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Abstract  

Methane emissions from cattle, influenced by the interaction between their genetics and the rumen 

microbiome, pose a significant environmental challenge. This study developed a computational 

model to investigate how genetic and microbial factors affect methane production. Utilizing 

AlphaSimR, we simulated methane traits under different additive genetic variances and microbial 

methane effects. We employed Bayesian models to predict methane emissions and to assess 

heritability and microbiability across various scenarios. 

 

The results indicated that lower microbial methane production effects consistently led to reduced 

emissions, and heritability values increased with increasing genetic variance. These simulated 

results emphasize the host genetics' stronger impact on high additive variance, while microbiability 

values decreased under these conditions. The model achieved high prediction accuracy, ranging 

from 85% to 91%, and demonstrated that combining genomic and microbial selection effectively 

lowered methane emissions over ten generations. 

 

These findings provide valuable insights for breeding programs to minimize methane emissions and 

address environmental sustainability in livestock production. 

Keywords: Rumen Microbiome, AlphaSim R, Heritability, Microbiability, Additive Variance, 

Genomic Selection, Methane Emission 
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1. Introduction 

Enteric methane, excreted by livestock, significantly contributes to greenhouse gas 

emissions and causes global warming. Methane emission in ruminants is a complex 

phenomenon involving host genotype, rumen microbiome, and animal feed 

(Mahala et al. 2022). In 2017, the Animal Production and Health Division of the 

Food and Agriculture Organization (FAO) reported that cattle are responsible for 

about two-thirds of livestock methane emissions, mainly due to enteric 

fermentation, accounting for roughly 30% of the world's total methane emissions 

(AGA 2017). Methane is the second most prevalent greenhouse gas after carbon 

dioxide, and it is more effective at trapping heat (Milich 1999).  The level of 

methane is rising by about 1% each year (Heilig 1994), contributing to climate 

change, such as rising sea levels, higher temperatures, unpredictable rainfall, heat 

waves, and severe droughts. Therefore, finding ways to reduce methane emissions 

is crucial. 

 

Rumen microbes produce methane as a byproduct of digestion in ruminant animals, 

leading to an energy loss that impacts both the animal’s efficiency and the 

environment. Methanogens, i.e., organisms emitting methane such as 

Methanobrevibacter ruminantium, which is dominant in the cattle rumen, 

Methanobacterium formicicum, and Methanosarcina barkeri play a key role in 

maintaining efficient fermentation in the rumen but result in an energy loss of 2–

12% as methane emissions (Khobragade et al. 2024). Broucek also highlights in his 

study that the methane generated through the microbial fermentation of hydrolyzed 

carbohydrates represents an energy loss for the host, with the extent of this loss 

influenced by factors such as  energy consumption, feed quality, rumen microbes, 

growth rate, host genetics, and the environmental conditions (Broucek 2014).  

 

Several researchers hypothesized that methane emission variation in cows is 

determined by animal genomics and the rumen microbiome (Difford et al. 2018; 

Wallace et al. 2019). Difford and colleagues also hypothesized that the rumen 

microbiome composition is influenced by host genetics. Cattle additive genetics 

impact only 12% of archaeal OTU (Operational taxonomic unit) abundances, which 

means that cow genetics play a role in determining the composition and abundance 

of these microbes (Difford et al. 2018). 

 

It is also important to understand how specific microbial populations contribute to 

methane emissions in livestock as it can help to develop strategies to reduce 

livestock methane production. Ramayo‐Caldas and colleagues identified 86 

hydrogen-producing bacteria in cattle, which accounts for 24% of methane 

variation, as well as the host's genetics contributing around 14%, which explains 
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the interaction between host genetics and rumen microbiome. This gives an insight 

into how microbial markers can identify high- or low-emitting cattle (Ramayo‐

Caldas et al. 2020). Moreover, the genetic markers in cattle accounted for 7-12% 

of the variation in the abundance of bacteria and archaea, including methanogens 

like Methanobrevibacter and Methanosphaera, which showed a strong genetic 

influence (Zhang et al. 2020). 

 

Understanding the interaction between host genome and microbiome information 

will improve the ability to predict selection for a trait, such as methane emission 

from cattle. However, identifying the relationship between the host genome and 

microbiome is challenging due to highly variable microbial data, estimating 

microbiability, which refers to the trait variance due to microbes, and the complex 

interaction between microbiome, phenotype, and genotype (Pérez-Enciso et al. 

2021). Pérez-Enciso and colleagues overcame these challenges with a novel 

simulation strategy based on real microbiome and genotype data, and they used 

Bayesian RKHS and Bayes C to estimate variance components by modeling the 

contributions of genetic, microbial, and interaction effects. Their results suggest 

that combining microbiome data with genomic data could increase the prediction 

accuracy of the phenotype by about 50%, but there are difficulties regarding 

collecting consistent microbiome data over time and identifying specific causative 

microbes (Pérez-Enciso et al. 2021).  

