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Abstract 

This study investigates the relationship between dairy farm productivity and high temperatures in 

Sweden over the period 2002–2021, addressing a significant research gap related to both geographical 

location and production method within the literature on climate change’s impact on agricultural 

production.  

Using a Recentered Influence Function method combined with Unconditional Quantile 

Regression, we estimate the effect of an additional day per year with temperatures exceeding 25°C on 

various productivity quantiles. This approach captures not only the effect of extreme temperature 

days but also how the impact varies across the productivity distribution.  

The results reveal stronger effects for lower-productivity farms as well as for organic farms. 

However, for organic farms, the effect is less statistically significant, suggesting considerable 

heterogeneity within this subgroup. These findings are then interpreted in the context of previous 

research, mainly conducted outside Northern Europe, that links high temperatures to productivity 

losses through three main channels: loss in cow health and fertility, reduced pasture quality, and 

decreased milk yield. Contrary to expectations, this study finds an increase in milk yield, potentially 

attributed to higher purchases of concentrate feed, which likely compensate for diminished pasture 

quality. No evidence supporting claims of high temperatures negatively impacting cow health was 

identified.  

The results contribute to the literature by enhancing our understanding of the distributional 

impacts of climate change on farm productivity. They may offer valuable insights for future policy 

development, as well as for farmers and extension workers who will face the challenges posed by 

climate change firsthand. 

 

 

Keywords: Climate change, Dairy production, RIF-Regression, Distributional effects
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1. Introduction 

Multiple studies have looked at the interaction between climate change and farm pro- 

ductivity, consistently finding a negative relationship between increases in temperature, 

seasonal variability and precipitation patterns and farm productivity (Amare and Bal- 

ana 2023; Harrison, Cullen, and Armstrong 2017; Hughes et al. 2022). However, most 

of these studies focus on the effects of climate change in already climatically challenged 

regions, and on the effects of climate change on crop farming specifically (Martinsohn and 

Hansen 2012). This has created a significant research gap regarding the effects of climate 

change on other regions and production methods, for example animal production systems 

in Northern Europe. 

While the research gap might suggest a low relevance for further study, recent devel- 

opments have indicated an interest to study the impact of climate change on Northern 

European farms as well. Notably, the recent Swedish drought in 2018, which saw both 

extensive periods of above normal temperature, as well as a decrease in groundwater and 

streamflow water (Bakke, Ionita, and Tallaksen 2020; Rakovec et al. 2022), highlights 

the relevance of this issue. In response to the drought, the Swedish government intro- 

duced temporary support for animal farms and reduced slaughterhouse fees, while making 

few adjustments for crop farms (The Swedish Government Offices 2018). The exclusive 

focus on animal farms in the support program signals the specific relevance of this 

study: the distribu- tional effects of increasing temperatures on dairy farm productivity. 

Despite the assumed large-scale consequences of the 2018 drought (Swedish Board of 

Agriculture 2019), long-term studies of the impacts remain scarce, leaving our 

understanding of climate change’s impact on farm productivity underdeveloped. 

While the drought of 2018 seems to have had greater impact on animal than on crop 

farms, previous studies show indications of heterogeneous effects following extreme weather 

events spanning a wide array of characteristics, such as between conventional and or- 

ganic agricultural production as well as between geographical localization and farm size 

(Moghaddam et al. 2024; Wimmer, Stetter, and Finger 2023; Wittwer et al. 2023). Under- 

standing the distribution of these effects is critical both for our understanding of potential 

consequences of climate change (Rakovec et al. 2022), as well as for the construction of 

efficient related policy (Unc et al. 2021). 

Based on the issue outlined above, with indications of climate change impacting 

Swedish animal farms to a larger yet unknown extent than crop farms, this thesis seeks 

to address the research gaps by studying the impact of climate change on Swedish animal 

farms, focusing on the distributional effects of this issue. To delimit our study further, in 

order to provide a more clear interpretation of results, we look especially at dairy farms. 

Dairy farms were among the farms especially vised by policy post drought in 2018, and 
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hold both a strong cultural value in Sweden (Martiin 2010), and receive large amounts of 

national and EU-based subsidies (McCloud and Kumbhakar 2008). Delimiting our studied 

sample to Swedish dairy farms is thus motivated both from an economic and social point 

of view. 

To perform a detailed analysis of the effects of climate change on dairy production, 

this paper employs a Recentered Influence Function (RIF) method, using Unconditional 

quantile Regression (UQR) as proposed by Firpo, Fortin, and Lemieux (2009). This allows 

a nuanced study of the distributional effects of climate change in large detail across a 

sample of Swedish dairy farms, in regards to both total factor productivity and production 

method. We study the effect of extreme temperature on farm total factor productivity 

across the full sample, as well within subgroups of organic and conventional farms, and 

identify key contributing factors behind our results. 

Our findings show that farm productivity is significantly negatively impacted by daily 

average temperatures above 25 degrees, mainly due to increases in feed purchase. The 

losses to productivity is partially offset by increased milk production, connected to the 

changes in feed consumption. However, this increase in production does not outweigh the 

cost associated with the increases in feed purchased. Furthermore, results differ between 

organic and conventional farms: conventional farms display a more homogeneous effect 

across quantiles, while the impact on organic farms is larger albeit less significant. 

This thesis contributes to the literature on climate change and agricultural productivity 

in four main ways. First, it is the first study to apply a RIF method to analyze the dis- 

tributional impact of extreme temperatures on farm productivity, providing a new depth 

to our understanding of how farm characteristics may affect climate change impact. Sec- 

ondly, by combining detailed farm-level data from the Farm Accountancy Data Network 

(FADN) with municipal weather data from the Swedish Meteorological and Hydrological 

Institute (SMHI), the study provides novel empirical evidence on how daily average tem- 

peratures above 25°C disproportionately affect lower-performing Swedish farms. Third, 

the analysis identifies the main mechanism behind productivity losses to be an increase 

in purchased feed costs, while also showing that milk yield and veterinary expenses play 

a lesser role. As this rules our impact factors identified in previous studies, this is an im- 

portant policy contribution. Finally, the study compares organic and conventional farms, 

revealing greater variability in responses among organic farms, emphasizing the need for 

well adapted climate policies. These contributions fill a key gap in Northern European cli- 

mate impact research and have clear policy implications for the resilience of dairy farming 

systems. 

The remainder of this study will proceed as follows: Section 2, will present the theo- 

retical background, foundational for the subsequent analysis. Section 3 present the data, 

followed by Section 4 developing on the method employed in this study. Section 5 presents 
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the results, and the study concludes with Section 6 presenting the conclusions and policy 

implications derived from this. 
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2. Background 
 

2.1 The impact of climate change on dairy production 

Within a Northern European context, literature on the matter of climate change and 

dairy farm production is notably scarce, possibly as the effects of climate change are 

not yet as visible in these regions as compared to many others (Martinsohn and Hansen 

2012). Numerous studies point to these regions gaining added production possibilities with 

climate change (Moore and Lobell 2014; Wiréhn 2018). However, this is all dependent 

on the region’s ability to adapt to the changes, both in terms of policy (Unc et al. 2021; 

Wiréhn 2018) as well as in regards to changes in temperatures and precipitation patterns 

causing, for example, a higher need for irrigated farming systems (Grusson, Wesström, 

and Joel 2021). 

Previous studies, mainly focusing on the impact of temperature on dairy production 

in already climatically challenged regions, is however plenty. One of the main factors 

impacting dairy production with increased heat is a loss to milk yield per cow. Discussed 

in both Nardone et al. (2010) and Wankar and Rindhe (2021), the milk yield of a dairy cow 

is negatively impacted by heat stress, with higher yielding cows deemed more susceptible 

to heat stress than lower yielding cows. Controlled experiments show milk yield being 

reduced by as much as 35% when the cow was subject to extended periods of heat stress. 

The impact of heat stress on dairy cattle has been studied within a Swedish context, by 

Ahmed, Tamminen, and Emanuelson (2022), showing that Swedish dairy cattle show signs 

of being negatively impacted by heat stress already at 22◦C. 

Increasing temperatures have also been connected to a increase in veterinary costs in 

dairy farming, posing potential consequences for farm factor productivity. Heat has been 

shown to decrease fertility among cattle (Hughes et al. 2022; Wankar and Rindhe 2021), 

decreasing profit due to lower herd size and higher breeding costs. Guzmán-Luna et al. 

(2022) also note that increasing temperatures cause a higher dispersion and growth rate 

of many pathogens, increasing the risk of disease in dairy cattle, both potentially causing 

higher veterinary cost as well as lowered milk yield due to ill health. 

