Latruffe, 2010; Dakpo et al., 2023). The share of family 

farm income (SE420/SE410) reflects farm structure and labor reliance, which has been shown 

to influence management performance and input responsiveness (Liu et al., 2021; Bravo-Ureta 

& Evenson, 1994). Regional dummies (Southern, Middle, Northern) control for agro-climatic 

and structural variation across Sweden, consistent with prior studies that incorporate spatial 

heterogeneity in inefficiency modeling (Huang & Jiang, 2019; Liu et al., 2021). 

In addition, geographical location is captured using regional dummies for Southern (region 

code 710), Middle (720), and Northern Sweden (730), which allow the model to account for 

agro-climatic and structural differences across the country’s major farming zones. These 

dummies are binary indicators, coded as 1 if the farm is located in the respective region, and 0 

otherwise. 

Tables 3 and 4 summarize the variables used to model inefficiency in the production process. 

Table 3 presents the raw values for the inefficiency determinants, including different types of 

subsidies, the share of family labor, and the farm's economic size. These variables show 

substantial variability, reflecting the diversity in support schemes and structural characteristics 

across farms. Table 4 provides the normalized versions of these variables, which are used in 

the inefficiency effects model to ensure comparability and to stabilize the estimation by 

reducing scale-related distortions. 

Table 3 - Summary Statistics for Inefficiency Determinants 

Variable Mean SD Min Max 

Total subsidies 64606.816 75371.120 0.000 1131744.875 

Environmental subs~s 13173.532 24074.271 0.000 492288.469 

LFA subsidies 9187.641 18465.259 0.000 308748.563 

Other rural develo~e 259.700 3462.783 0.000 147009.328 

Share of family fa~e 0.118 20.542 -1027.536 921.029 

Economic size 242.070 349.608 0.503 7431.619 

Observations 12328 
   



   

 

24 

 

Table 4 - Summary Statistics for Normalized Inefficiency Determinants 

Variable Mean SD Min Max 

tn 1.000 0.597 0.000 1.957 

z1n 0.999 1.166 0.000 17.504 

z2n 1.000 1.828 0.000 37.378 

z3n 1.000 2.010 0.000 33.612 

z4n 0.812 10.825 0.000 459.544 

z5n 0.898 156.023 -7804.516 6995.556 

z6n 1.000 1.445 0.002 30.707 

Observations 12328 
   

 

A key methodological contribution of this study is the decomposition of agricultural subsidies 

into distinct policy instruments. Rather than relying on a single aggregate subsidy variable, the 

inefficiency effects model separates environmental payments (SE621), Less Favoured Area 

(LFA) support (SE622), and other rural development subsidies (SE623). This decomposition 

allows for a more nuanced assessment of how different forms of public support affect farm 

efficiency. It is particularly relevant in the Swedish context, where subsidy allocation varies 

both regionally and by farm type under the Common Agricultural Policy (CAP) framework 

(Latruffe, 2010; Dakpo et al., 2023). 

Regional dummies—for Southern, Middle (reference category), and Northern Sweden—are 

included to control for structural and agroecological variation, as well as differential access to 

infrastructure and policy targeting (Huang & Jiang, 2019; Liu et al., 2021). Time is modelled 

through a normalized time trend, with both linear and quadratic terms included in the 

production function to account for potential technical change over the study period. The 

inclusion of these variables supports a context-sensitive and policy-relevant understanding of 

inefficiency in Swedish agriculture. 

3.3 Empirical Model Specification 

The empirical strategy adopted in this study is based on a multi-stage stochastic frontier 

framework, designed to estimate technical efficiency (TE), fertilizer use efficiency (FUE), and 

meta-efficiency scores (MTE) across heterogeneous farm types in Swedish agriculture. The 

model addresses both managerial inefficiencies, through the estimation of farm-level technical 

efficiency scores within each farm type, and structural technology gaps, via meta-frontier 

decomposition that compares group-specific frontiers to a common technological benchmark. 

This section outlines the key components of the empirical strategy, including: (1) the choice of 

functional form (Cobb-Douglas vs. translog), (2) the use of the one-step inefficiency effects 

model (Battese & Coelli, 1995), (3) the distributional assumptions on the inefficiency term, 

and (4) the logic of technology gap ratio (TGR) estimation and meta-efficiency (MTE) 

construction. Taken together, these specifications support a comprehensive and input-specific 

assessment of farm performance across structurally diverse production systems. 
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3.3.1 Stage 1: Farm-Type-Specific Stochastic Frontier Model 

In the first stage, the technical efficiency of farms is estimated separately for each farm type—

field crops (TF8 = 1), milk (TF8 = 5), and other grazing livestock (TF8 = 6)—using a Translog 

stochastic production frontier with inefficiency effects: 

 

    ln 𝑦𝑖𝑡 = β0 + ∑ β𝑘
6
𝑘=1 ln 𝑥𝑘𝑖𝑡 +

1

2
∑ ∑ β𝑘𝑗

6
𝑗=1 ln 𝑥𝑘𝑖𝑡 ln 𝑥𝑗𝑖𝑡

6
𝑘=1 + β𝑡𝑡 +

1

2
β𝑡𝑡𝑡2 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 

  

Yit is total output (SE131); xkit∈ {land, labor, fixed assets, energy, other inputs, fertilizer}; 

𝑣𝑖𝑡 ∼ 𝒩(0, σ𝑣
2) is the noise term; and 𝑢𝑖𝑡 ∼\𝒩(0, σ𝑢

2 )\ is the non-negative inefficiency term 

(half-normal distribution). 