 

To better understand how the rumen microbiome influences methane emissions, it 

is essential first to describe some key genetic terms. From the perspective of 

quantitative genetics, conventional heritability describes the proportion of 

phenotypic variance, which is explained by the additive genetic effect of a 

population, and microbiome heritability is a variation in microbial abundance that 

is attributable to the host’s genetics (Opstal & Bordenstein 2015).  The effect of the 

microbiome on a trait can be quantified by estimating the microbiability, which is 

the proportion of phenotypic variance of the trait that is explained by between-

animal differences in the microbial community (Aliakbari et al. 2022). 

 

The aims of this study are to: 

1. Develop a simulation model to evaluate the effectiveness of selecting 

cattle for reduced methane emissions, a trait influenced by the abundance 

of different rumen microbes. 

2. Measure the accuracy of predictions, heritability, and microbiability 

values depending on different levels of additive genetic variance for 

methane emissions and the microbial methane effect. 
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3. Simulate the long-term response to selection for methane emissions over 

multiple generations for different scenarios of additive variance and 

microbial methane effect. 

 

To achieve these objectives, AlphaSim R will be utilized to simulate a host 

population and model methane emissions as influenced by both host genetics and 

microbial factors. The methane trait will be modelled with a heritability of 0.4, 

while the Operational Taxonomic Units (OTUs) will have varying heritabilities 

specified for each OTU set within the simulation. For example, some OTUs may 

receive higher heritabilities, such as 0.725 for certain groups, while others may have 

lower heritabilities, such as 0.087.  

 

A microbial matrix will represent the abundance of OTUs across individuals. This 

microbial matrix will be normalized to ensure that the relative abundance of each 

OTU is accurately accounted for in every individual. The normalized microbial data 

will then be combined with transformed phenotypic data that reflect the genetic and 

environmental effects on microbial composition. 

 

The microbial methane effect will be simulated under three different variance 

scenarios: low, medium, and high. These scenarios will represent different levels 

of microbial influence on methane emissions. Different levels of genetic variance 

will also be applied to the methane trait to capture varying degrees of genetic 

influence on methane emissions. Following this, the methane trait will be simulated 

for these levels of additive variance under different microbial methane effect 

scenarios. 

 

The BGLR method will then be employed to estimate genomic prediction. 

Subsequently, the response to selection will be simulated across several generations 

by selecting predicted phenotypes from the Bayesian method in offspring. 

Individuals with the most favourable methane phenotypes in each generation will 

be selected to form the next generation. This process will allow for the long-term 

tracking of the response to selection. 

 

After running this simulation, we expect to gain insights into the influence of host 

genetics and the rumen microbiome on methane emissions. The analysis of varying 

genetic variances for the methane trait and the three microbial methane effect 

scenarios (low, medium, and high variance) will enhance our understanding of how 

genetic and microbial factors drive methane emissions and effect heritability and 

microbiability values, which ultimately can help design a breeding program to 

reduce methane emissions in cattle. 
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2. Literature Review 

2.1 Methane production in cattle  

Enteric methane is a colorless and odorless gas produced as a byproduct of 

fermentation in the digestive tract of ruminants. As described by Murray and 

colleagues, 87% of methane is produced in the rumen, and the remaining 13% is 

produced in the hindgut during digestion. Most of the methane is released through 

burping, and the remaining is generated in the large intestine and is mostly 

evacuated through the lungs and also a smaller amount through the anus (Murray 

et al. 1976).  

 

No single microbial species is responsible for the complete degradation of the 

substances in the rumen. In contrast, a complex plethora of microorganisms 

participates in complete substrate catabolism into the end products of fermentation. 

 

2.2 Rumen microbial community  

The rumen microbiota significantly affects the ruminants' health and digestive 

efficiency. All three domains of life, which include Bacteria, Archaea, and 

Eukaryotes, are present in the rumen (Woese et al. 1990). The rumen microbiome 

is primarily composed of bacteria, which are considered the most stable species 

across various ruminant species. They play a symbiotic role by providing essential 

metabolic functions for the host protozoa, which vary more widely in presence and 

abundance, and archaea are the key players in contributing to methane production 

(Wallace et al. 2019). 

 

All known methanogens belong to the archaea kingdom. Methanogens are 

classified into seven orders: Methanobacteriales, Methanococcales, 

Methanomicrobiales, Methanosarcinales, Methanocellales, Methanopyrales, and 

Methanomassiliicoccales (Vanwonterghem et al. 2016). Methanogenic microbes 

belong to the phylum Euryarchaeota, which includes diverse groups of genera. The 

most dominant genus is Methanobrevibacter, which includes M. ruminantium, M. 

smithii, and M. gottschalkii. Another genus, Methanosphaera, includes species like 

M. stadtmanae and M. cuniculi (Aryee et al. 2023). The genus 

Methanomassiliicoccus and Methanospirillum are also found within the order 

Methanomicrobiales in the rumen. This includes species such as M. hungatei and 

M. lacunae, which contribute to the community's methane production (Aryee et al. 

2023). In conclusion, these Euryarchaeotic methanogens form a diverse ruminal 

ecosystem contributing to methane emissions. 
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2.3 Heritability of methane emission  

