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Abstract  

The United States’s transport sector accounts for 28 % of national CO2 emissions. Since U.S. 

intercity trains emit approximately 39% less CO2 per passenger mile than domestic flights, 

understanding the potential for modal shift from air to rail is crucial for climate policy. This thesis 

investigates how train ticket prices influences the demand for domestic flights in the U.S., i.e. the 

cross-price elasticity between the two modes of transportation. The analysis uses annual panel data 

covering six domestic routes over the time period 2013-2023. A log-log demand model for air 

travel is estimated using a first difference estimator with a linear constraint, helping to control for 

time-invariant route-specific factors and address endogeneity. The results indicate a small, 

positive, but statistically insignificant, cross-price elasticity, suggesting limited substitution from 

air to rail in the U.S. market. In contrast, the own-price elasticity of flight demand is statistically 

significant and inelastic (approximately -0.94). These findings imply that policy efforts to promote 

modal shift from air to rail will likely require more than adjustments in rail pricing alone. Instead 

direct pricing interventions targeting air travel, such as taxes or fees, are likely to be more 

effective.  

Keywords: Cross-price elasticity, Demand estimation, Modal shift, First difference estimator, Air 

travel demand, Intercity transport, Train fares.  
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1. Introduction  

In a world struggling with increasing levels of greenhouse-gas emissions (Ritchie 

et al. 2024) it is crucial to identify the principal emission sources and determine 

the most effective measures for their reduction. In the United States, the transport 

sector alone generates 28 percent of national CO₂ emissions, making it the largest 

contributor of greenhouse gases in the country (US EPA 2025). The climate 

impact from transportation differs depending on transportation mode, energy mix, 

transportation technology and occupancy. For example, the average national train 

emits 14% of the carbon of a domestic flight (Ritchie 2023).  

In the U.S., intercity rail traffic is operated by the federally owned monopoly 

Amtrak (AAR 2025). Most of these trains are diesel-powered (Amtrak 2024) and 

emit approximately 0.15 kg of CO₂ per passenger mile (Amtrak 2022), roughly 39 

% less than domestic flights (Ritchie 2023). Despite these environmental 

advantages, trains only play a marginal role in U.S. long-distance travel. 

According to the Bureau of Transportation (2017), 90% of long-distance trips 

(defined as those extending at least 50 miles) are made by private car, 

approximately 7% by airplane, 2% by bus, and only 1% by train. The very low 

share of rail travel indicates potential to increase train ridership through targeted 

policy interventions aimed at promoting a modal shift from air to rail. Against this 

background, this thesis investigates the following research question: How do train 

ticket prices affect the demand for domestic flights in the U.S.?  

IPCC (2023:1060) states that shifting travel-mode demand for urban and intercity 

transport is crucial for decarbonizing the transport sector. They emphasize that 

policymakers must understand the price relationship between modes of 

transportation to design effective modal-shift policies. Yet empirical estimates of 

the cross-price elasticity between rail and air travel remain scarce. The cross-price 

elasticity represents the percentage change in the quantity demanded of one good 

in response to a one percent change in the price of another good.  

Gama (2017) is among the few studies that empirically estimate the cross‐price 

elasticity between U.S. train fares and air travel demand. She applies a discrete‐

choice model (Berry 1994; Berry et al. 1995) to monthly data from October 2009 

through September 2010. This period is relevant because it corresponds to 

President Obama’s announcement of a $13 billion passenger-rail investment. To 

address endogeneity, because prices are correlated with unobserved factors that 

affect demand, Gama instruments fares with cost shifters such as jet-fuel spot 

prices for air fares and diesel spot prices for rail fares. She finds that air travel’s 

own-price elasticity is roughly four times that of rail, and that a 1% increase in 
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train fares raises airline market share by just 0.0008%. More recently, Escañuela 

Romana et al. (2023a) estimate intercity demand elasticities using the Rotterdam 

Demand Model (RDM) applied to annual U.S. data from 2003 to 2019. They find 

that the Marshallian demand elasticities for air, road, and rail travel are all 

inelastic, and that the estimated cross-price elasticities between modes are weak 

or statistically insignificant. The authors conclude that additional research is 

needed to better understand the behavioral drivers of rail travel and other 

explanatory factors, in order to obtain more robust estimates of rail transport 

elasticities. 

Other research methods have been employed to answer similar questions. Zeng et 

al. (2021) employ a stated-preference survey in China in 2020 and estimate a rail–

air cross-price elasticity of 0.000123, and simulate resulting CO₂-savings under 

various pricing schemes. No consideration is given to the fact that their survey 

was distributed at the beginning of the COVID-19 pandemic. In a study conducted 

by Wardman and Tyler (2000) the impact of rail network accessibility on inter-

urban demand is examined. The authors conclude that accessibility plays a 

relatively minor role, with journey distance, prior service experience, and fare 

levels exerting far greater influence on train ridership.  

There are studies specifically addressing the own-price elasticity of long-distance 

rail demand. For example, Börjesson (2014) estimates the elasticity at -0.72 for 

business trips and -0.59 for private trips in Sweden and Rohr et al. (2013) estimate 

that the UK long-distance rail fare elasticities vary between -0.34 and -0.76. 

Regarding the own-price elasticity of demand for domestic flights on U.S. routes, 

it’s estimated to be inelastic, with a value of -0.70 (Escañuela Romana et al. 

2023b). Brons et al. (2002), in a meta-analysis covering multiple countries, further 

find that long-run own-price elasticities for air travel tend to exceed short-run 

values. They also conclude that available substitutes (including rail) have a 

limited impact on price sensitivity. Unfortunately, their analysis omits income as a 

control variable, which they acknowledge may bias the estimated elasticities. The 

income elasticity of air travel is instead investigated by Gallet & Doucouliagos 

(2014) and they estimate the income elasticity of domestic flights at 1.186. The 

authors find that income elasticity is higher for international flights than for 

domestic, but is relatively stable across geographical contexts. 

Building on the limited U.S. evidence this thesis estimates the cross-price 

elasticity between rail and air by exploiting annual data from 2013 to 2023 and 

thus captures both long-run behavioral adjustments and the COVID-19 shock. 

Existing U.S.-based studies either focus on short timeframes around specific 

policy events or are limited to the pre-pandemic period, leaving the longer-term 

dynamics and pandemic-related shifts in travel behavior underexplored. There is 
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also a notable gap in European-level studies on the substitution between rail and 

air, primarily due to limited availability of relevant data. Since this study focuses 

on U.S. corridors in the Northeast, Midwest and Southeast, which share key 

characteristics with major European regions (e.g. population density, travel 

distances and development of rail infrastructure), it aims to provide insights that 

are also relevant to Western Europe. 

To address endogeneity, I initially considered using diesel and jet‐fuel prices as 

instruments, following Gama (2017). However, both fuel prices are driven by the 

global crude-oil market, which also directly affects airline operating costs and 

ticket fares. This relationship violates the exclusion restriction for an instrumental 

variable. Instead, I address endogeneity through two avenues in this thesis. First, I 

estimate the parameters using a first differencing estimator, in order to remove 

route-specific unobservable heterogeneity. Second, a set of relevant controls is 

included, for example gasoline prices, an annual income control, rail on-time 

performance metrics to capture service-level effects, and COVID-19 dummies to 

isolate pandemic disruptions as the major time-varying shock. Estimating the first 

difference model with a linear constraint reveals a small and positive, statistically 

insignificant, cross-price elasticity, suggesting limited substitution from air to rail 

in the U.S. market.  

This thesis is organized as follows: The theoretical background is described in 

Section 2. Data sources, variable constructions and definitions are presented in 

Section 3. The methodology is explained in Section 4, including the motivation 

for using a first difference estimator and the treatment of Covid-related shocks. 

The results are presented in Section 5, followed by a discussion in Section 6 that 

analysis findings, consider potential limitations and offers suggestions for future 

research. This ends with a conclusion in Section 7.   
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2. Theoretical Background 

2.1 Utility Maximization and Demand  

When it comes to modeling consumer demand, utility maximization provides the 

main microeconomic foundation (Jevons 1874). In the context of travel, 

individuals choose combinations of transportation modes to maximize their 

utility, subject to resource constraints. When applied to travel decisions, this 

optimization problem yields demand functions that relate trip quantities to the 

price of substitutes and complements, traveler’s income and preferences, as well 

as service attributes. A utility maximization problem for two goods can be 

expressed as:  

𝑀𝑎𝑥𝑥,𝑦 𝑈(𝑥, 𝑦)   𝑠𝑡.   𝐼 =  𝑃𝑥𝑥 +  𝑃𝑦𝑦 

where the utility 𝑈 is a function of 𝑥 and 𝑦 (Nicholson & Snyder 2010:123).  

According to the first order condition (FOC) of the utility maximization problem, 

a consumer chooses a combination of goods such that the marginal rate of 

substitution (MRS) between the two goods equals their relative price ratio (Autor 

2016). This condition holds for interior solutions, where the consumer purchases 

strictly positive amounts of both goods. At this point, under the assumption of 

nonsatiation, the consumer cannot increase utility further by reallocating 

expenditure between the goods.  

𝐹𝑖𝑟𝑠𝑡 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛:        
𝑀𝑈𝑥

𝑀𝑈𝑦
=

𝑃𝑥

𝑃𝑦
=  𝑀𝑅𝑆 (𝑥 𝑓𝑜𝑟 𝑦) 

Solving the utility maximization problem yields Marshallian demand functions, 

where the quantity demanded of a good depends on its own price, the price of the 

other good and the consumer’s income (Nicholson & Snyder 2010:145).  

𝑀𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝑖𝑎𝑛 𝑑𝑒𝑚𝑎𝑛𝑑:        𝑥𝑖 = 𝑓(𝑃𝑥 , 𝑃𝑦, 𝐼) 

 

2.2 Substitution and Income Effect 

A price change results in two effects: a substitution effect and an income effect 

(Nicholson & Snyder 2010:149-150). When the price of a good changes, the 

relative prices of goods are altered, which influences the rate at which one good 

can be substituted for another; i.e. the MRS. 
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The substitution effect captures how a consumer reallocates consumption to 

relatively cheaper goods when the price change occurs, holding utility constant. 

Thereby it reflects the pure price effect, isolated from any change in real income. 

This effect is always negative; as the price of a good increases, the consumer 

substitutes away from it (Varian 2010:142).  

In addition, the change in price alters a consumer’s real income, generating an 

income effect. This occurs because a price increase reduces the consumer’s ability 

to purchase the same bundle as before, whereas a price decrease increases it 

(Nicholson & Snyder, 2010:149-150). As a result, the consumer moves to a new 

indifference curve. The income effect captures the portion of the total change in 

quantity demanded that is attributable to the change in real income. The direction 

and magnitude of this effect depend on the nature of the good (whether it is 

normal, inferior, or Giffen).  