Harrison, Cullen, and Armstrong (2017) also connects climate change, with increasing 

temperature and lowered precipitation, to profit losses from lesser pastures. Arguing that 

this causes farmers to buy more added feed to sustain production. The Australian context 

of this study causes concern for its’ external validity, and relevance to the Swedish context 

of this thesis, however. Many studies point at opposing effects of increasing temperatures 

within northern European pasture production, an increase in pasture growth with climate 

change (Höglind, Thorsen, and Semenov 2013). However, an increased pasture growing 

rate may cause lower protein contents per kg of ley, lowering nutritional values of the 
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pasture, causing the necessity of added feed (Dellar et al. 2018) . 

To conclude, previous literature identifies three primary pathways through which ele- 

vated temperatures may negatively affect the productivity of Swedish dairy farms: reduced 

milk yield, pasture growth, and animal health. Building on our main findings, suggesting 

a potential negative association between high temperatures and productivity, section 5.2, 

“The Mechanisms”, explores how these factors contribute to the observed productivity 

losses in Swedish dairy farming. 

 

2.2 The distributional effects of climate change 

Previous literature have shown differentiated effects of climate change based on different 

farm characteristics (Wimmer, Stetter, and Finger 2023; Wittwer et al. 2023; Moghad- 

dam et al. 2024). Wittwer et al. (2023) study on crop yields, concludes that there is 

little differences on the drought resistance between organic and conventional farming sys- 

tems. These results have been contradicted by Moghaddam et al. (2024) who, performing 

a metastudy of 44 drought studies, find results showing that organic farms generally are 

less economically impacted by drought than their conventional counterparts. Results from 

Moghaddam et al. (2024) are generally attributed to lesser costs of input in organic farm- 

ing, which tend to be more circular systems than conventional farms. As stated however, 

literature has not found unity on the interaction between production method and impact 

from climate change, which is something that will be studied in this thesis. 

The distributional effects of climate change on productivity distributions have been 

studied most notably by Malikov, Miao, and Zhang (2020) and Zhang, Malikov, and Miao 

(2024). Both studies conclude that there are significant distributional effects associated 

with the impact of climate change on productivity, both within the agricultural sector, 

and outside it. This implies that in order to understand the impacts of climate change on 

Swedish dairy farms, it is also important to study the associated distributional effects, 

otherwise, we risk losing an important perspective of the issue at hand, reducing our 

understanding of the situation. 

 

3. Data 

The main data used in this model comes from the Farm Accountancy Data Network 

(FADN), from Eurostat. The FADN provides detailed information on farm level economic 

transactions, as well as basic farm characteristics. The Swedish sample of FADN consist 

of The Farm Economics Survey (Swedish: Jordbruksekonomiska Undersökningen, or JOU), 

a questionnnaire for which at least 1025 farms are selected randomly yearly. As FADN 

includes all kinds of farms, we delimited our sample to Swedish farms whose main income 



12  

comes from dairy production. This resulted in an unbalanced dataset of a total of 6552 

observations on 759 farms, spanning the years of 2002-2023. 

Climate data was provided by the Swedish Meteorological and Hydrological Institute 

(SMHI). For this thesis, we used daily average temperature on municipality level, over the 

years 2002-2023. All municipalities are present for all years studied, making it a perfectly 

balanced panel. One key limitation of this study lies in the spatial resolution of the 

weather data. While FADN provides farm-level data, the corresponding temperature 

data is available only at the municipality level. This introduces potential measurement 

errors if within-municipality climate heterogeneity exists, which is particularly likely in 

larger municipalities. This is a well-known issue when studying temperature impact on 

local level (see Zhang, Malikov, and Miao 2024; Ahmed, Tamminen, and Emanuelson 

2022), and as such we have modeled our approach to be consistent with related empirical 

literature. Given that most Swedish municipalities are relatively small and 

climatologically homogeneous however, we consider municipal level data a reasonable 

option, which still allows us to identify meaningful variation in exposure to extreme 

temperature events. 

 

3.1 Variables 

The main dependent variable in this thesis is Total Factor Productivity, TFP. Following 

previous literature (eg Karafillis and Papanagiotou (2011) and Coomes et al. (2019)), TFP 

is defined as the ratio of aggregate output (q) by aggregate input (x), such 

that:

𝑇𝐹𝑃 =  
𝑄(𝑞)

𝑋(𝑥)
                         

                                                                                                                                 (1)
 

All variables used in this thesis are logarithmized for interpretability, except 

Temperature, and when appropriate they are also weighted by number of Livestock Unit 

(LU) reported at farm level. Table 1 present a comprehensive list of the variables used. 

Table 1. Variable List 

Variable name Description Source 

TFP Farm Total Factor Productivity FADN 

Vet costs Veterinary costs in SEK per year, weighted by LU FADN 

Milk yield Milk yield per cow, in KG FADN 

Home feed Feed produced at farm in tonnes, weighted by LU FADN 

Purchased conc Concentrates purchase in SEK, weighted by LU FADN 

Net income Farm net income in SEK weighted by LU FADN 

Value added Farm net value added weighted by LU FADN 

Temperature Average daily temperature per municipality in ⁰C SMHI 
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3.2 Summary statistics 

 
Summary statistics are presented in Table 3. 

 

Table 2. Summary Statistics 

Variable name Obs Mean Std. Dev Min Max 

TFP 6522 0.94 0.194 0.188 1.88 

Net income 6522 46718 91702 -1197521 1486270 

Purchase conc 6522 702628 1199819 0 18700000 

Milk yield 6522 7686 2865 0 109000 

Home feed 6522 67082 86031 0 1257448 

Vet costs 6522 38980 673015 0 1191670 

Value added 6522 106058 167860 -2211991 2606085 

Temperature 10115 6.2956 2.33 -41 26.9 

 

The extremely high maximum values observed for the variables Vet cost and Pur- 

chase conc suggest that some observations may represent aggregated entities, such as 

companies comprising multiple production units, rather than single farms. To address 

this, we divided all variables by LU to normalize for scale and studied the residual plots 

to assess model fit. Subsequently, all previously extreme observations fell within a reason- 

able range, and no influential outliers remained. As a result, all observations were retained 

in the sample. 

 

3.3 Temporal trends 

The temporal trend of monthly average temperatures within the studied time period is 

illustrated below in Figure 1. Average temperature has been consistently increasing over 

the studied time period. This motivates the study of the impact of increasing temperatures 

on farm TFP. 

 



14  

 

Figure 1: Development of yearly average temperature in Sweden 2002-2022 

 

 

3.4 Temperature Bin Construction 

Following Zhang, Malikov, and Miao (2024), we study the effect of temperature on our 

dependent variable is measured using temperature bins. Temperature bins have been 

widely used in literature, such as by Ahmed, Tamminen, and Emanuelson (2022), Ortiz- 

Bobea et al. (2025), and Zhang, Malikov, and Miao (2024), and are advantageous to use 

as it provides easily interpretable coefficients, that is also able to capture nonlinearities in 

temporal effects, making it able to display complexities despite its simple structure. 

We collect data on average daily temperature (Td) in municipality i, partitioned into 

eight bins (Bi) in increments of five degrees, following the bin structure of Ahmed, Tam- 

minen, and Emanuelson (2022). These bins are aggregated to the annual level t, resulting 

in a measure of the number of days per year and municipality with an average temperature 

falling within each bin range. The bins are defined as Td ≤ −5◦C, Td ∈ [−5◦C, 0◦C), . . ., 

Td ∈ [20◦C, 25◦C), and Td ≥ 25◦C. 

The final bin [Td ≥ 25◦C] serves as a natural upper threshold, as such high average 

daily temperatures are rare in Sweden. An earlier specification also included a bin for 

Td > 30◦C, but since no observations fell into this category, it was omitted from the final 

construction. 

The final bin construction and its distribution is presented in the table below. 
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Table 3. Temperature Bin Distribution 

Temperature Bin (◦C) Mean Std. Dev Min Max 

≤ -5 24.37 25.02 0 137 

-5 to 0 48.28 19.30 0 127 

0 to 5 83.32 17.74 38 132 

5 to 10 68.81 16.42 21 121 

10 to 15 73.82 14.80 33 114 

15 to 20 56.70 18.10 0 104 

20 to 25 9.80 8.96 0 45 

≥ 25 0.11 0.50 0 6 

 

Visibly, all temperature bins are present somewhere in the sample, with the most 

extreme bins [≤ -5◦C] and [≥ 25◦C] being the least represented bins. 