 

The inefficiency component is modelled as a function of farm-specific variables:  

 

𝑢𝑖𝑡 = δ0 + ∑ δ𝑚𝑧𝑚𝑖𝑡

𝑀

𝑚=1

+ 𝑤𝑖𝑡 

 

Where zmit∈ {subsidies & region}and 𝑤𝑖𝑡 ∼ 𝒩(0, σ𝑤
2 ) is the error term in the inefficiency 

equation. 

 

The one-step estimation procedure is implemented using Stata’s frontier command with the 

uhet() option to model heteroskedastic inefficiency effects, following the specification of 

Battese and Coelli (1995). A half-normal distribution for the inefficiency term is adopted based 

on its theoretical simplicity and empirical performance, consistent with the recommendations 

of Belotti et al. (2013). The translog functional form, used in the farm-type-specific models, 

includes squared and interaction terms to capture potential non-linearities and scale effects in 

input relationships. 

 

Predicted technical efficiency scores  𝑇𝐸𝑖𝑡̂ ∈ (0,1] are generated using the predict,te command 

and serve as the basis for subsequent meta-frontier decomposition and input-specific efficiency 

analysis.  

3.3.2 Stage 2: Meta-Frontier Estimation and Technology Gap Ratios (TGR) 

To compare efficiency across farm types that operate under potentially different technologies, 

this study applies a meta-frontier stochastic frontier approach, following the framework 

developed by Battese, Rao, and O'Donnell (2004). Predicted output values from the first-

stage farm-type-specific models (i.e.,𝑦𝑖𝑡
group̂

 ) are stacked and used as the dependent variable 

in a second stochastic frontier regression, which maintains the same translog input structure 

as in the group models: 
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From this model, the Technology Gap Ratio (TGR) is calculated for each observation as the 

ratio between predicted output from the group-specific frontier and predicted output from the 

meta-frontier. A TGR value less than one indicates that a farm is operating with a technology 

that is inferior to the best available technology across all farm types.  

 

Meta-Technical Efficiency (MTE) is then calculated as the product of group-specific Technical 

Efficiency (TE) and the Technology Gap Ratio (TGR), thus capturing both within-group 

performance and the farm’s proximity to the overall meta-frontier: 

 

MTEit =TEit ×TGRit       

 

This decomposition separates managerial inefficiency (TE) from structural technological 

disadvantage (TGR), enabling a more comprehensive assessment of farm performance. This 

approach is particularly useful for identifying farms that are efficient within their group but 

constrained by outdated or limited technology, and it has been used in agricultural studies such 

as Liu et al. (2021) and Huang, Huang, & Liu (2014) to inform targeted policy interventions. 

3.3.3 Fertilizer Use Efficiency (FUE) and Cobb-Douglas Transformation 

As stated previously, in addition to TE and MTE derived from SFA, this study derives Fertilizer 

Use Efficiency (FUE) from the Cobb-Douglas production function, where input coefficients 

correspond to output elasticities. The Cobb-Douglas form is chosen for this purpose due to its 

interpretability and its ability to produce stable, farm-level fertilizer elasticity estimates 

necessary for computing FUE. While the translog form offers greater flexibility by allowing 

variable elasticities and input interactions, it may lead to overparameterization and 

multicollinearity, particularly when estimating input-specific measures like FUE. 

Consequently, using Cobb-Douglas for FUE estimation ensures consistency and tractability 

without undermining the broader frontier estimation performed via the translog model. 

Specifically, FUE is calculated as: 

 FUE𝑖𝑡 = exp (
ln 𝑇𝐸𝑖𝑡̂

βfertilizer
)        

Where βfertilizer is the estimated elasticity of fertilizer input from the Cobb-Douglas model. This 

transformation yields an interpretable index of how efficiently fertilizer contributes to output, 

conditional on each farm’s technical efficiency. Values of FUE below 1 indicate overuse of 

fertilizer relative to the optimal level implied by the frontier.  Based on this, the Fertilizer 

Overuse Efficiency (FOUE) is also computed to directly quantify the degree of 

overapplication:   

 

FOUEi = (1/FUEi )−1     
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Furthermore, to account for technology heterogeneity across farm types, the Meta-Fertilizer 

Use Efficiency (MTFUE) is calculated as the product of FUE and the Technology Gap Ratio 

(TGR): 

  MTFUEi =TGRi ×FUEi.  

