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Abstract  

Filarial nematode infection remains an important worldwide burden on animal and human health, 

exacerbated by widespread drug resistance and a slowness in the development of new anthelmintic 

drugs. Setaria digitata, a veterinary filarial parasite closely related to human-infective species such 

as Wuchereria bancrofti and Brugia malayi, presents a tractable model for investigating novel 

therapeutic targets. This study employed a complete bioinformatics pipeline to prioritize parasite-

specific drug targets in S. digitata with a goal of avoiding limitations found in conventional drug 

discovery and experimental inaccessibility of human filariae. 

The study integrated various computational strategies such as sub-cellular localization prediction, 

functional annotation, and structural modelling. After filtering for proteins likely to be specific to 

nematodes, a multi-criteria scoring system was developed to rank them based on predicted 

essentiality, drug accessibility, and relevance to known therapeutic target classes such as ion 

channels, microtubules, neuroreceptors, and proteases. Prediction of druggability was further 

augmented with the use of Fpocket and COACH-D for prediction and validation of ligand-binding 

sites. 

From a predicted, non-redundant proteome of 12,238 gene-derived protein sequences, subcellular 

localization analysis indicated that approximately 18% may be pharmacologically accessible, while 

functional annotation via eggNOG-mapper covered 70.2% of the dataset. Prioritization integrated 

essentiality, conservation, and accessibility, yielding 250 high-confidence targets, 88.4% of which 

were neurological proteins, recapitulating known anthelmintic mechanisms (e.g., ivermectin-

targeted glutamate-gated chloride channels). Structural modelling of 58 candidates identified 30 

high-druggability targets, including G-protein coupled receptors (GPCRs) and ion channels. 

COACH-D validation confirmed ligand-binding potential for top candidates, with SD_012157-T1 

exhibiting strong similarity to established drug targets (TM-score: 0.56, binding energy: −7.2 

kcal/mol). These results provide a foundation for experimental validation and rational antifilarial 

design, with implications for both human and veterinary parasitology. 

Keywords: Setaria digitata, Antifilarial drug targets, Comparative genomics, Subcellular 

localization, Computational drug discovery. 
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1. Introduction 

1.1 Parasitic Nematode Infections and Drug 

Resistance 

Helminths, including parasitic nematodes, cause a great health and economic 

burden both in veterinary and human medicine (Holden-Dye 2007; Fissiha & Kinde 

2021). Parasitic worm infections are among the most widely spread tropical 

diseases globally, infecting approximately two billion people worldwide, mostly in 

the tropical and subtropical countries (Holden-Dye 2007). 

Current disease control relies heavily on anthelmintic drugs, though development 

of new therapeutics has been limited by insufficient pharmaceutical investment for 

neglected tropical diseases (Holden-Dye 2007). Most anthelmintics that have been 

utilized to treat humans were first developed to be used in veterinary medicine, 

resulting in a narrow and overlapping set of drug options. 

Misuse and overuse of medicines have caused the widespread development of 

resistance, inherited loss of sensitivity to drugs, which is now reported across 

helminth-species and drug classes (Fissiha & Kinde 2021). This includes resistance 

in livestock nematodes and reports of increased resistance also in nematodes that 

infects companion animals. Alarmingly, decreased efficacy is also emerging in 

human-targeted treatments such as ivermectin (Onchocerca volvulus), praziquantel 

(Schistosoma), and benzimidazoles (Ascaris lumbricoides) (Nixon et al. 2020). 

Resistance now threatens the success of mass drug administration programs 

globally. 

1.2 Bottlenecks in Classical Drug Discovery 

Anthelmintic drug discovery faces significant bottlenecks that hinder the 

development of new drug classes, particularly for human use. These challenges 

arise from biological, technical, and economic constraints that limit the efficiency 

of both traditional and modern approaches. A primary obstacle is the scarcity of 

well-characterized and validated molecular targets in helminths, which restricts the 

ability to design selective drugs and explore novel chemical spaces for treatment 

development (Peak & Hoffmann 2011; Mengarda et al. 2023). Additionally, the 

complex biology of parasitic nematodes including intricate life cycles and 

difficulties in maintaining long-term in vitro cultures poses a barrier to establishing 

scalable, high-throughput screening systems for candidate drugs (Nixon et al. 2020; 

Zajíčková et al. 2020). These biological complexities are compounded by the urgent 

need to address widespread resistance to existing anthelmintics and the limited 

efficacy of current treatments, yet few new drug classes have reached the market in 

recent decades (Nixon et al. 2020; Jayawardene et al. 2021). 
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Further complicating drug discovery is the evolutionary similarity between 

helminths and their mammalian hosts. As eukaryotes, parasitic nematodes share 

many conserved biological pathways with humans, increasing the challenge of 

designing selective drugs that minimize host toxicity (Mengarda et al. 2023). This 

issue is exacerbated by the lack of robust, high-throughput assays to quantitatively 

measure parasite viability and phenotypic responses, leaving traditional whole-

organism screening methods as inefficient alternatives (Grant & Behm 2007; Peak 

& Hoffmann 2011). Such technical limitations are particularly problematic in 

resource-limited settings, where inadequate funding and infrastructure in endemic 

regions further slow progress (Kron et al. 2007). 

Together, these bottlenecks underscore the need for innovative strategies to 

overcome the stagnation in anthelmintic development. Advances in target 

identification, such as computational prioritization pipelines and in 

silico screening, could help bridge gaps in molecular target validation. Meanwhile, 

improved in vitro culture systems and phenotypic assays may enhance throughput 

and reproducibility. Addressing these challenges will require collaborative efforts 

to align scientific innovation with equitable resource allocation, ensuring that drug 

discovery keeps pace with the growing threat of resistance and unmet therapeutic 

needs. 

1.3 Overview of Anthelmintic Drug Mechanisms 

Anthelmintic drugs operate through mechanisms distinct from those of antibacterial 

or antiviral agents. Antibiotics and antivirals generally focus on rapid-replication 

processes, while anthelmintics generally interfere with the neuromuscular or 

metabolic activity of the parasite. For instance, ivermectin binds to glutamate-gated 

chloride channels in nematodes, leading to increased chloride ion permeability, 

hyperpolarization of nerve and muscle cells, and subsequent paralysis and death of 

the parasite (Martin 1997; Köhler 2001). Similarly, albendazole interferes with 

microtubule formation by binding to β-tubulin, impairing glucose uptake and 

depleting energy reserves, which ultimately leads to the parasite's demise (Köhler 

2001).  

These mechanisms underscore the necessity for specialized strategies in helminth 

drug development, distinct from those employed against bacteria or viruses. A 

comprehensive summary of major anthelmintic drug classes, their validated 

molecular targets, and primary mechanisms of action is presented in Table 1. 
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Table 1: Major classes of anthelmintic drugs, their validated molecular targets, and 
primary mechanisms of action (Source: Adapted from various pharmacological studies 
and reviews) 

Drug Class Example 

Drugs 

Molecular 

Target 

Mechanism of Action 

Macrocyclic 

Lactones 

Ivermectin Glutamate-gated 

chloride 

channels 

Increases chloride ion 

permeability, causing 

hyperpolarization and 

paralysis of the parasite. 

Benzimidazoles Albendazole β-tubulin Inhibits microtubule 

polymerization, disrupting 

glucose uptake and depleting 

energy stores. 