 

2.3 Slutsky Equation 

The Slutsky equation (Slutsky 1915) provides the theoretical framework for 

decomposing the total effect of a price change into a substitution effect and 

income effect, as described in the previous section. 

𝑆𝑙𝑢𝑡𝑠𝑘𝑦:   
 𝜕𝑥 (𝑝𝑥, 𝑝𝑦, 𝐼)

𝜕𝑝𝑥
=  

𝜕𝑥

𝜕𝑝𝑥
|

𝑈=𝑐𝑜𝑛𝑠𝑡.

−  𝑥
𝜕𝑥

𝜕𝐼
 

= 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 + 𝑖𝑛𝑐𝑜𝑚𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 

Although originally developed for analyzing own-price effects, this reasoning also 

helps explain how shifts in relative prices between substitute goods may influence 

demand. In the context of train prices and flight demand, a decrease in train fares 

may induce consumers to substitution away from air travel, as rail becomes 

relatively cheaper. At the same time, the lower price increases real income, 

potentially affecting demand via the income effect. To isolate this income-related 

mechanism, GDP per capita is included as a control variable in the model. If air 

travel is a normal good, the income effect is expected to be positive (i.e. 
∂X

∂I
  > 0).  

 

2.4 Elasticities  

In the context of this study, elasticities are unitless measures used to capture how 

the quantity demanded responds to changes in price and income. Specifically, I 

use elasticities to quantify the impact of train ticket prices on the demand for air 

travel. Elasticities can be calculated through a logarithmic transformation of the 

standard linear regression model. That is, when both the dependent and 
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independent variables are transformed using the natural logarithm function. Then 

the estimated coefficient directly represents the percentage change in the 

dependent variable associated with a one-percent change in the independent 

variable, i.e. the elasticity. Since price variables are expressed in nominal terms 

and income is measured in real terms (chained GDP per capita in 2017 dollars), 

the estimated elasticities reflect Marshallian (uncompensated) demand. That is, 

demand responses are not compensated to hold utility constant, and thus capture 

both substitution and income effects (Nicholson & Snyder, 2010:158). Below is a 

brief overview of the three elasticities estimated in this thesis. 

 

2.4.1 Own-Price Elasticity of Demand   

The own-price elasticity of demand measures the percentage change in quantity 

demanded in response to the percentage change in a good’s own price, ceteris 

paribus (Nicholson & Snyder, 2010:162-163). Thus, it captures both substitution 

and income effects. A negative own-price elasticity ( 𝑒𝑃< 0) indicates that the 

good is normal, meaning that demand increases as the price decreases. 

Accounting for the own-price elasticity of demand is essential in this study, as it 

provides insight into how flight demand responds to changes in air travel fare.  

𝑒𝑃 =
𝜕𝑥(𝑝𝑥, 𝑝𝑦, 𝐼)

𝜕𝑝𝑥
∗

𝑝𝑥

𝑥
 

 

2.4.2  Income Elasticity of Demand  

The income elasticity of demand measures the percentage change in quantity 

demanded in response to a percentage change in the consumer's income, ceteris 

paribus (Nicholson & Snyder 2010:162-163). A positive income elasticity ( 𝑒𝐼 >

0) indicates that the good is normal and that demand increases as the income 

increases. 

𝑒𝐼 =
𝜕𝑥(𝑝𝑥, 𝑝𝑦, 𝐼)

𝜕𝐼
∗

𝐼

𝑥
 

 

2.4.3 Cross-Price Elasticity  

The cross-price elasticity of demand measures the percentage change in the 

quantity demanded of good 𝑥 in response to a percentage change in the price of 𝑦, 

ceteris paribus (Nicholson & Snyder, 2010:190). A positive cross-price elasticity 

(𝑒𝑥,𝑝𝑦
> 0) indicates that the goods are substitutes, since an increase in the price 

of one good increase the demand for the other good. On the other hand, if the 

cross-price elasticity is negative, the goods are complements and if it’s zero the 
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goods are independent of each other. The cross-price elasticity is the main focus 

in this thesis since it captures how changes in the train price affect the demand for 

flights.  

𝑒𝑥,𝑦 =
𝜕𝑥(𝑝𝑥, 𝑝𝑦 , 𝐼)

𝜕𝑝𝑦
∗

𝑝𝑦

𝑥
 

 

2.5 Hypotheses  

Based on the theoretical background there are five testable hypotheses: 

H1: 𝑒𝑓,𝑡 > 0. The cross-price elasticity of demand between flights and train ticket 

prices is expected to be positive, as long-distance rail travel is typically 

considered a substitute for domestic air travel.  

H2: 𝑒𝑃 < 0. The own-price elasticity of demand for flights is expected to be 

negative, as higher airfares are likely to reduce the quantity of air travel 

demanded.  

H3: 𝑒𝑓,𝑔 > 0. Traveling by car is a common substitute for domestic air travel. 

Therefore, an increase in gasoline prices is expected to raise the demand for 

flights, implying a positive cross-price elasticity between flight demand and 

gasoline prices.  

H4: 𝑒𝐼 >  0. Higher income increases consumers' purchasing power and typically 

leads to greater demand for discretionary goods, such as air travel. Therefore, the 

income elasticity of demand for flights is expected to be positive. In this study, 

GDP per capita is used as a proxy for income. 

H5: ꞵ
1

<  0. Higher on-time performance increases perceived quality of rail 

service, which is expected to raise train demand and to reduce demand for 

domestic air travel. This implies a negative relationship between Amtrak’s on-

time performance and air travel demand if rail and air are substitutes.  
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3. Data & Variable Construction 

The data consist of an annual panel covering the period from 2013 to 2024. Six 

domestic routes from the Northeast, Midwest, and Southeast regions, where both 

train and airline services operate and offer comparable services, are included. The 

routes are: Boston–Cleveland, Cleveland–Chicago, Chicago–Indianapolis, 

Philadelphia–Washington, Richmond–Charlotte, and Washington–Cincinnati. 

Each route is defined as travel in either direction between the two cities. This 

yields a total of 72 observations, with a balanced panel from 2013 to 2023. Since 

on-time performance (OTP) data for 2024 are missing, that year is excluded in 

specifications, including the 𝑂𝑇𝑃 variable, resulting in a reduced sample of 66 

observations. All variables are measured or converted to annual frequency. 

The dependent variable is defined as the annual number of passengers per route. It 

is constructed by aggregating quarterly domestic flight passenger data from the 

U.S. Department of Transportation (2025). 

Several variables reflect travel-related prices for elasticity estimation. Since 

Amtrak does not publish fare data, I approximate train ticket prices using 

available national-level revenue data. Specifically, I use Amtrak’s annual 

passenger-related revenue per passenger mile as a proxy for the average fare per 

mile. This value is then multiplied by the distance of each route 𝑖 to estimate the 

total fare: 

𝐏ᵗʳᵃⁱⁿ =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑀𝑖𝑙𝑒𝑠𝑡
∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖     

The approximation is motivated by microeconomic theory:   

𝐴𝑅 =
𝑇𝑅

𝑄
=

𝑃 ∗ 𝑄

𝑄
= 𝑃 

which shows that average revenue (AR) equals the market price (P), under the 

assumption of a single price per unit. In this context, the average revenue per 

passenger mile is assumed to represent the average fare per mile paid by 

passengers. This also implies symmetric pricing, i.e., that fares are the same in 

both direcations along each route. While this approach provides a consistent 

estimate of fares across time and routes, it has several limitations. First, the 

revenue per passenger mile is a national-level average and does not reflect route-

specific pricing, which for example can vary due to local demand, competition, 

and service characteristics. Second, Amtrak applies dynamic pricing, meaning 

that fares tend to differ depending on booking time (Amtrak 2025b) and variations 

like that are not captured by the average revenue. Third, multiplying by route 
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distance assumes a linear fare structure, although actual pricing may involve fixed 

components or discounts. 

Despite these limitations, the proxy remains the most feasible option given the 

lack of disaggregated fare data and allows for comparability across routes and 

years. While actual transaction-level fare data in some respects might be 

preferable, it could also introduce other types of endogeneity, such as those 

related to individual booking behavior and unobserved demand factors. By relying 

on an aggregated pricing structure, the proxy may mitigate some of these 

concerns, though it introduces its own trade-offs.  

The data used to construct the train fare proxy comes from three sources: revenue 

data are sourced from Amtrak’s annual reports (Amtrak 2025a), passenger miles 

from the Federal Railroad Administration (n.d.), and route distances from fact 

sheets provided by the Rail Passengers Association (n.d.). 

Flight fares are calculated as volume-weighted annual averages using quarterly 

fare and passenger volume data (U.S. Department of Transportation 2025). 

Gasoline prices represent the national average retail price across all grades and 

formulations, obtained from the U.S. Energy Information Administration (EIA 

2025). 

Additional control variables account for macroeconomic and service-related 

factors. Real GDP per capita, expressed in chained 2017 dollars and seasonally 

adjusted at an annual rate, is sourced from the Federal Reserve Bank of St. Louis 

(FRED 2025). Amtrak’s on-time performance (OTP) is defined as the percentage 

of trains arriving within 15 minutes of the scheduled time (Amtrak n.d.). This 

variable covers the years 2013–2023 and is weighted by distance category 

(Bureau of Transportation Statistics 2024). Finally, a COVID-19 dummy variable 

takes the value 1 for the years 2020 to 2022, and 0 otherwise, based on the World 

Health Organization’s classification of the pandemic period as a public health 

emergency of international concern (World Health Organization 2023). 

Table 1 below summarizes the variables used in the study, including definitions 

and data sources. Table 2 provides summary statistics of the data. A correlation 

matrix over the data can be found in Appendix A.   
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Table 1. Variable definitions and data sources 

Variables Definition Source 

𝐐ᶠˡⁱᵍʰᵗ Annual number of passengers per Route.  U.S. Department 

of Transportation 

(2025) 

𝐏ᵗʳᵃⁱⁿ Proxy for train ticket prices. 

Total passenger related revenue (millions 

of dollars) / Passenger miles (millions of 

miles) * Route distance (miles). 

Amtrak (2025a)  

Federal Railroad 

Administration 

(n.d.)  

Rail Passengers 

Association (n.d.) 

𝐏ᶠˡⁱᵍʰᵗ Volume weighted annual average flight 

fare per route (dollars). 

U.S. Department 

of Transportation 

(2025). 

𝐏ᵍᵃˢ U.S. All Grades All Formulations Retail 

Gasoline Prices (Dollars per Gallon). 

U.S. Energy 

Information 

Administration 

(EIA 2025)  

𝐆𝐃𝐏 Real gross domestic product per capita. 