 

In animal breeding, this genetic parameter predicts the response to selection, 

representing the difference in phenotypic means between a population and its 

offspring. The values of heritability range from 0 to 1; the higher the value, the 

higher the proportion of the variation in phenotype is explained by genetic variance, 

which means faster response in the targeted trait of interest  (Oldenbroek & Waaij 

2014). Methane emission is a heritable trait. One of the estimates of methane 

emission heritability is 0.21 with a standard error of 0.06 obtained by Lassen and 

Løvendahl from Holstein dairy cows (Lassen & Løvendahl 2016). Similar 

heritability estimates like 0.23  were also reported by (Manzanilla-Pech et al. 2016) 

and 0.19±0.09 by (Difford et al. 2018). Kamalanathan and colleagues found 

methane emission heritability estimates of 0.16 for methane production (MeP), 0.27 

for methane yield (MeY), and 0.21 for methane intensity (MeI) (Kamalanathan et 

al. 2023). In another study, the heritability estimates for methane emissions in cattle 

ranged from 0.18 to 0.33, indicating a moderate genetic influence on methane traits 

(Van Breukelen et al. 2023). The average estimates of heritability for methane 

emissions ranged from 0.05 to 0.45, as reviewed by (Lassen & Difford 2020).  

 

Methanogenic archaea produce methane, as described by Hook and colleagues 

(Hook et al. 2010). Methane production is a heritable trait, so the composition of 

methanogenic archaea and associated microbiomes regulating methane emissions 

is also heritable. 

 

2.4 Microbiome heritability  

 

One of the studies by Weimer and colleagues found that a cow's ruminal bacterial 

community and physiological traits, like pH and volatile fatty acid concentration, 

quickly restored even after the total exchange of rumen content, showing strong 

host specificity (Weimer et al. 2010). In another study, the host can return the rumen 

composition to its original state even after approximately 95% rumen content 

exchange between cows (Weimer et al. 2017). Furthermore, Roehe and colleagues 

have found that the cow’s genetics can influence the rumen microbe and the amount 

of methane produced by rumen microbes, suggesting that the host’s genetics play a 

key role in regulating the trait (Roehe et al. 2016). Moreover, Difford and 

colleagues found heritabilities for the relative abundance of rumen bacteria and 

rumen archaea, reaching 0.4 and 0.3, respectively (Difford et al. 2018). Several 
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studies reported high heritability estimates for ruminal microorganisms; for 

instance, (Sasson et al. 2017) reported heritability estimates larger than 0.7 for 22 

bacterial Operational Taxonomic Units (OTU) in dairy cattle. A study done in 2020 

used a genome-wide association study to estimate the heritability of the rumen 

microbiome in cattle and identified that maximum heritability estimates for OTU, 

family, and phylum levels were 0.820, 0.722, and 0.722, respectively (Abbas et al. 

2020). They also found that the taxa belonging to phyla Euryarchaeota and family 

Methanobacteriaceae had heritability estimates greater than 0.5 (Abbas et al. 

2020). In a recent study, the heritability estimates for the microbiome's functional 

capacity, including methane metabolism and ribosomal synthesis, range from 0.13 

to 0.61, and the heritability of the relative abundance of individual rumen microbes 

ranges from 0.08 to 0.48 (Worku 2024).  

 

2.5 Host genetics and microbial community  

 

A recent study has also emphasized the important connection between the 

composition of the bacteria in the rumen and the amount of methane released, 

finding that certain types of microbes, such as Succinivibrionaceae and 

Methanosphaera, contribute as much as 24% to the variation in methane 

production, while host genetics account for about 14% of the variation (Ramayo‐

Caldas et al. 2020). Using a linear mixed model approach, Difford and colleagues 

found that the combined microbial abundance and additive genetic effects are 

responsible for almost 34% of the total phenotypic variation in CH4 emissions 

(Difford et al. 2018). A study by Saborío-Montero and colleagues focused on the 

role of certain methanogenic microorganisms like Methanobrevibacter and 

Methanosphaera, which contribute significantly to methane production, accounting 

for up to 40% of the variation between individual cattle. These researchers found a 

strong genetic link between the rumen's host and microbial community, with 

Methanobrevibacter and Methanosphaera showing positive correlations with 

methane emissions (Saborío-Montero et al. 2021). 

 

2.6 Microbiability  

 

Microbiability is a useful quantitative measurement that quantifies the proportion 

of phenotypic variance in a trait attributed to differences in the microbial 

community between animals. It was first proposed by Ross and colleagues using a 

microbial relationship matrix from meta-genomics sequencing data and predicting 

the prediction accuracy of 0.466 for the methane emission phenotype of cows (Ross 
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et al. 2013). In another study, the proportion of variation in methane emission by 

rumen microbiome in cows is estimated at 0.15 ± 0.08 (estimate ± S.E) using a 

mixed model approach (Difford et al. 2018). 