These metric captures both input overuse and structural disadvantages in access to superior 

technology. The Cobb-Douglas specification is retained for estimating Fertilizer Use 

Efficiency (FUE) and related metrics due to its direct interpretability and alignment with 

policy-oriented analysis. This choice reflects established practices in the stochastic frontier 

literature, where the Cobb-Douglas form is frequently applied for its simplicity, ease of 

elasticity interpretation, and analytical tractability—particularly when deriving input-specific 

efficiency indices. Although more flexible forms like the translog are advantageous for 

capturing input interactions and scale effects, the Cobb-Douglas remains well-suited for 

contexts emphasizing marginal productivity and policy relevance (Kumbhakar and Lovell, 

2000; Coelli et al., 2005; Battese and Coelli, 1995). 
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4. Results and Discussion  

This chapter presents the empirical results of the cross-sectional stochastic frontier analysis 

conducted to evaluate the technical and fertilizer use efficiency of Swedish farms. The model 

is estimated using a one-step inefficiency effects approach following Battese and Coelli (1995), 

where inefficiency is allowed to vary systematically with farm-specific characteristics. These 

include regional location and subsidy composition, entered through the uhet() specification in 

Stata. Although the dataset is a panel, the estimation is performed cross-sectionally to allow 

for group-specific frontiers and a subsequent meta-frontier analysis. Temporal dynamics are 

captured by including a normalized time trend (lnt) and its square in the production function. 

The results begin with an interpretation of the estimated production frontiers, including input 

elasticities and scale properties, as well as the inefficiency determinants modeled through 

uhet(). This is followed by an analysis of technical efficiency (TE) scores across farm types. 

Next, Technology Gap Ratios (TGRs) are introduced, derived from a meta-frontier model, to 

capture structural disparities in access to best-practice technologies. These are combined with 

TE to compute Meta-Technical Efficiency (MTE). 

Finally, fertilizer-specific efficiency is assessed using a Cobb-Douglas specification to estimate 

Fertilizer Use Efficiency (FUE), Fertilizer Overuse Efficiency (FOUE), and Meta-FUE 

(MTFUE). These measures provide insight into the economic and environmental implications 

of input use. Taken together, the results offer a comprehensive evaluation of productivity, 

inefficiency drivers, and sustainability trade-offs in Swedish agriculture. 

4.1 Stochastic Frontier Estimates: Translog Translog Frontier 

Estimation by Farm Type 

The estimation of translog stochastic frontier production functions reveals important 

differences in input elasticities and efficiency patterns across farm types. This heterogeneity 

justifies the meta-frontier approach and is consistent with prior literature emphasizing 

structural variability in European farming systems (Latruffe et al., 2009; Huang & Jiang, 2019). 

For field crop farms, fertilizer and other intermediate inputs display strong and significant 

output elasticities (0.183 and 0.342, respectively), affirming their central role in crop-oriented 

production systems. The significance of fertilizer underpins its use in Fertilizer Use Efficiency 

(FUE) metrics and aligns with findings in Huang & Jiang (2019), who emphasize fertilizer's 

productivity link in similar cross-sectional settings. Labour and energy also show statistically 

significant elasticities, while the negative coefficient on fixed assets suggests potential 

overcapitalization—consistent with inefficiencies observed in capital-intensive settings 

(Latruffe et al., 2012). 

In dairy farms (TF8 = 5), the highest output elasticity is observed for other intermediate inputs 

(0.672), likely capturing feed, veterinary costs, and contract services. Fertilizer’s lower 
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elasticity (0.055) reflects its more limited direct impact on dairy output, in line with Dakpo et 

al. (2023), who caution against overemphasizing fertilizer efficiency in livestock-oriented 

systems. Energy and labour remain significant, while land contributes modestly. 

Grazing livestock farms (TF8 = 6) show positive and significant coefficients for fertilizer 

(0.096) and energy (0.305), though land (−0.158) is negatively associated with output. This 

likely reflects the extensive nature of pasture-based systems and reduced marginal productivity 

from additional land, echoing patterns discussed in European extensive farming systems by 

Latruffe et al. (2009). 

The statistical significance of squared and interaction terms supports the choice of the translog 

specification. The consistently negative and significant interaction between energy and 

intermediate inputs suggests diminishing marginal returns when these inputs are scaled 

together—indicative of input complementarity saturation (Bravo-Ureta & Pinheiro, 1997). 

On the inefficiency side, total subsidies (z1) are associated with reduced inefficiency across all 

models, reinforcing their potential to stabilize input allocation and mitigate risk (Dakpo et al., 

2023). However, as the variable reflects absolute subsidy levels, this effect may partly capture 

the efficiency advantages of larger farms, given that subsidy size is often correlated with farm 

scale. Moreover, environmental (z2) and LFA subsidies (z3) are positively related to 

inefficiency in field crop and grazing systems, suggesting that such payments may reduce 

incentives for tight input management, a finding in line with Huang & Jiang (2019) and 

Latruffe et al. (2009). 

Geographically, farms in Southern Sweden show lower inefficiency, particularly in dairy 

systems, likely due to favorable agro-climatic conditions and infrastructure. Conversely, farms 

in Northern regions consistently exhibit higher inefficiency, which corresponds with structural 

constraints and less favorable conditions—a pattern also noted in studies on regional disparities 

in European agriculture (Latruffe et al., 2009). Together, these results validate the use of a 

flexible translog form and support a dual focus on both managerial performance and structural 

technological disparities—key objectives of this thesis. 
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4.2 Technical Efficiency 

This section presents and interprets the technical efficiency (TE) scores estimated using 

Stochastic Frontier Analysis (SFA) based on the Translog production function by Farm Type. 

Table 5 reports summary statistics for technical efficiency scores across three different frontier 

specifications (te_tf1, te_tf5, and te_tf6) as well as the overall average (te_total).  