Chained 2017 Dollars, Seasonally 

Adjusted Annual Rate. 

Federal Reserve 

Bank of St. Louis 

(FRED 2025) 

𝐎𝐓𝐏 Amtrak’s On-Time Performance 

(percentage). Weighted by distance. 

U.S. Bureau of 

Transportation 

Statistics (2024)  

𝑰 Dummy variable representing the Covid-

19 pandemic. It takes the value 1 for years 

2020–2022, and 0 otherwise.  

World Health 

Organization 

(2023) 

 

Table 2. Summary statistics 

     Mean   SD   Min   Max 
  Total 

observations    

Number 

of Years 

Number 

of routes  

Q flight 160,722 145,689 1,547 487,377 72 12 6 

 P train  $148.22  $81.86 $33.37 $384.53 72 12 6 

 P flight $216.72 $52.50 $142.11 $363.75 72 12 6 

 P gas $3.02 $.58 $2.25 $4.06 72 12 6 

 GDP $61,842 $3,871 $56,172 $68,501 72 12 6 

 OTP 75.78 3.39 71.20 82.3 66 11 6 
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4. Methodology  

4.1 Econometric Specification 

4.1.1 Levels Model 

The model stated esimates how train ticket prices influence the demand for 

domestics flights in the U.S., while controlling for other factors that may affect 

passenger volumes.  

𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) = ꞵ
0

+ 𝑒𝑓,𝑡 𝑙𝑛(𝑃ᵗʳᵃⁱⁿ𝑖𝑡 ) + 𝑒𝑃 𝑙𝑛(𝑃ᶠˡⁱᵍʰᵗ𝑖𝑡) + 𝑒𝑓,𝑔 𝑙𝑛(𝑃ᵍᵃˢ𝑡)

+ 𝑒𝐼 𝑙𝑛(𝐺𝐷𝑃𝑡) + ꞵ
1

𝑂𝑇𝑃𝑡 + 𝐶 · 𝐼(𝐶𝑜𝑣𝑖𝑑 =  1) + 𝛼𝑖 + 𝑢𝑖𝑡 

 

4.1.2 Variable Rationale 

The continuous variables are transformed to logarithms to enable interpretations 

in terms of elasticities, as described in Section 2.4, Elasticities. The variables are 

indexed by route i and/or year t. 

The dependent variable, 𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡), represents the annual number of airline 

passengers on a given route and year, serving as a measure of air travel demand. 

The main variable of interest is 𝑙𝑛(𝑃ᵗʳᵃⁱⁿ𝑖𝑡), which serves as a proxy for train 

ticket prices (see Section 3., Data & Variable Construction). This variable is 

included in the model to estimate the cross-price elasticity of flight demand with 

respect to train fares. The corresponding coefficient, 𝑒𝑓,𝑡, quantifies the directional 

and proportional effect that changes in rail ticket prices have on air travel demand. 

A positive and statistically significant estimate would indicate that rail and air 

travel are substitutes. 

To isolate this effect, the model includes 𝑙𝑛(𝑃ᶠˡⁱᵍʰᵗ𝑖𝑡), the own-price of air travel. 

The corresponding coefficient 𝑒𝑃 captures the own-price elasticity of flight 

demand. A negative and statistically significant estimate would be consistent with 

a normal good, indicating that higher flight prices reduce demand for air travel. In 

addition, 𝑙𝑛(𝑃ᵍᵃˢ𝑡), the national average gasoline price, is included to control for 

the cost of car travel, which is another substitute for both air and train travel. 

Given that 92 percent of vehicles in the U.S. run on gasoline (IER 2023), this 

variable serves as a reasonable proxy for the cost of driving. A positive value of 

the coefficient 𝑒𝑓,𝑔 would suggest a positive cross-price elasticity, and that higher 

gasoline prices increase the demand for alternative transport modes such as air 

travel.  
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Next, 𝑙𝑛(𝐺𝐷𝑃𝑡), representing the real gross domestic product per capita, is 

included to control for purchasing power and broader macroeconomic conditions 

that may affect travel demand independently of transport prices. As income levels 

rise, demand for air travel may increase regardless of relative costs, making this a 

crucial control variable. Service quality is captured by Amtrak’s on-time 

performance, 𝑂𝑇𝑃𝑡. Punctuality is highly valued by travelers (U.S. Department of 

Transportation n.d.) and variation in OTP may influence the relative attractiveness 

of rail versus air, even when prices are held constant.  

To account for the large time-varying shock the COVID-19 pandemic resulted in 

during the sample period, the model includes the dummy variable I. The dummy 

equals 1 if the observation falls within the years 2020 to 2022, and 0 otherwise. In 

doing so, the associated coefficient, 𝐶, captures the average change in air travel 

demand during the pandemic period relative to non-pandemic years, holding other 

covariates constant. Lastly, the variable 𝛼𝑖 denotes time-invariant route fixed 

effects, accounting for unobserved heterogeneity across routes such as geography, 

underlying service levels, or consistent patterns in traveler demand. 𝑢𝑖𝑡 is the 

idiosyncratic error term, capturing all remaining variation in 𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) over 

time and across routes.   

 

4.2 Identification Strategy 

4.2.1 First Differences Estimator 

The first differences estimator is defined by (Wooldridge 2002:279):  

 

Δ𝑦𝑖𝑡 =  Δ𝑥𝑖𝑡𝛽 + Δ𝑢𝑖𝑡  

where: Δ𝑦𝑖𝑡  =  𝑦𝑖𝑡  − 𝑦𝑖,𝑡−1 , Δ𝑥𝑖𝑡  =  𝑥𝑖𝑡  − 𝑥𝑖,𝑡−1  &  Δ𝑢𝑖𝑡  = 𝑢𝑖𝑡  − 𝑢𝑖,𝑡−1 = 𝑒𝑖𝑡 
 

In this study, a log-log air travel demand model is estimated using a first 

differences estimator with a linear constraint:  

Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) =  𝑒𝑓,𝑡 Δ𝑙𝑛(𝑃ᵗʳᵃⁱⁿ𝑖𝑡) +  𝑒𝑃 Δ𝑙𝑛(𝑃ᶠˡⁱᵍʰᵗ𝑖𝑡) + 𝑒𝑓,𝑔 Δ𝑙𝑛(𝑃ᵍᵃˢ𝑡)

+  𝑒𝐼 Δ𝑙𝑛(𝐺𝐷𝑃𝑡) +  𝛽1 Δ𝑂𝑇𝑃𝑡 + 𝛽2𝐶𝑜𝑣𝑖𝑑𝐵 + 𝛽3𝐶𝑜𝑣𝑖𝑑𝐸

+  Δ𝑢𝑖𝑡 𝑠. 𝑡   𝛽2 + 𝛽3 = 0 

The model is estimated in Stata 18 using the built-in D. operator to generate the 

first differences of each variable. The first period for each cross section is lost due 

to the differencing, leaving 𝑡 − 1 time periods for each route i. This results in 60 

total observations left over for when the 𝑂𝑇𝑃 variable is included. The estimation 

is run with clustered standard errors at the route level, to account for arbitrary 

heteroskedasticity and serial correlation within each route. 



20 

 

4.2.2 Motivation and Intuition Behind First Differences 

In an ideal setting, train fares would be exogenous, i.e. uncorrelated, with both 

flight demand and any other determinants of flight demand, so that 

𝐶𝑜𝑣(𝑃ᵗʳᵃⁱⁿ𝑖𝑡, 𝑢𝑖𝑡) = 0. Then a simple OLS would be unbiased. In reality, 

however, passengers compare rail and air (e.g. via booking sites), making fare 

levels, and especially fare changes, endogenous to factors driving demand for 

both modes. Moreover, both rail and air transportation are often subject to 

common shocks such as changes in global fuel prices, which simultaneously 

affect operating costs and thus ticket prices across modes. This simultaneity 

introduces a correlation between price variables and the error term, further 

violating the exogeneity condition. To eliminate these confounding factors, I take 

the first differences of the variables, by modeling each series as a random walk. 

This eliminates all time-invariant factors i.e. route unobservable effects (𝛼𝑖) and 

the change in error term, Δ𝑢𝑖𝑡, between time 𝑡 and 𝑡 − 1, becomes uncorrelated 

with the covariates (Wooldridge 2002:279–281). The random walk assumption is 

denoted:   

𝑢𝑖𝑡 =  𝑢𝑖,𝑡−1 + 𝑒𝑖𝑡  →   Δ𝑢𝑖𝑡 = 𝑒𝑖𝑡 

where 𝑒𝑖𝑡 is a random shock term that is independently and identically distributed 

with mean zero and variance 𝜎𝑒
2 (i.e. 𝑒𝑖𝑡∼ i.i.d. (0, 𝜎𝑒

2)) (Wooldridge 2013:391).  

This random walk causes Δ𝑢𝑖𝑡 to be serially uncorrelated with the differenced 

covariates (Wooldridge 2013:482):  

𝐸[(𝑢𝑖𝑡 − 𝑢𝑖,𝑡−1)(𝑥𝑖𝑡 −  𝑥𝑖,𝑡−1)]  =  0 meaning that 𝐸(Δ𝑢𝑖𝑡 | 𝑋𝑖)  =  0 

Moreover, a random walk satisfies 𝐸(𝑥𝑡+ℎ|𝑥𝑡) = 𝑥𝑡 for all h ≥ 1, when h denotes 

periods hence, which means that the value of 𝑥 today is the best predictor of 

tomorrow’s (or any future) value of 𝑥 (Wooldridge 2013:392). From that it 

follows that Δ𝑥𝑖𝑡 = 𝑥𝑖𝑡 − 𝑥𝑖,𝑡−1 captures unpredictable innovation, which makes 

Δ𝑥𝑖𝑡 behave like a “as if randomized” variable. This satisfies the identifying 

assumption that enables a causal identification of the effect from train prices on 

flight demand. 

An alternative to the first difference estimator would be a fixed effects (FE) 

estimator. However, in this context, the Wooldridge test for serial correlation is 

highly significant (p-value < 0.01), which suggests that the standard assumptions 

required for the FE estimator may not hold (Wooldridge 2002; Drukker 2003). 

Specifically, the efficiency of the FE estimator relies on the assumption of 

homoskedasticity and no serial correlation in the idiosyncratic errors, 

i.e. 𝐸(𝑢𝑖𝑢𝑖
′ |𝑥𝑖, 𝑐𝑖) =  𝜎𝑢

2𝐼𝑇 (Wooldridge 2002:269). When this assumption is 

violated, as indicated by the test result, the FE estimator becomes inefficient and 

potentially biased. In contrast, the first difference estimator relaxes this 
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assumption and remains consistent under weaker conditions, particularly when the 

error term follows a random walk or exhibits serial correlation. This probably 

make first difference a more robust choice for the data structure in this study. 