 

2.7 Bayesian Generalized Linear Regression  

 

This type of regression is common in genetic studies where phenotypes are 

regressed on many predictors. Regressing such traits, which are influenced by many 

predictor variables, poses challenges such as the high dimensionality of predictors 

and interactions between genetic and environmental factors (Pérez & De Los 

Campos 2014). Bayesian methods are particularly effective in this domain, 

combining shrinkage, variable selection, and flexible modeling to achieve reliable 

predictions and inference (de los Campos et al. 2013). As Pérez and De Los Campos 

explained, the Bayesian framework provides a consistent and unified approach to 

these challenges, offering a range of parametric and semi-parametric models (Pérez 

& De Los Campos 2014). Parametric methods assume a predefined model like a 

normal distribution, semiparametric methods combine fixed models with flexible 

components based on data, and nonparametric methods impose no assumptions 

about the data distribution; each requires different levels of prior knowledge 

(Howard et al. 2014).  

 

The BGLR package, developed by Paulino Pérez and Gustavo de los Campos, is an 

essential tool for genomic prediction that implements various Bayesian regression 

models (Pérez & De Los Campos 2014). One is Bayesian Ridge Regression (BRR), 

which shrinks coefficients uniformly and makes it well-suited for studies where all 

predictors contribute equally. Another model, Bayesian LASSO (BL), employs 

double-exponential priors that enable size-dependent shrinkage, allowing more 

significant effects to stand out while controlling smaller ones. Furthermore, 

Reproducing Kernel Hilbert Spaces (RKHS) Regression extends this framework to 

semi-parametric modeling, using Gaussian processes to capture non-linear 

relationships. Moreover, Perez and Paulino described that BayesA uses scaled-t 

priors to induce more significant shrinkage on more minor effects while 

accommodating markers with larger variances, including hyperparameters such as 

degrees of freedom and scale, which uses Gamma distributions to balance 

flexibility and precision (Perez n.d.). In contrast, BayesC introduces a mixture 

model that combines a point mass at zero for null effects with a Gaussian slab for 

non-null effects, effectively incorporating variable selection, including parameters 

like the proportion of non-zero effects modelled with a Beta distribution and 

variance parameters to refine the estimation process (Perez n.d.).  
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By integrating these methods into a unified framework, the BGLR package 

provides researchers with a versatile and efficient platform for genomic analysis 

(Pérez & De Los Campos 2014). 

 

2.8 Genomic selection for methane emission 

 

To predict methane emissions, many researchers have focused on integrating rumen 

microbial and genomic data to select cows that produce less methane. For example, 

a study by Saborio-Montero and colleagues employed a novel Principal Component 

Analysis (PCA) approach to consolidate the diverse microbial community into 

simplified phenotypic variables. These variables exhibited high heritability and 

significant genetic correlations with methane emissions, representing a promising 

strategy for targeting the rumen metagenome and reducing methane production 

through genetic selection (Saborío-Montero et al. 2021). 

 

Another study by Roehe and colleagues in 2016 used the sire progeny groups to 

demonstrate that the host’s genetics influence methane emissions and have 

significant differences based on microbial abundance and emissions across groups. 

Their findings suggest that the relative abundance of rumen microbes can predict 

traits like methane production and feed efficiency, which targets breeding strategies 

to reduce emissions while improving livestock productivity (Roehe et al. 2016). 

 

In the paper by Pérez-Enciso et al., the authors integrated microbial and genomic 

data into simulation models to predict complex traits. The authors simulated 

scenarios where microbial abundances either independently affected traits or were 

partially controlled by the host genome. They also discussed the challenges they 

faced, including the complexity of genome-microbiome interactions, biases in 

estimating microbiability, and difficulties in identifying specific microbial taxa 

influencing traits. However, incorporating microbial data improved the accuracy of 

trait predictions despite these hurdles (Pérez-Enciso et al. 2021). 

 

2.9 Simulation models in breeding programs  

 

Simulation models test different breeding strategies without the time and cost of 

real-world experiments, and based on the predicted outcomes of these simulations, 

breeders can optimize their breeding programs. A study by Hassanpour and 

colleagues demonstrated the effectiveness of stochastic simulations in identifying 

optimal breeding strategies for dairy cattle to optimize breeding programs by 



18 

 

simulating multiple scenarios for high productivity and genetic diversity 

(Hassanpour et al. 2023). Their study applies stochastic simulation to optimize 

cattle breeding, which aligns with my research focus. While we use different tools, 

namely MoBPS in their study and AlphaSim R in mine, both approaches rely on 

stochastic modeling to evaluate breeding programs. 

 

AlphaSim R emerged as a flexible tool widely used for simulating plant and animal 

breeding programs. Its user-friendly design also allows for integrating other R 

packages for advanced analysis (Gaynor et al. 2021). It uses stochastic simulations 

to model complex breeding strategies. Stochastic simulations utilize randomness to 

model variability in biological and breeding processes, making them valuable for 

evaluating genetic gain and selection strategies under uncertainty. Deterministic 

simulations, on the other hand, are based on complex formulas to give results 

without standard errors and are usually fast. AlphaSim R allows users to simulate a 

wide range of breeding operations, including crossing, selection, and genomic 

prediction, with functionality for detailed modeling of traits influenced by additive, 

dominance, and epistatic effects (Gaynor et al. 2021). 