Table 5 - Technical Efficiency and Predicted Output Summary 

Variable Mean SD Min Max 

te_tf1 0.7353321 0.1617856 0.0180362 0.9999834 

te_tf5 0.8698613 0.0775792 0.2764187 0.9942517 

te_tf6 0.8725970 0.1311510 0.0860815 1.0000000 

te_total 0.8220350 0.1314139 0.0172447 1.0000000 

Observations 9480 
   

The technical efficiency (TE) scores derived from the translog stochastic frontier model reveal 

important variation across Swedish farm types. Field crop farms (TF8 = 1) exhibit the lowest 

average TE at 0.735, while dairy farms (TF8 = 5) and other grazing livestock farms (TF8 = 6) 

show significantly higher efficiency levels at 0.870 and 0.873, respectively. The overall mean 

TE for the full sample stands at 0.822, indicating that, on average, Swedish farms operate at 

approximately 82% of their production potential, given their current input mix and technology.  

While field crop farms exhibit comparatively lower TE levels, such group-specific differences 

should be interpreted with caution, as efficiency estimates are inherently sample-dependent 

and may vary across contexts and datasets. For example, Huang, Manevska-Tasevska, and 

Hansson (2024) demonstrate that Swedish crop farms generally exhibit lower technical 

efficiency, particularly when constrained by environmental or diversification pressures. Liu et 

al. (2021) similarly highlight the sensitivity of crop systems to variability in input conditions 

and management quality, leading to greater dispersion in performance. 

Indeed, field crop farms in this study also show the highest dispersion (SD = 0.162) and a 

minimum TE as low as 0.018, suggesting the presence of significant inefficiencies among a 

subset of farms. This may be related to differences in input quality, managerial capacity, or 

farm structure, in line with findings from studies on European crop sectors (Makieła et al., 

2022). The relatively low and highly variable TE scores observed among Swedish field crop 

farms may reflect their exposure to climatic risks and market volatility, factors identified by 

Zhu et al. (2023) as key inefficiency drivers in crop production systems. In contrast, the high 

average TE for dairy farms likely reflects greater structural coherence and input coordination. 

Prior work by Huang and Jiang (2019) suggests that dairy systems benefit from more 

standardized technology adoption, regularity in input use, and economies of scale. Similar 

conclusions are drawn in studies from Norway and the Netherlands, where dairy farms tend to 

be more capital-intensive and better integrated into value chains (Alem et al., 2015; Zhu et al., 

2023). 
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Grazing livestock farms, while showing efficiency levels comparable to dairy farms, may mask 

deeper structural inefficiencies when considered alongside their relatively low technology gap 

ratios (discussed in the next section). As shown by Huang et al. (2024), such farms often 

operate under constraints imposed by geography, land quality, or limited access to extension 

services, particularly in Northern Sweden. 

Together, these findings emphasize the importance of differentiating between observed 

inefficiencies and underlying structural disadvantages. While TE captures how close farms are 

to their type-specific frontiers, it does not alone reflect broader constraints related to access to 

best-practice technologies or systemic barriers—a gap addressed in the meta-frontier analysis 

that follows. 

4.3 Technology Gap Ratios (TGR) and Meta-Technical Efficiency 

(MTE) 

Table 6 summarizes the Technology Gap Ratio (TGR) values derived from the metafrontier 

analysis. The TGR values, which measure the distance between group frontiers and the 

metafrontier, indicate the extent to which technological differences exist across groups. The 

mean TGR values are close to 1 for TGR1 and TGR5, suggesting relatively small gaps, whereas 

TGR6 exhibits a lower average, implying a wider technology gap. The variable te_tema reflects 

metafrontier technical efficiency and supports the interpretation of the productivity gap across 

technologies. 

Table 6 - Technology Gap Ratio (TGR) 

Variable Mean SD Min Max 

TGR1 0.9142908 0.1321863 0.1500000 1.6200000 

TGR5 0.9072748 0.0945791 0.4400000 1.1700000 

TGR6 0.7296962 0.0749840 0.2400000 1.1200000 

TGRtotal 0.8677060 0.0669522 0.3909186 1.1169370 

te_tema 0.8643102 0.0985822 0.1681620 1.0000000 

Observations 9480 
   

 

While technical efficiency (TE) captures how well a farm uses its inputs relative to its own 

group frontier, Technology Gap Ratios (TGR) provide insight into how far a farm’s group 

frontier is from the sector-wide meta-frontier, representing the best practice across all systems. 

Thus, TGR captures structural limitations in access to technology and institutional advantages, 

making it an essential complement to TE when assessing performance across heterogeneous 

farm types (Battese et al., 2004; Huang & Jiang, 2019). 

 

The empirical results highlight stark contrasts across farm types. Dairy farms exhibit the 

highest average TGR (0.918), closely followed by field crop farms (0.916), while grazing 

livestock farms lag substantially with an average TGR of just 0.729. These findings indicate 

that livestock farms are structurally further from the sector’s technological frontier—

suggesting not only potential underinvestment but also a need for more targeted modernization 

policies. Such patterns are consistent with Liu et al. (2021), who document similar gaps in 
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livestock sectors across Northern Europe and stress the importance of systemic constraints over 

managerial shortcomings.  