Economically, it is also reasonable to assume that both train fares and flight 

demand follow a process resembling a random walk or at least exhibit serial 

correlation primarily through the random walk process. For example, train fares 

are typically adjusted gradually over time based on lagged cost drivers such as 

diesel prices or political decisions, rather than being completely reset each year. 

Similarly, flight demand is also shaped by long-run structural changes, including 

modal competition between transport modes or shifting consumer preferences. 

Forces like this tend to produce gradual trends rather than abrupt shifts, which 

means that the absolute levels of flight demand in a given year may reflect 

accumulated effects rather than immediate responses. Year-to-year changes in 

demand are therefore more likely to reflect short-term responses to pricing and 

service variations.  

Moreover, with only 66 observations in the data set (6 routes over 12 years), there 

is a major risk that route fixed-effects would consume too much of the variation 

(Porath 2020). Including two-way fixed effects would be even more restrictive 

and further exacerbate this problem, as time fixed effects would absorb all 

variation in variables that only change over time (gasoline prices, GDP, OTP, and 

Covid-related shocks). This would leave too few degrees of freedom and 

eliminate the identifying variation needed to estimate the effects of interest. 

 

4.2.3 Motivation and Intuition Behind the Covid Dummies and 

the Constraint 

In the first difference estimator, the Covid dummy variable 𝐼 from the levels 

model is split into two separate variables: 𝐶𝑜𝑣𝑖𝑑𝐵, capturing the beginning of the 

pandemic in 2020, and 𝐶𝑜𝑣𝑖𝑑𝐸, capturing its end in 2022. This adjustment is 

made to account for distinct time-specific demand shocks that affected travel 

behavior during the sample period. Including a single Covid dummy set to 1 

throughout the pandemic would only allow variation to be identified when the 

dummy changes value (2020 and 2023). As a result, the model would not capture 

any effect during the intermediate years (2021 and 2022), despite ongoing 

disruptions related to the pandemic. By using two transition dummies, the model 

avoids this loss of identifying variation and is able to reflect both the initial drop 

in demand and the subsequent recovery. This structure provides a more accurate 

representation of the pandemic’s effect across its full duration. 
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The constraint 𝛽2 + 𝛽3 = 0 is imposed to align with the assumption of a 

symmetric Covid effect on air travel demand. In other words, the pandemic effect 

is assumed to be temporary and symmetric, remaining constant between the initial 

drop and the subsequent recovery. This restriction improves interpretability by 

allowing each coefficient to be seen as a deviation from the average pandemic 

effect, while also helping to reduce potential multicollinearity between time 

dummies. The constraint also enables a formal test of whether the entry and exit 

effects truly were symmetric, i.e., whether 𝛽2 = −𝛽3.  

 

4.3 Main Assumptions 

As mentioned in Section 4.2.2, Motivation and Intuition Behind First Differences, 

the key assumption for the first difference estimator is that the change in 

error, Δ𝑢𝑖𝑡, between period 𝑡 and 𝑡 − 1 follows a random walk. This means that 

the change in each regressor between the two time periods, Δ𝑥𝑖𝑡, is uncorrelated 

with the change in the error term (Wooldridge 2002). The identifying assumption 

is denoted: 

𝐸[(𝑢𝑖𝑡 −  𝑢𝑖,𝑡−1)(𝑥𝑖𝑡 − 𝑥𝑖,𝑡−1)] = 0 

Additionally, the imposed constraint  

𝛽2 + 𝛽3 = 0  

captures a symmetric Covid shock (i.e. an equal and opposite downturn and 

rebound). This restriction does not imply that the Covid-related effects are exactly 

assumed be identical in reality; rather, it provides a baseline for hypothesis 

testing. 
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5. Results 

5.1 Main Estimation  

This section presents the results from the first difference estimation of U.S. 

domestic flight demand, measured as Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡). The model uses 60 first-

differenced observations, derived from six routes over the years 2013-2023. The 

first year per route is lost due to differencing, resulting in ten observations per 

route. Standard errors are clustered at the route level.  

Table 3 displays the results from three model specifications. The final (shaded) 

column represents the main result, based on the identification strategy outlined in 

Section 4.2.1, Econometric Specification. Column (1) presents the model without 

any Covid dummies. Column (2) adds the variables 𝐶𝑜𝑣𝑖𝑑𝐵 (for 2020) and 

𝐶𝑜𝑣𝑖𝑑𝐸 (for 2022) and Column (3) imposes the linear restriction 𝛽2 + 𝛽3 = 0. 

This reflects the assumption that the pandemic had a constant effect on flight 

demand throughout the period it was active, with the full impact captured 

symmetrically at both the beginning and the end of the period.  

Table 3. Results from the first difference estimation of domestic flight demand 

 (1) (2) (3) 

VARIABLES Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) 

    

Δ𝑙𝑛(𝑃ᵗʳᵃⁱⁿ𝑖𝑡) 1.399*** -0.368 0.203 

 (0.217) (0.291) (0.277) 

Δ𝑙𝑛(𝑃ᶠˡⁱᵍʰᵗ𝑖𝑡) -1.024** -0.828** -0.943*** 

 (0.283) (0.256) (0.324) 

Δ𝑙𝑛(𝑃ᵍᵃˢ𝑡) 0.315** 0.229 -0.116 

 (0.107) (0.145) (0.0870) 

Δ𝑙𝑛(𝐺𝐷𝑃𝑡) 43.15*** 2.066 20.97*** 

 (2.371) (4.569) (2.975) 

Δ𝑂𝑇𝑃𝑡 0.0173*** -0.00234 0.00273 

 (0.00397) (0.00598) (0.00504) 

𝐶𝑜𝑣𝑖𝑑𝐵  -1.333*** -0.608*** 

  (0.177) (0.0387) 

𝐶𝑜𝑣𝑖𝑑𝐸  0.530*** 0.608*** 

  (0.0262) (0.0387) 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 -0.780*** 0.0500 -0.374*** 

 (0.0426) (0.105) (0.0549) 

Observations 60 60 60 

R-squared 0.863 0.914  

Covid NO YES YES 

Constraint NO NO YES 

Standard errors, clustered at the route level, in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
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5.2 Interpretation of Estimation Results 

The cross-price elasticity of flight demand with respect to train fares is estimated 

at 𝑒𝑓,𝑡 = 0.203 in the main model (3), implying potential substitution between rail 

and air. However, the estimate is statistically insignificant and close to zero, 

providing no reliable evidence that higher train prices induce a meaningful shift to 

air travel. Moreover, the coefficient in column (1) is positive, high and 

statistically significant when Covid effects are omitted, but turns negative in 

column (2) when 𝐶𝑜𝑣𝑖𝑑𝐵 and 𝐶𝑜𝑣𝑖𝑑𝐸 are included without restriction. This 

instability in both sign and statistical significance suggests that the relationship 

between train fares and flight demand is not robust and likely sensitive to model 

specification. Therefore, no firm conclusion can be drawn regarding substitution 

patterns between flights and trains based on train pricing alone. 

In contrast, the own-price elasticity of flight demand is estimated at 𝑒𝑃 = −0.943, 

which is statistically significant at a 1% level. This suggests that a 1% increase in 

domestic air fares reduces passenger volumes by approximately 0.94%. Since 

∣ 𝑒𝑃 ∣= 0,94 < 1, this indicates that flight demand is inelastic, meaning that 

quantity changes in demand are proportionally smaller than price changes 

(Nicholson & Snyder 2010:164). The estimated own-price elasticity remains 

negative, statistically significant, and consistent across all three specifications, 

which signal that the estimated price sensitivity of flight demand is robust to 

model variation.  

The estimated effect of gasoline prices on domestic flight demand is inconsistent 

across specifications and does not yield a robust conclusion. In column (1), when 

Covid effects are not controlled for, the coefficient (𝑒𝑓,𝑔 = 0.315) is positive and 

statistically significant at a 5% level. This would suggest that higher gasoline 

prices, making car travel more expensive, lead to increased demand for air travel. 

However, once Covid-related shocks are included in column (2) and (3), the 

estimates become smaller in magnitude and statistically insignificant. It even turns 

negative in the main model. This shift in both size and direction implies that the 

observed relationship between gasoline prices and the demand for domestic 

flights may be confounded by omitted variables and that the result is not reliable.  

When it comes to the control variables, the estimated coefficient for GDP per 

capita shows a stable and significant positive association with flight demand in 

specification (1) and (3), indicating that higher income levels are linked to 

increased air travel. The estimate in specification (2) is also positive, but smaller 

and statistically insignificant, likely due to multicollinearity between GDP and 

Covid. The other control variable, Amtrak’s on-time performance, is statistically 

insignificant and close to zero in the main estimation (3), indicating that train 
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punctuality has negligible impact on flight volumes. The estimate in column (1), 

which excludes Covid controls, is on the other hand positive and statistically 

significant (𝛽 = 0.0173). This inconsistency may reflect either omitted variable 

bias in the simpler model or a structural break caused by the pandemic, which 

disrupted both travel behavior and service patterns.  

Finally, the two COVID-19 dummies, 𝐶𝑜𝑣𝑖𝑑𝐵 (2020) and 𝐶𝑜𝑣𝑖𝑑𝐸 (2022), 

capture the collapse and rebound in flight demand associated with the pandemic. 

The coefficients in the restricted specification (3) are symmetric in magnitude but 

opposite in sign, reflecting the assumption that the pandemic’s effect on demand 

was constant over the period it was active. The dummies are interpreted in a 

semilog framework, following Halvorsen & Palmquist (1980), which prescribes 

that a dummy coefficient c corresponds to a level change of exp(𝑐) − 1. At the 

onset of the pandemic in 2020 (𝐶𝑜𝑣𝑖𝑑𝐵 = 1) the negative effect on flight demand 

is estimated to 𝛽2 = −0.608. This implies a 0.608-point decrease in 

Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡), which converts to 𝑒𝑥𝑝(−0,608) − 1 ≈ −0.456, i.e. a 45.6% 

decline in flight volume relative to the pre-Covid period. When the pandemic 

period is set to end in 2022 (𝐶𝑜𝑣𝑖𝑑𝐸 = 1) the positive effect on flight demand is 

estimated to 𝛽3 = 0.608. This yield 𝑒𝑥𝑝(0,608) − 1 ≈ +0.837, i.e. an 83.7% 

rebound from the depressed Covid level which restores flight volumes back to 

their pre-pandemic baseline. The coefficients on 𝐶𝑜𝑣𝑖𝑑𝐵 and 𝐶𝑜𝑣𝑖𝑑𝐸 are both 

highly statistically significant (p < 0.01), underscoring the pandemic’s 

pronounced decline and subsequent rebound in flight demand. Although this 

symmetric specification fits the data well and aligns with the theoretical 

assumption of a constant pandemic effect, the robustness check in the next section 

will assess whether the effect truly remained stable throughout the pandemic or 

varied in magnitude between the collapse and the recovery. 