 

2.10 Integrating microbial data into the simulation model 

 

To understand how host genetics interact with the microbiome with a complex trait 

like methane emission in cattle, incorporating microbial data into the simulation 

model can enhance this analysis. By adding microbial abundance, specifically 

OTUs as traits in AlphaSim R, the simulation can effectively capture the intricate 

relationship between host genetics and the rumen microbiome. Utilizing literature 

data on microbial OTU heritabilities (Difford et al. 2018), their abundances (Tapio 

et al. 2017). Their connections to methane emissions will help define the 

simulation’s parameters. Integrating microbial data into AlphaSim R simulations 

presents a novel approach to understanding and mitigating methane emissions 

through genomic and microbial selection in cattle. 
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3. Methodology 

This study develops a computational framework to analyse the response of methane 

emissions in cattle to genomic and microbial factors. The methodology incorporates 

genomic simulations by using AlphaSim R, microbial modeling, and predictive 

Bayesian modeling to assess heritability and microbiability values under varying 

microbial methane effect and genetic variance scenarios and then the response of 

selection over generations. The whole process was conducted in several steps as 

described below: 

3.1 Generation of founder genome 

 

The first step in the simulation study is to create a founder population that would 

serve as the genetic basis for subsequent generations. This was achieved using the 

runMacs function in AlphaSimR; 500 individuals (founders) were simulated across 

30 chromosomes. Each chromosome contained 10,000 segregating sites, ensuring 

adequate genetic diversity for later analyses. The sexes of the individuals in the 

founder population were assigned using the "yes_sys" condition to maintain a 1:1 

male-to-female ratio. A simulation parameter framework was established to 

manage key settings, including genetic variation, trait inheritance, and selection 

processes. This ensured consistency across generations and structured data for 

genomic selection. A SNP chip dataset with 1,000 SNPs per chromosome was 

added into the simulation and was utilized in subsequent genomic selection 

procedures.  

3.2 Parameters 

 

Quantitative Trait Loci (QTLs) are assigned to govern specific traits in the 

population. In AlphaSim R, QTLs are randomly distributed across the genome. The 

effects of the QTLs are initially sampled from a standard normal distribution and 

then scaled to achieve the specified genetic variance for the trait in the founder 

population (Gaynor et al. 2021). Methane emission, a key trait under study, is 

controlled by 96 QTLs distributed across the cattle genome, according to the cattle 

QTL database. These QTLs are classified under the trait class ‘production’ and the 

trait type ‘energy efficiency’ related explicitly to methane emissions 

(https://www.animalgenome.org/QTLdb/cattle).  

 

Similarly, 30 Operational Taxonomic Units (OTUs) are modelled, each controlled 

by 10 QTLs, which shows that microbial abundance in the rumen is also influenced 
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by host genetics. The choice of 30 OTUs specifically related to methane emission 

and belonging to Euroarcheaota is according to Abbas and colleagues (Abbas et al. 

2020). Furthermore, specific heritability values are assigned to OTUs, varying from 

high to low contributions, following the same study by Abbas and Colleagues to 

simulate the heterogeneous effects of microbial taxa on methane production (Abbas 

et al. 2020). 

3.3 Simulation of the traits 

 

Methane emission and OTU (Operational Taxonomic Units) were simulated as 

traits. The methane emissions trait was modelled with a heritability of 0.19, which 

will vary according to the different values of additive variance and the OTU traits 

represented microbial contributions with varying heritabilities, such that 31 traits 

were simulated overall. The additive genetic variance for the methane emission trait 

is set at 0.5, 1, and 2 to study how the difference in genetic variance influences the 

methane heritability. The additive genetic variance for the OTU trait is set as 0.25 

to include the host genetic effect on microbial abundances.  

 

For the OTU traits, 30 OTUs were simulated, each controlled by 10 QTLs. The 

heritabilities of the OTUs were predefined based on a previous study: 20 OTUs 

exhibited moderate to low heritability, ranging from h² = 0.145 to h² = 0.086, while 

the remaining 10 OTUs showed high heritability (h² = 0.725) (Difford et al. 2018). 

 

3.4 Generation of microbial data 

 

3.4.1 OTU abundance matrix 

 

The relative abundances of 30 OTUs represent microbial contributions to methane 

emissions. Tapio and colleagues calculated the relative abundances of Archae under 

different diets, and the average of  these values was taken across all the diets for the 

OTU abundance matrix (Tapio et al. 2017). These values are then normalized by 

the scaling process, in which row normalization ensures that the sum of the values 

in each row equals 1. This makes the data comparable across individuals and 

reflects their proportional contributions.  
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3.4.2 Integration of host genetics and environmental factors 

 

To integrate the host genetic and environmental effects of the host into the OTU 

matrix by transforming phenotypic data derived from the simulated population. The 

phenotype matrix from the population object, which contains quantitative traits for 

each individual, such as methane emission or microbial abundances, was extracted. 