 

The near-parity in TGR between dairy and crop farms, despite differing TE levels, reveals an 

important nuance: crop farms have access to modern technologies but are less effective at 

utilizing them—a theme echoed by Huang and Jiang (2019), who observe that technology 

availability does not guarantee its full exploitation due to structural, climatic, or behavioral 

limitations. Similarly, Zhu et al. (2023) point out that volatility in crop markets may discourage 

farms from making long-term investments in new practices, reinforcing this underutilization. 

 

High TE and high TGR of dairy farms suggest a dual advantage: these farms are not only 

efficient within their group but are also operating close to the sector's technological frontier. 

This reflects the capital-intensive, professionally managed nature of Swedish dairy systems, 

which are supported by stable institutional frameworks, supply chain integration, and policy 

incentives—as also observed in other FADN-based research (Latruffe, 2010; Liu et al., 2021). 

 

At the full sample level, the mean TGR is 0.906, with some values slightly above 1. As noted 

by Liu et al. (2021), such "overshooting" may occur due to smoothing assumptions in meta-

frontier estimation or temporary shocks that elevate individual output beyond the predicted 

frontier. While these are statistical artefacts, they emphasize the importance of cautious 

interpretation when assessing best-practice boundaries. 

In sum, the results underline a critical insight: farms may be efficient relative to their peers but 

remain disadvantaged in broader technological terms. A grazing livestock farm with high TE 

but low TGR still operates far below the potential of more advanced systems. This insight, 

emphasized by Garzón Delvaux et al. (2020), supports the dual focus of the meta-frontier 

framework on both behavioral (TE) and structural (TGR) drivers of performance. 

Table 7 presents the summary statistics for Technical Efficiency (TE), Technology Gap Ratio 

(TGR), and Meta-Technical Efficiency (MTE). The average TE is approximately 0.83, 

indicating that on average, farms operate at 83% of their potential output under their respective 

technologies. The mean TGR is 0.87, reflecting a relatively small average gap between group 

frontiers and the metafrontier.  

Table 7 - Summary Statistics: Technical Efficiency (TE), Technology Gap Ratio (TGR), and Meta-
Technical Efficiency (MTE) 

Variable Mean SD Min Max 

TE 0.8305978 0.1360343 0.0180362 1.0000000 

TGR 0.8668165 0.1288802 0.1500000 1.6200000 

MTE 0.7190826 0.1547106 0.0162325 1.6151940 

Observations 9480 
   

 

The Meta-Technical Efficiency (MTE), as a multiplicative product of TE and TGR, averages 

0.72. This reflects the compounded effect of both managerial inefficiencies and technological 

disadvantages. The fact that MTE is substantially lower than either TE or TGR individually 
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underscores that improving farm-level productivity requires addressing both behavioral 

(within-frontier) and structural (technology access) dimensions. This finding supports prior 

studies (e.g., Garzón Delvaux et al., 2020; Latruffe et al., 2009) which argue that sustainable 

efficiency gains in agriculture demand not only better use of current inputs but also equitable 

diffusion of innovation and technology. 

The wide dispersion in MTE (standard deviation of 0.15, ranging from 0.016 to 1.62) reflects 

substantial inequality in farm performance relative to the meta-frontier. As emphasized by 

Battese et al. (2004) and reinforced by Huang & Huang (2009), such heterogeneity justifies the 

use of meta-frontier methods to differentiate between farms that are inefficient due to 

managerial reasons and those structurally disadvantaged.  

4.4 Fertilizer Use Efficiency (FUE) 

Table 8 reports the summary statistics for Fuel Use Efficiency (FUE) across three technological 

groups and in total. 

Table 8 - Cobb-Douglas Fertilizer Use Efficiency by Farm Type 

Variable Mean SD Min Max 

FUE1 0.440 0.239 0.000 1.000 

FUE5 0.798 0.091 0.244 0.954 

FUE6 0.772 0.179 0.015 1.000 

FUEtotal 0.612 0.211 0.000 1.000 

N 9480 
   

 

The Cobb-Douglas Fertilizer Use Efficiency (FUE) results reveal significant disparities in how 

effectively fertilizer inputs are converted into output across farm types in Sweden. The average 

CDFUE across all farms is approximately 0.685, indicating that farms, on average, could 

reduce fertilizer use by roughly 31.5% without compromising output if they were operating on 

the efficient frontier. However, this average mask important heterogeneity across production 

systems. 

Field crop farms (TF8 = 1) exhibit the lowest mean FUE at 0.440, with a wide standard 

deviation (0.239) and a minimum value close to zero. This suggests that many crop farms are 

applying fertilizer well beyond the economically optimal level. These findings align with Zhu 

et al. (2023), who report that nutrient overuse, particularly nitrogen, is prevalent in cereal and 

field crop systems due to low marginal productivity and risk-averse behavior among farmers. 

Similar patterns are observed in Liu et al. (2021), where inefficiencies in crop production are 

partly attributed to climatic uncertainty and misaligned fertilizer application strategies. The 

environmental implications are significant: overapplication not only signals economic waste 

but also contributes to nitrate leaching and emissions, as discussed by Dakpo et al. (2023). 