Imidazothiazoles Levamisole Nicotinic 

acetylcholine 

receptors 

Acts as an agonist, causing 

spastic paralysis of the 

parasite. 

Tetrahydropyrimi

dines 

Pyrantel 

pamoate 

Nicotinic 

acetylcholine 

receptors 

Causes depolarizing 

neuromuscular blockade, 

leading to paralysis. 

Salicylanilides Niclosamide Mitochondrial 

oxidative 

phosphorylation 

Uncouples oxidative 

phosphorylation, disrupting 

ATP production. 

 

1.4 The Case for Setaria digitata as a Model Organism 

Filarial nematodes are of significant concern in veterinary and agricultural settings. 

One such nematode, Setaria digitata, is a cattle parasite that typically does not 

cause apparent disease in its natural host (cattle). However, it can lead to lethal 

cerebrospinal nematodiasis (CSN) in incidental hosts such as goats, sheep, and 

horses (Voronin et al. 2015). CSN not only threatens animal health and welfare but 

also increases veterinary costs for farmers, imposing a significant economic burden 

in endemic regions.  

Importantly, S. digitata is morphologically, histologically, and antigenically very 

similar to human filariae W. bancrofti and B. malayi and thus is an excellent model 

for lymphatic filariasis research (Senanayake et al. 2020). Furthermore, S. 

digitata and W. bancrofti exhibit striking similarities in nucleotide sequences, gene 

content, and genome organization. The mitochondrial genome of S. 

digitata (13,839 bp) contains 36 genes, including 12 protein-coding genes, 22 

tRNA genes, and 2 genes for rRNAs, mirroring the structure seen in W. 

bancrofti and other filarial nematodes (Perumal et al. 2016). Both species display 

high AT-content (S. digitata: 75.1%; W. bancrofti: ~71.2%), and comparative 

genomics reveals that S. digitata shares 7,070 genes with W. bancrofti, with 5,087 



12 

 

genes conserved across S. digitata, W. bancrofti, Loa loa, and Brugia 

malayi (Senanayake et al. 2020). Their nuclear genomes are also closely matched 

in size (S. digitata: 89.8 Mb; W. bancrofti: 88.4 Mb), with similar GC content (S. 

digitata: 31.73%; W. bancrofti: 28.8%) (Senanayake et al. 2020). At the protein 

level, S. digitata and W. bancrofti show strong correlations in coding sequences (R 

= 0.9), and specific proteins like SXP-1 and SdNP share high amino acid residue 

similarity (e.g., 79% for SdNP) (Perumal et al. 2016). 

Phylogenetically, S. digitata clusters closely with W. bancrofti and other filarial 

nematodes, as evidenced by analyses of cox1 and 12S rDNA sequences (Perumal 

et al. 2016). A phylogenetic tree (Figure 1) places S. digitata within a clade 

containing Onchocerca and Brugia species, further supporting its evolutionary 

proximity to W. bancrofti (Senanayake et al. 2020). This genetic and functional 

resemblance underscores the utility of S. digitata as a model organism for 

studying W. bancrofti and related filarial parasites. 

In contrast to W. bancrofti, a nematode that is not possible to culture in the 

laboratory, and which is host-specific to humans, S. digitata is experimentally 

tractable (Voronin et al. 2015; Perumal et al. 2016). Having high quality draft 

genomes of S. digitata and associated species such as W. bancrofti enables 

comparative genomics to be used to reveal conserved and parasite-specific genes 

(Senanayake et al. 2020). Such analyses support the discovery of novel therapeutic 

targets and enhance understanding of filarial biology. 
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Figure 1:  Phylogenetic relationship of Setaria digitata with Wuchereria bancrofti and 
other filarial nematodes. Consensus tree based on 41 nematode genomes, including the S. 
digitata assembly (Senanayake et al. 2020). 
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1.5 Research Questions 

This study aims to answer the primary research question: 

Can bioinformatics approaches identify novel, parasite-specific drug targets in 

Setaria digitata? 

To address this, the study also investigates several secondary questions: 

1. Which essential genes or metabolic pathways in S. digitata are absent or 

significantly divergent in mammalian hosts? 

2. How do these targets compare to validated drug targets in related nematodes 

such as B. malayi and W. bancrofti? 

These questions provide the foundation for prioritizing high-confidence, selective 

drug targets with therapeutic potential. 

1.6 Knowledge Gaps and the Case for Computational 

Approaches 

Despite the high burden of filarial infections, traditional drug discovery remains 

slower due to financial disincentives and the experimental inaccessibility of key 

human parasites (Voronin et al. 2015; Perumal et al. 2016). This results in heavy 

reliance on repurposed veterinary drugs with limited diversity. 

Computational approaches provide scalable and cost-efficient alternatives. By 

leveraging omics datasets, they enable rapid screening of potential drug targets 

without requiring parasite cultivation. While bioinformatics has revolutionized 

drug discovery in oncology and immunology (Hukerikar et al. 2024), its application 

in helminthology remains limited, which is an underexplored opportunity this study 

seeks to address. 

1.7 Justification of Methods 

Genetics-based approaches such as genome-wide association studies (GWAS), 

pathway analysis, and comparative genomics have demonstrated higher clinical 

success rates (Hukerikar et al. 2024). Such strategies also lower dropouts and 

reduce late-stage failure, making them ideal for neglected diseases. 

In this study, a computational target prioritization pipeline was developed by 

integrating multi-dimensional criteria, including essentiality (gene indispensability 

for parasite survival), subcellular localization (pharmacological accessibility), 

evolutionary conservation (host-parasite divergence), and druggability (structural 

suitability for small-molecule binding). For druggability assessment, Fpocket 

(available at; https://bioserv.rpbs.univ-paris-diderot.fr/services/fpocket/) was 

selected due to its computational efficiency and robustness in predicting ligand-
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binding cavities from static protein structures, even in low-resolution models (Le 

Guilloux et al. 2009). To validate potential binding sites, COACH-D (available at; 

https://yanglab.qd.sdu.edu.cn/COACH-D/) was employed, leveraging its 

demonstrated accuracy in modelling protein-ligand interactions for neglected 

pathogens, particularly where experimental structural data are scarce (Nixon et al. 

2020). This dual approach balanced high-throughput screening (Fpocket) with 

template-based validation (COACH-D), ensuring both scalability and reliability in 

target selection. 

1.8 Summary of Approach 

The study involved proteomic filtering, functional annotation, subcellular 

localization prediction, structural modelling, and a rule-based scoring pipeline. 

Prioritized targets were filtered for parasite-specificity, essentiality, and 

accessibility. Druggability was assessed via Fpocket and COACH-D, followed by 

ligand docking to rank top candidates. 

1.9 Broader Implications 

Identifying novel, parasite-specific drug targets in S. digitata holds promise for 

accelerating anti filarial drug development, particularly for human lymphatic 

filariasis, which still affects over 120 million people globally. Improved control of 

S. digitata in livestock could also mitigate CSN and reduce economic losses in 

small ruminant farming. 
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2. Materials and Methods 

2.1 Genome Data Acquisition and Protein Sequence 

Preparation 

The S. digitata proteome file, comprising over 15,000 predicted protein sequences 

with associated functional annotations, was obtained from a high-quality draft 

genome assembly (genome completeness: CEGMA 91.5%, BUSCO 85.5%; 

Senanayake et al., 2020) available in GenBank (accession number: 

GCA_900083525.1). To construct a non-redundant proteome, only the longest 

isoform per gene was retained from the original multi-isoform dataset. This curated 

FASTA file served as the basis for all downstream analyses, as illustrated in Figure 

2. 