 

4. Method 

To study the distributional effects of rising temperatures on Swedish dairy farm produc- 

tivity, we estimate a Recentered Influence Function (RIF) using Unconditional Quantile 

Regression (UQR) (Firpo, Fortin, and Lemieux 2009). The RIF method, combined with 

UQR is a widely used method when studying distributional aspects of policy and/or 

temperature, providing easily yet detailed information across the studied sample (Firpo, 

Fortin, and Lemieux 2018; Clementi and Fabiani 2024; Zhang, Malikov, and Miao 2024). 

The RIF-method is especially advantageous in this setting as it allows us to recenter 

our focal point around specific quantiles of the distribution of the dependent variable. 

This is in contrast to an ordinary OLS regression, where we would get a full sample mean, 

lacking the detailed understanding of how climate change may impact farm productivity. 

As previous studies imply heterogeneous effects from increasing temperatures, the detailed 

analysis we get from the RIF-regressions is thereby suitable to study the issue at hand. 

The RIF method is further combined with an UQR, suitable for this purpose as it is 

conditional only on the outcome variable, not tied to specific levels of the independent 

variable - making it easily interpretable and usable from a policy perspective. 

The RIF-regression method is centered around the idea of studying how a specific 

quantile, qτ , of a large sample is impacted by a small change in x. Or in mathematical 

terms: 

𝜕𝑞𝜏

𝜕𝑥
                                                                                                                                                (2)

 

 

We begin by estimating a simple Influence Function (IF) as follows: 

 



16  

𝐼𝐹(𝑌𝑖𝑡, 𝑞𝜏) =
𝜏 − 𝟏{𝑌𝑖𝑡 ≤ 𝑞𝜏}

𝑓𝑌(𝑞𝜏)

                                                                                                                                                             (3)

 

Where 𝑌𝑖𝑡 is the dependent variable, 𝑞𝜏 the studied quantile and the term 𝟏{𝑌𝑖𝑡 ≤ 𝑞𝜏} a 

binary function given the value one in case the observation is found at, or below, the 

studied quantile. 

The denominator 𝑓𝑌(𝑞𝜏) is the density of the distribution of the dependent variable 

𝑌𝑖𝑡 at quantile 𝑞𝜏. To estimate this density, this thesis employs a Gaussian kernel density 

estimation, a nonparametric technique that smooths the distribution locally around the 

quantile of interest, as proposed by Firpo, Fortin, and Lemieux (2009). This estimate is 

critical because it scales the influence function, reflecting how observations near the 

quantile impact the RIF regression. Accurate estimation of 𝑓𝑌(𝑞𝜏) enhances the reliability 

and interpretability of the marginal effects obtained through the RIF regressions. 

From this follows that a value of 𝑌𝑖𝑡 found below the quantile, the IF will be positive, 

and vice versa. However, this produces a situation where the IF will inevitably have a 

mean of zero, as per: 

 

𝔼[𝐼𝐹(𝑌; 𝑞𝜏)] = 0

                                                                                                                                                             (4)
 

This leads us to our final step, the re-centering of the influence function, the RIF. The 

baseline RIF-regression model looks as follows: 

 

𝑅𝐼𝐹(𝑌𝑖𝑡, 𝑞𝜏) = 𝑞𝜏 +
𝜏 − 𝟏{𝑌𝑖𝑡 ≤ 𝑞𝜏}

𝑓𝑌(𝑞𝜏)

                                                                                                                                                             (5)

 

Which carries the influence function from equation 2, and adds the quantile studied, 

𝑞𝜏. This re-centers the IF such that instead of having a natural mean of zero we get the 

expected value as: 

𝔼[𝐼𝐹(𝑌; 𝑞𝜏)] = 𝑞𝜏

                                                                                                                                                             (6)
 

Which means that the IF is now centered around the quantile studied, meaning that 

when running a regression on the RIF, the interpretation of the coefficient will be as the 

marginal effect of a small change in the covariates for the defined quantile of the sample. 

To this regression we add as control variables our temperature bins as described in 

section 3.4 The specified regression will look as follows: 
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𝑅𝐼𝐹(𝑌𝑖𝑡, 𝑞𝜏) =  ∑ 𝛽𝑗𝑩𝑖𝑡
(𝑗)

+ 𝜔𝑖𝑡 + 𝜀𝑖𝑡

7

𝑗=1

 

                                                                                                                                                           (7)

 

 

With 𝑌𝑖𝑡 being the dependent variable, for farm i in year t, weighted by LSU to adjust 

for size-effects, and 𝑩𝑖𝑡
(𝑗)

a vector for the temperature bins, of which the middle one [10-

15◦C] was omitted from all regressions as a benchmark temperature. 𝑞𝜏 is the studied 

unconditional quantile of our dependent variable. β is our coefficient measuring the 

effect of an increased amount of day within the temperature range of bin j. ωi is farm 

fixed-effects and ε is our error term with all its usual properties. All regressions employ 

farm-level clustered standard errors, accounting for correlation of the error terms within 

farms over time. This adjustment is standard practice in panel data settings to avoid 

underestimating standard errors due to within-farm dependence. 

Finally, this RIF regression will be estimated for all variables present in the variable 

list, with the exception of Temperature, which serves as baseline for our key explanatory 

variable in all regressions. Our main results stem from the RIF regression using TFP as 

dependent variables, while the other variables either investigate the mechanisms working 

behind the temperature impact to TFP, or act as robustness checks. Each RIF regression is 

estimated across 10 unconditional quantiles, representing the 10th through 90th quantiles 

in 10-degree increments, such that 𝑞𝜏∈ [10, 20, ..., 90]. 

 

5.  Empirical Results 

 
5.1 Main Results 

To study the distributional effects of temperature on Swedish dairy farm TFP, we perform 

a number of RIF-regressions, using unconditional quantile regressions. First, we regress 

temperature on farm TFP, to identify any possible effects of temperature on our depen- 

dent variable. Thereon, we study the cause of our findings in our primary regression, by 

estimating a number of further regressions. Finally, a set of three robustness checks are 

be found under section 5.2.3. 

For interpretability, the result section will be presented in the form of graphs, showing 

both an average trend and a color-coded analysis for each studied quantile.  

We begin by estimating the effect of temperature on logarithmic TFP, in order to 

study the distribution of the effect of temperature on farm TFP. This will subsequently 

be referred to as our main results. We omit bin 5 [10-15◦C], making it our reference 

temperature. The interpretation of coefficients is thus given as the impact to farm TFP 

following one added day of temperature deviating from our reference temperature. Bin 5 
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was chosen as a reference temperature as it is the most well represented bin in our sample, 

providing a natural baseline for analysis. 

 

 

Figure 2: Average and quantile temperature effects to TFP 
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Figure 3: Matrix summation of coefficients 

 

Circle bubbles in Figure 2 correspond to a coefficient estimate from the RIF regression 

of temperature bins on logarithmic and weighted TFP. Each bubble signifies the impact 

to TFP of one added day deviating from benchmark temperature [10-15◦C], per TFP 

quantile. Blue bubbles are significant to 99%, mauve to 95% and green bubbles to 90%. 

Grey bubbles display insignificant results. The solid black line follows the mean estimate 

of all coefficients. Extensive result tables from all discussed RIF-regressions will be 

found in appendix A, selected coefficients from these regressions are discussed below. 

Results in Figure 2 show a large and statistically significant loss in TFP for all 

quantiles studied, associated with one added day of mean temperature ≥ 25◦C. This follows 

previous literature, stating that elevated temperatures cause negative impacts to cow health 

and fertility, feed production and milk yield, all of which would impact farm TFP 

negatively. This effect is statistically significant across all quantiles, but with the 90th, 

80th and 70th quantiles all being significant at only 90%, and with lower magnitude to 

their coefficients than in the lower part of the distribution. For reference, one added day 

of temperatures 

≥ 25◦C would incur a loss to TFP of 0.012% for the upper 90th quantile, but for the 10th 

quantile, this loss would be three times larger, at 0.033%. This implies that low produc- 

tivity farms face larger impacts from one added day with an average temperature above 

25 ◦C, than farms with high productivity levels. This distributional heterogeneity is in 

line with previous studies, stating that high productivity is a factor increasing resilience 

in view of increasing temperatures (Moghaddam et al. 2024; Zhang, Malikov, and Miao 

2024) 

Figure 3 plots a matrix of all coefficients presented in Figure 2, visualizing the mag- 
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nitude of temperature effects on each production quantile. All coefficients significant to 

at least the 90% level are represented by a color, blue if the coefficient is negative and 

red if it is positive, increasingly dark as the coefficient increases. Visibly, farms within 

the upper range of the productivity distribution see effects from almost all temperatures 

deviating from our baseline temperature [10-15◦C], however, the effect is notably stronger 

(visualized by a darker color) towards the lower ends of the quantile spectrum, implying 

that these farms are the most affected by extreme temperatures. 