In contrast, dairy farms (TF8 = 5) show the highest at 0.798, with relatively low dispersion. 

This suggests that fertilizer—mostly applied indirectly via purchased feed crops and manure 
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management—is used closer to its efficient level. This is consistent with findings by Huang 

and Jiang (2019), who note that dairy systems often operate in more vertically integrated input-

output environments, allowing for more precise input control. The higher efficiency may also 

reflect the capital intensity and managerial sophistication typically found in these systems 

(Latruffe et al., 2009). 

Grazing livestock farms (TF8 = 6) report a FUE of 0.772, slightly below dairy farms but 

significantly above field crop systems. This may appear surprising given their typically 

extensive nature, but it reflects a more restrained use of chemical fertilizers. These systems 

may rely more on natural forage and rotational grazing, which indirectly limits overuse. 

However, their relatively high fertilizer efficiency does not necessarily imply overall 

competitiveness, especially when considered in conjunction with their lower Technology Gap 

Ratios (TGRs) as shown earlier. 

The total sample FUE value of 0.612 further underlines that fertilizer overuse is not limited to 

one specific group but is a systemic challenge. As emphasized by Garzón Delvaux et al. (2020), 

addressing input misallocation—particularly fertilizer—is crucial for aligning agricultural 

productivity with sustainability goals. 

In sum, the results indicate that fertilizer use efficiency is highly farm-type specific, shaped by 

production systems, input strategies, and structural conditions. Policy responses should 

therefore be differentiated. These insights support the broader argument by Sauer and Latruffe 

(2015) that inefficiency in European agriculture is multi-dimensional and must be addressed 

through both behavioral and structural reforms. 

4.4.1 Fertilizer Use Efficiency at Sector Level (MTFUE) and Overuse 

Efficiency (FOUE) 

Table 9 presents the summary statistics for Meta-Technical Fuel Use Efficiency (MTFUE) 

and Fuel Overuse Efficiency (FOUE) across different technological groups and in total.  

Table 9 - Summary Statistics: Meta Fertilizer Use Efficiency and Fertilizer Overuse Efficiency 

Variable Mean SD Min Max 

MTFUE1 0.4064281 0.2202274 0.00000406 1.087641 

MTFUE5 0.6954089 0.1448218 0.140448 1.352518 

MTFUE6 0.4968679 0.1372107 0.0099548 0.9005559 

MTFUEtotal 0.5055485 0.1828189 0.00011 0.9214448 

FOUE1 95.20497 4696.089 0.0000129 249029.8 

FOUE5 0.2740551 0.1946087 0.0486644 3.099192 

FOUE6 0.4444879 1.512107 0.0000000 65.90903 

FOUEtotal 2.005614 75.44877 0.0000000 7306.927 

 

The meta-fertilizer use efficiency (MTFUE) and fertilizer overuse efficiency (FOUE) measures 

offer deeper insights into sustainability and input optimization across heterogeneous Swedish 

farm types. MTFUE, derived from the product of Cobb-Douglas-based fertilizer use efficiency 

(FUE) and the corresponding technology gap ratio (TGR), encapsulates both within-group 



   

 

35 

 

efficiency and structural disadvantages across technological frontiers (Huang & Jiang, 2019; 

Liu et al., 2021). 

The results reveal substantial variation in MTFUE across farm types. Dairy farms (TF8 = 5) 

exhibit the highest mean MTFUE (0.695), indicating that they not only apply fertilizers more 

efficiently but also do so within technological settings that are closer to the sector-wide frontier. 

This pattern aligns with their high TE and TGR scores and reflects structural advantages such 

as more capital-intensive operations and better access to technologies and advisory services, as 

documented by Latruffe et al. (2012) and Čechura et al. (2015). 

Field crop farms (TF8 = 1), by contrast, display a much lower average MTFUE (0.406), 

suggesting inefficiencies both in fertilizer application and in their relative position to the meta-

frontier. This supports prior findings that crop farms tend to underutilize available 

technological advances, either due to managerial constraints or exposure to higher climatic and 

price variability (Zhu et al., 2023; Liu et al., 2021). Grazing livestock farms (TF8 = 6) show 

intermediate performance (mean MTCDFUE = 0.497), reflecting partial inefficiency 

mitigation but continued distance from the sector’s best practices—an observation consistent 

with findings on extensive systems in marginal regions (Garzón Delvaux et al., 2020; Sauer & 

Latruffe, 2015). 

FOUE results offer a complementary view. While dairy farms show the lowest average FOUE 

(0.274), indicating relatively minor overuse of fertilizers, grazing farms (mean FOUE = 0.444) 

and especially crop farms (mean FOUE = 95.2, with extreme upper bounds) demonstrate higher 

inefficiency in fertilizer application. The extremely skewed distribution of FOUE in field crop 

systems, including maximum values exceeding 249,000 and a standard deviation of over 4,600, 

likely reflects both measurement challenges and the structural diversity within this group. 

Similar volatility in nitrogen-related input inefficiencies was observed by Dakpo et al. (2023) 

in French cropping systems, underscoring the environmental implications of misallocation. 

The gap between MTFUE and FOUE further highlights that overuse is not merely a matter of 

inefficient management but also of underlying technological or structural limitations. As 

emphasized by Liu et al. (2021) and Huang & Jiang (2019), meta-efficiency frameworks are 

critical in making this distinction and guiding policy efforts accordingly. 