 

5.3 Robustness and Alternative Specifications 

In this section, the robustness of the Covid-related estimates is examined by 

relaxing the imposed symmetry constraint. The full regression results from this 

unrestricted specification are presented in Appendix C1. Additional robustness 

checks, including sequential adding of control variable to the first difference 

estimator and alternative model specifications are presented in Appendix B & C2-

C5. 

 

5.3.1 Robustness Test of the Symmetry Constraint 

To check whether the imposed Covid constraint ( 𝛽2 + 𝛽3 = 0) is supported by 

the data, I re‐estimate the model replacing the 𝐶𝑜𝑣𝑖𝑑𝐵 and 𝐶𝑜𝑣𝑖𝑑𝐸 dummies with 
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separate year dummies. Although the pandemic is defined as lasting from 2020 to 

2022, I include dummies for 2020, 2021, 2022 and 2023. This is because the first 

difference estimator identifies effects through changes from year to year, meaning 

that recovery from the pandemic is captured in the transition between 2022 and 

2023. Thus, a dummy for 2023 is required to capture this change.  

Denote the dummies by C0, C1, C2, C3   respectively, then the dummy coefficients 

are defined by:  

𝛽𝐶0
= 𝐶0 − 0, the level-shift in demand 2020 (onset of the pandemic). 

𝛽𝐶1
= 𝐶1 − 𝐶0, the change in the Covid-effect from 2020 to 2021.  

𝛽𝐶2
= 𝐶2 − 𝐶1, the change in the Covid-effect from 2021 to 2022.  

𝛽𝐶3
= 𝐶3 − 𝐶2, the level-shift from 2022 to 2023 (recovery from the pandemic). 

Based on this, a series of Wald tests (Wooldridge 2013:818) is conducted to 

evaluate whether the assumption of a constant and symmetric Covid effect holds 

empirically.  

Hypothesis HC1: Tests whether there is a change in the pandemic effect from 

2020 to 2021. The null hypothesis is H0: 𝛽𝐶1
= 0, which cannot be rejected (p = 

0.3682), thus suggesting that the Covid effect remained stable between those 

years.  

Hypothesis HC2: Tests whether the Covid effect was constant across the entire 

period from 2020 to 2022. Here, the null hypothesis H0: 𝛽𝐶2
+ 𝛽𝐶1

= 0 is rejected 

at a 5% level (p = 0.0408), indicating that the effect varied during the pandemic.  

Hypothesis HC3: Tests whether the effect at the onset of the pandemic was 

symmetric to the recovery, i.e. the imposed constraint. The null hypothesis H0: 

𝛽𝐶0
+ 𝛽𝐶3

= 0  is strongly rejected at a 1% level (p = 0.0049), providing evidence 

against the assumption of a symmetric Covid effect.   

 

5.3.2 Justification for the Symmetry Constraint  

The imposed constraint 𝛽2 + 𝛽3 = 0 is formally rejected in the Wald test 

corresponding to hypothesis HC3. This result suggests that the assumption of a 

perfectly symmetric Covid effect may be too restrictive, and that the imposed 

constraint does not fully align with the observed data. In contrast, the result from 

HC1 supports the idea of a stable Covid effect across the intermediate pandemic 

years providing some justification for treating the Covid effect as constant while 
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the pandemic was ongoing. However, the fact that HC2 is rejected indicates that 

the cumulative impact of the pandemic evolved over time, implying that the 

assumption of a constant effect may be too restrictive beyond a single year. This 

likely reflects the influence of prolonged disruptions, changing policies and 

gradual adoptions in travel behavior.  

Nonetheless, the imposed constraint still remains a theoretically motivated 

simplification that improves both precision and interpretability, by reflecting the 

idea of a temporary COVID-19 shock that was fully reversed at the end of the 

pandemic period. 
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6. Discussion 

Although the climate benefits of shifting from air to rail are well documented, 

empirical research on the actual substitutability between these transport modes is 

still limited. This is concerning, since effective modal-shift policies require a clear 

understanding of the price relationships between transport modes (IPCC 2023). 

Previous studies, including Gama (2017), Escañuela Romana et al. (2023a), and 

Zeng et al. (2021), have found negligible or statistically insignificant cross-price 

elasticities between rail and air. This thesis contributes to the literature by 

presenting new estimates of cross-price elasticities based on annual U.S. route-

level data from 2013 to 2023, capturing both long-run trends and the impact of the 

COVID-19 shock. Using a first difference estimator and relevant controls, the 

analysis isolates how year-to-year changes in train fares relate to changes in air 

travel demand. The following sections discuss the key findings, policy 

implications, study limitations, and directions for future research. 

 

6.1 Analysis of Results and Implications 

The main estimation reveals that the cross-price elasticity of flight demand with 

respect to train fares is small, positive, and statistically insignificant. This 

provides no strong evidence of substitution between long-distance rail and air 

travel in the U.S., at least not in response to price changes. The result is supported 

by the robustness checks, which show that both sign and statistical significance of 

the cross-price elasticity vary across model specifications (see Appendix B & C). 

Accordingly, Hypothesis H1: 𝑒𝑓,𝑡 > 0, as stated in Section 2.5, must be rejected 

as the result does not align with theoretical expectations regarding substitutable 

goods. However, the finding is consistent with earlier studies. For example, Gama 

(2017) reports an extremely low cross-price elasticity of 0.0008%, and Escañuela 

Romana et al. (2023a) similarly find weak and statistically insignificant cross-

price elasticities between trains and flights in the U.S. These consistently small 

elasticities may reflect deeper structural barriers to modal substitution between 

rail and air, a point which is raised by Escañuela Romana et al. (2023a) and 

Wardman and Tyler (2000). The latter study emphasizes that fare levels, along 

with factors such as journey distance and prior service experience often play a 

decisive role in shaping travelers’ mode choice. While this study includes rail on-

time performance as a proxy for service quality, it does not account for journey 

distance, network accessibility, historical travel habits or other structural factors 

that may influence travel demand. This limitation is particularly important given 

that only around 1% of long-distance trips in the U.S. are made by train (Amtrak 

2017). Rail is therefore clearly not the normative or expected mode of long-
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distance travel, which likely reduces the behavioral responsiveness to train fares. 

Many travelers may not perceive rail as a realistic substitute for either air or car 

travel, regardless of its price. The omission of these factors may partially account 

for the lack of statistical significance in the estimated cross-price elasticity, 

despite theoretical expectations of substitution between modes. 

In contrast, the own-price elasticity of air travel demand is negative and 

statistically significant across all specifications, providing support for the 

Hypothesis H2: 𝑒𝑃 < 0, stated in Section 2.5. The estimate from the main 

specification suggests that demand for domestic air travel price is slightly inelastic 

(𝑒𝑃 = −0.94), meaning that a 1% increase in air fares leads to a less proportional 

reduction in passenger volumes. This result is confirmed by robustness checks, 

which show that the own-price elasticity remains consistently negative and 

statistically significant across alternative specifications (see Appendix B & C). 

The result aligns with Escañuela Romana et al. (2023b), who estimate the own-

price elasticity of demand for domestic flights on U.S routes to –0.70. Since this 

study is based on annual data, it is likely to reflect long-run behavioral 

adjustments. As Brons et al. (2002) emphasize, long-run elasticities are typically 

larger in magnitude than short-run elasticities, as consumers have more time to 

adapt to price changes and consider alternative travel options. Comparing the 

estimates and the statistical significance between the own- and cross-price 

elasticities suggests that direct pricing interventions (such as taxes or fees) 

targeted at air travel probably are more effective in reducing flight demand than 

indirect policies aimed at influencing train fares.  

Gasoline prices were included to account for the cost of car travel. However, the 

magnitude of the effect varies notably across specifications and is not significant 

in the main model, leading to a rejection of Hypothesis H3: 𝑒𝑓,𝑔 > 0. In the 

absence of the constrained Covid dummies, the coefficient suggests a small 

positive relationship between gasoline prices and domestic flight demand. The 

lack of robustness indicates that the observed relationship may be affected by 

omitted variable bias and that no conclusions can be drawn regarding the role of 

gasoline prices in shaping air travel demand. This sensitivity is confirmed by the 

robustness checks, which show that both the sign and the statistical significance of 

the gasoline price coefficient vary across specifications (see Appendix B & C). 

Nonetheless, given that 90% of the long-distance trips in the U.S. are made by 

car, it remains relevant to control for car travel costs when analyzing long-

distance travel in the country.   

The finding that GDP per capita has a statistically significant and positive 

association with domestic air travel demand supports Hypothesis H4: 𝑒𝐼 >  0, and 

is consistent with the interpretation of air travel as a normal or even luxury good 
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(Gallet & Doucouliagos, 2014). This suggests that rising income levels in the U.S. 

are likely to drive higher flight volumes and associated carbon emissions, unless 

any pricing or regulatory policies are imposed. When GDP is added to the first-

difference model a positive relationship emerges directly (see Appendix B), but 

its effect appears less stable across alternative model specifications in the 

robustness checks (see Appendix C). This variation may result from distinctions 

in model structure, collinearity with Covid variables, or smaller sample sizes in 

some specifications. Nonetheless, it underlines the importance of considering 

income growth in climate policy design, as rising affluence may offset the impact 

of demand-reducing measures.  

The lack of statistical significance for Amtrak’s on-time performance (OTP) 

offers no support for Hypothesis H5: ꞵ1 < 0. One possible explanation is that 

punctuality may not be a decisive factor in long-distance mode choice. It is 

possible that other unobserved service factors, such as travel time, comfort, or 

frequency (Wardman & Tyler 2000; Escañuela Romana et al. 2023a) play a more 

important role than punctuality alone.  

Regarding the COVID-19 variables and the impact of the pandemic on travel 

demand, the results clearly demonstrate the importance of accounting for the 

pandemic when analyzing behavior during Covid-affected years. The statistically 

significant coefficients on the Covid dummies highlight the magnitude of the 

shock and its subsequent reversal in flight demand. Moreover, the robustness 

check (see Appendix C.1) reveals that while a simplified, symmetric specification 

offers a useful baseline, the actual effects of the pandemic were more complex 

and evolved over time. Such a pattern seems plausible, as people initially reacted 

strongly to restrictions at the onset of the pandemic, while health concerns and 

travel behavior gradually normalized as the situation progressed. This dynamic is 

also reflected in Column 2 of Table 3, where the estimated effects differ in 

magnitude between 𝐶𝑜𝑣𝑖𝑑𝐵 and 𝐶𝑜𝑣𝑖𝑑𝐸. These findings underscore the 

importance of properly modeling structural breaks, not only to improve the 

accuracy of parameter estimates, but also to avoid biased inference regarding key 

relationships in the model. Additional robustness tests (see Appendix C.3–C.5) 

further confirm the strong negative impact of the pandemic on flight demand 

across different model specifications.  