 

Note: on the left hand side, the analysis is performed for the subsample conventional farms, on the right 

hand side, the subsample is organic farms 

 

Figure 4 displays the analysis from Figure 2 reproduced, but with the subsamples of 

conventional farms (left panel), and organic farms (right panel). The findings for the 

organic farm present much higher coefficients than the conventional farms. This suggests 

that increases in temperature have a larger impact on productivity for organic farms than 

conventional farms. 

For the estimation concerning organic farms, it is mainly observations in the middle 

lower ends of the productivity distribution that create significant coefficients. This implies 

that organic farms with lower TFP might be able to sustain increasing temperatures with 

Figure 4: Average and quantile effects to TFP for the subsamples conventional  and 
organic farms. 
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smaller losses to TFP than other studied quantiles. This is developed upon in Le Gal 

et al. (2011) suggesting that small-scale, diversified farms, while less productive, often are 

more flexible and adaptive than large-scale, specialized farms. Organic farms are stated 

to be more diversified by construction, and report five lesser LU on average per farm 

in the studied sample. This could be a possible explanation to the lower productivity 

organic farms sustaining extreme temperatures better than high productivity ones, but 

more research is needed on this matter. 

 

5.2 The mechanisms 

The results in figures 2-4 confirms the idea that climate change negatively impact TFP 

of Swedish dairy farms. It tells us very little of the mechanisms behind this however. 

Following previous studies, developed upon in the background of this thesis, this section 

will develop upon the possible mechanisms impacting the dairy farm TFP during high 

temperatures. 

Following Ahmed, Tamminen, and Emanuelson (2022), finding negative effects to milk 

yields at above average temperatures, we estimate the effect of our temperature bins on 

milk yield. 

 

Figure 5: The average and quantile temperature effects 
to milk yield 
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Results in Figure 5 show mostly insignificant results, but with some positive significant 

coefficients, especially towards the extreme upper end of our temperature bins, implying 

increased milk yields with high temperatures. These results oppose prior literature, such 

as Ahmed, Tamminen, and Emanuelson (2022), Nardone et al. (2010) and Wankar and 

Rindhe (2021), stating that milk yield decreases with high temperatures. Instead, these 

results identify a positive or insignificant effect of one added day of average temperatures 

above 25◦C. The significant coefficients belong to the 50th, through 90th quantiles, mean- 

ing that it is mostly farms with already high milk yields that experience this increase in 

milk yield with high temperatures. 

An increase in milk yield with high temperatures contradicts our main findings in 

Figure 2, where TFP decreases with high temperatures. An increase in milk yield would 

presumably increase productivity, as it is an increase in output. This contradiction, while 

also considering that Figure 5 goes against previous literature, suggests further study of the 

issue is needed. We thus proceed with studying other mechanisms, possibly interacting 

with either milk yield or TFP, as mentioned by Harrison, Cullen, and Armstrong (2017) 

and Dellar et al. (2018), trying to find an explanation to results in Figure 5. 

 

Figure 6: The average and quantile temperature effects to home grown feed quantities and 
purchased concentrates 
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Note: On the right-hand side, the analysis is performed with dependent variable home grown feed, on the 

left -hand side, dependent variable is purchased concentrates 

 

On the left-hand side of Figure 6, we see the impact of our temperature bins on home 

grown feed, and on the right-hand side the temperature bins’ impact on concentrates 

purchase. Analyzing the left-hand figure, home grown feed, we identify days 

between 20-25◦C displaying significant and negative coefficients, while days above 25 ◦C 

remain largely insignificant with some weakly positive coefficients. While this result 

might seem ambiguous, the coefficients corresponding to bin [≥ 25◦C] are in line with 

Dellar et al. (2018) showing increased rates of pasture growth with high temperatures. 

Studying the right-hand figure, we notice a significant and positive impact to con- 

centrates purchase from one added day with an average temperature above 25 ◦C. As 

identified in Appendix A - Table 7, significant results mostly stem from the middle quan- 

tiles of the distribution, implying that it is mainly farms with average levels of concentrate 

purchase that increase their concentrates consumption with high temperatures. The only 

insignificant and negative coefficient belongs to the 10th quantile, with the lowest levels 

of concentrates purchase. 

The increase in concentrates purchase is motivated in literature (Dellar et al. 2018), 

stating that as heat increases growth rate of pasture, its nutritional uptake does not change, 

thus reducing its nutritional value per kilogram. This reduced nutritional value would 

cause incentive for the farmer to substitute some pasture feed with bought concentrates - 

to ensure the nutritional need of the cow to be met. This would explain both the significant 

increase in concentrates purchase for most of the sample distribution, as well as the partial 

increase of home-grown feed. 

Furthermore, this provides an explanation for the increase in milk yield, seen in Figure 

5, as well as the loss in TFP in Figure 2. With farmers substituting pasture feed with 

concentrates, a more nutritionally dense feed, it is likely that cows increase their milk 

production. However, the substitution from home-grown feed to bought feed does incur a 

significant increase in input costs for the farmer, which the added output in terms of milk 

does not outweigh, causing the loss to TFP identified in Figure 2. 

Numerous previous studies also point at veterinary expenses increasing with temper- 

ature. As such we proceed with an analysis of how this fits our model data. 
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Figure 7: Average and quantile temperature effects to veterinary costs 

 

Studying Figure 7, the lack of significant results is apparent. Apart from two weakly 

significant coefficients at [≥ 25◦C], all coefficients in this temperature bin are found to 

be insignificant. This implies that we cannot identify anything but a very weak negative 

connection between veterinary costs and temperature. While this contradicts previous 

literature, which establishes a connection between high temperatures and negative impacts 

to cow health, most of these studies have been performed in controlled settings, to ensure 

the study of only heat’s impact on cows. It is however likely that modern Swedish dairy 

farms in a real-world setting can adapt stable and pasture climate such that the impact of 

temperatures to cow health is reduced. 

Significant coefficients for bin [≥ 25◦C] come from quantiles 80 and 70. This implies 

that it is farms with high veterinary costs that see a significant loss to veterinary expenses 

with increasing temperatures. While the interpretation of these results is not clear, and 

not explained in previous literature, it would be interesting to look into in future studies. 

 

5.3 Robustness checks 

To assess the robustness of our findings, we proceed with estimating two sets of sensitivity 

analyses. First, we re-estimate the main results using alternative dependent variables, net 

income and value added, to determine whether the observed effects of temperature extend 
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beyond TFP. Second, we test the sensitivity of our results to temperature bin construction 

by using narrower intervals (3°C instead of 5°C). These checks ensure that our conclusions 

are not driven by model specification choices. 

 

Note: On the left-h and  side, the main analysis from Figure 2 is performed for dependent 

variable Farm Net Income, on the right- hand side, dependent variable is Farm Value Added 

 

The left graph, displaying the effect of one added day of temperature above 25◦C on 

farm net income display results contradicting our main results. Here, one added day of 

temperatures ≥ 25◦C is connected to an increase in net income. Significant coefficients are 

found among the upper quantiles, from the 50th all through the 90th quantile, implying 

that it is mainly highly profitable farm that may increase their profit further with high 

temperatures. The right-hand side graph, displaying the effect of our temperature bins on 

farm value added display a trend similar to the one visible in Figure 2, with bin [≥ 25◦C] 

impacting the dependent variable negatively, but with less significant results than what is 

found in our main results in Figure 2. 

While the TFP analysis provides highly significant results, with negative 

coefficients, these are lacking in the analysis presented in Figure 6. This implies that 

TFP, a measure more closely related to efficiency, is more impacted by increasing 

temperatures, than net profit and value added - which are measures more associated with 

profitability. This implies that while efficiency is lost at farm level, as temperatures 

increase, farmers are likely able to buffer impacts to profitability, by strategic 

Figure 8: Robustness tests with other dependent variables 
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altercation of other inputs. 

This analysis remains tentative however, and further research is needed to develop a 

more comprehensive understanding of the issue. Notably, TFP does not capture ele- 

ments such as subsidies, which in 2018, were a key policy instrument that helped farmers 

withstand the drought (The Swedish Government Offices 2018). This might possibly 

explain some of the contradictory behavior observed in these robustness checks. 

Similarly, off-farm income, which can provide important financial support to farm 

households, is not reflected in TFP measurements and may also contribute to the 

contradictory effects identified. These could be interesting aspects for further study, further 

increasing our understanding of the impact of climate change on farm finances. 

Following the main results from Figure 2, we reconstruct the model such that the 
temperature bins are in increments of 3◦C, instead of 5◦C, and our reference bin being 
[10-13◦C]. 