In sum, the integration of MTFUE and FOUE reveals that Swedish agriculture exhibits 

substantial heterogeneity not only in productivity but also in environmental efficiency. 

Addressing both managerial behavior and structural constraints remains central to aligning 

farm-level practices with national sustainability goals. 

4.5 Meta-Efficiency (MTE)  

The results in Table 10 reveal substantial variation in Meta-Technical Efficiency (MTE) across 

farm types. Dairy farms (TF8 = 5) demonstrate the highest average MTE (0.790), indicating 

that they are closest to the meta-frontier and thus operate with relatively fewer structural or 

technological disadvantages. This aligns with Liu et al. (2021), who highlight the positive role 
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of technological access and advisory services—commonly more available in capital-intensive 

sectors like dairy.  

 

In contrast, grazing livestock farms (TF8 = 6) show the lowest average MTE (0.636), 

suggesting a significant structural gap between their group frontier and the overall meta-

frontier. This finding is consistent with the literature on regional and sectoral technological 

heterogeneity (Garzón Delvaux et al., 2020; O'Donnell et al., 2007), and supports policy 

concerns about the under-capitalization and geographic constraints faced by extensive 

livestock systems (Alem et al., 2019). Field crop farms (TF8 = 1) also lag behind dairy but 

outperform grazing livestock, with an MTE of 0.675. 

Table 10 - Meta-Technical Efficiency (MTE) by Farm Type 
 

Mean SD Min Max 

1 0.675 0.186 0.016 1.615 

5 0.790 0.114 0.213 1.055 

6 0.636 0.114 0.065 1.120 

Total 0.719 0.155 0.016 1.615 

Observations 9480 
   

 

Table 11 displays the distribution of the selected performance indicator across three geographic 

regions. Farms in the Middle region exhibit the highest MTE (0.753), followed by the Southern 

region (0.743), while the Northern region shows the lowest average (0.693). These differences 

likely reflect regional disparities in climate, infrastructure, access to advisory services, and 

market connectivity. A lower MTE indicates that farms in that region are operating further 

away from the sector’s best-practice technology frontier—suggesting greater structural or 

technological disadvantages that limit their potential efficiency. 

The meta-efficiency analysis reinforces the idea that improving farm performance requires 

addressing both internal and external inefficiency sources. Some farms—particularly in the 

grazing sector and in northern regions—operate relatively efficiently within their group but 

remain far from the technological frontier. This supports the argument that generalized farm 

management programs may be insufficient. Instead, differentiated strategies are needed. For 

instance, Dakpo et al. (2023) argue that input-efficiency policies should be sensitive to 

technology availability, while Battese et al. (2004) and Garzón Delvaux et al. (2020) suggest 

that structural modernization and diffusion of innovation are essential for bridging meta-

efficiency gaps. 

Table 11 - MTE by Region 

Region Mean SD Min Max 

Middle 0.753 0.159 0.070 1.220 

Northern 0.693 0.157 0.033 1.046 

Southern 0.743 0.171 0.047 1.520 
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5. Conclusion  

5.1 Summary of Key Findings 

This study employed a two-stage stochastic frontier analysis (SFA) within a meta-frontier 

framework to assess technical and fertilizer use efficiency (FUE) across different Swedish 

farm types—namely, field crops, dairy, and other grazing livestock.  

The analysis revealed several important dynamics. (1) Overall, farms exhibited relatively high 

technical efficiency, though field crop farms tended to underperform and showed greater 

variability in comparison to dairy and grazing livestock farms. (2) Fertilizer application 

patterns highlighted significant inefficiencies, particularly among crop producers, where the 

Fertilizer Overuse Efficiency (FOUE) index suggested that substantial reductions in fertilizer 

use could be achieved without compromising yield. (3) The examination of Technology Gap 

Ratios (TGRs) underscored structural limitations faced by grazing livestock farms, which 

appear to have restricted access to technologies available to other farm types. These structural 

differences contributed to lower meta-frontier efficiency (MTE) scores among those farms. (4) 

When analyzing the determinants of inefficiency, total subsidies were generally associated with 

improved efficiency. In contrast, more targeted support—such as environmental and Less 

Favored Area (LFA) subsidies—was linked to higher inefficiency levels in specific farm types, 

potentially due to compliance burdens or limitations in policy targeting.  

These results confirm the presence of both managerial inefficiencies and structural constraints 

within Swedish agriculture, reinforcing the importance of tailored interventions. 