 

6.2 Limitations   

One major limitation of this study is the relatively small sample size. After 

excluding 2024 due to missing on-time performance data and accounting for the 

loss of the first year per route from differencing, only 60 observations remain. 
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This limits the statistical power of the analysis and makes the results more 

sensitive to model specification and the choice of control variables. Using annual 

data also prevents the identification of seasonal patterns and short-term 

fluctuations in demand and prices, which can be important for understanding 

travel behavior. 

There are also several methodological limitations that need to be noted. Since the 

train fare proxy combines average passenger-related revenue per passenger mile 

with route-specific distance, it may not accurately reflect true price variations at 

the route level. This introduces potential measurement error (see Section 3., Data 

and Variable Construction for a detailed explanation of the proxy construction and 

its limitations). Another point is that while the first difference estimator helps 

address bias from unobserved time-invariant factors and mitigates endogeneity 

under the assumption of a random walk, endogeneity may still remain if the 

assumption does not hold. For example, if prices respond to short-term demand 

shocks not captured by the control variables, the differenced regressors may still 

correlate with the error term, leading to biased estimates. Furthermore, it’s worth 

mentioning that although the random walk assumption is theoretically plausible, it 

is not empirically tested in this study.  

There are also limitations related to the modeling of the COVID-19 pandemic. 

Robustness checks suggest that the pandemic’s impact varied over time, which 

may bias the estimated effects. It also indicates the need for more flexible 

approaches to more accurately capture the dynamics of the pandemic period. 

In addition, several potentially important explanatory variables are not included in 

the model due to data limitations and time constraints, despite their likely 

influence on travel mode choices. These include, among others, travel time, 

service frequency, accessibility of stations and airports, and comfort. Excluding 

such variables may lead to omitted variable bias.  

Finally, even though this study focuses on a small number of domestic routes in 

the U.S., there are similarities to certain European routes in terms of travel 

distances and infrastructure. This means that the results could still be relevant for 

comparable contexts, particularly in Western Europe. That said, one should be 

cautious when applying the findings to places with very different transport 

systems, travel behavior, or policy environments. 

 

6.3 Recommendations for future research  

Several avenues for future research emerge from the limitations and findings of 

this study. To begin with, I recommend expanding the sample size (if the data 
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availability permits). A larger dataset would improve the statistical power of the 

analysis and allow for identification of short-term fluctuations and seasonal 

patterns in travel behavior. Extending the geographical scope could also reveal 

important heterogeneities across regions and travel corridors.  

This study focuses on the United States, where long-distance rail travel is limited.  

Future research could examine the cross-price elasticity between rail and air travel 

in countries with more established and widely used rail networks, such as those in 

Western Europe or East Asia. Comparative studies of this kind could improve the 

understanding how of substitution dynamics vary depending on levels in rail 

adoption and the overall development of transport system.   

Given the profound and potentially lasting effects of the COVID-19 pandemic on 

travel behavior, further investigation into post-pandemic mobility patterns is 

essential. Understanding whether, and how, travel preferences have shifted 

permanently is crucial for designing effective transport policies in the years 

ahead. 

Finally, since over 90% of long-distance trips in the U.S. are made by car, future 

research should explore the cross-price elasticity between car and rail travel in 

more depth. Such studies would offer a more comprehensive picture of intermodal 

competition and inform broader strategies for encouraging modal shift in the 

context of climate and congestion policy. 
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7. Conclusion  

This thesis investigates the cross-price elasticity between rail and air travel in the 

United States, based on the research question: How do train ticket prices affect the 

demand for domestic flights in the U.S.? Using annual panel data from six routes 

over the period 2013–2023, the study applies a first difference estimator with a 

linear constraint to address endogeneity and time-invariant unobserved factors. 

The results indicate a small and positive, but statistically insignificant, cross-price 

elasticity between rail and air travel, providing no evidence of substitution 

between the two modes in the U.S. market. In contrast, the estimated own-price 

elasticity of domestic flight demand is statistically significant and inelastic 

(approximately -0.94), implying that air travel demand responds less than 

proportionally to fare increases. These findings suggest that policy efforts to 

encourage modal shift from air to rail will likely require more than adjustments in 

rail pricing alone. Direct pricing interventions on air travel, such as taxes or fees, 

may be more effective in reducing flight demand then policies aimed at lowering 

train fares. However, the analysis is limited by a small sample size, annual data, 

and a relatively narrow geographic focus, which reduces external validity. 

Additional limitations include simplified modeling of the COVID-19 period and 

the exclusion of potentially important explanatory variables like travel time and 

service frequency. Future research would benefit from richer datasets with higher 

temporal and spatial resolution, broader variable coverage, and a wider 

geographical scope. Comparative studies in countries with more established and 

widely used rail networks could offer further insights into how substitution 

patterns vary across transport systems and user contexts.   

 

 

 



34 

 

References 

AAR (2025). Freight Rail: Amtrak Support. Association of American Railroads. 

https://www.aar.org/issue/freight-railroads-amtrak/ [2025-05-27] 

Amtrak (2022). CDP Climate Change 2022 Response. Amtrak.  

https://www.amtrak.com/content/dam/projects/dotcom/english/public/documents/e

nvironmental1/CDP-2022.pdf [2025-05-21] 

Amtrak (2024). Fiscal Year 2023 Sustainability Report. Amtrak. 

https://www.amtrak.com/content/dam/projects/dotcom/english/public/documents/e

nvironmental1/Amtrak-Sustainability-Report-FY23.pdf [2025-05-22] 

Amtrak (2025a). Reports & Documents. https://www.amtrak.com/reports-documents 

[2025-04-29] 

Amtrak (2025b). Travel Guide to Train Fares - Easy Online Booking Options. Amtrak. 

https://www.amtrak.com/guide-to-fares [2025-06-06] 

Amtrak (n.d.). CY 2023 Host Railroad Report Card & Route On-Time Performance. 

https://www.amtrak.com/content/dam/projects/dotcom/english/public/documents/c

orporate/HostRailroadReports/Amtrak-2023-Host-Railroad-Report-Card.pdf. 

[2025-05-06] 

Autor, D. (2016). Lecture 4 - Utility Maximization. https://ocw.mit.edu/courses/14-03-

microeconomic-theory-and-public-policy-fall-

2016/662896910b5530e160224afe6ac30752_MIT14_03F16_lec4.pdf [2025-05-

26] 

Berry, S., Levinsohn, J. & Pakes, A. (1995). Automobile Prices in Market Equilibrium. 

Econometrica, 63 (4), 841–890. https://doi.org/10.2307/2171802 

Berry, S.T. (1994). Estimating Discrete-Choice Models of Product Differentiation. The 

RAND Journal of Economics, 25 (2), 242–262. https://doi.org/10.2307/2555829 

Börjesson, M. (2014). Forecasting demand for high speed rail. Transportation Research 

Part A: Policy and Practice, 70, 81–92. https://doi.org/10.1016/j.tra.2014.10.010 

Brons, M., Pels, E., Nijkamp, P. & Rietveld, P. (2002). Price elasticities of demand for 

passenger air travel: a meta-analysis. Journal of Air Transport Management, 8 (3), 

165–175. https://doi.org/10.1016/S0969-6997(01)00050-3 

Bureau of Transportation Statistics (2017). National Household Travel Survey Long 

Distance Travel Quick Facts. https://www.bts.gov/statistical-

products/surveys/national-household-travel-survey-long-distance-travel-quick-facts 

[2025-05-20] 

Bureau of Transportation Statistics (2024). Hours of Delay and On-Time Performance of 

Amtrak: 2010-2023. https://www.bts.gov/browse-statistical-products-and-

data/info-gallery/hours-delay-and-time-performance-amtrak-2010-2023 [2025-05-

06] 

Drukker, D.M. (2003). Testing for Serial Correlation in Linear Panel-data Models. The 

Stata Journal, 3 (2), 168–177. https://doi.org/10.1177/1536867X0300300206 



35 

 

EIA (2025). U.S. All Grades All Formulations Retail Gasoline Prices (Dollars per 

Gallon). EIA U.S Energy Information Administration. 

https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=EMM_EPM0_PT

E_NUS_DPG&f=A [2025-04-29] 

Escañuela Romana, I., Torres-Jiménez, M. & Carbonero-Ruz, M. (2023a). Elasticities of 

Passenger Transport Demand on US Intercity Routes: Impact on Public Policies for 

Sustainability. Sustainability, 15 (18), 14036. https://doi.org/10.3390/su151814036 

Escañuela Romana, I., Torres-Jiménez, M. & Carbonero-Ruz, M. (2023b). Price 

Elasticity of Demand for Domestic Air Travel in the United States: A Robust 

Quasi-Experimental Estimation. Atlantic Economic Journal, 51 (2), 149–167. 

https://doi.org/10.1007/s11293-023-09779-4 

Federal Railroad Administration (n.d.). 1.02 - Operational Data Tables. 

https://safetydata.fra.dot.gov/OfficeofSafety/publicsite/Query/rrstab.aspx [2025-

04-29] 

FRED (2025). Real gross domestic product per capita. Federal Reserve Bank of St. 

Louis. https://fred.stlouisfed.org/series/A939RX0Q048SBEA [2025-04-29] 

Gallet, C.A. & Doucouliagos, H. (2014). The income elasticity of air travel: A meta-

analysis. Annals of Tourism Research, 49, 141–155. 

https://doi.org/10.1016/j.annals.2014.09.006  

Gama, A. (2017). Own and cross-price elasticities of demand for domestic flights and 

intercity trains in the U.S. Transportation Research Part D: Transport and 

Environment, 54, 360–371. https://doi.org/10.1016/j.trd.2017.06.010 

Halvorsen, R. & Palmquist, R. (1980). The Interpretation of Dummy Variables in 

Semilogarithmic Equations. The American Economic Review, 70 (3), 474–475 

IER (2023). New Registrations of Gasoline Vehicles Are Still Growing Despite the EV 

Push. IER Institute for Energy Research. 

https://www.instituteforenergyresearch.org/fossil-fuels/gas-and-oil/new-

registrations-of-gasoline-vehicles-are-still-growing-despite-the-ev-push/ [2025-04-

29] 

IPCC (ed.) (2023). Transport. In: Climate Change 2022 - Mitigation of Climate Change. 