2.2 Subcellular Localization Prediction Using DeepLoc 

Subcellular localization of proteins was predicted using the DeepLoc 2.1 web server 

(Ødum et al. 2024). The input FASTA file was divided into 499-sequence batches 

using a custom Python script to comply with server upload limits. Outputs from 

each batch were merged to generate a comprehensive localization dataset for 12,238 

proteins. 

DeepLoc 2.1 was chosen over alternatives like WoLF PSORT and CELLO because 

of its deep learning-based architecture and superior prediction accuracy across 

diverse eukaryotic proteomes, including parasites (Ødum et al. 2024). Its ability to 

accurately predict both signal peptides and membrane-localized proteins made it 

especially suitable for identifying drug-accessible targets. In contrast, WoLF 

PSORT and CELLO rely on older machine learning methods, which are generally 

less effective for non-model eukaryotes such as S. digitata. 

2.3 Functional Annotation with eggNOG-mapper 

Functional annotations were performed using eggNOG-mapper v2.1.8 (Huerta-

Cepas et al. 2017) on the Galaxy EU platform (Afgan et al. 2018), employing the 

eggNOG database v5.0.2 with default settings. To enhance annotation specificity 

and biological relevance, the taxonomic scope was restricted to the Nematoda clade 

(NCBI TaxID: 6231). This approach minimized annotation errors from distantly 

related orthologs (Huerta-Cepas et al. 2017). 

The pipeline yielded annotations including Clusters of Orthologous Groups of 

proteins (COG) categories, Gene Ontology (GO) terms, KEGG pathways, and 

Enzyme Commission (EC) numbers in Tab-Separated Values (TSV) format, which 

was later converted to Comma-Separated Values (CSV) for integration. The choice 
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of eggNOG-mapper over tools such as InterProScan or PfamScan was driven by its 

comprehensive orthology-based framework and integrated output, enabling 

functional inference alongside domain identification. While InterProScan excels in 

domain detection, it lacks the orthology-contextualized inference required for this 

study's aims. However, functional predictions are contingent upon the accuracy of 

assignments of confirmed orthologous versus paralogous genes. Missed 

annotations may persist, especially for proteins from poorly characterized 

nematodes.  
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Figure 2: Computational pipeline integrates essentiality, accessibility, and structural 
druggability to prioritize targets. 
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2.4 Target Prioritization Pipeline 

2.4.1 Data Integration 

Three core datasets were integrated: (1) eggNOG-mapper functional annotations 

(8587 proteins), (2) DeepLoc subcellular predictions (12,238 proteins), and (3) the 

curated proteome FASTA file. Integration was performed using a Python script that 

matched protein identifiers and filtered out proteins lacking either annotation type. 

This conservative filtering was carried out in an effort to achieve completeness and 

accuracy, resulting in a high-confidence dataset for downstream scoring. However, 

functional annotation coverage remained incomplete for some proteins. Proteins 

without localization and functional data were excluded, potentially omitting 

biologically significant targets.  

2.4.2 Conservation Filtering 

Taxonomic-based conservation filtering was performed to prioritize parasite-

specific drug targets and reduce the risk of off-target effects in hosts. Proteins with 

seed orthologs linked to mammalian taxa including human (9606), mouse (10090), 

rat (10116), and vertebrates (7742) were identified using string-based pattern 

matching and excluded from the dataset. This method ensured the removal of 

proteins with clearly annotated conservation across mammals. 

2.4.3 Essentiality Scoring 

A quantitative essentiality scoring system was developed based on two primary 

biological criteria: (1) conservation of core cellular functions through COG 

categories, and (2) neurophysiological relevance to known anthelmintic 

mechanisms. The weighting scheme was empirically derived through a three-step 

process. 

First, baseline weights for COG functional categories were established by 

reviewing studies of essential genes across model nematodes (C. elegans) and 

related parasites (B. malayi). Categories directly involved in fundamental cellular 

processes (translation, DNA replication, energy production) received the highest 

weights (2.0–2.5), based on evidence that these pathways are both evolutionarily 

conserved and critical for survival (Zhang & Lin 2009; Galperin et al. 2021)(Table 

2). For example, ribosomal proteins (COG J), DNA replication machinery (COG 

D), and Gene expression regulation (COG L) were all weighted at 2.5, reflecting 

their universal essentiality across eukaryotes. While transcription (COG K) is also 

a fundamental process, it was assigned a comparatively lower weight in this model 

due to limitations in available annotation confidence and a focus on the most 

universally essential functions for initial prioritization. This decision reflects a 

methodological simplification rather than a judgment on biological importance. 

Second, therapeutic relevance was incorporated by adding supplemental weights 

(0.5-2.0 bonus points) to proteins involved in neurological processes targeted by 
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existing anthelmintics (Table 3). This adjustment was based on GO term 

annotations (e.g., GO:0015276 for glutamate-gated chloride channels) and KEGG 

pathway mapping (e.g., neuroactive ligand-receptor interactions). The magnitude 

of bonuses reflected clinical importance, with ivermectin targets receiving +2.0 and 

other neuroreceptors +1.5. 

Finally, all scores were normalized to a 0-5 scale to enable cross-category 

comparison. The weighting thresholds were validated by checking whether or not 

known essential genes in C. elegans (from WormBase; https://wormbase.org/#012-

34-5) and clinically validated anthelmintic targets consistently scored above 3.0 in 

our system. While RNAi data would provide more direct evidence of essentiality, 

the absence of such data for S. digitata necessitated this orthology-based approach, 

which has been successfully applied in other neglected pathogens (Berenstein et al. 

2016). 

Normalized Score = 5 × (Raw Score) / (Max Score) 

This systematic weighting strategy allowed us to quantitatively prioritize targets 

while accounting for both fundamental biological importance and practical 

therapeutic potential. However, this method assumes functional conservation 

across taxa. Parasitic adaptations may bypass canonical pathways, reducing the 

validity of COG-based inference is a limitation of this method. 

Table 2:COG category weights used in essentiality scoring 

COG Functional Category Weight Rationale 

J Translation 2.5 Ribosomal machinery essential for 

survival 

D Cell cycle/replication 2.5 DNA replication core components 

L Chromatin organization 2.5 Gene expression regulation 

C Energy production 2.0 Mitochondrial ATP synthesis 

E/F Amino acid/nucleotide 

metabolism 

1.8 Biosynthetic pathway enzymes 

M/G/V Structural functions 1.5 Cell envelope and cytoskeleton 

integrity 

T/U/O/K/H/I Signalling/Other 0.8–1.2 Variable roles in regulation 

P/Q/N Miscellaneous 0.2–0.5 Low-priority metabolic roles 

R/S/- General/Unknown 0.0–0.1 Uncharacterized or non-essential 

Table 3: Neurophysiological Bonus Scores 

Annotation Type Term ID Bonus Biological Relevance 

GO GO:0015276 +2.0 Glutamate-gated chloride channels (GluCl) 

GO GO:0007268 +1.2 Synaptic transmission 

GO GO:0005230/4888 +1.5 Ion/ligand receptors 

GO GO:0006811 +1.2 Ion transport 
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Annotation Type Term ID Bonus Biological Relevance 

KEGG map04080 +1.5 Neuroactive ligand-receptor interaction 

2.4.4 Target Classification 

A rule-based classifier was developed to categorize targets based on therapeutic 

relevance. Each protein was scanned for matching terms in GO, KEGG, and PFAM 

databases. Upon the first match to a class (e.g., ion channels, proteases), it was 

assigned accordingly, in a fixed priority order (ion channel = microtubule = 

neuroreceptor → protease → other). 

