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Abstract  

Renewable energy auctions have become a prominent policy instrument in recent years. A central 

issue with these auctions is that a significant number of participating projects end up not being 

realized. This thesis proposes a novel subsidy structure, the Moving Average Feed-in Premia, 

aiming to reduce revenue uncertainty of renewable energy projects and improve auction realization 

rates. By tying the selling price of produced electricity to a moving average price instead of the 

more volatile spot price, revenue uncertainty is reduced without increasing policy costs in the long 

run. 

This thesis adds to the literature by quantifying the impact revenue uncertainty has on renewable 

energy outcomes. It fills a clear research gap as no previous literature has studied electricity price 

uncertainty within the context of renewable energy auctions. Using real option theory, non-

realization of auction-winning projects is rationalised, and the role of revenue uncertainty in 

auction outcomes is identified. The developed model is simulated using three real-world cases 

based on German and Italian auction data, comparing outcomes under standard feed-in premia and 

moving average feed-in premia. The findings suggest that reducing revenue volatility by tying the 

selling price to a moving average can significantly improve auction realization rates and lead to an 

overall reduction in project abandonment. 

Keywords: Electricity Prices, Monte Carlo, Renewable Energy Auctions, Real Options, 

Simulation, Uncertainty 
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1. Introduction 

Incentivising renewable energy (RE) adoption is a core component of our efforts 

to mitigate climate change (Gonzales et al., 2023). As a result, effective RE policy 

design is a central topic for policymakers worldwide. RE auctions have recently 

emerged as a favoured policy instrument to distribute financial support to various 

types of RE projects as they encourage competition among developers by 

incentivising them to reveal the minimum level of government support necessary 

to make their projects economically viable (Anatolitis, 2023; Batz Liñeiro & 

Müsgens, 2021; Grashof, 2021). For instance, in Germany’s June 2018 auction 

aimed at photovoltaic (PV) projects, Enerparc AG was awarded support for 

several projects around Germany (Federal Network Agency, 2018). While 

companies like Enerparc represent larger, professional developers, smaller actors 

also participate in these auctions (Matthäus et al., 2021). These auctions thus not 

only lead to lower policy costs due to competition between project developers but 

also ensure, through the auction mechanism, that it is the most cost-efficient 

projects that receive government backing (Matthäus et al., 2021). 

Despite their efficiency advantages, RE auctions frequently face the issue of 

project non-realization, where winning projects are abandoned due to 

unfavourable market conditions after the auction, limiting the effectiveness of the 

auctions. Non-realization directly undermines policy goals by delaying RE 

deployment and climate change mitigation (Matthäus et al., 2021). Developers 

typically have a grace period after winning an auction, during which they can 

delay committing fully to project construction to maximize potential profitability. 

However, failing to complete the project within specified timeframes ultimately 

leads to penalties and loss of government support. Penalties typically take the 

form of bonds and scale with the project's capacity, disproportionately impacting 

larger projects when abandoned. 

A primary cause of non-realization is the inherent uncertainty developers face 

regarding future revenues and costs. When market conditions evolve less 

favourably than anticipated, developers may find their projects no longer 

profitable and thus choose to abandon them, despite penalties (Matthäus et al., 

2021). This issue is exacerbated by bidders who strategically submit overly 

optimistic bids, betting on favourable future market conditions that may not 

materialize. 

This thesis addresses this issue by proposing a subsidy structure, tying a feed-in 

premium (FIP) to a moving-average electricity price instead of the volatile spot 

price. Uncertainty faced by RE producers is thus substantially reduced. Lowering 



10 

 

revenue volatility decreases developers' incentives to delay investments by 

reducing the real option (RO) value of the investment opportunity. Consequently, 

a moving-average feed-in premium (MA-FIP) can improve auction realization 

rates without increasing overall policy costs. 

Previous studies on RE auctions have primarily focused on penalties and pre-

qualification requirements to curb non-realization risks (Matthäus 2020; Grashof 

2021; Matthäus et al., 2021). Unlike these approaches, which typically focus on 

penalties or pre-qualification requirements to enhance realization rates, this thesis 

targets the subsidy structure itself. By directly reducing price uncertainty, the 

proposed MA-FIP enhances project realization rates without introducing 

additional financial risks to developers, unlike penalty-based approaches. 

To quantify the impact of this new subsidy design, this study employs a RO 

framework combined with Least-Squares Monte Carlo (LSM) simulations, 

analysing auction cases from Germany and Italy. The results demonstrate that the 

MA-FIP approach effectively improves project realization rates and auction 

efficiency. 
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2. Literature Review 

2.1 Realization Rates and Auction Design 

Developer behaviour exhibits heterogeneity across firm size and project scale. 

Linnerud et al. (2014) find that developers of larger, utility-scale hydropower 

projects behave in line with RO theory. Yet, within RE auctions, smaller actors 

value flexibility more highly, whereas large developers prioritize time efficiency 

(Côté et al., 2022). The contradicting results are explained by the findings of 

Fleten et al. (2016), who similarly found that RE developers claimed not to use a 

RO model when evaluating projects. However, when analysing the same dataset 

as Linnerud et al. (2014), they found that their behaviour was largely in line with 

that predicted by a RO framework rather than their claim of using NPV evaluation 

(Fleten et al., 2016).  

 

The valuation of RE projects significantly differs when comparing traditional 

NPV analysis with RO approaches. Matthäus et al. (2021) present a framework 

showcasing the impact of bidders using RO analysis in their evaluation of projects 

on subsequent bids. RO developers can rationally and systematically outbid 

traditional NPV developers as they include the value of the flexibility that the 

auction gives to the developers in their project evaluation. RO bidders could 

therefore bid at levels lower than those the project requires in the present, hoping 

conditions improve later, making the project profitable if timed correctly. It is 

noted that this approach is positive in terms of policy cost, as the winning bids 

will be lower than in the NPV case, but also carries more risk as the realization of 

the projects is no longer guaranteed. Auctions that manage to significantly reduce 

policy cost by allowing flexibility will perform worse in terms of increasing 

adoption rates (Matthäus et al., 2021). 

Matthäus et al. (2021) also evaluated the effects that prequalification requirements 

had on realization rates. Prequalification requires bidders to commit to the 

submitted project before auction participation, locking in part of the project and 

creating sunk costs, effectively raising the cost of abandonment (Grashof, 2021). 

Prequalification causes the project to lose full flexibility, as part of the project 

becomes locked in, which leads to a reduction in the advantage of the RO bidder, 

since the prequalification requirements will only affect non-realized projects 

(Matthäus et al., 2021). When the impact of financial prequalification on bid 

levels and project realization rates was simulated, they found that it was a highly 

effective tool in discouraging abandoning or delaying the project past the grace 

period. 
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Matthäus et al. (2021) employ two simplifying assumptions that may bias their 

results. First, they equate the volatile FIPs with feed-in tariffs (FITs), which 

guarantees a price level at which electricity can be sold at. By doing so, they 

effectively ignore the uncertainty stemming from electricity price evolution, thus 

potentially underestimating the importance of flexibility. Secondly, Matthäus et 

al. (2021) model investment opportunities as European options, granting only a 

single exercise opportunity at the end of the grace period. Consequently, there 

could be differences in optimal exercise strategy due to the greater temporal 

flexibility of American options (Longstaff & Schwartz, 2001). Using American 

option evaluation is therefore arguably more empirically accurate, as the 

developer can freely choose when to develop the project, where the grace period 

merely acts as a deadline before penalties are applied. 

Forcing a degree of project lock-in early through prequalification may adversely 

affect bid volumes, decreasing the effectiveness of the auctions as an incentive to 

adopt RE sources (Del Río & Linares, 2014; Grashof et al., 2020). Developers’ 

willingness to accept different types of risk was examined by Côté et al. (2022) 

through a survey of wind power development companies. They found 

prequalification measures focused on pre-securing building permits had a 

considerable influence on the developer’s decision to participate in an auction 

(Côté et al., 2022). Similarly, Grashof et al. (2020) identify the cost and 

uncertainty regarding building permits as a contributing factor to observed 

decreased levels of competition. A less competitive auction impacts both the cost-

efficiency and overall effectiveness of the auctions (Grashof et al., 2020). If few 

developers participate, there is less pressure to reveal their equilibrium level of 

support, driving awarded support higher. Arguably more importantly, if 

developers decide not to participate, adoption rates of RE will decline as they 

deem the support provided does not outweigh the risks stemming from the auction 

design. 