1. ed. Cambridge University Press. 1049–1160. 

https://doi.org/10.1017/9781009157926.012 

Jevons, W.S. (1874). The Mathematical Theory of Political Economy. Journal of the 

Statistical Society of London, 37 (4), 478–488. https://doi.org/10.2307/2338697 

Nicholson & Snyder (2010). Microeconomic Theory: Basic Principles and Extensions. 

11th edition. Mason, OH: South-Western, Cengage Learning.  

Porath, Y. (2020). Sample size fixed effect regression? ResearchGate. 

https://www.researchgate.net/post/Sample_size_fixed_effect_regression [2025-05-

06] 

Rail Passengers Association (n.d.). Amtrak Ridership Statistics. 

https://www.railpassengers.org/resources/ridership-statistics/ [2025-04-29] 



36 

 

Ritchie, H. (2023). Which form of transport has the smallest carbon footprint? Our 

World in Data. https://ourworldindata.org/travel-carbon-footprint [2025-05-21] 

Ritchie, H., Rosado, P. & Roser, M. (2024). Greenhouse gas emissions. Our World in 

Data. https://ourworldindata.org/greenhouse-gas-emissions [2025-05-04] 

Rohr, C., Fox, J., Daly, A., Patruni, B., Patil, S. & Tsang, F. (2013). Modeling Long-

Distance Travel in Great Britain. Transportation Research Record, 2344 (1), 144–

151. https://doi.org/10.3141/2344-16 

Slutsky, E. (1915). Sulla teoria del bilancio del consumatore. Giornale degli Economisti e 

Rivista di Statistica, 51 (Anno 26) (1), 1–26 

U.S. Department of Transportation (n.d.). Travel Time Reliability. 

https://ops.fhwa.dot.gov/publications/tt_reliability/brochure/ttr_brochure.pdf 

[2025-05-06] 

U.S. Department of Transportation (2025). Consumer Airfare Report: Table 6 - 

Contiguous State City-Pair Markets That Average At Least 10 Passengers Per 

Day. Department of Transportation - Data Portal. 

https://data.transportation.gov/Aviation/Consumer-Airfare-Report-Table-6-

Contiguous-State-C/yj5y-b2ir/about_data [2025-04-29] 

US EPA, O. (2025). Carbon Pollution from Transportation. [Overviews and Factsheets]. 

https://www.epa.gov/transportation-air-pollution-and-climate-change/carbon-

pollution-transportation [2025-05-20] 

Varian, H.R. (2010). Intermediate microeconomics: a modern approach. 8. ed. W.W. 

Norton & Company. 

Wardman, M. & Tyler, J. (2000). Rail network accessibility and the demand for inter-

urban rail travel. Transport Reviews, 20 (1), 3–24. 

https://doi.org/10.1080/014416400295310 

Wooldridge, J.M. (2002). Econometric Analysis of Cross Section and Panel Data. 2nd 

edition. The MIT Press Cambridge. 

Wooldridge, J.M. (2013). Introductory Econometrics: A Modern Approach. 5th Edition. 

Mason, OH: South-Western, Cengage Learning. 

World Health Organization (2023). From emergency response to long-term COVID-19 

disease management: sustaining gains made during the COVID-19 pandemic. 

https://www.who.int/publications/i/item/WHO-WHE-SPP-2023.1 [2025-05-12] 

Zeng, Y., Ran, B., Zhang, N. & Yang, X. (2021). Estimating the Price Elasticity of Train 

Travel Demand and Its Variation Rules and Application in Energy Used and CO2 

Emissions. Sustainability, 13 (2), 475. https://doi.org/10.3390/su13020475 

 

 



37 

 

Appendix A – Correlation Matrix 

Based on the correlation matrix in Table 4, the strongest relationship is observed 

between flight demand and flight prices, with a negative correlation of -0.582 (p < 

0.01). This result is expected, as it aligns the economic theory and supports the 

Hypothesis H2: 𝑒𝑃 < 0, outlined in Section 2.5, Hypotheses.  

The correlation between train prices and flight demand is positive and statistically 

significant at 0.429. This is consistent with the theoretical expectation of 

substitutable transport modes and supports Hypothesis H1: 𝑒𝑓,𝑡 > 0. However, it 

is important to note that correlation does not imply anything about causality, 

meaning that the relationship should be interpreted with caution.  

In contrast, the correlation between flight demand and gasoline prices is weak and 

statistically insignificant, representing a small or no direct association. 

Surprisingly the correlation between flight demand and GDP per capita also is 

insignificant, indicating that other factors than income level in the U.S. probably 

have a more prominent role in explaining variation in air travel demand. The 

impact from on-time performance appears to be negligible.  

 

Table 4. Pairwise correlation matrix 

Variables (1) (2) (3) (4) (5) (6) 

(1) Q_flight 1.000      

       

(2) P_train 0.429 1.000     

 (0.000)      

(3) P_flight -0.582 -0.451 1.000    

 (0.000) (0.000)     

(4) P_gas 0.008 -0.164 0.097 1.000   

 (0.946) (0.169) (0.417)    

(5) GDP -0.044 -0.031 0.060 0.402 1.000  

 (0.713) (0.794) (0.619) (0.000)   

(6) OTP -0.136 0.014 -0.116 -0.121 -0.204 1.000 

 (0.275) (0.914) (0.355) (0.332) (0.101)  
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Appendix B - Sequential Adding of Control 
Variables 

In this section I examine how the coefficients of interests evolve as additional 

covariates sequentially are introduced one by one. Table 5 reports seven separate 

first difference regressions of Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡), each column adding the next variable 

in the sequence.  

Table 5. Sequential adding of control variables in the first difference estimator 

 (1) (2) (3) (4) (5) (6) (7) 
VARIABLES Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) 

        

Δ𝑙𝑛(𝑃ᵗʳᵃⁱⁿ𝑖𝑡) -0.833*** -0.897*** -0.587** 1.180*** 1.399*** -0.368 0.203 

 (0.172) (0.211) (0.176) (0.221) (0.217) (0.291) (0.277) 

Δ𝑙𝑛(𝑃ᶠˡⁱᵍʰᵗ𝑖𝑡)  0.669 0.341 -0.952** -1.024** -0.828** -0.943*** 

  (0.422) (0.432) (0.342) (0.283) (0.256) (0.324) 

Δ𝑙𝑛(𝑃ᵍᵃˢ𝑡)   1.141*** 0.188 0.315** 0.229 -0.116 

   (0.105) (0.109) (0.107) (0.145) (0.0870) 

Δ𝑙𝑛(𝐺𝐷𝑃𝑡)    39.26*** 43.15*** 2.066 20.97*** 

    (3.140) (2.371) (4.569) (2.975) 

Δ𝑂𝑇𝑃𝑡     0.0173*** -0.00234 0.00273 

     (0.00397) (0.00598) (0.00504) 

𝐶𝑜𝑣𝑖𝑑𝐵      -1.333*** -0.608*** 

      (0.177) (0.0387) 

𝐶𝑜𝑣𝑖𝑑𝐸      0.530*** 0.608*** 

      (0.0262) (0.0387) 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 0.0210 0.0159 0.0191 -0.705*** -0.780*** 0.0500 -0.374*** 

 (0.0154) (0.0181) (0.0177) (0.0507) (0.0426) (0.105) (0.0549) 

        

Observations 66 66 66 66 60 60 60 

R-squared 0.224 0.255 0.380 0.838 0.863 0.914  

Covid NO NO NO NO NO YES YES 

Constraint NO NO NO NO NO NO YES 

Standard errors, clustered at the route level, in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 

In the first three specifications, the estimated cross-price elasticity of air travel 

demand with respect to train fares is significantly negative, surprisingly implying 

that higher train prices reduce flight demand. Also, the own-price elasticity of air 

fares is counterintuitive since it appears positive. Once the control Δ𝑙𝑛(𝐺𝐷𝑃𝑡) is 

introduced in (4), both elasticities flip to their theoretically expected signs. 

Adding Δ𝑂𝑇𝑃𝑡 in specification (5) leaves the other coefficients stable, suggestion 

that fluctuations in train punctuality are uncorrelated with the elasticities. In (6), 

the inclusion of 𝐶𝑜𝑣𝑖𝑑𝐵 and 𝐶𝑜𝑣𝑖𝑑𝐸 dummies make the cross-price elasticity 

insignificant, while the own-price elasticity of flight demand remains negative and 
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significant. This suggests that the Covid dummies capture much of the variation 

that was previously attributed to train fares. Specification (6) and (7) estimate the 

same underlying first difference model of Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗᵢₜ), but differ in how the 

Covid shocks are handled. In (6) the Covid-coefficients 𝛽2 and 𝛽3 are left 

unrestricted, allowing for an asymmetric the collapse (𝛽2 = −1.333) and rebound 

(𝛽3 = 0.530). The last specification (7) presents the results from the main 

estimation, incorporating all controls and the impose symmetry constraint 𝛽2 +

 𝛽3 = 0. 
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Appendix C -  Robustness and Alternative 
Specifications 

C.1 Results from the Unrestricted Specification with 

Separate Year Dummies 

In Table 6 are the results from the unrestricted specification, which includes four 

year dummies for 2020, 2021, 2022, and 2023. These estimates are used for the 

Wald tests in Section 5.3.1, Robustness Test of the Symmetry Constraint.  

Table 6. Results from the unrestricted first differences estimator 

VARIABLES Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) 

  

Δ𝑙𝑛(𝑃ᵗʳᵃⁱⁿ𝑖𝑡) -0.0801 

 (0.410) 

Δ𝑙𝑛(𝑃ᶠˡⁱᵍʰᵗ𝑖𝑡) -0.848** 

 (0.220) 

Δ𝑙𝑛(𝑃ᵍᵃˢ𝑡) 0.260 

 (0.148) 

Δ𝑙𝑛(𝐺𝐷𝑃𝑡) -3.594 

 (4.649) 

Δ𝑂𝑇𝑃𝑡 -0.00277 

 (0.00535) 

𝐶0 -1.636*** 

 (0.311) 

𝐶1 0.486 

 (0.492) 

𝐶2 0.456** 

 (0.154) 

𝐶3 0.145*** 

 (0.0285) 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 0.122 

 (0.0963) 

  

Observations 60 

R-squared 0.921 

Standard errors, clustered at the route level, in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

The separate year dummies capture how domestic flight demand changed from 

one year to the next during the COVID-19 period. The dummy for 2020 (𝐶0) 

represents the initial collapse in demand between 2019 and 2020 and is large and 

statistically significant at a 1% level, indicating an approximately 80.5% decline 

in flight passengers. The dummy for 2021 (𝐶1) is not statistically significant, 

suggesting that demand remained relatively stable between 2020 and 2021. On the 
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other hand, the coefficient for 2022 (𝐶2) is positive and statistically significant at a 

5% level, corresponding to a 57.8% increase in domestic flight demand between 

2021 to 2022. Finally 𝐶3 captures the continued rebound from 2022 to 2023 and 

shows a statistically significant 15.6% increase. This result suggest that the 

pandemic’s impact evolved over time, with a sharp decline in 2020 followed by a 

gradual recovery.  