 

Results from Figure 2 remain broadly consistent; however, some notable differences 

emerge. Specifically, the negative impact of increasing temperatures on TFP appears 

to begin already in the [22–25°C] bin, rather than only at the most extreme tempera- 

tures. Additionally, the effect observed in the most extreme bin (25°C) is less statistically 

Figure 9: Robustness test with narrower temperature 
bins (3◦C) 
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significant than in the main results. These differences may suggest greater sensitivity 

to moderately high temperatures than previously indicated, which could not be identified 

with the broader bins in Figure 2, while also highlighting potential variability in farm-level 

adaptation or data limitations at the upper end of the temperature distribution. 

 

6. Conclusions 

This thesis has investigated the relationship between high temperatures and total factor 

productivity (TFP) on Swedish dairy farms, employing a RIF-regression approach. While 

previous studies have shown that cow health, fertility, pasture production, and milk yield 

can be negatively affected by high temperatures, there has been a significant research gap 

regarding such effects in a Northern European context. This study has aimed to address 

that gap by examining whether and how these factors impact Swedish dairy farms. 

Results from this study provide important insights into the dynamics of climate change 

impacts within the Swedish dairy farming sector. Notably, there is a clear association 

between high temperatures and declines in farm-level TFP. This negative effect seems to 

be primarily driven by changes in feed consumption patterns: higher temperatures increase 

levels of externally purchased feed concentrates, which in turn raises production costs. 

Previous literature has also suggested that rising temperatures may increase veterinary 

costs and reduce milk yields. However, this study found no evidence supporting the claim 

made by Hughes et al. (2022) and Wankar and Rindhe (2021) that veterinary expenses are 

significantly affected by heat stress. A small positive effect on milk yield was observed, 

possibly reflecting the increased use of concentrates at elevated temperatures. Neverthe- 

less, this yield gain did not offset the higher feed costs, and the results remained robust 

despite these variations. 

Moreover, this study is among the first to explore the distributional effects of climate 

change on farm-level TFP. Consistent with Moghaddam et al. (2024), the findings suggest 

that each additional day above 25◦C disproportionately reduces TFP for lower-performing 

farms compared to higher-performing ones. This raises concerns about growing inequality 

among farms as climate change progresses. 

These findings are foundational, as they represent the first empirical assessment of the 

financial implications of climate change on dairy production in Sweden and the broader 

northern European region. While some prior studies have highlighted potential benefits 

of warming temperatures in Scandinavia, this study demonstrates that significant risks to 

the farming system also exist. 

The results have clear policy implications. Since feed-related costs are identified as 

the primary driver of production losses during heat events, targeted mitigation strategies 

could be developed to help farmers cope with such conditions. Possible measures include 
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introducing more heat-tolerant ley species and implementing support programs aimed 

specifically at feed acquisition during heatwaves. 

Additionally, this thesis provides the first comprehensive comparison of how extreme 

temperatures affect conventional and organic milk production. The results indicate that 

organic farms exhibit greater variability and less consistent impacts, suggesting a high 

degree of heterogeneity within this group. This heterogeneity presents a valuable oppor- 

tunity for future research. Importantly, these findings imply that while conventional farms 

may benefit from targeted policies—such as support for home-grown feed production or 

financial assistance during climate stress, similar policies may be less effective for organic 

farms due to their diverse production systems. 
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Popular Science Summary 

As global temperatures rise, the effects of climate change are becoming increasingly ap- 

parent, even in regions previously considered less vulnerable. This study investigates how 

high temperatures affect the productivity of Swedish dairy farms, using detailed data from 

2002 to 2021. By focusing on the number of days with average temperatures above 25°C, 

the study explores the distributional effects of heat on farm performance. 

The results reveal that high temperatures are associated with a decline in total fac- 

tor productivity (TFP) among Swedish dairy farms. However, this effect is not evenly 

distributed across the sector. Farms with lower baseline productivity, as well as organic 

farms, are more adversely affected than their higher-performing or conventional counter- 

parts. This suggests that climate change may exacerbate existing inequalities within the 

dairy farming sector. 

While productivity declines, milk yields show a slight increase during hot periods, 

however. This result, contradictory as it may seem, appears to stem from increased 

purchases of concentrated feed, which farmers likely use to compensate for the reduced 

quality of pasture during heat events. However, the cost of this additional input outweighs 

the gains in output, leading to a net loss in overall productivity. No significant evidence 

was found that high temperatures increase veterinary costs, which contrasts with findings 

from earlier studies in warmer climates. 

In summary, this study highlights that while Swedish dairy farms are already being 

affected by rising temperatures, the consequences vary significantly depending on farm 

characteristics. These findings have important implications for agricultural policy. Tar- 

geted support—such as feed subsidies, the development of heat-tolerant forage crops, or 

tailored advisory services—may be necessary to protect the most vulnerable farms and 

ensure the long-term resilience of Sweden’s dairy sector in the face of climate change. 
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Appendices 

 
A. Regression tables 



 

 

 

 Table 5: RIF Regressions Estimates - Corresponding to Figure 2  

Quantile 

 

Mean Temp (◦C) 90 80 70 60 50 40 30 20 10  

< -5 0.0009∗∗ 0.0009∗∗∗ 0.0009∗∗∗ 0.0008∗∗∗ 0.0005∗ 0.0009∗∗∗ 0.0007∗ 0.0007 0.0008  

 (0.0004) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004) (0.0004) (0.0006)  

-5 to 0 0.0004 0.0006∗ 0.0006∗ 0.0005 0.0004 0.0006 0.0004 0.0007 0.0015∗∗  

 (0.0004) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004) (0.0004) (0.0005) (0.0007)  

0 to 5 0.0011∗∗ 0.0012∗∗∗ 0.0013∗∗∗ 0.0011∗∗∗ 0.0008∗∗ 0.0009∗∗ 0.0006 0.0007 0.0007  

 (0.0004) (0.0004) (0.0003) (0.0003) (0.0003) (0.0004) (0.0004) (0.0005) (0.0007)  

5 to 10 -0.0017∗∗∗ -0.0012∗∗∗ -0.0012∗∗∗ -0.0010∗∗∗ -0.0009∗∗ -0.0006∗ -0.0005 -0.0003 -0.0004  

 (0.0004) (0.0004) (0.0003) (0.0003) (0.0003) (0.0004) (0.0004) (0.0005) (0.0007)  

15 to 20 -0.0017∗∗∗ -0.0011∗∗∗ -0.0009∗∗∗ -0.0007∗∗∗ -0.0008∗∗∗ -0.0007∗∗∗ -0.0006∗∗ -0.0004 -0.0004  

 (0.0003) (0.0003) (0.0002) (0.0002) (0.0002) (0.0003) (0.0003) (0.0003) (0.0005)  

20 to 25 -0.0009∗ -0.0008∗∗ -0.0009∗∗ -0.0012∗∗∗ -0.0011∗∗∗ -0.0010∗∗∗ -0.0010∗∗ -0.0012∗∗ -0.0004  

 (0.0004) (0.0004) (0.0003) (0.0003) (0.0004) (0.0004) (0.0004) (0.0005) (0.0007)  

> 25 -0.0124∗ -0.0164∗∗∗ -0.0121∗∗ -0.0135∗∗ -0.0159∗∗∗ -0.0177∗∗∗ -0.0246∗∗∗ -0.0204∗∗ -0.0332∗∗∗  

 (0.0072) (0.0060) (0.0056) (0.0056) (0.0058) (0.0062) (0.0068) (0.0080) (0.0121)  

Notes: Standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. 

3
4

 



Notes: Standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.  