The alternative to prequalification requirements is to impose financial penalties on 

non-realized projects. However, Côté et al. (2022) similarly find that bid bonds, 

which force participants to provide a deposit to participate in the auction, are seen 

as a major risk factor among developers. The required risk premia were positively 

correlated with the size of the bonds. Specifically, bid bonds of €5,000–

30,000/MW add 0.43% to required returns, rising to 1.73% for bid bonds of 

€70,000/MW. Increasing financial penalties may therefore not be a viable solution 

to deter non-realization if policy cost is a concern. 
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2.2 Revenue Uncertainty 

Electricity price is the most common source of uncertainty cited among papers 

analysing RE investments through the lens of RO (Kozlova, 2017; Lazo & Watts, 

2023). Electricity markets typically use supply and demand-based pricing, 

allowing electricity price uncertainty to be mitigated through support schemes that 

promise long-term stability and predictability of the electricity price. A traditional 

FIT scheme guarantees the price at which produced electricity can be sold, thus 

eliminating revenue uncertainty stemming from electricity price volatility 

altogether. However, eliminating the revenue uncertainty of RE projects does not 

remove the underlying price uncertainty (Alcorta et al., 2023). FITs instead move 

all uncertainty to the issuer of the subsidy, as any price deviations away from the 

FIT-level must be covered (Alcorta et al., 2023; Grashof, 2021). 

In a RO analysis of the effects of different support schemes aimed at RE 

investment, Boomsma et al. (2012) found that FITs tended to encourage earlier 

investment compared to other types of subsidies. When compared to FIPs, it was 

found to have a slight adverse impact on overall project value, but with a 

significantly lower waiting option value. The waiting option value is the monetary 

benefit of being allowed to wait and see how conditions develop, and limiting it is 

key to accelerating RE adoption. These findings are in line with other literature on 

the subject, such as Cheng et al. (2017) where it was also found that FITs 

accelerated investment in RE production. Additionally, they found that the effects 

of the respective support schemes were time-dependent, with the more uncertain 

FIP scheme greatly increasing option value in the short term and the FIT scheme 

being more impactful in long-term scenarios (Cheng et al., 2017). 

Empirically, the main concern among auction participants is regarding the support 

scheme on offer in the auction (Côté et al., 2022). Auction outcomes are not only 

theoretically sensitive to the type of support scheme on offer but also confirmed 

by empirical findings. Similarly, Egli (2020) finds that price uncertainty has 

become the most important risk factor for PV and onshore wind power 

investments. The introduction of RE auctions in combination with exposing 

developers to price risk uncertainty was identified to be the main driver behind 

this rise (Egli, 2020). 

2.3 Summary and Research Gap 

Accounting for RO developers is found to be highly relevant when designing 

effective auctions. There are measures aimed at guaranteeing the realization of 

participating projects by targeting the waiting option value. However, current 

measures put in place to mitigate the reduced realization rates stemming from 
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RO-type developers come with drawbacks that adversely affects both 

participation and bid levels. 

Price uncertainty is found to be a major concern among developers as it makes the 

profitability of their project highly unpredictable. Yet, no identified literature has 

incorporated price uncertainty within the context of RE auctions. This study will 

fill this gap by putting the role of price uncertainty into practice through the MA-

FIP policy instrument. Using case analysis, investment timing will be simulated 

under different levels of revenue uncertainty, giving new insight into how 

realization rates can be improved. 
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3. Theoretical Framework 

3.1 Stochastic Processes 

The profitability of a RE project is based on two variables: the price (P) at which 

a unit of generated electricity can be sold at and the cost (C) of production for that 

unit. Over long timeframes, a simple Geometric Brownian Motion (GBM) process 

is adequate to model the development of electricity prices (Pindyck, 1999). The 

production costs of energy are unknown to the prospective producer at the time of 

the auction, as future technological progress could affect the cost and efficiency of 

RE projects. Following the work of Torani et al. (2016), the technological 

progress and the resulting cost variation is also modelled as a GBM process. The 

two variables are thus modelled as a pair of stochastic differential equations: 

 

𝑑𝑃𝑡 = 𝜇𝑃𝑃𝑡𝑑𝑡 + 𝜎𝑃𝑃𝑡𝑑𝑊𝑡, 

𝑑𝐶𝑡 = 𝜇𝐶𝐶𝑡𝑑𝑡 + 𝜎𝐶𝐶𝑡𝑑𝑊𝑡 

( 1 ) 

Each step of these processes is made up of two components. The deterministic 

long-term drift (µ) of the process as well as a stochastic component, comprised of 

volatility (σ) and the increment of a Wiener process (𝑑𝑊𝑡). The Wiener process is 

the driving noise of a GBM process, as it is a random variable that takes a new 

value at each timestep, with an expected value of 0. A convenient trait of the 

Wiener process is its Markovian property, meaning it has independent, 

memoryless increments, meaning the value it takes at time 𝑡 − 1 does not 

influence its value at time 𝑡. This is convenient when forecasting paths since the 

only value necessary to create forecasts for time t is the level at time 0 and the 

long-term drift (Dixit & Pindyck, 2012): 

𝐸[𝑃𝑡] = 𝑃0𝑒
𝜇𝑃𝑡  

𝐸[𝐶𝑡] = 𝐶0𝑒
𝜇𝐶𝑡  

( 2 ) 

In the case of RE auctions, the values at time 0 are the price and cost levels when 

the auction takes place. 

3.2 The Net Present Value Case 

The net present value (NPV) of a RE project investment subject to feed-in 

premiums (FIP) can be formalized as: 
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𝑉𝑁𝑃𝑉(0) = 𝑄∫ 𝑒−𝑟𝑠(𝑃0𝑒
𝜇𝑃𝑠  + 𝐹𝐼𝑃 − 𝐶0)

𝑇

0

𝑑𝑠 

( 3 ) 

Q represents the quantity of electricity produced, and C is the production cost of 

said energy. P is the price, and FIP is the agreed-upon level of government 

support. Changes in price affect the revenue generated from the project 

throughout its lifespan, so the developer will consider the expected growth rate of 

these prices. Cost, on the other hand, is treated as constant, as it is assumed that 

the NPV developer would start construction immediately. Furthermore, as most 

costs associated with RE sources come from capital expenditure, rather than 

operation and management (IRENA, 2024), developments in terms of cost after 

the project has been constructed become irrelevant, meaning costs are locked in at 

the start date. Once a specific technology is adopted, further technology-related 

improvements in efficiency also become irrelevant since these improvements 

cannot be applied to already built projects. 

The goal of the reverse auction scheme typically employed in RE auctions is to 

force prospective developers to disclose their minimum required support to make 

the project feasible. Assuming the auction is successfully competitive, the 

winning bid would be a level of FIP that results in the expected payoff of the 

project being zero (Matthäus et al., 2021). In other words, the level of support  

corresponds to the developer being indifferent between developing the project or 

not. By setting the NPV of the project to 0 and solving for FIP, the truth-telling 

equilibrium for a NPV developer, denoted as 𝐹𝐼𝑃𝑁𝑃𝑉 below, becomes: 

FIPNPV = 𝐶0 −
𝑟

1 − 𝑒−𝑟𝑇⏟      
Annuity factor

𝑃0
𝑒(𝜇𝑃−𝑟)𝑇 − 1

μ𝑃 − 𝑟⏟          
Discounted price
 growth factor

 

( 4 ) 

The equilibrium level of FIP fills the gap between the production cost of each unit 

of energy and the discounted cash flows generated from selling the energy. Under 

this subsidy, building at 𝑡 = 0 yields 0 profit on average. In other words, it is the 

level of subsidy that corresponds to the NPV developer’s indifference point. 

Under sufficiently lopsided initial conditions, a negative 𝐹𝐼𝑃𝑁𝑃𝑉 is theoretically 

possible. However, the bids in actual auctions will be positive, as bidding for 

negative support is irrational. 
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3.3 Real Option Developers 

RO developers extend the NPV framework by comparing the expected profit from 

immediate exercise with the expected value of the project if it were to be 

developed at some point in the future. This is possible as the auction gives the 

developer the right, but without strict obligation, to develop the project. The 

developer thus has the flexibility to choose when to develop the project at the time 

most advantageous to them. In contrast to the NPV case, a RO developer will 

factor in the possibility of deferring the investment. By waiting for more 

favourable conditions, the developer can maximize the value generated by the 

project. As in the NPV case, the unit production cost is frozen at the level of the 

project date, 𝑡, while the evolution of electricity prices affects the revenue of the 

investment throughout its lifespan. 