Therapeutic priority scores were assigned to each class based on known antifilarial 

drug mechanisms (Table 4), including macrocyclic lactones (e.g., ivermectin), 

benzimidazoles, and cysteine protease inhibitors. Annotations were validated 

through manual curation and cross-checked with entries in the WHO Model List of 

Essential Medicines (WHO 2023) and TDR Targets database. However, rule-based 

classifiers may misclassify multifunctional proteins or overlook novel druggable 

classes not captured by existing ontology terms. 

Table 4:Target Classification System for Antifilarial Drug Discovery. 

Class Gene Ontology 

Terms (GO) 

KEGG 

Orthologs 

(KO) 

PFAM Domains Therapeutic 

Association 

Priorit

y 

Score 

Ion Channel GO:0005216 

(ion channel 

activity) 

K04885 

(GluCl α-

subunit) 

PF00520 (Ion 

transport) 

Macrocyclic 

lactones 

(ivermectin/moxid

ectin) 

2.5 

GO:0022824 

(ligand-gated 

channel 

K05325 

(nAChR α-

subunit) 

PF07885 

(LGIC) 

GO:0015276 

(GluCl 

receptor) 

K05032 

(GABA 

receptor) 

PF02932 

(GluCl binding) 

Microtubule GO:0005200 

(tubulin 

binding) 

K10380 (α-

tubulin) 

PF00091 

(Tubulin) 

Benzimidazoles 

(albendazole) 

2.5 

GO:0007010 

(cytoskeleton 

organization) 

K10483 (β-

tubulin) 

PF03953 

(Tubulin C-

terminal) 

GO:0005874 

(β-tubulin) 

    

Neurorecept

or 

GO:0004888 

(transmembran

e receptor) 

K04145 (5-

HT7 

receptor) 

PF00001 (7TM 

GPCR) 

Amino-acetonitrile 

derivatives 

(monepantel) 

2.5 
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Priority scores reflect known anthelmintic mechanisms; underrepresented classes (e.g., 

proteases) may require manual reweighting. 

2.4.5 Accessibility Scoring 

Subcellular localization was inferred as indirect druggability measure, according to 

the hypothesis that extracellular and membrane proteins are more accessible to drug 

compounds, especially large or hydrophilic compounds (Rask-Andersen et al. 

2011; Punta et al. 2012). To assess this, a dual-component accessibility scoring 

system was developed, combining DeepLoc-predicted localization data with signal 

peptide information. 

Membrane affinity was quantified by weighting the presence of membrane-related 

features such as extracellular, cell membrane, transmembrane, and peripheral 

according to pharmacological relevance (Table 5). In parallel, a compartment-based 

accessibility score was assigned based on the dominant predicted localization, with 

a +0.5-bonus applied for extracellular proteins containing signal peptides (Table 6). 

Final accessibility scores were capped at 3.0 using a min() function to standardize 

values across proteins. While SignalP and TMHMM could have been used 

independently for signal peptide and transmembrane domain prediction, DeepLoc’s 

integrated predictions reduced pipeline complexity and offered comparable 

accuracy. A limitation of this approach is that subcellular localization tools may 

misclassify proteins with dual or atypical targeting signals, potentially leading to 

inaccurate accessibility estimates. 

GO:0004930 

(G-protein 

coupled 

receptor) 

K04608 

(dopamine 

receptor) 

PF00003 

(Neurotransmitt

er receptor) 

GO:0004994 

(serotonin 

receptor) 

K08042 

(octopamin

e receptor) 

PF10320 

(Neuropeptide 

receptor) 

Protease GO:0008233 

(cysteine 

peptidase) 

K01358 

(cathepsin 

L) 

PF00112 

(Peptidase 

C1A) 

Cysteine protease 

inhibitors 

(K11777) 

2 

GO:0006508 

(proteolysis) 

K01359 

(cathepsin 

B) 

PF00082 

(Subtilase) 

GO:0004197 

(caspase 

activity) 

K01365 

(legumain) 

PF01650 

(Caspase) 

Other None None None Non-prioritized 

targets 

1 
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Table 5: Membrane feature weights 

Feature Weight Biological Rationale 

Extracellular 1.5× Direct drug access without membrane penetration 

Cell membrane 1.2× Surface-exposed therapeutic targets 

Transmembrane 1.0× Integral membrane proteins 

Peripheral membrane 0.8× Temporarily membrane associated 

Table 6:Localization scoring scheme 

Compartment Base Score Bonus Condition Max Score 

Extracellular 3.0 +0.5 (if signal peptide present) 3.5 

Cell membrane 2.5 - 2.5 

Organellar* 1.0 - 1.0 

Cytosolic 0.5 - 0.5 

* Includes nucleus and mitochondria. 

2.4.6 Target Prioritization 

Candidate drug targets were ranked using a composite scoring system integrating 

five biologically relevant features (Table 7): (1) target class relevance (25%), (2) 

nematode-specific essentiality (25%), (3) presence of filarial-specific functional 

keywords (10%), (4) membrane association features (15%), and (5) subcellular 

accessibility (15%). A 2.0× bonus was applied to proteins whose functional 

annotations matched antifilarial-associated terms such as "glutamate-gated" or "β-

tubulin", identified using case-insensitive regular expressions. Combined scores 

were calculated by summing the weighted contributions of each feature. Targets 

were stratified into four tiers using quantile-based binning: Top (≥97th percentile), 

High (90–96th), Medium (75–89th), and Low (<75th). 

Protein sequences were retrieved using BioPython’s SeqIO module and matched to 

their identifiers. FASTA headers for the top 250 proteins included relevant 

metadata (e.g., combined score, target class) to facilitate downstream functional 

and structural analysis. All computations were performed in Python 3.9 using 

BioPython 1.79 and Pandas 1.3.5. Visualizations were generated using Matplotlib 

3.5.2, Seaborn 0.11.2, and Plotly 5.9.0. 

Table 7:Components of the Target Prioritization Score 

Component Weight Data Source Example High-Scoring Features 

Target class 25% Manual classification Ion channels, microtubule-associated 

proteins 

Essentiality 25% EggNOG COG/KO data Ribosomal subunits, DNA replication 

factors 

Antifilarial 

keywords 

10% Functional descriptions GABA receptors, cathepsins 
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Component Weight Data Source Example High-Scoring Features 

Membrane 

features 

15% DeepLoc predictions Extracellular domains, signal peptides 

Subcellular 

accessibility 

15% DeepLoc predictions Extracellular, cell membrane-localized 

proteins 

2.5 Structural Modelling and Druggability Analysis 

2.5.1 Structural Modelling 

To evaluate druggability, structural models were generated for a subset of high-

priority targets. AlphaFold was selected due to its high accuracy in predicting 3D 

protein structures, especially for proteins lacking close homologs in the Protein 

Data Bank (Jumper et al. 2021; https://alphafoldserver.com/). Although alternatives 

like RoseTTAFold (Baek et al. 2021; https://neurosnap.ai/service/RoseTTAFold2) 

and I-TASSER (Yang et al. 2015; https://zhanggroup.org/I-TASSER/) are faster, 

they are generally less accurate for low-sequence similarity targets. 