 

 

 Table 6: RIF Regressions Estimates - Corresponding to Figure 3  

Quantile 

 

Mean temp (◦C) 90 80 70 60 50 40 30 20 10  

Conventional farms 

<-5 
 

0.0009* 

 

0.0007* 

 

0.0005 

 

0.0005 

 

0.0005* 

 

0.0006* 

 

0.0007 

 

0.0006 

 

0.0010 

 

 (0.0005) (0.0004) (0.0004) (0.0003) (0.0003) (0.0004) (0.0004) (0.0005) (0.0007)  

-5–0 0.0000 0.0001 0.0001 0.0001 0.0001 0.0005 0.0003 0.0004 0.0003  

 (0.0006) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0005) (0.0007)  

0–5 0.0010* 0.0009* 0.0009** 0.0007** 0.0006* 0.0007* 0.0005 0.0004 0.0002  

 (0.0005) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0008)  

5–10 -0.0019*** -0.0015*** -0.0017*** -0.0015*** -0.0012*** -0.0009** -0.0008 -0.0010* -0.0009  

 (0.0005) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0005) (0.0008)  

15–20 -0.0016*** -0.0011*** -0.0013*** -0.0011*** -0.0012*** -0.0010*** -0.0007** -0.0012*** -0.0003  

 (0.0004) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004) (0.0004) (0.0005)  

20–25 -0.0006 -0.0007 -0.0007 -0.0012*** -0.0013*** -0.0012*** -0.0008 -0.0017*** -0.0012  

 (0.0006) (0.0005) (0.0004) (0.0004) (0.0004) (0.0005) (0.0005) (0.0006) (0.0008)  

>25 -0.0095 -0.0085 -0.0185*** -0.0120* -0.0121* -0.0182** -0.0256*** -0.0202** -0.0155  

 (0.0086) (0.0089) (0.0070) (0.0072) (0.0070) (0.0084) (0.0087) (0.0091) (0.0123)  

Organic farms 

<-5 
 

0.0027*** 

 

0.0027*** 

 

0.0016** 

 

0.0013* 

 

0.0014* 

 

0.0009 

 

0.0012 

 

0.0007 

 

-0.0018 

 

 (0.0010) (0.0009) (0.0008) (0.0008) (0.0008) (0.0008) (0.0009) (0.0011) (0.0017)  

-5–0 0.0031*** 0.0030*** 0.0025*** 0.0015 0.0018* 0.0019* 0.0025** 0.0032** 0.0009  

 (0.0012) (0.0010) (0.0009) (0.0010) (0.0010) (0.0010) (0.0011) (0.0014) (0.0017)  

0–5 0.0032*** 0.0033*** 0.0024** 0.0018* 0.0023** 0.0017* 0.0021** 0.0014 -0.0005  

 (0.0012) (0.0010) (0.0010) (0.0010) (0.0009) (0.0010) (0.0010) (0.0013) (0.0019)  

5–10 0.0002 0.0008 0.0000 0.0002 0.0006 0.0000 0.0010 0.0002 -0.0018  

 (0.0010) (0.0010) (0.0010) (0.0010) (0.0011) (0.0011) (0.0012) (0.0015) (0.0019)  

15–20 -0.0015* 0.0004 0.0008 0.0002 0.0006 0.0005 0.0009 0.0004 0.0000  

 (0.0008) (0.0008) (0.0008) (0.0007) (0.0007) (0.0008) (0.0009) (0.0011) (0.0015)  

20–25 0.0001 -0.0011 -0.0017 -0.0016 -0.0011 -0.0016 -0.0004 -0.0002 -0.0016  

 (0.0014) (0.0012) (0.0011) (0.0010) (0.0012) (0.0011) (0.0011) (0.0016) (0.0018)  

>25 -0.0274 -0.0151 -0.0238* -0.0295* -0.0282* -0.0331** -0.0283 -0.0692*** 0.0040  

 (0.0172) (0.0124) (0.0134) (0.0150) (0.0151) (0.0168) (0.0178) (0.0257) (0.0164)  
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 Table 7: RIF Regressions Estimates - Corresponding to Figure 4  

Quantile 

 

Mean temp (◦C) 90 80 70 60 50 40 30 20 10  

< -5 -0.0013∗∗∗ -0.0007∗∗ -0.0007∗∗ -0.0005∗∗ -0.0002 -0.0000 0.0002 0.0008 0.0019∗  

 (0.0004) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004) (0.0006) (0.0010)  

-5 to 0 -0.0011∗∗ -0.0008∗∗ -0.0007∗∗ -0.0006∗∗ -0.0005∗ -0.0003 -0.0001 0.0011∗ 0.0034∗∗∗  

 (0.0005) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004) (0.0006) (0.0010)  

0 to 5 -0.0003 0.0002 -0.0000 -0.0001 -0.0001 -0.0000 0.0001 0.0005 0.0021∗  

 (0.0005) (0.0004) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004) (0.0006) (0.0011)  

5 to 10 0.0003 0.0000 0.0002 -0.0002 -0.0002 -0.0004 -0.0005 0.0001 0.0010  

 (0.0005) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004) (0.0006) (0.0011)  

15 to 20 0.0015∗∗∗ 0.0011∗∗∗ 0.0011∗∗∗ 0.0008∗∗∗ 0.0007∗∗∗ 0.0003 0.0002 0.0002 0.0001  

 (0.0003) (0.0003) (0.0002) (0.0002) (0.0002) (0.0002) (0.0003) (0.0004) (0.0008)  

20 to 25 -0.0009∗ -0.0006 -0.0006∗∗ -0.0006∗ -0.0012∗∗∗ -0.0013∗∗∗ -0.0014∗∗∗ -0.0016∗∗ -0.0023∗∗  

 (0.0005) (0.0004) (0.0003) (0.0003) (0.0003) (0.0004) (0.0004) (0.0006) (0.0011)  

> 25 0.0297∗∗∗ 0.0180∗∗∗ 0.0171∗∗∗ 0.0152∗∗∗ 0.0157∗∗∗ 0.0078 0.0029 -0.0060 0.0188  

 (0.0080) (0.0059) (0.0053) (0.0049) (0.0050) (0.0057) (0.0071) (0.0104) (0.0183)  

Notes: Standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. 
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Notes: Standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.  

 

 

Table 8: RIF Regressions Estimates - Corresponding to Figure 5 
Mean temp (C◦)    Quantiles  

90 80 70 60 50 40 30 20 10 
Purchase Concentrates 

< -5 -0.0030∗∗∗ -0.0031∗∗∗ -0.0036∗∗∗ -0.0036∗∗∗ -0.0033∗∗∗ -0.0033∗∗∗ -0.0012 0.0026∗∗ 0.0094∗∗∗ 
(0.0007) (0.0006) (0.0006) (0.0006) (0.0007) (0.0007) (0.0009) (0.0013) (0.0033) 

-5 to 0 -0.0023∗∗∗ -0.0025∗∗∗ -0.0036∗∗∗ -0.0035∗∗∗ -0.0036∗∗∗ -0.0039∗∗∗ -0.0017∗ 0.0025∗ 0.0149∗∗∗ 
(0.0008) (0.0007) (0.0007) (0.0007) (0.0007) (0.0008) (0.0009) (0.0013) (0.0035) 

0 to 5 -0.0007 -0.0006 -0.0014∗∗ -0.0009 -0.0009 -0.0015∗ 0.0006 0.0049∗∗∗ 0.0136∗∗∗ 
(0.0008) (0.0007) (0.0007) (0.0007) (0.0007) (0.0008) (0.0010) (0.0014) (0.0036) 

5 to 10 -0.0011 -0.0004 -0.0013∗ -0.0006 -0.0004 -0.0019∗∗ -0.0005 0.0006 0.0040 
(0.0008) (0.0007) (0.0007) (0.0007) (0.0007) (0.0008) (0.0010) (0.0014) (0.0036) 

15 to 20 0.0017∗∗∗ 0.0010∗ 0.0010∗∗ 0.0017∗∗∗ 0.0018∗∗∗ 0.0008 0.0004 0.0000 0.0030 
(0.0006) (0.0005) (0.0005) (0.0005) (0.0005) (0.0006) (0.0007) (0.0010) (0.0026) 

20 to 25 0.0046∗∗∗ 0.0046∗∗∗ 0.0032∗∗∗ 0.0037∗∗∗ 0.0025∗∗∗ 0.0006 0.0008 0.0015 0.0101∗∗∗ 
(0.0009) (0.0007) (0.0007) (0.0007) (0.0008) (0.0009) (0.0010) (0.0015) (0.0038) 

> 25 0.0301∗∗ 0.0533∗∗∗ 0.0572∗∗∗ 0.0459∗∗∗ 0.0386∗∗∗ 0.0504∗∗∗ 0.0404∗∗ 0.0408∗ -0.0661 
(0.0140) (0.0120) (0.0117) (0.0116) (0.0126) (0.0139) (0.0166) (0.0236) (0.0618) 
Home Feed 

< -5 -0.0082∗∗∗ -0.0080∗∗∗ -0.0083∗∗∗ -0.0093∗∗∗ -0.0088∗∗∗ -0.0087∗∗∗ -0.0096∗∗∗ -0.0103∗∗∗ -0.0095∗∗∗ 
(0.0013) (0.0012) (0.0011) (0.0010) (0.0010) (0.0010) (0.0012) (0.0015) (0.0022) 

-5 to 0 -0.0059∗∗∗ -0.0080∗∗∗ -0.0089∗∗∗ -0.0108∗∗∗ -0.0115∗∗∗ -0.0113∗∗∗ -0.0133∗∗∗ -0.0139∗∗∗ -0.0157∗∗∗ 
(0.0014) (0.0012) (0.0011) (0.0011) (0.0010) (0.0011) (0.0013) (0.0016) (0.0024) 