The immediate exercise value, 𝑉(𝑡), is the value the project would generate if 

developed at time 𝑡 and is derived from the project value function of ( 3 ), with s 

denoting time since exercise: 

𝑉(t) = 𝑄∫ 𝑒−𝑟𝑠(P(t + s) + 𝐹𝐼𝑃 − C(t))
𝑇

0

𝑑𝑠 

( 5 ) 

The investment is no longer a now-or-never opportunity, as the developer can 

freely choose the optimal time to develop the project. It can therefore be viewed 

as an American option, as the developer is not constrained to a specific point in 

time where development must be commenced. 

 

There is value in increased flexibility. At time 𝑡, the developer will compare the 

immediate exercise value, 𝑉(𝑡), and the continuation value, 𝐹(𝑡), given the 

current market conditions, which in this case is the price and production cost of 

electricity. If the immediate exercise value is greater, the project is developed. At 

times where the continuation value is greater, meaning the expected value from 

waiting is higher than the immediate exercise value, the project is delayed. The 

value of the option to develop the project can thus be expressed as: 

𝑅𝑂𝑉(𝑡) = max(𝑉(𝑡), 𝐹(𝑡)) 

( 6 ) 

The RO Value, 𝑅𝑂𝑉(𝑡), of the project is the maximum of the immediate exercise 

value and the continuation value. As the RO developer is bidding for the option to 

develop a project, instead of the project itself, the truth-telling equilibrium also 

differs. In the NPV case, the FIP equilibrium is at a level where the immediate 

exercise value at time 0 would be 0. The RO developer factors in the value of 
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waiting, which at time 0 is defined as the difference between the RO value and the 

immediate exercise value. Since the immediate exercise value is equal to the NPV 

at time 0, 𝑉(0), the waiting option value, denoted below as 𝑊𝑂𝑉, is therefore: 

𝑊𝑂𝑉(0) = 𝑅𝑂𝑉(0) − 𝑉(0) 

( 7 ) 

WOV is the additional value RO developers are bidding for compared to the NPV 

developer, who only considers project value and can be interpreted as the value of 

flexibility. When FIP is set to the level where the NPV of the project is 0, the 

above expression becomes: 

𝑊𝑂𝑉(0)𝑁𝑃𝑉=0 = 𝑅𝑂𝑉(0)𝑁𝑃𝑉=0 

( 8 ) 

Assuming uncertainty in the underlying market variables, this value will be 

positive, resulting in waiting potentially being beneficial. Furthermore, neither 

WOV nor ROV can be negative, as the option simply would not be exercised in 

that case, giving a payoff of 0. In other words, when the FIP is set at a level where 

the NPV developer is indifferent or opposed to developing the project, the RO 

developer will evaluate it at least equally to the NPV developer, but in cases 

where waiting is beneficial, they will deem the project to have positive value. This 

allows the RO developer to outbid the NPV developer, to the point where 𝑅𝑂𝑉(0) 

is minimized, becoming the RO truth-telling equilibrium. 

As the RO value is derived from the maximum of the immediate exercise value 

and the continuation value, projects with a high waiting option value are 

synonymous with projects having a high continuation value. A high waiting 

option value is therefore suboptimal in terms of adoption rates. As the optimal 

exercise time is defined as the time when the continuation value equals the 

immediate exercise value, it leads to the adoption being slow (Dixit & Pindyck, 

2012). Developers seeing great value in waiting will act accordingly, and adoption 

of RE sources might therefore occur later than socially optimal. 

3.4 Auction Design 

The waiting option value cannot reasonably be eliminated due to its dependence 

on the behaviour of underlying stochastic market variables. However, it can be 

decreased through policy design. In the context of RE auctions, the act of waiting 

is discouraged through non-realization penalties, aiming to make delaying the 

project riskier and more expensive. By denoting the cost of the non-realization, 

which includes the penalty as well as the sum of the total discounted payoffs 

generated from the FIP (which is revoked if the grace period is violated), as L, the 
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continuation value for projects subject to non-realization measures can be 

formulated as: 

𝐹(𝑡) = 𝐸𝑡[𝑒
−𝑟(𝜏−𝑡)𝑉(𝜏) − 𝑒−𝑟(𝑇𝑔−𝑡)𝐿1{𝝉>𝑻𝒈}] 

( 9 ) 

Here, 1{𝜏>𝑇𝑔} is an indicator function, taking the value of 1 if the optimal exercise 

time, 𝜏, is after the grace period has run out. If exercise occurs within the grace 

period, the indicator function is 0, meaning the penalty is not applied. As the 

penalty is paid at the expiration of the grace period, the penalty is discounted back 

to the expiration of the grace period, while the project value is discounted back to 

the development point. A higher L will lead to a lower continuation value, as a 

portion of the evaluated scenarios will give a lower payoff. This effect will 

become stronger as 𝑡 approaches 𝑇𝑔, as a larger proportion of the potential 

exercise times will violate the grace period, meaning postponement past this point 

becomes more likely. 

A lower continuation value makes it more likely that the investment threshold 

condition, 𝑉(𝑡) = 𝐹(𝑡), is fulfilled, leading to the projects being developed. Non-

realization penalties will increase the probability of exercise being within the 

grace period. Projects deferred past the grace period are unlikely to be developed 

soon after the grace period has ended, as the cash flows generated from the 

projects are now without government support. Additionally, the penalties incurred 

for non-realization would further harm the profitability of these projects. Project 

development would still be possible in these cases, but would require the market 

variables to develop considerably in a favourable direction. 

Alternatively, the underlying uncertainty could be removed, which is what is done 

to price uncertainty with FITs. The issue with removing electricity price 

uncertainty through FITs is that the risk is then fully placed on the issuer of the 

subsidy, leading to the cost of the policy potentially becoming very high 

depending on fluctuations in price.  

A high volatility leads to a greater spread, with some paths being highly 

favourable (high price, low cost) and some being equally unfavourable (low price, 

high cost). But the unfavourable paths become irrelevant in the RO framework, as 

the project will not be developed if conditions are poor, giving the continuation 

value a lower bound of 0. The severity of the bad paths is therefore 

inconsequential, and only the ratio of good-to-bad paths is relevant. On the other 

hand, positive paths do not have an upper ceiling, meaning the increased volatility 

leads to a higher continuation value. 
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Lowering the volatility will compress the range of possible future prices around 

current levels. Consequently, there will be fewer high-payoff scenarios, and the 

continuation value will therefore be lower. This has the benefit of making the 

evaluation at time 0 more predictable. As volatility is lower, the continuation 

value will be lower, potentially increasing realization rates as bids will more 

strongly be rooted in current project needs, rather than the speculative 

continuation value. Simply put, the value of waiting will be lower, leading to 

earlier exercise times. 
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4. Methodology 

To evaluate the effects of electricity price volatility on RE auction realization 

rates, the underlying market variables will be simulated using Monte Carlo 

simulations. Both variables must therefore first be mapped to their respective 

stochastic processes. In the interest of ensuring empirical relevance, this 

calibration is done using real-world data. These processes are then used as a 

foundation to simulate the auctions and their outcomes in terms of realization 

rates and exercise times. Four calibrations for the price will be performed. One 

uses the observed electricity price, and three that simulate the behaviour of price 

curves under MA-FIPs that are 3-months, 6-months, and 1-year long, 

respectively. 