 

C.2 Estimation on Pre-Pandemic Data 

As another robustness check, the first‐difference estimator is restricted to the pre‐

pandemic period (2013–2019). In practice, this means that the regressions only 

use observations with Year ≥ 2013 and ≤ 2019, ensuring that the estimate of the 

cross‐price elasticity is not driven by the COVID‐19 years. This reduces the 

dataset to only 36 observations. The results from the estimation are presented in 

Table 7.  

Table 7. Results from the first difference estimator on pre-pandemic data 

VARIABLES Δ𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) 

  

Δ𝑙𝑛(𝑃ᵗʳᵃⁱⁿ𝑖𝑡) -0.229 

 (0.401) 

Δ𝑙𝑛(𝑃ᶠˡⁱᵍʰᵗ𝑖𝑡) -0.727*** 

 (0.0957) 

Δ𝑙𝑛(𝑃ᵍᵃˢ𝑡) 0.256 

 (0.132) 

Δ𝑙𝑛(𝐺𝐷𝑃𝑡) -5.231 

 (7.273) 

Δ𝑂𝑇𝑃𝑡 -0.00398 

 (0.00688) 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 0.156 

 (0.148) 

  

Observations 36 

R-squared 0.401 

Standard errors, clustered at the route level, in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 

The estimated cross-price elasticity between rail and air turns negative, but 

remains statistically insignificant. This indicates no clear substitution effect even 

before the COVID-19 shock based on the limited data set. The own-price 

elasticity of flight demand remains negative, statistically significant and relatively 

similar in magnitude (-0.73), supporting the robustness of the finding that air 

travel demand is inelastic. All other coefficients lose significance, likely due to  

the reduced number of observations, which increases standard errors and lowers 

the statistical power of the test. 
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C.3 Single Fixed Effects 

An alternative to a first difference estimator is a single fixed effects (FE) 

estimator, which controls for unobserved route specific time-invariant 

heterogeneity (𝛼𝑖). The fixed effects model retains the same functional form as the 

levels specification introduced in Section 4.1.1: 

𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) = ꞵ
0

+ 𝑒𝑓,𝑡 𝑙𝑛(𝑃ᵗʳᵃⁱⁿ𝑖𝑡 ) + 𝑒𝑃 𝑙𝑛(𝑃ᶠˡⁱᵍʰᵗ𝑖𝑡) + 𝑒𝑓,𝑔 𝑙𝑛(𝑃ᵍᵃˢ𝑡)

+ 𝑒𝐼 𝑙𝑛(𝐺𝐷𝑃𝑡) + ꞵ
1

𝑂𝑇𝑃𝑡 + 𝐶 · 𝐼(𝐶𝑜𝑣𝑖𝑑 =  1) + 𝛼𝑖 + 𝑢𝑖𝑡  

The fixed effects estimator relies on the assumption of strict exogeneity, meaning 

that the explanatory variables are uncorrelated with the idiosyncratic error term in 

all time periods, conditional on the unobserved effect: 

𝐸(𝑢𝑖𝑡|𝑥𝑖 , 𝑐𝑖) = 0        (Wooldridge 2002:266). 

The fixed effects approach (unlike random effects) allows the unobserved, time-

invariant characteristics to be arbitrarily correlated with the explanatory variables. 

This flexibility makes the estimator robust to omitted variable bias arising from 

unobserved, constant factors that may influence both prices and demand.  

Table 8 on the next page reports the results from the single fixed effects estimator. 

The coefficient on train fares is negative and marginally significant, which 

contrasts with stated hypothesis H1: 𝑒𝑓,𝑡 > 0 from Section 2.5 and the positive, 

though insignificant, estimate in the first difference model. This provides support 

for that the relationship between train fares and flight demand is not robust and 

probably sensitive to both model and underlying assumptions. The own-price 

elasticity of flight demand (𝑒𝑃  − 0.75) confirms earlier findings that air travel 

is price inelastic. 
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Table 8. Results from the single fixed effects estimator 

VARIABLES 𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) 

  

𝑙𝑛(𝑃ᵗʳᵃⁱⁿ𝑖𝑡) -0.423* 

 (0.177) 

l𝑛(𝑃ᶠˡⁱᵍʰᵗ𝑖𝑡) -0.752* 

 (0.296) 

𝑙𝑛(𝑃ᵍᵃˢ𝑡) 0.271** 

 (0.0990) 

𝑙𝑛(𝐺𝐷𝑃𝑡) 0.911 

 (0.665) 

𝑂𝑇𝑃𝑡 -0.0285*** 

 (0.00573) 

𝐶𝑜𝑣𝑖𝑑 -0.825*** 

 (0.0323) 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 9.425 

 (6.618) 

  

Observations 66 

Number of route_id 6 

R-squared 0.723 

Standard errors, clustered at the route level, in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

C.4 Two-Way Fixed Effects 

As an another robustness test the demand specification in levels is estimated 

including two-way fixed effects. Concretely this model is estimated:  

𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) = ꞵ
0

+ 𝑒𝑓,𝑡 𝑙𝑛(𝑃ᵗʳᵃⁱⁿ𝑖𝑡 ) + 𝑒𝑃 𝑙𝑛(𝑃ᶠˡⁱᵍʰᵗ𝑖𝑡) + 𝑒𝑓,𝑔 𝑙𝑛(𝑃ᵍᵃˢ𝑡)

+  𝑒𝐼 𝑙𝑛(𝐺𝐷𝑃𝑡) + ꞵ
1

𝑂𝑇𝑃𝑡  +  𝐶 · 𝐼(𝐶𝑜𝑣𝑖𝑑 = 1) + 𝛼𝑖 + 𝛾𝑡 + 𝑢𝑖𝑡 

where 𝛼ᵢ represents all time-invariant characteristics of each route, and γt captures 

all year-specific, time-varying shocks that affect all routes equally, e.g. 

macroeconomic changes and the COVID-19 pandemic.  

When estimating the levels model with both route- and time fixed effects, five 

years (2019-2023) are omitted due to collinearity problems, see Table 9. The high 

significance of the estimates in the levels model probably reflects that the two-

way fixed effects absorb a large share of the variation, leaving less unexplained 

variance and thereby producing smaller standard errors. This can result in 

statistically significant estimates even in relatively small samples, although it also 

increases the risk of overfitting. This contrasts with the first-difference 

specification using only pre-pandemic data, where the reduced sample size and 

limited variation lead to larger standard errors and less statistical power. 
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Table 9. Results from the two-way fixed effects estimator 

VARIABLES 𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) 

  

𝑙𝑛(𝑃ᵗʳᵃⁱⁿ𝑖𝑡) -0.620** 

 (0.181) 

l𝑛(𝑃ᶠˡⁱᵍʰᵗ𝑖𝑡) -0.758* 

 (0.304) 

𝑙𝑛(𝑃ᵍᵃˢ𝑡) 0.432*** 

 (0.0834) 

𝑙𝑛(𝐺𝐷𝑃𝑡) -8.830*** 

 (0.471) 

𝑂𝑇𝑃𝑡 -0.206*** 

 (0.0134) 

𝐶𝑜𝑣𝑖𝑑 -0.423*** 

 (0.0280) 

2014.Year -1.724*** 

 (0.0884) 

2015.Year -1.657*** 

 (0.122) 

2016.Year 0.176** 

 (0.0458) 

2017.Year -0.541*** 

 (0.0706) 

2018.Year -0.570*** 

 (0.0890) 

2019o.Year - 

  

2020o.Year - 

  

2021o.Year - 

  

2022o.Year - 

  

2023o.Year - 

  

Constant 131.3*** 

 (5.425) 

  

Observations 66 

Number of route_id 6 

R-squared 0.900 

Standard errors, clustered at the route level, in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 

 

 

C.5 Random Effects  

As a complementary robustness test, the same demand specification is also 

estimated using a random effects estimator:  
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𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) = ꞵ
0

+ 𝑒𝑓,𝑡 𝑙𝑛(𝑃ᵗʳᵃⁱⁿ𝑖𝑡) + 𝑒𝑃 𝑙𝑛(𝑃ᶠˡⁱᵍʰᵗ𝑖𝑡) + 𝑒𝑓,𝑔 𝑙𝑛(𝑃ᵍᵃˢ𝑡)

+ 𝑒𝐼 𝑙𝑛(𝐺𝐷𝑃𝑡) + ꞵ
1

𝑂𝑇𝑃𝑡 + 𝐶 · 𝐼(𝐶𝑜𝑣𝑖𝑑 = 1) + 𝑢𝑖𝑡 

Unlike fixed effects, the random effects approach assumes that unobserved, time-

invariant route characteristics are uncorrelated with the explanatory variables. 

Formally, this requires the orthogonality condition 

𝐸(𝛼𝑖|𝑥𝑖) = 𝐸(𝛼𝑖) = 0 

where 𝛼𝑖 denotes the unobserved route-specific effect and 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑇) 

represents the explanatory variables for route i across time (Wooldridge 

2002:257). This assumption allows the model to exploit both within- and 

between-route variation, potentially improving efficiency compared to fixed 

effects.  

However, this assumption is likely violated in the present context, as unobserved 

factors such as underlying service quality or persistent patterns in traveler 

demand, like a high share of business travelers, may influence both prices and 

demand. Therefore, while random effects is not suitable as the main estimation 

method, it serves as a useful robustness check. The results remain consistent in 

terms of significance for the train and flight fare, supporting the stability of the 

main findings.  

Table 10. Results from the random effects estimator 

VARIABLES 𝑙𝑛(𝑄ᶠˡⁱᵍʰᵗ𝑖𝑡) 

  

𝑙𝑛(𝑃ᵗʳᵃⁱⁿ𝑖𝑡) -0.0333 

 (0.146) 

𝑙𝑛(𝑃ᶠˡⁱᵍʰᵗ𝑖𝑡) -1.048*** 

 (0.273) 

𝑙𝑛(𝑃ᵍᵃˢ𝑡) 0.511*** 

 (0.137) 

𝑙𝑛(𝐺𝐷𝑃𝑡) 0.866 

 (0.708) 

𝑂𝑇𝑃𝑡 -0.0268*** 

 (0.00457) 

𝐶𝑜𝑣𝑖𝑑 -0.854*** 

 (0.0449) 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 9.242 

 (7.868) 

  

Observations 66 

Number of route_id 6 

Standard errors, clustered at the route level, in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 
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