0 to 5 -0.0037∗∗ -0.0035∗∗∗ -0.0038∗∗∗ -0.0060∗∗∗ -0.0071∗∗∗ -0.0070∗∗∗ -0.0093∗∗∗ -0.0117∗∗∗ -0.0161∗∗∗ 
(0.0015) (0.0013) (0.0012) (0.0012) (0.0011) (0.0011) (0.0013) (0.0017) (0.0025) 

5 to 10 -0.0101∗∗∗ -0.0100∗∗∗ -0.0094∗∗∗ -0.0096∗∗∗ -0.0087∗∗∗ -0.0077∗∗∗ -0.0072∗∗∗ -0.0052∗∗∗ -0.0008 
(0.0015) (0.0013) (0.0012) (0.0011) (0.0011) (0.0011) (0.0013) (0.0016) (0.0024) 

15 to 20 -0.0012 0.0001 0.0003 0.0003 0.0004 0.0006 -0.0002 -0.0014 -0.0056∗∗∗ 
(0.0011) (0.0009) (0.0009) (0.0008) (0.0008) (0.0008) (0.0010) (0.0012) (0.0018) 

20 to 25 -0.0134∗∗∗ -0.0153∗∗∗ -0.0169∗∗∗ -0.0193∗∗∗ -0.0193∗∗∗ -0.0199∗∗∗ -0.0244∗∗∗ -0.0270∗∗∗ -0.0331∗∗∗ 
(0.0015) (0.0013) (0.0012) (0.0012) (0.0011) (0.0012) (0.0014) (0.0017) (0.0026) 

> 25 -0.0235 -0.0232 -0.0326 -0.0249 -0.0069 0.0176 0.0581∗∗ 0.0647∗∗ 0.0848∗∗ 
(0.0250) (0.0218) (0.0202) (0.0195) (0.0185) (0.0191) (0.0226) (0.0281) (0.0418) 
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 Table 9: RIF Regressions Estimates - Corresponding to Figure 6  

Quantile 

 

Mean temp (◦C) 90 80 70 60 50 40 30 20 10  

< -5 0.0001 0.0004 -0.0002 0.0005 0.0006 0.0006 0.0012 0.0004 -0.0006  

 (0.0015) (0.0011) (0.0010) (0.0010) (0.0010) (0.0011) (0.0014) (0.0018) (0.0027)  

-5 to 0 -0.0009 0.0004 -0.0003 -0.0001 -0.0002 0.0003 0.0013 0.0022 0.0001  

 (0.0016) (0.0012) (0.0010) (0.0010) (0.0011) (0.0012) (0.0014) (0.0019) (0.0029)  

0 to 5 -0.0022 -0.0003 -0.0004 0.0000 0.0000 0.0004 0.0011 0.0007 -0.0005  

 (0.0017) (0.0012) (0.0011) (0.0011) (0.0011) (0.0012) (0.0015) (0.0020) (0.0030)  

5 to 10 -0.0007 0.0025∗∗ 0.0014 0.0015 0.0003 0.0004 0.0016 -0.0002 -0.0028  

 (0.0017) (0.0012) (0.0011) (0.0011) (0.0011) (0.0012) (0.0015) (0.0020) (0.0030)  

15 to 20 -0.0021∗ 0.0000 -0.0004 -0.0012 -0.0013 -0.0012 -0.0008 -0.0021 -0.0017  

 (0.0012) (0.0009) (0.0008) (0.0008) (0.0008) (0.0009) (0.0011) (0.0015) (0.0022)  

20 to 25 -0.0007 0.0006 0.0001 0.0006 0.0015 0.0009 0.0016 0.0023 0.0001  

 (0.0018) (0.0012) (0.0011) (0.0011) (0.0012) (0.0013) (0.0016) (0.0021) (0.0031)  

> 25 -0.0401 -0.0367∗ -0.0326∗ -0.0282 -0.0176 -0.0086 -0.0108 -0.0527 -0.0452  

 (0.0285) (0.0204) (0.0184) (0.0183) (0.0190) (0.0206) (0.0254) (0.0339) (0.0509)  

Notes: Standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. 
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 Table 10: RIF Regressions Estimates - Corresponding to Figure 7  

Quantile 

 

Mean temp (◦C) 90 80 70 60 50 40 30 20 10  

≤ -5 -0.0013 -0.0019 -0.0017 -0.0026∗ -0.0023 -0.0020 0.0004 0.0010 0.0036  

 (0.0015) (0.0014) (0.0014) (0.0015) (0.0016) (0.0017) (0.0022) (0.0028) (0.0042)  

-5-0 0.0027 -0.0004 -0.0017 -0.0021 -0.0018 -0.0031∗ -0.0016 -0.0030 -0.0021  

 (0.0018) (0.0016) (0.0015) (0.0016) (0.0017) (0.0018) (0.0023) (0.0030) (0.0047)  

0-5 0.0011 0.0010 -0.0002 -0.0005 -0.0002 -0.0007 0.0031 0.0038 0.0018  

 (0.0016) (0.0016) (0.0015) (0.0017) (0.0018) (0.0020) (0.0025) (0.0032) (0.0051)  

5-10 -0.0030 -0.0064∗∗∗ -0.0069∗∗∗ -0.0074∗∗∗ -0.0074∗∗∗ -0.0085∗∗∗ -0.0070∗∗∗ -0.0081∗∗ -0.0066  

 (0.0019) (0.0017) (0.0015) (0.0016) (0.0016) (0.0018) (0.0023) (0.0031) (0.0047)  

15-20 6 -0.0039∗∗∗ -0.0041∗∗∗ -0.0038∗∗∗ -0.0039∗∗∗ -0.0028∗∗ -0.0028∗∗ -0.0027 -0.0041∗ -0.0036  

 (0.0012) (0.0011) (0.0012) (0.0012) (0.0012) (0.0013) (0.0017) (0.0024) (0.0039)  

20-25 -0.0059∗∗∗ -0.0079∗∗∗ -0.0087∗∗∗ -0.0094∗∗∗ -0.0084∗∗∗ -0.0088∗∗∗ -0.0074∗∗∗ -0.0044 -0.0015  

 (0.0018) (0.0016) (0.0017) (0.0017) (0.0017) (0.0021) (0.0026) (0.0034) (0.0056)  

≥ 25 -0.0205 -0.0266 -0.0162 0.0125 0.0024 -0.0208 -0.0330 -0.0844 -0.0742 
 

 (0.0342) (0.0310) (0.0320) (0.0292) (0.0323) (0.0369) (0.0428) (0.0645) (0.0919)  

Notes: Standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. 
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 Table 11: RIF Regressions Estimates - Corresponding to Figure 8  

Quantile 

 

Mean temp (◦C) 90 80 70 60 50 40 30 20 10  

≤ -5 0.0020∗∗∗ 0.0021∗∗∗ 0.0021∗∗∗ 0.0020∗∗∗ 0.0015∗∗∗ 0.0015∗∗∗ 0.0012∗∗∗ 0.0006 0.0004  

 (0.0005) (0.0004) (0.0003) (0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0008)  

-5- -2 0.0025∗∗∗ 0.0021∗∗∗ 0.0022∗∗∗ 0.0021∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗ 0.0013∗∗∗ 0.0015∗∗∗ 0.0024∗∗∗  

 (0.0005) (0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0005) (0.0006) (0.0008)  

-2-1 0.0013∗∗ 0.0017∗∗∗ 0.0017∗∗∗ 0.0017∗∗∗ 0.0013∗∗∗ 0.0010∗∗ 0.0009∗ 0.0003 0.0003  

 (0.0005) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0006) (0.0009)  

1-4 0.0032∗∗∗ 0.0029∗∗∗ 0.0030∗∗∗ 0.0026∗∗∗ 0.0022∗∗∗ 0.0020∗∗∗ 0.0014∗∗∗ 0.0009∗ 0.0012  

 (0.0005) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0005) (0.0007)  

4-7 0.0004 0.0006∗ 0.0009∗∗ 0.0014∗∗∗ 0.0012∗∗∗ 0.0010∗∗ 0.0008∗ 0.0003 -0.0001  

 (0.0005) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0005) (0.0008)  

10-13 0.0019∗∗∗ 0.0016∗∗∗ 0.0015∗∗∗ 0.0017∗∗∗ 0.0014∗∗∗ 0.0011∗∗ 0.0010 0.0004 -0.0001  

 (0.0007) (0.0005) (0.0004) (0.0004) (0.0005) (0.0005) (0.0006) (0.0007) (0.0011)  

13-16 0.0008∗ 0.0009∗∗ 0.0010∗∗∗ 0.0009∗∗ 0.0007∗ 0.0004 0.0002 -0.0001 -0.0001  

 (0.0005) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0006) (0.0009)  