4.1 Stochastic Process Calibration 

To calibrate the parameters of the two underlying stochastic processes, electricity 

price and cost, Itô’s Lemma is applied to the stochastic differential equations 

presented in ( 1 ), giving: 

𝑑(ln𝑃𝑡) = (𝜇𝑃 −
1

2
𝜎𝑃
2) 𝑑𝑡 + 𝜎𝑃𝑑𝑊𝑡 

( 10 ) 

The estimation of cost parameters is analogous to the price case as both variables 

are modelled as GBM processes. As any increment of the Wiener process is 

normally distributed, the log returns (𝑅𝑡) of the stochastic process for any time 

interval [𝑡, 𝑡 + ∆𝑡] becomes normally distributed (Cheng et al., 2017; Dixit & 

Pindyck, 2012): 

Rt = ln (
𝑃𝑡+∆𝑡
𝑃𝑡

)~𝑁 ((𝜇𝑃 −
1

2
𝜎𝑃
2) ∆𝑡, 𝜎2∆𝑡) 

( 11 ) 

The drift and volatility of the process are then calculated as the mean and variance 

of the computed log-returns. As these are parameters of a differential equation, 

the mean is the average change at each timestep, and the volatility is the variance 

of these changes: 

𝜇̂ =
1

𝑁
∑𝑅𝑡
𝑡

, 𝜎̂ = √
1

𝑁 − 1
∑(𝑅𝑡 − 𝑅̅)2

𝑡

  

( 12 ) 
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4.1.1 Price Data and Parameter Calibration 

The drift and volatility of the price processes are estimated using monthly index 

data of German producer electricity prices from Destatis (2023), covering the 

years 2005 through to 2022. As the variable of interest is the relative change 

between periods, there is no need to convert the index values to absolute terms. 

The values are adjusted for inflation using consumer price index data, meaning all 

subsequent estimates of drift and volatility refer to real changes in electricity price 

(Destatis, 2025). 

Electricity prices exhibit significant seasonal variance. While the volatility 

stemming from seasonal factors is real, it is deterministic. Seasonal variance can 

be planned and accounted for and is therefore not uncertain. The data is 

consequently deseasonalized by applying STL decomposition in R, improving the 

accuracy of the resulting parameters (Cleveland et al., 1990; Janczura et al., 2013; 

Lucia & Schwartz, 2002). By removing it from the raw index data, a volatility 

term composed of truly random price shocks is calibrated. 

Observing Figure 1, the result of the deseasonalization is a slightly smoothed-out 

curve, while still following the same general trend as the original observations. 

The minor differences between the two curves indicate that only a minor portion 

of the total variance can be explained by seasonal factors. 

 

Figure 1. Observed electricity prices pre- and post-deseasonalization. 
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The deseasonalized data set of real electricity prices, as seen in Figure 1, will 

serve as the foundation for the calibration of the mean and variance as specified in 

( 12 ). The resulting parameters represent the baseline case for the empirical 

analysis. 

To model the moving average price curves, new GBM parameters must be 

calibrated. A consequence of having to compute the moving averages is that the 

first datapoints will not have valid values. For example, the 1-year moving 

average will start at the twelfth data point, as the first eleven months of 2005 do 

not have enough prior data to construct a 1-year moving average. Each subsequent 

month is calculated as the average value of the current deseasonalized real 

electricity price and the previous 11 months. The general case of an n-month 

moving average (𝑀𝐴𝑡) thus becomes: 

𝑀𝐴𝑡 =
1

𝑛
∑𝑃𝑡−𝑖, 𝑡 = 𝑛,… , 𝑇

𝑛

𝑖=0

 

( 13 ) 

The log returns of this newly constructed dataset will be heavily serially 

correlated, as adjacent values 𝑀𝐴𝑛 and 𝑀𝐴𝑛+1 would share 𝑛 − 1 constructing 

datapoints. As mentioned in the previous section, GBM is a Markov process, 

meaning each increment should be independent. If this condition is not met, the 

estimated volatility would be biased downwards, as the serial correlation causes 

the process to be artificially slow-moving. To mitigate this, the calibration of the 

volatility will be performed using non-overlapping, year-on-year log returns: 

𝑅𝑡 = 𝑙𝑛
𝑀𝐴𝑡
𝑀𝐴𝑡−𝑛

, 𝑡 = 𝑛,… , 𝑇  

( 14 ) 

An important note here is that it is only the volatility that changes depending on 

the length of the moving average; the drift of all calibrated processes will be 

identical, fixed to the 𝜇̂ of the baseline process. The reasoning behind this 

assumption is that 𝑀𝐴𝑡 should, on average, grow at the same exponential rate as 

its underlying variable 𝑃𝑡. The moving average will never outgrow or fall behind 

the spot price on which it is based on in the long term. 
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Figure 2. Observed Baseline, 3, 6, and 12-Month MA Electricity Prices. 

The resulting data sets, which are used for the calibration of their respective GBM 

process, are presented in Figure 2. Each dataset follows the same long-term trend 

but differs in the short term due to the varying levels of price-smoothing applied. 

Additionally, the delayed starting points for the moving average-based process are 

visible, with longer moving averages having a later first value. 

4.1.2 Cost Data and Parameter Calibration 

Cost is measured by the levelized cost of electricity, which is the sum of the 

discounted expenditures related to the project divided by the electricity generated 

over the project’s lifespan. In practice, this value is equal to the required price that 

the produced electricity would have to be sold at for the project to break even 

(IRENA, 2024).  

The GBM model for cost is estimated following the same process, based on 

annual data from IRENA (2024). Due to data limitations, with only annual data 

being available and only covering years 2010 to 2023, the estimated parameters of 

the cost model become less robust than their price counterpart. 

4.2 Least-Squares Monte Carlo 

The key to determining exercise times is estimating the continuation value and 

comparing it to the immediate exercise value. The immediate exercise value can 
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be calculated at each timestep as the total present value of future cash flows the 

project would generate if it were to be developed at that point in time. In contrast, 

the continuation value, representing the expected benefit of waiting, is more 

complex to compute. This is especially true for the RO examined in this paper, as 

it depends on multiple stochastic processes as well as being American-style, 

allowing for early exercise (Longstaff & Schwartz, 2001). 

A viable method to estimate American option value is through LSM simulation, 

which combines simulations and regression techniques to estimate the optimal 

exercise times and option value (Lazo & Watts, 2023; Longstaff & Schwartz, 

2001). To start, multiple paths of the underlying state variables, in this case, the 

price and cost of electricity, are simulated in discrete time with each timestep 

denoted by k. Each simulated path, indexed by i, represents a possible evolution 

of market conditions, capturing the uncertainty in future prices and costs. 

These simulations are then used to calculate the immediate exercise payoff for 

each timestep k and path i, which is the sum of the discounted future cash flows 

that would be generated if the project were developed at that point in time. This 

involves freezing the cost at its current value and calculating future profits based 

on the cost level at exercise compared to a simulated price path and the awarded 

FIP. A penalty will be deducted from the immediate exercise value of any project 

that is exercised after the given grace period, consistent with ( 9. 

The LSM algorithm proceeds by working backwards in time, starting from the 

final timestep, K. At this endpoint, both the continuation value and the immediate 

exercise value are 0, since no future cash flows remain, and investment cannot be 

delayed further. The continuation value is 0 since the option to further delay 

investment is no longer available, as we are at the end of the simulated time space. 

Likewise, the immediate exercise payoff is 0 as it is a function of the state 

variables, which become 0 for timesteps outside the simulated period. In this case, 

the terminal condition is therefore: 

𝑉𝐾
(𝑖)
= 𝐹𝐾

(𝑖)
= 0 

( 15 ) 

At each timestep before the terminal period, the option value is defined as the 

maximum of the immediate exercise value and the estimated continuation value: 

𝑅𝑂𝑉𝑘
(𝑖)
= 𝑚𝑎𝑥(𝑉𝑘

(𝑖)
, 𝐹̂𝑘
(𝑖)
) 

( 16 ) 
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This decision rule reflects the flexibility embedded in the option as the holder will 

develop the project if immediate exercise is more valuable. If the continuation 

value is greater, the project is deferred. 

By using multiple linear regressions, a fitted model is created, that maps 

continuation values for each path based on the current state variable values and its 

combinations. This is achieved in two steps. First, the continuation value is 

regressed on the current state variables:  

𝑒−𝑟∆𝑡(𝑅𝑂𝑉𝑘+1
(𝑖)
)

= 𝛽0 + 𝛽1𝑃𝑘
(𝑖)
+ 𝛽2𝐿𝐶𝑂𝐸𝑘

(𝑖)
+ 𝛽3(𝑃𝑘

(𝑖)
× 𝐿𝐶𝑂𝐸𝑘

(𝑖)
) + 𝛽4(𝑃𝑘

(𝑖)
)
2

+ 𝛽5(𝑃𝑘
(𝑖)
)
2

+ 𝜀𝑘
(𝑖)

 

( 17 ) 

The linear terms provide estimates for the direct proportional relationship between 

state variables and continuation value. The interaction term is included as the 

evolution of the state variables in proportion to each other will influence the 

continuation value. For example, a scenario where prices are high while costs are 

low will affect the continuation value differently from a scenario where both 

prices and costs are high, as project value is dependent on the difference between 

the two variables. Lastly, the quadratic terms allow for non-linear relationships 

between state variables and continuation value. 