Due to server limitations and time constraints, a random subset of 58 proteins was 

selected from the top 250 targets to ensure coverage across target classes. Structures 

were obtained in Crystallographic Information File (CIF) format and converted to 

Protein Data Bank (PDB) format using Open Babel 3.1.1 (O’Boyle et al. 2011) for 

compatibility with downstream analysis tools. 

AlphaFold predictions do not include ligand-bound states or account for 

conformational flexibility. Pocket geometry and accessibility may be 

underrepresented in static models. 

2.5.2 Druggable Pocket Identification 

Potential binding sites were identified using Fpocket v3.1.1 (Le Guilloux et al. 

2009), which detects surface pockets based on alpha sphere geometry and evaluates 

them using physicochemical descriptors. Each pocket was scored on metrics such 

as volume, solvent-accessible surface area (SASA), hydrophobicity, polarity, and a 

heuristic druggability score. 

A custom Python script parsed Fpocket output to extract metrics and identify 

druggable pockets (score ≥0.5), a conservative threshold informed by 

benchmarking studies (Schmidtke & Barril 2010). While more sophisticated tools 

like SiteMap or PockDrug offer advanced scoring, they are either commercial or 

computationally intensive. Fpocket was chosen for its speed, reproducibility, and 

compatibility with large datasets. However, Fpocket’s heuristic scoring is based on 

datasets of human proteins and may miss allosteric or transient sites in parasitic 

proteins. 
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2.5.3 Validation with COACH-D 

To validate Fpocket predictions, top-scoring proteins were analysed using 

COACH-D (Wu et al. 2018), a meta-server that integrates ligand-binding site 

predictors such as TM-SITE and COFACTOR. COACH-D provides consensus 

predictions with confidence scores (C-scores) and template-based ligand binding 

models. 

Due to time constraints, only the three highest-priority proteins were analysed. 

While both methods generally agreed on pocket location, residue-level comparisons 

were not performed because the standalone Fpocket output lacks residue-specific 

annotations. This limitation could have been addressed using the Fpocket web 

interface, which was not utilized due to time constraints. 
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3. Results and Discussion 

The study was intended to identify and rank potential antifilarial drug targets in S. 

digitata through a bioinformatics pipeline of steps. The obtained non-redundant 

proteome Fasta file had 12238 sequences for all subsequent analyses including 

subcellular localization prediction, essentiality prediction, conservation filtering, 

and functional annotations to narrow down candidate genes. 

3.1 Subcellular localization prediction  

Protein localization prediction is important in the identification of drug targets 

rendered pharmacologically accessible. Setaria digitata DeepLoc analysis detected 

that 9.4% of the proteins are cell membrane-associated and 8.8% extracellular 

(Figure 3), and collectively they contribute ~18% of the proteome in easily 

accessible compartments to therapeutic drugs. This distribution complies with 

established drug targeting trends, whereby membrane-associated proteins 

constitute ~70% of FDA-approved drug targets (Wu et al. 2024). 

 

Figure 3:Primary subcellular localization distribution of S. digitata proteins predicted by 
DeepLoc. Values indicate percentage of total proteome (n=12,238) 

Transmembrane proteins made up 19.2% of the proteome (Figure 4) and were 

receptors and ion channels necessary for parasite neuro signalling and homeostasis 

(mean localization confidence score: 0.225). The extracellular pool of proteins 

(mean confidence: 0.196) was controlled by 16% of all signal peptide-carrying 
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proteins (Figure 5) that are short polypeptides with few amino acid residues guiding 

proteins into the secretory pathway. These effects are biologically reasonable 

because signal peptides direct either extracellular secretion or membrane 

incorporation via the endoplasmic reticulum (Wu et al. 2024). 

Interestingly, membrane/extracellular predictions were less certain than 

cytoplasmic/nuclear localizations (0.196-0.225 vs. 0.38-0.439) which reflects the 

biological complexity of secretory pathways. But uncertainty is balanced by 

supporting evidence: 62% of extracellular predictions (calculated by intersecting 

DeepLoc extracellular predictions with signal peptide-containing proteins) were 

supported by signal peptides, and transmembrane annotations correlated with 

structural domains (e.g., PF00001 for GPCRs). 

 

Figure 4: Classification of membrane-associated proteins by association type. 
Transmembrane proteins represent 19.2% of the proteome. 

 

Figure 5: Prevalence of signal peptide-containing proteins (16% of proteome), indicative 
of secretory/membrane integration pathways. 
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3.2 Functional Annotation 

The eggNOG-mapper prediction accurately annotated 8,587 proteins (70.17%) of 

the proteome of Setaria digitata (n=12,238). 7,791 proteins (63.66%) gained 

functional descriptions, offering a reliable platform for further analysis (Figure 6). 

Remarkably, 52.61% of the whole proteome (6,439 proteins) was given Gene 

Ontology (GO) term annotations, enabling rich functional characterization at 

molecular functions, biological processes, and cellular components. The lower EC 

number coverage (14.24%) reflects both true metabolic simplifications in parasites 

and annotation challenges for divergent enzymes. 

 

Figure 6:Functional annotation coverage of Setaria digitata proteome from eggNOG-
mapper analysis: Bar plot showing annotation statistics for the S. digitata proteome 
(n=12,238 proteins), including proteins with functional descriptions (63.66%), Gene 
Ontology terms (52.61%), and KEGG pathway assignments (25.46%). 

3.3 Conservation filtering 

Taxonomic restriction to Nematoda (TaxID: 6231) guided the conservation filtering 

process, prioritizing parasite-specific targets and enhancing the relevance of 

functional annotations in parasitic domains. From an input of 8,587 functionally 

annotated proteins, only two proteins were removed, resulting in 8,585 retained 

parasite-focused candidates. This minimal reduction supports the evolutionary 

distinctiveness of the S. digitata proteome and highlights the potential for selective 

drug targeting. 
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Despite the presence of 29.83% unannotated proteins, these gaps may represent 

taxon-specific innovations or limitations in current nematode databases. However, 

the filtering strategy used here relies solely on taxonomic identifiers within ortholog 

annotations and does not account for functional or structural similarities that may 

exist across species boundaries. As such, retained proteins could still share 

conserved domains or binding sites with mammalian proteins, posing potential off-

target risks. 

To address this limitation, future analyses should incorporate structural modelling, 

domain-level similarity comparisons, and binding site similarity assessments 

against mammalian proteomes. Tools such as AlphaFold can support structural 

comparisons, Pfam and InterPro can identify conserved domains, and FTSite or 

SwissTargetPrediction can be used to evaluate potential off-target interactions. This 

combined approach would help overcome the limitations of taxonomy-based 

filtering and improve confidence in identifying truly parasite-specific therapeutic 

candidates. 

3.4 Target Prioritization 

8,587 Setaria digitata proteins were prioritized with an integrated prioritization 

pipeline. After filtering out two mammalian-conserved proteins, 8,585 proteins 

remained. From this set, the top ~2% (250 proteins) were selected based on 

combined essentiality and accessibility scores. Their distribution is shown in Figure 

7, where high-priority proteins are dense in areas of high essentiality (x-axis) and 

accessibility (y-axis), clearly separated from the background proteome (blue 

contours). 