Next, the transformation 2Pheno applies an exponential scaling to the phenotypic 

values. This operation ensures that higher phenotypes, indicative of stronger genetic 

influences, are exponentially emphasized. This transformed phenotype matrix is 

then multiplied with the OTU abundance matrix to produce a matrix that 

incorporates both host genetic and environmental effects on OTU abundance, 

followed by normalization, where each row of the matrix is divided by its sum to 

ensure that microbial abundances remain proportionate across individuals. 

 

3.5 Methane emission modelling with both microbial 

and host effects 

 

The phenotype (Y), which is methane emission, is modelled as a combination of 

genetic, microbial, and environmental effects using the following equation: 

 

𝑌 = 𝐺 + 𝑀 + 𝐸 

 

Y is methane emission, G is the host genetic effect on methane, M is the microbial 

effect on methane, and E is the environmental effect. The microbial impact on the 

trait is further decomposed as: 

 

𝑀 = (𝐺𝑚 +  𝐸𝑚  ) ∗ 𝑦𝑚 

 

Gm is the host genetic influence on microbial OTU abundance. Em is the 

environmental influence on OTU abundance, which affects methane, and ym is the 

microbial effect on methane emission. 

 

G is the host genetic effect on methane emission taken from the pop object in 

AlphaSim R. These values represent the observed phenotype, which is methane 

emission influenced by host genetics. However, to model the methane effect of 

microbes, the gamma distribution is applied using parameters used by Pérez-Enciso 

and colleagues (Pérez-Enciso et al. 2021). The gamma-distributed values of (ym) 
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simulate the varying influence of microbial taxa on methane emissions. The 

normalized OTU matrix with host genetic and environmental effect is multiplied 

by ym, with each OTU column adjusted proportionally to its gamma value, resulting 

in the new matrix called OTU_ym. The row sums of this matrix give the microbial 

effects M, which quantify each individual's cumulative microbial contribution to 

methane emissions. Next, the environmental effect E is incorporated as random 

values drawn from a normal distribution with a mean of 0 and a standard deviation 

of 1. Finally, after incorporating all the effects, the following equation is applied:  

 

𝑌 = 𝐺 + {(𝐺𝑚 +  𝐸𝑚  ) ∗ 𝑦𝑚} + 𝐸 

 

 

The methane effect (Y), the heritability (h2 ), and microbiability (b2) were calculated 

to quantify the respective contributions of host genetics and microbial influences 

on the total phenotypic variance. Heritability (h²) was calculated as: 

 

ℎ2 =
𝑣𝑎𝑟𝐺

𝑣𝑎𝑟𝑌
 

 

Microbiability (b²) was calculated as: 

  

𝑏2 =
𝑣𝑎𝑟𝑀

𝑣𝑎𝑟𝑌
 

 

VarG represents genetic variance, VarM denotes microbial variance, and VarY 

signifies methane effect variance, which is the sum of VarG, VarM, and VarE. 

 

3.6 BayesC and BayesA models for predicting 

methane emissions based on host genetics and 

microbial contributions 

 

Two separate models were employed to predict methane emissions using BayesC 

and BayesA. The response variable, Y, representing the total methane effect 

calculated earlier, was used as the dependent variable. Genetic contributions were 

encoded in a matrix G, representing SNP genotype data for all individuals. The 

normalized OTU matrix represented microbial contributions, capturing the 

combined genetic and environmental effects on microbial abundance. Two 

predictive models were constructed within the BGLR framework. The genetic 

model utilized BayesC, tailored for SNP-based genetic variance, while the 

microbial model employed BayesA, designed to handle gamma-distributed 



23 

 

microbial effects with specified shape and rate parameters. These models were 

defined in the ETA list, an argument in the function that specifies the structure of 

the model by outlining how genetic and microbial factors are incorporated and 

assigning appropriate priors to each effect, which defines the structure of the model. 

The ETA list facilitated the inclusion of both genetic and microbial sources of 

variation, enabling the fitting of the models to predict methane emissions. 

 

3.7 Prediction accuracy 

 

Predicted phenotypes are compared to observed values to assess the model's 

accuracy. The correlation between predicted and observed methane emissions is a 

key metric for evaluating the model's accuracy in predicting methane emission 

levels based on host genetic and microbial factors. 

 

3.8 Breeding program simulation 

 

3.8.1 Selection criteria 

 

The predicted phenotypes, which are the predicted methane effect calculated from 

the Bayes C and Bayes A prediction model, are incorporated into the EBV s column 

to use them in the selection process. Breeding simulations begin with selecting 

individuals based on their predicted phenotypes, guiding the selection of sires (25 

males) and dams (250 females) for the next generation. Regarding the selection of 

fewer sires than dames, it is important to note that in livestock species, a single male 

can successfully mate with multiple females. This makes it biologically and 

practically efficient to have a lower number of sires compared to dams. 

 

3.8.2 Generational progression 

 

The breeding program is simulated over ten generations. In each generation, 

offspring are produced through random mating between selected sires and dams. 