Once the regression coefficients have been estimated, the state variables for a path 

are then put into the same regression again, but now with already estimated 

coefficients. The function will then output the future option value. It is this value 

that is used as the continuation value for the given path and timestep, expressed 

below using 𝑏1, … , 𝑏5 to denote the coefficients previously estimated in ( 17: 

𝐹̂𝑘
(𝑖) ≈ 𝐸̂ [𝑒−𝑟∆𝑡(𝑅𝑂𝑉𝑘+1

(𝑖) )|𝑃𝑘
(𝑖), 𝐿𝐶𝑂𝐸𝑘

(𝑖)]

= 𝑏0 + 𝑏1𝑃𝑘
(𝑖) + 𝑏2𝐿𝐶𝑂𝐸𝑘

(𝑖) + 𝑏3(𝑃𝑘
(𝑖) × 𝐿𝐶𝑂𝐸𝑘

(𝑖)) + 𝑏4(𝑃𝑘
(𝑖))

2

+ 𝑏5(𝑃𝑘
(𝑖))

2

 

( 18 ) 

The above regression model provides an estimate of the conditional expected 

value of waiting, based on the current values of price and cost. This approach 

allows the decision of whether to exercise or defer at each point in time to be 

made using only present information, not relying on knowledge of future 

outcomes. The estimated continuation value is then compared to the pre-
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calculated immediate exercise value for the same path and timestep, with the 

greater of the two becoming the option value used to fit the regression for the next 

(chronologically earlier) step. 

To exemplify this process, the penultimate timestep, 𝐾 − 1, is considered. This 

timestep is simplified due to the continuation value in the following timestep, K, 

being zero as per the terminal condition. The project will therefore be developed 

if the market conditions are such that the immediate exercise payoff of the project 

is above zero. The option value at time 𝐾 − 1 thus becomes: 

𝑅𝑂𝑉𝐾
(𝑖)
= 𝑚𝑎𝑥(𝑉𝐾−1

(𝑖)
, 0) 

( 19 ) 

These option values, across all paths, are discounted and used as the dependent 

variables in a regression against the corresponding state variables at 𝐾 − 1. This 

regression yields a set of coefficients that describe how the continuation value 

depends on the current values of the state variables.  

As the investment decision at 𝐾 − 1 cannot be based on future information, as it 

is unknown in the present, the simulated values of the state variables for each path 

must be plugged into this fitted regression model to estimate the expected 

conditional continuation value, 𝐹̂𝐾−1
(𝑖)

. This estimate represents the expected value 

of waiting one more timestep, given the current market conditions in path i. 

Each path then compares this estimated continuation value to its previously 

calculated immediate exercise value at K−1. The greater of the two is recorded as 

the option value for that timestep and path, and this updated option value becomes 

the input for the regression at K-2, and so forth. 

Finally, the RO value at time 0 is an estimate of the average option value across 

all paths at time 0: 

𝑅𝑂𝑉0 =
1

𝑁
∑𝑅𝑂𝑉0

(𝑖)

𝑁

𝑖=1

 

( 20 ) 

To summarize, the LSM algorithm estimates the option value at time 0 by first 

simulating multiple paths for the state variables over discrete time. Then it 

computes the immediate exercise values for all paths and timesteps. Once the 

terminal condition is set, it maps current state variables to discounted option 

values. The resulting fitted model is then used to estimate the continuation value 
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based on current state variables. Those estimates are then compared to the 

corresponding immediate exercise values, with the greater of the two being 

recorded as the option value. The recorded option value is then used in the next 

(earlier) step. Once this is done for all timesteps back to time 0, the average option 

value of each path becomes the overall option value. 

Optimal exercise times for each path are a valuable byproduct of using LSM to 

estimate the option value. As the immediate exercise value and continuation value 

are calculated for each timestep, the point where the investment threshold is 

reached, 𝑉(𝑡) = 𝐹(𝑡), can be logged and becomes the optimal exercise time of 

the project. 
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5. Empirical Applications 

This section analyses three distinct real-world RE auctions using the theoretical 

framework and methodology developed in the preceding sections. All three cases 

will be technology-specific to PV systems, allowing disregard of the complexities 

arising from inter-technology auctions (Matthäus et al., 2021). All data relating to 

auction design are sourced from the AURES II Project database (AURES II 

Project, 2022). 

To ensure consistency and allow clear comparisons, all scenarios assume a 

standardized project capacity of 1,500 KW. The annual electricity production of 

the projects in each case is adjusted using capacity factors obtained from IRENA 

(2024). Different capacity factors are applied to account for variations in PV 

system efficiency, which are influenced by technological advancements and 

geographic location, as climate conditions significantly affect electricity 

generation. 

Once the yearly production of the projects is calculated, the revenue of the 

projects is the difference between the simulated price and cost, as well as the 

average awarded FIP for the auction (AURES II Project, 2022). The auction date 

is treated as the starting point for each variable, with a starting electricity price 

based on bi-annual data of price for non-household consumers, taxes excluded 

(Eurostat, 2025). Initial production costs taken from IRENA’s annual cost 

assessments (IRENA, 2024). These two market variables are then simulated over 

a 30-year horizon, reflecting the duration of the investment opportunity. Due to 

computational constraints, the model operates with a monthly timestep, implying 

that developers face one investment opportunity per month. 

Once the project is developed, it will generate revenue for 20 years, thus allowing 

developers the flexibility to exceed the provided grace period without part of the 

project lifespan immediately falling outside of the simulated time range. The cash 

flows of the project are discounted using a composite of the risk-free rate, 

approximated as the 15-year domestic bond yields (Matthäus et al., 2021; Trading 

Economics, 2025a; 2025b), and weighted average cost of capital (WACC) 

markups, following the estimations of Steffen (2020). 

The first case considers an auction conducted in Germany under relatively 

unfavourable initial market conditions. The second case study is also a German 

auction, conducted almost three years later. The auction design mirrors that of the 

first case, and the stochastic processes for price and cost remain. However, the 

starting market conditions are more favourable. Specifically, the initial electricity 

price exceeds the production cost, resulting in strong initial project profitability. 
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Additionally, this scenario stands out by having a negative risk-free rate, reducing 

the discount rate applied to cash flows. 

The third and final auction took place in Italy, meaning different process 

parameters. The stochastic process for cost is country-specific and is therefore 

recalibrated using Italian cost data (IRENA, 2024). Italian PV project costs 

decline at a slower rate and exhibit higher volatility compared to Germany, thus 

presenting higher uncertainty for developers. The discount rate in this scenario is 

higher due to increased domestic bond yields and a larger WACC markup, 

reflecting greater perceived market risk. The auction design is similar to previous 

cases, except that the non-realization penalty is 100 €/KW compared to 50 €/KW 

in the German auctions. 

Table 1. Case Parameters. 

Category Parameter Case 1 Case 2 Case 3 

Auction Country Germany Germany Italy 

 Date 2018-06-01 2021-03-01 2019-10-01 

 Grace Period 2 years 2 years 2 years 

 Penalty 50 €/KW 50 €/KW 100 €/KW 

 Average FIP 0.0459 €/KWh 0.0503 €/KWh 0.0600 €/KWh 

Price Drift 0.0255 0.0255 0.0255 

 Volatility (Baseline) 0.0336 0.0336 0.0336 

 Volatility (3-month MA) 0.0295 0.0295 0.0295 

 Volatility (6-month MA) 0.0278 0.0278 0.0278 

 Volatility (1-year MA) 0.0256 0.0256 0.0256 

 Starting point 0.0457 €/KWh 0.0520 €/KWh 0.0779 €/KWh 

Cost Drift -0.1358 -0.1358 -0.1201 

 Volatility 0.1388 0.1388 0.2026 

 Starting point 0.0693 €/KWh 0.0473 €/KWh 0.0497 €/KWh 

Discount rate Risk-free rate 0.69% -0.034% 1.409% 

 WACC Markup 2.9% 2.9% 3.02% 

Simulation Paths 3,000 3,000 3,000 

 Years 30 30 30 

 Timestep 1 month 1 month 1 month 

 Project Lifespan 20 years 20 years 20 years 

 Capacity 1,500 KW 1,500 KW 1,500 KW 

 Capacity Factor 0.1790 0.1721 0.1751 
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Each case will be run four times, each with a different length MA-FIP. The 

baseline scenario follows the real-world FIP subsidy, with developers being 

exposed to the raw spot price of electricity. Scenarios two through four will use 

the adjusted price volatility parameters as specified in Table 1, mirroring the price 

behaviour of MA-FIPs with lengths of 3 months, 6 months, and 1 year,  

respectively.  