16-19 -0.0007 -0.0004 -0.0003 -0.0002 -0.0003 -0.0004 -0.0004 -0.0005 -0.0003  

 (0.0005) (0.0004) (0.0004) (0.0004) (0.0005) (0.0005) (0.0006) (0.0006) (0.0010)  

19-22 0.0015∗∗∗ 0.0013∗∗ 0.0014∗∗∗ 0.0014∗∗∗ 0.0011∗∗ 0.0014∗∗∗ 0.0010∗ 0.0003 0.0010  

 (0.0006) (0.0005) (0.0004) (0.0004) (0.0004) (0.0005) (0.0005) (0.0006) (0.0009)  

22-25 -0.0025∗ -0.0021∗∗ -0.0022∗∗ -0.0028∗∗∗ -0.0028∗∗ -0.0042∗∗∗ -0.0039∗∗∗ -0.0040∗∗ -0.0052∗∗  

 (0.0013) (0.0010) (0.0010) (0.0010) (0.0011) (0.0012) (0.0014) (0.0017) (0.0023)  

≥ 25 -0.0021 -0.0066 -0.0022 -0.0020 -0.0046 -0.0042 -0.0139∗ -0.0124 -0.0172  

 (0.0080) (0.0075) (0.0067) (0.0061) (0.0069) (0.0072) (0.0081) (0.0094) (0.0140)  

Notes: Standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. 
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Table 12: RIF Regressions Estimates - Corresponding to Figure 9 
Mean temp (C◦)     Quantiles  

 90 80 70 60 50 40 30 20 10 

Net Income 
< -5 -0.0028 -0.0028∗ -0.0024∗ -0.0030∗∗ -0.0026∗ -0.0022 -0.0005 0.0006 0.0034 

 (0.0020) (0.0015) (0.0014) (0.0014) (0.0014) (0.0015) (0.0019) (0.0025) (0.0037) 

-5 to 0 0.0025 -0.0000 -0.0012 -0.0015 -0.0011 -0.0021 -0.0008 -0.0012 -0.0000 

 (0.0022) (0.0016) (0.0015) (0.0015) (0.0015) (0.0016) (0.0020) (0.0026) (0.0039) 

0 to 5 -0.0008 -0.0005 -0.0012 -0.0014 -0.0010 -0.0012 0.0018 0.0028 0.0018 

 (0.0023) (0.0017) (0.0016) (0.0015) (0.0015) (0.0017) (0.0021) (0.0027) (0.0041) 

5 to 10 0.0021 -0.0021 -0.0030∗ -0.0038∗∗ -0.0040∗∗∗ -0.0049∗∗∗ -0.0036∗ -0.0041 -0.0016 

 (0.0023) (0.0017) (0.0016) (0.0015) (0.0015) (0.0017) (0.0021) (0.0027) (0.0041) 

15 to 20 -0.0009 -0.0016 -0.0016 -0.0019∗ -0.0011 -0.0009 -0.0006 -0.0015 -0.0005 

 (0.0016) (0.0012) (0.0011) (0.0011) (0.0011) (0.0012) (0.0015) (0.0020) (0.0030) 

20 to 25 0.0005 -0.0027 -0.0041∗∗ -0.0050∗∗∗ -0.0044∗∗∗ -0.0047∗∗∗ -0.0036∗ -0.0007 0.0010 

 (0.0024) (0.0018) (0.0016) (0.0016) (0.0016) (0.0018) (0.0022) (0.0029) (0.0043) 

> 25 0.113∗∗∗ 0.0699∗∗ 0.0610∗∗ 0.0683∗∗∗ 0.0542∗∗ 0.0405 0.0379 0.0007 0.0102 

 (0.0383) (0.0289) (0.0265) (0.0259) (0.0260) (0.0285) (0.0354) (0.0464) (0.0697) 

Value Added 
< -5 -0.0007 -0.0024∗∗ -0.0035∗∗∗ -0.0033∗∗∗ -0.0033∗∗∗ -0.0042∗∗∗ -0.0040∗∗∗ -0.0026 -0.0014 

 (0.0015) (0.0011) (0.0011) (0.0010) (0.0011) (0.0012) (0.0014) (0.0020) (0.0031) 

-5 to 0 -0.0000 -0.0018 -0.0026∗∗ -0.0032∗∗∗ -0.0035∗∗∗ -0.0049∗∗∗ -0.0048∗∗∗ -0.0039∗ -0.0050 

 (0.0015) (0.0012) (0.0011) (0.0011) (0.0011) (0.0013) (0.0015) (0.0021) (0.0032) 

0 to 5 0.0012 -0.0001 -0.0001 -0.0010 -0.0010 -0.0021 -0.0026∗ -0.0015 -0.0015 

 (0.0016) (0.0012) (0.0012) (0.0012) (0.0012) (0.0013) (0.0016) (0.0022) (0.0034) 

5 to 10 0.0001 -0.0029∗∗ -0.0041∗∗∗ -0.0053∗∗∗ -0.0052∗∗∗ -0.0068∗∗∗ -0.0066∗∗∗ -0.0073∗∗∗ -0.0074∗∗ 

 (0.0016) (0.0012) (0.0012) (0.0011) (0.0012) (0.0013) (0.0016) (0.0022) (0.0034) 

15 to 20 -0.0005 -0.0007 -0.0007 -0.0015∗ -0.0013 -0.0015 -0.0012 -0.0008 0.0030 

 (0.0012) (0.0009) (0.0009) (0.0008) (0.0009) (0.0010) (0.0011) (0.0016) (0.0025) 

20 to 25 -0.0017 -0.0041∗∗∗ -0.0046∗∗∗ -0.0051∗∗∗ -0.0044∗∗∗ -0.0049∗∗∗ -0.0045∗∗∗ -0.0058∗∗ -0.0047 

 (0.0017) (0.0013) (0.0012) (0.0012) (0.0012) (0.0014) (0.0016) (0.0023) (0.0035) 

> 25 0.0068 0.0042 -0.0114 -0.0062 -0.0287 -0.0367 -0.0479∗ -0.0257 -0.105∗ 

 (0.0271) (0.0209) (0.0200) (0.0195) (0.0199) (0.0227) (0.0267) (0.0374) (0.0576) 

Notes: Standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. 
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 Table 13: RIF Regressions Estimates - Corresponding to Figure 10  

Quantiles 

 

Mean temp (◦C) 90 80 70 60 50 40 30 20 10  

≤ -5 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010  

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0010) (0.0010)  

-5 to -2 0.0010 0.0000 0.0010 0.0000 0.0000 0.0010∗ 0.0000 0.0010∗ 0.0030∗∗∗  

 (0.0010) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0010) (0.0010) (0.0010)  
-2 to 1 -0.0010 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000  

 (0.0010) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0010) (0.0010)  

1 to 4 0.0010∗∗ 0.0010∗∗∗ 0.0010∗∗∗ 0.0010∗∗ 0.0010∗ 0.0010∗ 0.0000 0.0000 0.0010  

 (0.0010) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0010) (0.0010)  

4 to 7 -0.0010∗∗∗ -0.0010∗∗ -0.0010 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000  

 (0.0010) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0010) (0.0010)  

7 to 10 -0.0020∗∗∗ -0.0020∗∗∗ -0.0020∗∗∗ -0.0020∗∗∗ -0.0020∗∗∗ -0.0010∗∗∗ -0.0010∗∗ -0.0000 0.0000  

 (0.0010) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0010) (0.0010) (0.0010)  

13 to 16 -0.0010∗∗ -0.0010∗ -0.0010 -0.0010∗∗ -0.0010∗∗ -0.0010∗∗ -0.0010∗∗ -0.0000 0.0000  

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0010)  

16 to 19 -0.0030∗∗∗ -0.0020∗∗∗ -0.0020∗∗∗ -0.0020∗∗∗ -0.0020∗∗∗ -0.0020∗∗∗ -0.0010∗∗∗ -0.0010∗ -0.0000  

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0010) (0.0010)  
19 to 22 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0010  

 (0.0010) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0010) (0.0010) (0.0010)  

22 to 25 -0.0040∗∗∗ -0.0040∗∗∗ -0.0040∗∗∗ -0.0050∗∗∗ -0.0040∗∗∗ -0.0050∗∗∗ -0.0050∗∗∗ -0.0040∗∗∗ -0.0050∗∗  

 (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0020)  
≥ 25 -0.0040 -0.0080 -0.0040 -0.0040 -0.0060 -0.0050 -0.0140∗ -0.0130 -0.0170  

 (0.0080) (0.0060) (0.0060) (0.0060) (0.0060) (0.0070) (0.0070) (0.0090) (0.0130)  

Notes: Standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. 
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