Using updated genetic and microbial data from running the model and BGLR for 

every subsequent generation, the phenotypes of these offspring are predicted. This 

process ensures that breeding decisions are informed by the latest genetic data, 

promoting improved traits in future offspring. 
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3.8.3 Simulation of additive variance and microbial methane 

effect scenarios 

 

Finally, a loop structure is added to run nine scenarios for three levels of additive 

variance: 0.50, 1, and 2; and three gamma distribution scenarios for microbial 

methane effects named low, medium, and high, to represent different microbial 

effects. For each variance value, simulations are performed for all three gamma 

distributions. The 'Low' scenario has a skewed distribution, with most values 

concentrated at lower levels, while the 'Medium' and 'High' scenarios exhibit a 

distinct shift to more even and higher distributions. This helps us explore how 

varying microbial contributions impact methane effects, heritability values, 

microbiability values, and the selection of response. 
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4. Results 

4.1 Methane emission at varying scenarios 

 

Simulations show that host genetic variance and the magnitude of the causal effect 

of microbial composition both affect methane emissions predicted by the model. 

Methane emissions were evaluated under three levels of methane additive variance 

(0.5, 1, 2) and three gamma distribution scenarios for microbial methane effects 

(low, medium, and high), representing different microbial impacts. These scenarios 

help identify key conditions associated with low methane emissions. The density 

distributions shown in Figure 1 highlight how varying scenarios of genetic additive 

variance and microbial effects influence methane output. 

 

 

Figure 1. "Density" presents the density distributions of methane effects under different 
scenarios, categorized by the additive variance (var) and microbial methane effect levels 
ym. The x-axis represents the methane effect, while the y-axis shows the density of 
observations. The plot consists of three density distributions corresponding to var values 
of 05, 1, and 2, displayed from left to right. 
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At the low value of additive variance 0.5 in the low ym scenario, the methane effect 

density curve is left-skewed, reaching peaks at lower values compared to medium 

and high scenarios (ym). In the medium and the high ym scenarios, there are slightly 

broader distributions, and their peaks also show higher values than those in the low 

ym scenario, which shows moderate increases in methane effects, indicating that 

emissions begin to rise with increasing ym. 

 

With an additive variance of 1, the low ym scenario continues to produce the lowest 

methane emissions. Its density distribution peak is lower than at an additive 

variance of 0.5, likely due to the increasing genetic influence. In contrast, the 

medium and high ym scenarios show slightly higher density distributions and peak 

at greater methane effect values. However, the overall methane effect in the low ym 

scenario remains minimal. 

 

At an additive variance of 2, the low ym scenario’s distribution decreases even 

further, maintaining a low methane effect peak. Meanwhile, the medium and high 

ym scenarios continue to broaden in distribution and peak at higher methane effect 

values than the low ym scenario. 

 

In conclusion, scenarios with low methane emissions are associated with the low 

ym scenario across all the additive variance levels, and the density distribution 

shows a downward trend as the ym scenarios and the additive variance increase. The 

medium and high ym scenarios shift their peak of methane effect to higher values 

as ym increases and decreases in density as the additive variance increases.  

 

 

4.2 Heritability and microbiability values at varying 

scenarios 

 

The results highlight how genetic and microbial factors influence methane 

emissions across different scenarios. Tables 1, 2, and 3 summarize the heritability 

and microbiability values observed for methane emissions across nine scenarios, 

incorporating three values for additive variance and then for each value, three levels 

of microbial effect on methane. After running the methane emission model that 

accounts for microbial and host effects in each scenario, the calculated values are 

presented in Table 1. 
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Table 1. Heritability and Microbiability values at 0.5, 1, and 2 additive variances.   

Additive variance 

Scenario 

ym 

scenario 

Heritability  Microbiability 

0.50 Low 0.313 0.103 

0.50 Medium 0.247 0.212 

0.50 High 0.257 0.228 

1 Low 0.454 0.072 

1 Medium 0.360 0.174 

1 High 0.427 0.164 

2 Low 0.677 0.051 

2 Medium 0.634 0.133 

2 High 0.571 0.123 

 

 

The results in Table 1 show low heritability values observed in the scenario with 

additive variance set at 0.50, ranging from 0.247 to 0.313. As the microbial effect 

increases from low to high, microbiability rises noticeably from 0.103 to 0.228. 

There is only a slight difference in the values of heritability and microbiability 

between the medium and high ym scenarios. However, both values contrast more 

than the low ym scenario. The low ym scenario has higher heritability values and 

lower microbiability values than the other scenarios. 

 

In scenarios where the additive variance is set at 1, both heritability and 

microbiability values follow a trend similar to when the additive variance is set at 

0.5. Specifically, heritability values increase from 0.360 to 0.454, while 

microbiability values rise from 0.070 to 0.174 as the ym effect increases. 

Additionally, heritability values tend to rise with a higher additive variance, while 

microbiability values decrease when compared to those observed with an additive 

variance of 0.5. This relationship suggests that microbiability tends to be lower 

when heritability is higher. This may be due to the ym values being drawn from 

distributions with fixed ranges, even as the overall variance of the methane trait 

expands. 