5.1 Case 1 Results 

Table 2 shows the results of the simulations using the parameters of case 1. The 

RO evaluation grants a substantial increase in value, indicated by the waiting 

option value, 𝑊𝑂𝑉(0), making up a substantial portion of the RO value (𝑅𝑂𝑉(0) 

at the time of the auction. As per ( 7 ), 𝑊𝑂𝑉(0) is the difference in project value 

between NPV and RO valuations. 

As predicted, using moving average price curves has a positive impact on 

realization rates and overall exercise time. A clear positive relationship between 

the length of the MA-FIP and the realization rate, 𝑃(𝜏 < 𝑇), is observed, 

indicating that the MA-FIP is an effective tool to mitigate the propensity to delay 

past the grace period in this case. 

Table 2. Case 1 simulation results. 

Scenario ROV(0) P(τ < T) WOV(0) E[τ] FIPNPV 

Baseline 1850967.0848 

(15.7155) 

0.6577 

(0.0087) 

699665.5570 

(2957.6542) 

8.4064 

(0.1734) 

0.0116 

3-month 

MA-FIP 

1821031.1904 

(0.0000) 

0.7067 

(0.0083) 

669661.9099 

(2611.2031) 

7.2247 

(0.1592) 

0.0116 

6-month 

MA-FIP 

1807607.2879 

(0.0000) 

0.7293 

(0.0081) 

656039.1898 

(2484.1244) 

6.6733 

(0.1516) 

0.0116 

1-year  

MA-FIP 

1794875.5185 

(0.0000) 

0.7460 

(0.0079) 

643288.4304 

(2293.9283) 

6.3536 

(0.1473) 

0.0116 

Monte Carlo standard errors in parentheses. 

The mean optimal exercise times (𝐸[𝜏]) of all scenarios are still outside the grace 

period of 2 years. A developer who chooses to exceed the grace period and pay 

the penalties would, at that point, be expected to develop their project quite some 

time after the grace period has ended, as the immediate exercise value is now 

much lower, as there is no longer a FIP. As the penalty is deducted at the 

expiration of the grace period, the immediate payoff decreases, whereas the 

continuation value remains the same since it treats the penalty as a sunk cost past 

this point. 
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Figure 3. Cumulative distribution function of optimal exercise times. 

When considering Figure 3, the mean exercise time sits at a point where no 

projects are developed. This is a consequence of the simulation parameters, 

specifically total simulation time and project lifespan. The market variables are 

simulated 30 years into the future, and the project lifespan is 20 years, meaning 

the project loses one time step worth of profit for each step the project is deferred 

after the 10-year mark. Once the grace period is exceeded, waiting essentially 

becomes free. However, once the project lifespan bleeds out into non-simulated 

time, waiting comes at a cost of one timestep worth of profit.  

The end-of-simulation dynamics become especially clear when looking at a single 

path. Figure 4 shows one of the paths of the baseline scenario where the project 

was not realized within the grace period. The steeper decline of the continuation 

value due to a decreasing amount of cash flows eventually leads to the project 

finally being developed, albeit late into the simulation. Additionally, the impact of 

the non-realization penalties is demonstrated, as they result in a sharp decrease in 

immediate exercise value, leading to the optimal exercise time being pushed 

further into the future. 
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Figure 4. Immediate exercise value and continuation value evolution of a single path. 

Poor simulated conditions partly explain the tendency to exercise later than 10 

years into the simulation. If price and cost evolve in such a way that results in 

small or even negative cash flows, the rational choice is to wait for conditions to 

improve. Projects with an immediate exercise value close to or below 0 will not 

be adversely affected by forgone profit, as the project in question will not be 

profitable. 

5.2 Case 2 Results 

Table 3. Case 2 simulation results. 

Scenario ROV(0) P(τ < T) WOV(0) E[τ] FIPNPV 

Baseline 2955147.0678 

(189.3443) 

0.9700 

(0.0031) 

571735.1571 

(3555.6455) 

2.3910 

(0.0597) 

-0.0189 

3-month 

MA-FIP 

2908016.6858 

(69.9553) 

0.9910 

(0.0017) 

524982.5100 

(3108.2438) 

2.0183 

(0.0345) 

-0.0189 

6-month 

MA-FIP 

2909725.1835 

(101.5427) 

0.9920 

(0.0016) 

526125.2888 

(3055.8165) 

1.9818 

(0.0284) 

-0.0189 

1-year 

MA-FIP 

2868385.6769 

(8.5588) 

0.9943 

(0.0014) 

485691.5704 

(2616.3337) 

1.9713 

(0.0280) 

-0.0189 

Monte Carlo standard errors in parentheses. 
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The starting conditions for this auction were much more favourable to the 

developers compared to the first case. The NPV truth-telling equilibrium 

(𝐹𝐼𝑃𝑁𝑃𝑉) is negative, implying projects developed at this time would not require 

support to turn a profit. The option value is also higher compared to the first case 

due to the improved initial project economics.  

The value of flexibility is lower compared to the first case, yet the option value is 

higher. This indicates that flexibility becomes more valuable in adverse conditions 

like the ones in the first case, and less valuable when conditions are better and the 

project is instantly profitable. 

The positive relationship between MA-FIP length and realization rate is still 

present here. Favourable starting conditions resulted in the baseline case being 

highly successful, leading to the introduction of MA-FIPs having a smaller impact 

compared to the first case. Interestingly, even though the baseline case had a high 

realization rate, none of the MA-FIP scenarios resulted in a perfect realization 

rate. 

5.3 Case 3 Results 

Table 4. Case 3 simulation results. 

Scenario ROV(0) P(τ < T) WOV(0) E[τ] FIPNPV 

Baseline 3909363.3223 

(506.0406) 

0.9867 

(0.0021) 

606323.2935 

(5119.6346) 

2.0535 

(0.0450) 

-0.0481 

3-month 

MA-FIP 

3778911.9865 

(294.1809) 

0.9993 

(0.0005) 

475022.8869 

(3881.9505) 

1.7974 

(0.0140) 

-0.0481 

6-month 

MA-FIP 

3937110.2777 

(678.3879) 

0.9890 

(0.0019) 

633293.3426 

(5214.3599) 

1.9896 

(0.0395) 

-0.0481 

1-year 

MA-FIP 

3716078.2803 

(235.1339) 

0.9993 

(0.0005) 

412550.2321 

(3294.9935) 

1.8037 

(0.0094) 

-0.0481 

Monte Carlo standard errors in parentheses. 

The results of Case 3 resemble those of Case 2. The main difference between the 

two lies in the overall valuation metrics of the projects. Because of the higher 

starting electricity price, the equilibrium FIP for NPV projects is strongly 

negative. The flatter cost process of the Italian market does not influence the 

equilibrium FIP since it only considers immediate exercise, making future 

evolution of cost irrelevant. 

 

A relevant factor is instead the higher discount rate. The truth-telling equilibrium 

is partly determined by the expected price growth relative to the discount rate. A 

higher discount rate will therefore mean that the effective revenue growth 
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throughout the project lifespan decreases. However, the benefit of a favourable 

starting point outweighs the more conservative revenue growth forecast, resulting 

in a low truth-telling equilibrium FIP. 

The introduction of MA-FIPs has a small but positive effect on realization rates. 

The baseline scenario saw a very high realization rate, which resulted in a 

marginal impact of the introduction of MA-FIPs. Interestingly, the 6-month MA-

FIP scenario had slightly worse outcomes compared to its more volatile 

counterparts. Upon closer inspection of the data, the inconsistency can be 

attributed to a larger fraction of paths ending in non-exercise, meaning the 

exercise did not occur until the final timestep. Exercise at this point results in a 

project without revenue or cost; these paths must therefore have experienced 

unlikely, but not impossible, market variable evolution, leading to non-exercise. 

Outlier paths explain both the inconsistent realization rates and optimal exercise 

time across scenarios, as well as the larger standard errors seen in the 6-month 

MA-FIP scenario. 
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6. Robustness Checks 

6.1 Bid Levels 

The overall effect of the MA-FIP is limited by the baseline realization rate. 