5.2 Policy Implications 

The observed variation in technical efficiency (TE) and meta-frontier performance across 

Swedish farm types underscores the need for differentiated and context-sensitive policy 

responses. Field crop farms, which exhibited the lowest average TE and highest variability, 

may require targeted support aimed at improving input allocation, managerial capacity, and 

resilience to market and climatic volatility. Given their tendency for fertilizer overuse, 

efficiency programs should maybe emphasize agronomic training, precision input application, 

and tailored digital advisory tools. In contrast, dairy and grazing livestock farms showed higher 

and more stable TE, suggesting that these systems are closer to the production frontier. For 

these farms, maintaining efficiency levels will depend on sustained investment in technology 

renewal and infrastructure—particularly in structurally disadvantaged regions where 

Technology Gap Ratios (TGRs) remain low. As highlighted by Dakpo et al. (2023), 

inefficiency is not only an economic issue but also an environmental one. Farms operating 

significantly below the frontier are likely consuming more inputs per unit of output, 

exacerbating issues like nitrogen surplus and excess energy use. Addressing these 

inefficiencies can thus contribute to both productivity and environmental sustainability. 
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For field crop systems, where both TE and FUE are lower, a dual strategy is needed: facilitating 

access to best-practice technologies and correcting misallocated inputs. Policy instruments 

might include better-targeted subsidies, investment in regional infrastructure, and climate-

adaptive extension services (Zhu et al., 2023; Garzón Delvaux et al., 2020). In grazing livestock 

systems, improving TGRs requires going beyond farm-level interventions. Investment in 

transport, digital connectivity, and regionally tailored technologies is crucial for enabling these 

farms to approach the meta-frontier. Conversely, in more technologically advanced systems 

like dairy, policy should shift toward consolidating gains through sustainable input 

management and environmental compliance tools. By distinguishing between within-group 

inefficiency and cross-group technological gaps, meta-frontier analysis provides a nuanced and 

equitable foundation for designing agricultural policy that supports both performance and 

sustainability. 

5.3 Final Remarks and Future Research 

This thesis contributes to filling several important gaps in the agricultural efficiency literature. 

While prior research has examined fertilizer use efficiency (FUE), technology heterogeneity, 

and environmental performance, few studies have combined these dimensions within a single, 

statistically robust framework. Particularly in the context of Northern and Nordic European 

agriculture, such integration is rare. 

Existing literature is heavily weighted toward Asian case studies using stochastic frontier 

methods (e.g., Huang & Jiang, 2019; Liu et al., 2021), or European studies employing 

deterministic DEA (e.g., Zhu et al., 2023; Expósito & Velasco, 2020), which do not separate 

inefficiency from noise. Moreover, institutional, climatic, and policy differences limit the 

relevance of findings from non-European contexts for Sweden. 

By applying a panel-based translog SFA with inefficiency effects and meta-frontier estimation, 

this study provides a novel empirical application. It focuses on three key farm types—field 

crops, dairy, and grazing livestock—and explores structural, regional, and policy-driven 

sources of inefficiency. The decomposition of subsidies (SE621, SE622, SE623) and input 

categories (fertilizer, capital, energy) enhances policy relevance. 

Future research could build on these findings in several important directions. One potential 

avenue is the incorporation of dynamic efficiency analysis to examine how farm performance 

evolves over time. Additionally, expanding the model to include environmental outcome 

indicators—such as nitrogen surplus or carbon footprint—would provide a more holistic view 

of farm sustainability. Exploring spatial econometric techniques could also help capture 

regional spillover effects and the influence of neighboring farm practices. Finally, comparing 

the results with non-parametric approaches like Data Envelopment Analysis (DEA) would 

strengthen the robustness and credibility of the efficiency estimates. 
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In sum, the study not only advances methodological applications of meta-frontier SFA but also 

deepens the empirical understanding of input sustainability and policy targeting in Swedish 

agriculture. 
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Popular Science Summary 

Swedish agriculture plays a crucial role in food production, but farmers face growing pressure 

to balance productivity with environmental sustainability. In this thesis, I examined how 

efficiently different types of farms—such as those focused on crops, dairy, or grazing 

livestock—use resources, especially fertilizers. By using advanced statistical methods, I was 

able to measure both how close farms are to their optimal performance and how much they 

might be overusing inputs like fertilizer. 

The results show that many farms could produce the same amount with less fertilizer, 

especially crop farms. This means there is potential to reduce environmental impact without 

sacrificing yield. Additionally, the study found that some farms, particularly those with grazing 

animals, face disadvantages when it comes to accessing the best technologies, which affects 

their efficiency. The findings highlight the need for smarter, more targeted policies that support 

both productivity and environmental goals in Swedish farming. 

 

Populärvetenskaplig Sammanfattning 

Det svenska jordbruket spelar en viktig roll i livsmedelsproduktionen, men lantbrukare står 

inför ökande krav på att kombinera hög produktivitet med miljömässig hållbarhet. I detta 

examensarbete har jag undersökt hur effektivt olika typer av gårdar – såsom växtodling, 

mjölkproduktion och betesbaserad djurhållning – använder sina resurser, särskilt med fokus på 

gödselanvändning. 

Genom att använda avancerade statistiska metoder kunde jag mäta hur nära gårdarna ligger sin 

optimala prestanda, samt om de överanvänder insatsvaror som gödsel. Resultaten visar att 

många gårdar, särskilt växtodlingsgårdar, skulle kunna producera lika mycket med mindre 

gödsel. Det innebär att miljöpåverkan kan minskas utan att skörden påverkas negativt. 

Studien visade också att vissa gårdar – särskilt de med betande djur – har sämre tillgång till 

modern teknik, vilket påverkar deras effektivitet. Sammantaget understryker resultaten behovet 

av mer träffsäkra och anpassade jordbrukspolitiska åtgärder som både främjar produktivitet 

och miljöhänsyn inom svenskt jordbruk. 
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