Marginal histograms illustrate that top-ranked proteins are enriched in the upper-

right quadrant, confirming co-optimization of essentiality and accessibility. Ion 

channels and neuroreceptors dominate these regions. In contrast, microtubule-

associated proteins and proteases show broader dispersion, reflecting varied 

biological roles and accessibility. Figure 6 shows this distribution. The top targets 

are coloured by functional class and cluster distinctly from the background 

proteome. Histograms show each scoring component individually, confirming the 

shift in score distributions for high-priority proteins. 
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Figure 7: Contour density plot of essentiality vs. accessibility scores for 8,585 Setaria 
digitata proteins. The top 2% of targets, selected after conservation filtering, are 
highlighted by target class. These top-ranked proteins cluster in regions of high essentiality 
and accessibility, distinct from the broader proteome distribution (blue contours). 
Marginal histograms show the distribution of scores by priority tier. Ion channels and 
neuroreceptors are enriched among top-tier candidates, while microtubule-associated 
proteins and proteases are more dispersed. 

Most prioritized targets were proteins with established function in neurological 

pathways. Ion channels (127 proteins, 50.8%) and neuroreceptors (94 proteins, 

37.6%) accounted for 88.4% of the top 250. Proteases (16 proteins, 6.4%) and 

microtubule-associated proteins (seven proteins, 2.8%) formed smaller but 

important subsets. The remaining six proteins (2.4%) were uncharacterized but had 

high accessibility scores. 

This neurological bias aligns with known anthelmintic drug mechanisms. For 

example, ivermectin targets glutamate-gated chloride channels, and monepantel 

targets nicotinic receptors. Microtubule proteins were less represented, likely due 

to penalties from conservation filtering and lower accessibility scores. Still, 

proteases, especially Astacin-domain variants passed these filters, highlighting 

their potential roles in parasite invasion or moulting. Figure 8 summarizes the 

distribution of functional classes, showing that the pipeline recapitulates known 

drug targets while surfacing new categories for investigation. 
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Figure 8: Illustrates this class distribution, highlighting the pipeline’s ability to 
recapitulate known drug targets while flagging underrepresented categories for further 
exploration. 

The pipeline recapitulated known anthelmintic targets (e.g., GluCl; GO:0015276, 

ivermectin’s target), with neuroreceptors/ion channels comprising 62% of top 

candidates. This validates our approach but also highlights a potential bias: the 10% 

Antifilarial Bonus may skew prioritization toward neurological targets. While this 

aligns with current drugs, future iterations could adjust weights to explore 

underprioritized classes (e.g., proteases), addressing resistance mechanisms. 

KEGG enrichment of the neuroactive ligand-receptor pathways also corroborates 

this pharmacological significance. Microtubule-associated proteins represented 

18% of short-listed targets, such as β-tubulin (GO:0005874), the major 

benzimidazole target. Proteases, although fewer and with a slightly lower average 

score (mean = 1.8), included druggable classes such as cysteine proteases 

(cathepsins, K01358). 

Prioritization focused on extracellular or membrane-associated proteins, aligning 

with small-molecule drug development. Due to the 30% accessibility weighting, 

89% of the top 250 were predicted to be membrane-bound or secreted, which 

reduced false positives from inaccessible intracellular targets. 

Nematode-centric COG conservation eliminates host off-target risks. However, 

class overlap, low silhouette scores, and inflated neurological scores (from the 10% 

Antifilarial_Bonus) are limitations. Reducing this bonus to 5% may balance class 

representation in future versions. 
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3.5 Structural Modelling and Druggable Pocket 

Identification 

3.5.1 High-Confidence Druggable Targets 

To identify potential high-confidence druggable targets, biophysical and structural 

features were analyzed across 58 prioritized parasite proteins using established 

thresholds adapted from Schmidtke & Barril (2010). The criteria included a 

druggability score ≥ 0.5, pocket volume > 200 Å³, and hydrophobicity > 30%, 

reflecting properties favourable for small-molecule binding. 

From this analysis, 30 proteins met all thresholds and were classified as high-

confidence druggable targets (Table 8). These proteins span a diverse range of 

functions and localizations, with several belonging to G-protein coupled receptors 

(GPCRs), ion channels, and peptidase families, which are traditionally considered 

druggable target classes. Many also feature membrane-associated or secretory 

localizations, increasing their accessibility to therapeutic compounds. 

Full physico-chemical details, including surface area, volume, and signal motifs, 

are provided for each of the 30 candidates in Appendix 1, supporting their potential 

for selective drug targeting in parasitic nematodes. (Table 10). These attributes 

offer important insights into the druggability of each target, with membrane-bound 

or extracellular proteins and those with significant hydrophobic surface areas being 

particularly favourable for small-molecule interaction. The combination of 

functional annotations with structural parameters supports their prioritization for 

downstream validation and drug development efforts.  

Table 8: Druggability scores of highest druggable pocket of each protein and their 
predicted annotation description. 

Protein_ID Description druggability 

SD_012157-T1 Belongs to the ligand-gated ion channel (TC 1.A.9) 

family 

0.999 

SD_010429-T1 calcium ion transmembrane transport 0.999 

SD_005154-T1 Sel1-like repeats. 0.998 

SD_007973-T1 Involved in mitotic G2 DNA damage checkpoint 0.994 

SD_011687-T1 Belongs to the G-protein coupled receptor 3 family 0.988 

SD_005912-T2 Neurotransmitter-gated ion-channel ligand binding 

domain 

0.979 

SD_003585-T1 Ion transport protein 0.969 

SD_006494-T1 Belongs to the peptidase S1 family 0.965 

SD_003757-T1 Belongs to the G-protein coupled receptor Fz Smo 

family 

0.964 

SD_003781-T1 gamma-aminobutyric acid type B receptor subunit 0.952 

SD_003518-T1 Zinc-dependent metalloprotease 0.942 

SD_005355-T1 Calmodulin binding domain 0.937 

SD_007952-T1 Periplasmic binding protein 0.936 
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SD_005285-T1 Receptor family ligand binding region 0.897 

SD_012004-T1 Nine Cysteines Domain of family 3 GPCR 0.839 

SD_006891-T1 response to paraquat 0.816 

SD_005555-T1 Belongs to the G-protein coupled receptor 1 family 0.814 

SD_005689-T1 Belongs to the two pore domain potassium channel (TC 

1.A.1.8) family 

0.812 

SD_003610-T1 Furin-like cysteine rich region 0.802 

SD_007278-T1 Trypsin-like serine protease 0.802 

SD_002811-T1 FATC 0.783 

SD_009137-T1 Guanine nucleotide-binding proteins (G proteins)  0.76 

SD_009172-T1 7 transmembrane sweet-taste receptor of 3 GCPR 0.756 

SD_011105-T1 defecation 0.736 

SD_003562-T3 Zinc-dependent metalloprotease 0.685 

SD_007965-T1 Serpentine type 7TM GPCR chemoreceptor Srx 0.676 

SD_010919-T1 Receptor protein serine threonine kinase 0.604 

SD_009717-T1 acetylcholine-gated cation-selective channel activity 0.548 

SD_000580-T1 Kringle domain 0.516 

SD_001145-T1 Belongs to the peptidase S8 family 0.506 

 

3.5.2 Structural and Functional Correlations 

A. Target Class Distribution 

Ion channels and GPCRs showed the highest mean druggability scores (0.89 ± 

0.08), likely due to deep, hydrophobic pockets conducive to ligand binding (Figure 

10). Proteases scored lower (0.82 ± 0.12), possibly due to variability in active site 

polarity. 