Auctions with high baseline realization rates will have little room for 

improvement. A high baseline realization rate is not only dependent on market 

conditions being favourable, but also that the awarded FIP is sufficient. It is 

therefore of interest to see how a hypothetical case with a lower FIP would play 

out. To investigate how a lower FIP affects the baseline realization rate and the 

effects MA-FIPs would have, case 2 is re-simulated but with an awarded FIP that 

is 75% of its original value. This test can thus be treated as a hypothetical high-

competition scenario, where competition between developers has driven down bid 

levels towards the truth-telling equilibrium. 

Table 5. Case 2 results when using a lower FIP. 

Scenario ROV(0) P(τ < T) WOV(0) E[τ] FIPNPV 

Baseline 2546572.7300 

(127.5847) 

0.6637 

(0.0086) 

597003.4212 

(3521.5722) 

8.2816 

(0.1740) 

-0.0189 

3-month 

MA 

2507083.4173 

(49.1293) 

0.7513 

(0.0079) 

557435.4277 

(3116.0410) 

6.3305 

(0.1502) 

-0.0189 

6-month 

MA 

2485680.8152 

(53.5724) 

0.8003 

(0.0073) 

535788.5343 

(2966.1998) 

5.4180 

(0.1372) 

-0.0189 

1-year 

MA 

2875358.1456 

(31.2238) 

0.9910 

(0.0017) 

492064.9556 

(2739.9401) 

2.0120 

(0.0310) 

-0.0189 

Monte Carlo standard errors in parentheses. 

The results of the modified case differ significantly from the original. The 

baseline results here are more in line with the Case 1. As expected, the 

introduction of a MA-FIP leads to significantly better realization rates. However, 

when the lower awarded FIP sits closer to the truth-telling equilibrium, the 

improvement between different degrees of price-smoothing becomes more 

pronounced. The 1-year MA-FIP stands out, with a 99.1% realization rate, a 

substantial jump from the baseline realization rate of 66.37%, but shorter MA-

FIPs still have considerable benefits. Again, the realization rate improvements are 

heavily correlated with reduced initial waiting option values. 

An additional contributing factor to the larger outcome gaps between different 

length MA-FIPs is the discount rate. Case 2 has a lower discount rate compared to 

Case 1, meaning future cash flows become more valuable. Additional price-

smoothing therefore has a larger effect on overall developer behaviour, as the 
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uncertainty stemming from volatility becomes greater the further into the future 

the project economics are forecasted. As a low discount rate means future cash 

flows are valued more, decreases in long-term volatility have a larger effect. The 

effects of the MA-FIP thus become more apparent in cases where the discount 

rate is low. 

6.2 Model Specification 

An alternative way to model electricity prices is by using an Ohrnstein-Uhlenbeck 

(OU) process: 

  

𝑑𝑙𝑛𝑃𝑡 = 𝜅(𝜃 − 𝑙𝑛𝑃𝑡) + 𝜎𝑑𝑊𝑡 

( 21 ) 

By including a mean-reversion component, κ, prices following an OU process are 

subject to random price shocks but will eventually revert to their mean value 𝜃. 

Compared to a GBM process with drift, which will diverge to infinity given 

enough time, an OU process will converge to its mean. When replacing the 

previous GBM process with an OU process, the value of waiting will decrease as 

there is no longer any price growth, only short-term fluctuations. 

To test the overall findings of previous cases, the price process is re-modelled as 

an OU process. Case 1 is then re-simulated using the new OU process to establish 

if the results still hold under this alternate model specification. Focusing on Case 

1 specifically, it becomes easier to evaluate the effects of the model choice as the 

results were distant from the realization rates limits. 

Table 6. Case 1 with OU-process simulation results. 

Scenario ROV(0) P(τ < T) WOV(0) E[τ] FIPNPV 

Baseline 1776891.7535 

(0.0000) 

0.8327 

(0.0068) 

624017.5414 

(2349.7071) 

4.9638 

(0.1304) 

0.0116 

3-month 

MA-FIP 

1699430.9270 

(0.0000) 

0.8883 

(0.0058) 

570382.1164 

(1557.8075) 

3.7785 

(0.1006) 

0.0116 

6-month 

MA-FIP 

1625438.8221 

(0.0000) 

0.9273 

(0.0047) 

530160.7336 

(963.8032) 

3.0842 

(0.0782) 

0.0116 

1-year 

MA-FIP 

1627793.1583 

(0.0000) 

0.9323 

(0.0046) 

523593.0864 

(715.7837) 

2.9601 

(0.0713) 

0.0116 

Monte Carlo standard errors in parentheses. 

The results presented in Table 6 are in line with expectations. When compared to 

the original results, modelling price as an OU process has shifted the results 
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towards realization. Considering the more stable price evolution model, it is a 

natural result.  

In the original framework, both GBM processes had drift, benefiting the 

profitability of the projects. The price of electricity rose while costs declined. The 

long-term benefit of waiting is therefore mitigated when using an OU process for 

price, as it stabilizes long-term. In this case, only the cost will provide a long-term 

deterministic incentive to wait, effectively mitigating the overall value of waiting. 

Despite this change, the benefits of an MA-FIP are still present, indicating that the 

results are not overly dependent on which electricity price model is used. 
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7. Discussion 

The MA-FIP is shown to be a potentially effective tool to improve realization 

rates of RE auctions. It can partly save auctions that would otherwise have poor 

realization rates and does not harm auctions that would have been successful even 

without the MA-FIP. Case 1 and the low-FIP Case 2 saw substantially improved 

realization rates and exercise timings when MA-FIPs were introduced. On the 

other hand, Cases 2 and 3 both fall into the latter category, having high baseline 

realization rates. These auctions not only had superior initial market conditions 

compared to Case 1, but also a higher average awarded FIP.  

The above truth-telling equilibrium FIPs concur with the literature on the risk 

preferences of RE project developers. The truth-telling equilibrium does not 

incorporate the required risk premia discussed in previous literature and above-

equilibrium FIPs and could therefore be due to developers adapting their bids 

based on previous auctions and their outcomes (Côté et al., 2022). The underlying 

risk of auction participation could have been underestimated in Case 1, with bids 

not properly accounting for uncertain market conditions. The higher awarded FIPs 

of the later auctions analysed in Cases 2 and 3 could thus reflect developers taking 

note of earlier auction results and adjusting their bids accordingly. This 

explanation is in line with the findings of Egli (2020). Market variable 

uncertainty, especially in regard to revenue, thus became a major concern for 

developers, and the above-equilibrium winning bids reflect this development 

(Egli, 2020). 

The MA-FIPs’ effect on realization rates and overall exercise timings are in line 

with the arguments proposed by Boomsma et al. (2012) and Cheng et al. (2017), 

where it was found that less volatile support schemes, such as FITs, promote 

earlier adoption times. The MA-FIP support scheme is a hybrid between the static 

FIT and the volatile FIP. There is still revenue uncertainty under the MA-FIP 

scheme, but it is reduced through price-smoothing. As such, if the analysis of 

Boomsma et al. (2012) were to incorporate MA-FIPs, the result would likely be 

somewhere between the FIT and the FIP in terms of exercise timing. 

The choice of the smoothing window length of the MA-FIP should consider the 

financial conditions of RE projects. A longer window leads to better outcomes 

across all cases, but the benefit of longer windows is found to be highly dependent 

on discount rates. Long-term price-smoothing is found to have a larger effect on 

overall developer behaviour in cases where discount rates are low, as the 

uncertainty stemming from volatility is greater further into the future. This pattern 

is displayed when comparing the results of Case 1 and the low-FIP version of 
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Case 2. The latter had a lower risk-free rate at the time of the auction, leading to 

the overall discount rate being lower. The additional benefit of longer MA-FIPs 

then becomes more significant, meaning longer windows should be used when 

interest rates are low. Combining MA-FIPs with favourable financing of RE 

projects could thereby lead to significant improvements in RE auction 

effectiveness. As seen in Case 2, if competition is high and winning bids are 

lower as a result, a low risk-free rate or WACC markup leads to a substantial 

jump in realization rate, especially if a longer price-smoothing window is applied. 