 

Figure 9: Boxplot of druggability scores across target classes 
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B. Pocket Volume and Hydrophobicity 

Druggability correlated positively with pocket volume (Pearson’s r = 0.67, p < 

0.01). Proteins with volumes >1000 Å³ typically scored higher (Figure 10). Highly 

hydrophobic pockets (e.g., SD_012157-T1, SD_003585-T1; >50%) were mostly 

membrane-associated, suggesting localization in lipid-rich regions. 

 

Figure 10: Scatter plot of pocket volume vs. druggability, coloured by hydrophobicity 

3.5.3 Validation Against Known Druggable Families 

Several high-ranking targets aligned with well-characterized druggable protein 

families, reinforcing the validity of the prioritization strategy. For example, 

SD_012157-T1 is a predicted ligand-gated ion channel with structural features 

resembling known drug targets such as 5-HT₃ receptors. Similarly, SD_011687-T1 

shares homology with Class A G-protein coupled receptors (GPCRs), which 

constitute approximately 35% of FDA-approved drug targets (Sriram & Insel 

2018). 

While these associations are promising, experimental validation is essential to 

confirm the functional and pharmacological relevance of these candidate proteins. 

This could involve expression profiling to verify protein expression patterns in 

relevant life stages or tissues, ligand-binding assays to test affinity and specificity 

for known or novel compounds, and inhibition studies to evaluate the physiological 

impact of target blockade in parasite systems. Together, these approaches would 

confirm the druggability of the predicted targets and provide critical evidence for 

their advancement into functional screens and drug development pipelines. 
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3.5.4 COACH-D Validation of Top Druggable Targets 

To evaluate ligand-binding potential, COACH-D was used to assess the top three 

structurally modelled targets. Of these, SD_012157-T1 emerged as the most 

promising candidate, exhibiting a TM-score of 0.56 (indicating reliable structural 

similarity), a favourable binding energy of -7.2 kcal/mol, and a strong match to 

ivermectin-binding residues, based on the 3RI5 template (Table 9). The predicted 

interacting residues (310–312, 315–316, 318–319) were in the extracellular domain 

(Figure 12), reinforcing the protein's accessibility and suitability for small-molecule 

targeting. 

SD_010429-T1, a predicted calcium ion transporter, showed moderate binding 

potential (C-score 0.50, energy -4.3 kcal/mol) using the 8T0E template. Binding 

residues (473–479, 508) were localized within a transmembrane region (Figure 13), 

suggesting suitability for targeting with ion channel modulators. While less 

compelling than SD_012157-T1, it remains a viable candidate for targeted 

screening. 

By contrast, SD_005154-T1 yielded weak structural evidence (C-score 0.23, no 

binding energy). Predicted residues (324, 327–328, 354–361) mapped to a Sel1-

like repeat region (Figure 14), but confidence was limited due to poor template 

coverage. This case underscores the limitations of template-dependent methods for 

poorly characterized proteins. 

Importantly, SD_012157-T1 corresponds to a known target of ivermectin, a widely 

used macrocyclic lactone. This alignment with an established drug mechanism not 

only underscores the biological relevance of the protein but also validates the 

predictive strength of the pipeline by successfully recovering a clinically proven 

target from in silico prioritization. Such results enhance confidence in the pipeline’s 

ability to identify both established and novel antifilarial drug targets, particularly in 

the context of neglected tropical disease (NTD) research where experimental 

validation is often limited. 

Table 9: Summary of COACH-D predicted ligand-binding interactions for top S. digitata 
targets. 

Target SD_012157-T1 SD_010429-T1 SD_005154-T1 

Best C-score 0.56 0.50 0.23 

Template (PDB) 3RI5 (Ivermectin) 8T0E 8RST 

Ligand Type Ivermectin Inhibitor Small molecule 

Binding Energy -7.2 kcal/mol -4.3 kcal/mol N/A 

Key Features Extracellular, drug-

accessible 

Transmembrane site Poor template support 
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Figure 11: Predicted ivermectin-binding site on SD_012157-T1; residues 310–312, 315–
316, 318–319. 

 

Figure 12: Inhibitor-binding pocket on SD_010429-T1; residues 473–479, 508. 
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Figure 13: Predicted binding site on SD_005154-T1; residues 324, 327–328, 354–361. 

3.5.5 Methodological Reflection 

Fpocket was chosen because it is fast, scalable, and compatible with AlphaFold 

models, making it a convenient tool for high-throughput screening. However, since 

it operates on static structural models, it may fail to capture dynamic or post-

translationally modified binding sites, particularly in membrane proteins. 

Moreover, its hydrophobicity-based scoring may underestimate polar or solvent-

accessible sites, potentially missing valuable drug targets. 

Alternative tools like DoGSiteScorer (Volkamer et al. 2012; 

https://proteins.plus/help/dogsite) and PockDrug (Hussein et al. 2015; 

https://pockdrug.rpbs.univ-paris-diderot.fr/cgi-bin/index.py?page=home) offer 

greater sensitivity to polar or shallow pockets and integrate pharmacophore 

descriptors but need high-resolution structures or molecular dynamics (MD) 

simulations, which are needs required beyond this study. Fpocket was still best for 

the current pipeline even with these constraints. Subsequent versions can utilize the 

introduction of MD-based improvements or supportive pocket prediction tools to 

enhance the resolution of challenging targets such as SD_005154-T1. 
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3.6 Strengths and Limitations of the Pipeline 

This research offers an efficient, integrative pipeline for Setaria digitata antifilarial 

target prioritization through evolutionary conservation, functional annotation, 

subcellular localization, and structural druggability predictions. Its multi-layered 

filtering strategy helped minimize false positive targets and emphasized 

biologically accessible targets. The use of advanced tools such as AlphaFold and 

DeepLoc 2.1 strengthened prediction reliability, particularly in a non-model 

organism with limited annotation. The emphasis on druggability and repurposing 

potential further enhanced the pipeline’s cost-efficiency and applicability to 

neglected tropical disease (NTD) research.  

Despite these advantages, certain shortcomings were discovered. Structural 

analyses and binding site analyses were performed of only 58 out of the 250 

shortlisted targets due to time and computational limitations, limiting the scope of 

downstream validation. The use of static AlphaFold models may have missed 

flexible or cryptic binding pockets, and COACH-D’s reliance on template 

availability limited its accuracy for less-characterized proteins like SD_005154-T1. 

Finally, all findings are computational, where experimental validation remains 

essential to confirm the biological and pharmacological relevance of the 

predictions. 

3.7 Implications 

This pipeline offers a scalable and efficient platform for drug target discovery in 

non-model parasitic species. By integrating structural, evolutionary, and 

pharmacological features, it facilitates rational target prioritization even in 

organisms with minimal genomic annotation. Structural validation of existing and 

available targets like SD_012157-T1 is promising to direct structure-based drug 

design and repurposing efforts. Notably, the pipeline’s modular design and use of 

publicly available tools make it adaptable for other neglected parasites, aligning 

with the budgetary and logistical constraints common to NTD research. As such, it 

is a suitable model for early-stage drug discovery process in underexplored 

pathogens. 

3.8 Future Directions 

To maximize the translational impact of this study, future research should extend 

AlphaFold-based structural modelling and binding site prediction to the remaining 

192 candidate targets. Incorporating molecular dynamics simulations or ensemble 

docking (docking against multiple protein conformations to account for flexibility) 

may help capture binding pocket flexibility more accurately, particularly in 

membrane-associated proteins. Experimental validation of top-ranking targets will 

require expression profiling, ligand-binding assays, and inhibition studies to 

confirm biological relevance and druggability. Additionally, multi-omics 

integration, stratified by parasite life stages or host conditions, could further refine 
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target selection. Finally, drug testing efforts should include mechanistic validation 

of SD_012157-T1, given its similarity to known ivermectin-binding ion channels, 

to confirm its role in macrocyclic lactone sensitivity. In contrast, SD_010429-T1, 

associated with calcium ion transport, may represent a novel candidate for 

repurposing screens with calcium channel modulators, potentially expanding 

available treatment options. 

3.9 Data and Code Availability 

All input files, custom scripts, and analysis results generated during this study will 

be archived on Zenodo upon publication, following final approval by the 

supervisory team. In the meantime, all data and code are available from the author 

upon reasonable request. 
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4. Conclusion 

This study developed a robust in silico pipeline to identify and prioritize druggable 

proteins in Setaria digitata, utilizing a resource-efficient, multi-criteria approach 

tailored for neglected disease research. By integrating evolutionary conservation, 

functional annotation, subcellular localization, and structural druggability 

predictions, the pipeline effectively filtered high-confidence targets, notably 

SD_012157-T1, a ligand-gated ion channel with strong similarity to known 

anthelmintic targets such as ivermectin-binding glutamate-gated chloride channels. 

 

Although structural validation was limited by computational constraints, the 

pipeline addressed key challenges in helminth drug discovery, including the 

scarcity of validated druggable targets and host-parasite selectivity concerns. 

Taxonomic filtering was used to deprioritize proteins with close vertebrate 

homologs, thereby favouring candidates likely to be parasite restricted. The 

emphasis on membrane-associated proteins (e.g., neuroreceptors and ion channels) 

aligns with known mechanisms of existing anthelmintics and highlights 

underexplored target classes like proteases. 

Overall, this work demonstrates the utility and strength of computational tools in 

early-stage anthelmintic discovery, especially for neglected pathogens. By bridging 

bioinformatics with experimental parasitology, the pipeline offers a scalable 

framework to accelerate the development of novel antifilarial therapies, addressing 

urgent needs in both human and veterinary medicine. 
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Popular science summary 

Finding New Methods of Combating Parasitic Worms 

Parasitic worms, known as helminths, infect billions of people and animals 

worldwide and cause serious health complications and economic loss, particularly 

in the tropics. Although not many drugs have been found for the treatment of such 

infections, the worms are gaining resistance and leaving us with fewer ways to fight 

them. 

Developing new drugs is a slow, expensive process, and it’s especially difficult for 

parasites. These worms are hard to grow in the laboratory, and many of their 

biological processes are similar to those of their human or animal hosts. This means 

that finding a drug that kills the worm without harming the host is a real challenge. 

This project tackled the problem by studying Setaria digitata, a parasitic worm that 

infects cattle but can also cause fatal disease in sheep, goats, and horses. S. digitata 

is biologically very similar to the worms that infect people and cause lymphatic 

filariasis, a debilitating disease that infects over 120 million individuals. Since S. 

digitata is easier to study than its human-infecting relatives, it is a perfect model in 

which to identify new drug targets. 

Instead of traditional laboratory experiments, this project used cutting-edge 

computer tools to analyse the worm’s genes and proteins. The aim was to identify 

proteins that are essential for the worm’s survival and may represent promising drug 

targets. While the analysis prioritized proteins less likely to be conserved in 

mammals based on available orthology data, direct experimental validation of host-

parasite specificity was not performed. Nonetheless, these proteins are valuable 

candidates for further study due to their predicted roles in parasite biology and 

accessibility to drug compounds. 

Using specialised software, I predicted where these proteins are localized within 

the worm’s cells, their likely functions, and how essential they may be for survival. 

I also evaluated their accessibility to drug molecules based on cellular location and 

structural features. While the analysis included comparisons to proteins in other 

parasites, direct confirmation of uniqueness to S. digitata or absence in mammalian 

hosts was beyond the scope of this study. 

The study successfully identified several high-priority targets with properties 

consistent with druggability, offering a promising foundation for developing new 

treatments against filarial infections in animals and potentially humans. By 

applying computational tools to investigate parasite biology, this work supports a 

faster, more cost-effective pathway to discovering safer treatments for these 

neglected diseases. 
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5. Appendix 1 

Table 10: Summary of subcellular localizations, signal motifs, total solvent-accessible 
surface area (SASA), molecular volume, and hydrophobicity for the 30 proteins identified 
as high-confidence druggable targets. 

Protein_ID Localization

s 

Signals total_

sasa 

volu

me 

hydrop

hobicity 

SD_012157-T1 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

696.6 2005.

1 

85.9 

SD_010429-T1 Cell 

membrane 

Transmembrane 

domain 

312.5 1157.

4 

41.5 

SD_005154-T1 Endoplasmic 

reticulum 

Signal 

peptide|Transmembran

e domain 

327.5 1052.

1 

32.8 

SD_007973-T1 Cytoplasm|N

ucleus 

Nuclear export signal 471.7 1841.

7 

73.8 

SD_011687-T1 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

206.7 745.6 30.9 

SD_005912-T2 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

265.9 796.4 51.8 

SD_003585-T1 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

684.6 2228.

9 

67.2 

SD_006494-T1 Extracellular Signal peptide 386.3 1159.

1 

32.8 

SD_003757-T1 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

189.9 698.7 50.3 

SD_003781-T1 Cell 

membrane 

Transmembrane 

domain 

205.3 603.9 32.4 

SD_003518-T1 Extracellular Signal peptide 244.1 682.3 55.8 

SD_005355-T1 Cell 

membrane 

Transmembrane 

domain 

315.0 1106.

8 

57.8 

SD_007952-T1 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

252.1 843.8 55.6 
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SD_005285-T1 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

162.2 492.8 59.3 

SD_012004-T1 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

135.6 625.9 37.0 

SD_006891-T1 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

153.9 521.0 39.4 

SD_005555-T1 Cell 

membrane 

Transmembrane 

domain 

243.4 905.3 48.5 

SD_005689-T1 Cell 

membrane 

Transmembrane 

domain 

298.2 864.8 57.7 

SD_003610-T1 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

303.3 962.5 39.1 

SD_007278-T1 Extracellular Signal peptide 177.0 568.6 35.8 

SD_002811-T1 Cytoplasm|N

ucleus 

Nuclear export signal 267.0 1041.

4 

51.1 

SD_009137-T1 Cytoplasm|C

ell membrane 

 

248.7 674.1 38.2 

SD_009172-T1 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

278.9 1172.

2 

38.6 

SD_011105-T1 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

228.9 803.3 41.0 

SD_003562-T3 Extracellular Signal peptide 130.1 415.8 34.2 

SD_007965-T1 Cell 

membrane 

Transmembrane 

domain 

102.5 433.9 36.8 

SD_010919-T1 Cell 

membrane|L

ysosome/Vac

uole 

Signal 

peptide|Transmembran

e domain 

190.7 791.5 37.5 

SD_009717-T1 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

98.2 359.3 43.0 

SD_000580-T1 Cell 

membrane 

Signal 

peptide|Transmembran

e domain 

938.1 3272.

4 

61.1 

SD_001145-T1 Extracellular Signal peptide 245.4 857.1 30.8 
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