Ultimately, the introduction of a MA-FIP is synonymous with a re-distribution of 

project risk between the subsidy-issuer and the developer. Longer MA-FIPs mean 

the subsidy-issuer takes on more of the project risk (Grashof, 2021). It can be 

argued that this is a more effective distribution of risk, as governments typically 

are more resilient to risk compared to individual RE project developers. 

Fluctuations in cash flows can significantly affect the financial stability of RE 

developers, while having a relatively minimal impact on government budgets 

(Arrow & Lind, 1970; Chang, 2013). 

The results of this study highlight the penalty-amplifying property of the MA-FIP. 

As penalties gain effectiveness when combined with a MA-FIP, it allows 

penalties to be adjusted depending on which outcome is preferable to the auction 

designer. Utilising MA-FIPs gives the auction designer an additional tool to reach 

a preferred auction outcome, as volatility reduction can be balanced with other 

methods of ensuring realization rates. Based on the findings of Matthäus (2020) 

and Matthäus et al. (2021), auctions without any non-realization measures are 

highly unlikely to experience adequate realization rates. Proposing MA-FIPs as a 

replacement for these measures is therefore not reasonable, and MA-FIPs should 

instead be treated as a complement to current non-realization measures. However, 

as seen in the single path analysis of Case 1, the application of non-realization 

measures to a project further delays its development, and reducing these measures 

could move overall exercise timings forward.  

Revenue uncertainty and non-realization measures weigh heavily in developers’ 

risk analyses, and if they could be minimized, while still allowing auctions to 

effectively boost RE adoption, it could lead to auctions becoming a more cost-

efficient policy (Côté et al., 2022; Grashof et al., 2020). The main reason behind 

the introduction of RE auctions was their superior cost-efficiency compared to 

previous policies, showing that the cost of a policy is of especially high 

importance to policymakers today (Del Río & Linares, 2014; Grashof, 2021; 

Matthäus et al., 2021). Existing literature suggests that minimizing these factors 

could lead to auctions becoming significantly more favoured among developers, 

as well as improving the auction outcomes. Decreasing revenue volatility through 
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a MA-FIP could mitigate the current reliance on measures like fines or pre-

qualification requirements while also reducing overall revenue uncertainty. 

The overall effect that lower volatility would have on bid levels is ambiguous. 

Contrary to the literature focused on risk preferences, bid levels would increase 

because of MA-FIPs in accordance with the theoretical framework of this thesis, 

as well as Matthäus et al. (2021). As uncertainty is reduced, so is the waiting 

option value. The competitive advantage RO developers gain from incorporating 

temporal flexibility into their evaluation is thus diminished by the introduction of 

the MA-FIP (Matthäus et al., 2021). The truth-telling bid equilibrium of RO 

developers would thus be brought closer to the comparatively higher truth-telling 

equilibrium of the NPV developers. Higher bids would boost realization rates 

further, at the cost of the policy becoming more expensive. 

Whether the bid-decreasing risk premia effect or the bid-increasing truth-telling 

equilibrium effect would take precedence is determined by developer behaviour. 

If developers are predominantly of the NPV type, the risk premia effect should 

dominate, and bids will decrease, as the truth-telling equilibrium for these 

developers will remain unchanged, as the NPV equilibrium is not affected by 

price uncertainty. If the opposite is true, and most developers behave in line with 

RO theory, the truth-telling equilibrium effect will likely win out, leading to 

higher bids. 

As discussed in Linnerud et al. (2014) and Fleten et al. (2016), there are often 

contradictions and an overall lack of clarity regarding whether RE developers 

behave according to NPV or RO. This lack of clarity extends to the developer’s 

perception of their behaviour, as it was discovered that self-proclaimed NPV 

developers often exhibit behaviour more in line with RO theory. An empirical 

ratio between NPV and RO developer behaviour is therefore difficult to estimate. 

Matthäus et al. (2021) account for behaviour heterogeneity by assigning a ratio of 

RO to NPV preference to developers in their framework. However, this ratio is 

endogenously decided in their model, based on the bid levels of the auction, and 

not directly based on empirical data. As such, the behaviour ratios have internal 

validity but come without external validation. 

Any potential effects the introduction of MA-FIP would have on bid dynamics are 

not incorporated into the simulations. However, previous literature suggests 

reductions in investment risk should lead to lower bids as the required risk premia 

would decrease (Côté et al., 2022). While lower bids would be beneficial in 

reducing overall policy cost, it could adversely affect realization rates as it would 

result in lower initial immediate exercise values, making it less likely that the 

investment threshold is reached within the grace period. 
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It is important to note that the applied method and the underlying assumptions on 

which it is built have limitations. While the simulations are based on empirical 

data, it is not an infallible prediction of outcomes if a MA-FIP policy were to be 

put in place. Instead, it showcases how previous auctions could have benefited 

from MA-FIPs. As suggested by previous literature on the subject, auction 

participants may not fully conform to RO theory, and as discussed, the resulting 

bid dynamics are therefore unknown. 

Autocorrelation issues were mitigated in the calibration process by using non-

overlapping data points. However, the inherent serial correlation of an actual 

moving average process is ignored by modelling it as a memoryless GBM process 

(Dixit & Pindyck, 2012).  Instead, it only captures the volatility-reducing effect of 

MA-FIPs, as the full extent of price shocks is smoothed out by pre-shock prices. 

Despite this abstraction, the results still hold empirical relevance. Isolating the 

volatility-reducing effect of MA-FIPs gives insights into how RE project 

developers using RO valuation could respond to less erratic conditions. 

Future research can build upon the methodology and results of this study by 

incorporating more sophisticated stochastic processes for electricity prices and 

cost (Deng, 2000; Farmer & Lafond, 2016). Furthermore, multi-technology 

auctions could be considered, allowing the capture of potential effects of volatility 

reduction on inter-technology competition scenarios, thus providing more 

nuanced insights into auction design (Matthäus et al., 2021). 
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8. Conclusion 

This study has proposed and investigated a novel subsidy structure, the MA-FIP, 

using a combination of stochastic process modelling and Monte Carlo 

simulations. The utilised framework is rooted in RO theory, where the investment 

is treated as an American call option rather than a now-or-never investment. The 

increased flexibility stemming from this investment valuation framework is not 

only shown to give a competitive advantage but also leads to socially sub-optimal 

outcomes where bid-winning projects are being deferred far into the future. 

The proposed MA-FIP is found to improve RE auction outcomes by decreasing 

the revenue volatility of participating projects. Simulations show that it could be 

especially effective in cases where market conditions are poor, but can still be 

beneficial in more favourable conditions. Robustness checks show the positive 

effect becoming stronger when winning bids are low, indicating that the non-

realization boosting effect would hold as auctions grow more competitive. The 

positive effect of the MA-FIP is also shown to hold when an OU process is used 

to simulate the electricity price, further highlighting its robustness. 

As the MA-FIP does not result in additional long-term policy costs compared to 

the common FIP, it can be seen as a safety measure. The outcome of any given 

auction is not known until years later, and any tool with the potential to improve 

the effectiveness of policy in a cost-efficient way should therefore be valuable to 

policymakers. If current non-realization penalties can be reduced while still being 

effective, it should have a positive effect on developers’ risk assessment of 

auction participation. 

This thesis contributes to a subject that, to this point, has only been sparsely 

researched. It is only in recent years that RE auctions have gained popularity, and 

as such, the field is still developing. The existing literature on auction design has 

focused on de-incentivising excessive deferral of projects through penalisation. 

This study will hopefully serve as a stepping-stone to further research on the 

impact of revenue uncertainty mitigation within the context of RE auctions. 
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Popular science summary 

Renewable energy projects, such as solar power plants, are essential for reducing 

climate change. To encourage the development of these projects, governments 

often use auctions where companies bid to build renewable energy facilities at the 

lowest possible subsidy cost. However, a common issue in these auctions is that 

some winning projects are never completed. This happens because developers 

face uncertainty about future electricity prices, making projects risky or 

potentially unprofitable. 

This study examines how project uncertainty may be reduced, thus increasing the 

likelihood of projects being completed by proposing a new subsidy structure. This 

subsidy links the financial support companies receive to a stable, averaged 

electricity price rather than a highly fluctuating spot price. By doing so, it lowers 

the risk developers face, making them less likely to delay or abandon projects. 

Using simulations based on real-world data, this thesis evaluates renewable 

energy auctions from Germany and Italy. Results show that using this more stable 

subsidy may significantly improve the number of completed renewable energy 

projects, especially in auctions facing tough market conditions or intense 

competition. 
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