 

Furthermore, with the additive variance set at 2, both heritability and microbiability 

values increase, rising from 0.571 to 0.677 and from 0.051 to 0.133, respectively. 

Heritability values at an additive variance of 2 are much higher than in other 

scenarios. In contrast, microbiability values decrease substantially as the additive 

variance increases. This trend suggests that the methane trait is now more 

influenced by host genetics rather than the rumen microbiome. 
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Overall, heritability values increase as the additive variance rises, with the lowest 

values at 0.50 and the highest at 2. These results also show that high heritability and 

low microbiability values are observed at low microbial methane effect conditions 

regardless of the additive variance value. Additionally, as microbial influences 

strengthen, microbiability values rise, highlighting the microbiome's key role in 

phenotypic variance. 

 

4.3 Prediction accuracy 

 

To evaluate the model's accuracy in predicting methane emissions based on both 

host genetics and microbial factors, we calculated the correlation coefficients 

between the methane effects (which include host genetic and microbial influences) 

and the predicted methane values from the BGLR model across various scenarios, 

as presented in Table 2. 

 

Table 2. Correlation coefficient values for different scenarios 

Additive variance Microbial methane  

effect 

Correlation 

coefficient 

0.5 Low 0.909 

0.5 Medium 0.847 

0.5 High 0.783 

1 Low 0.839 

1 Medium 0.872 

1 High 0.806 

2 Low 0.964 

2 Medium 0.934 

2 High 0.910 

 

 

Overall, the correlation values are high, ranging from 0.783 to 0.964, which 

indicates that the model is effective in predicting methane emissions in most cases. 

The accuracy tends to be higher when the additive variance is significant, especially 

under conditions of low microbial methane effects. Conversely, the correlation is 

weaker when microbial methane effects are high or the additive variance is low. 

This suggests that the complexity of microbial interactions may slightly reduce 

prediction accuracy in these situations. 
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4.4 Response of selection across generations for 

predicted phenotypes 

 

The response of selection based on predicted phenotypes over ten generations was 

simulated. Each subsequent generation is selected based on the predicted 

phenotypes of the previous generation, which reflect the anticipated methane 

effects. For each scenario, the overall mean of the ten generations was calculated, 

and the results for the response of selection are shown in Figure 2. 

 

 

Figure 2. This plot shows the mean predicted phenotypes across 10 generations for three 
values of additive variance (0.5, 1, 2) each under three scenarios for microbial methane 
effect ym (low, medium, high). The x-axis represents the generation, while the y-axis shows 
the mean of predicted phenotypes across these generations. The plot consists of three 
panels corresponding to var values of 0.50, 1, and 2, displayed from top to bottom. 

In the top panel, where the variance is set at 0.5, the predicted phenotypes show a 

gradual decline over the 10 generations. The rate of decline varies depending on the 

microbial methane effect (ym) scenarios: phenotypes decrease most rapidly under 

the "low" ym scenario, moderately under the "medium" ym scenario, and least 
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rapidly under the "high" ym scenario. The differences between the scenarios remain 

relatively small, indicating limited variation when variance is low. 

In the middle panel, where the genetic variance is set at 1, the decline in predicted 

phenotypes is steeper than in the top panel, which means that as variance increases, 

the rate of reduction in predicted phenotypes also intensifies. The separation 

between the three ym scenarios becomes more evident, showing more significant 

variation as generations progress. However, the ym scenarios show the same trend 

as with variance 0.5. However, there is a more intensified decrease in mean 

predicted phenotypes, with the "low" ym scenario exhibiting the steepest decline 

and the "high" ym scenario showing the slowest decline. 

The bottom panel, with a variance of 2, demonstrates the most pronounced changes. 

The decline in predicted phenotypes is steepest across all ym scenarios. This panel 

highlights that greater variance allows more extreme candidates to be selected, 

intensifying this decline in predicted phenotypes. The "low" ym scenario continues 

to show the fastest decline. In contrast, the "high" ym scenario shows the slowest, 

with the "medium" ym scenario in between the low and the high ym scenarios. 

Overall, the predicted phenotypes decrease over 10 generations, with the rate of 

decline becoming steeper as variance increases. Higher variance enhances the 

strength of selection, leading to faster reductions in phenotypes. Notably, some 

phenotypic values drop below zero in later generations, especially when the 

additive variance value is high. Despite this, the results demonstrate that higher 

genetic variance and the low ym scenario accelerate the decline in predicted 

phenotypes, while higher ym effects slightly slow it down. 
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5. Discussion 

Using a computational model, this study investigated the response of methane 

emissions in cattle to genomic and microbial selection. The results demonstrate that 

host genetics and the rumen microbiome influence methane emissions. This study 

examined how different levels of additive variance (0.5, 1, 2) and varying microbial 

methane effects (ym: low, medium, high) influenced methane emissions in cattle. 

At low additive variance (0.5), the low ym scenario resulted in the least methane 

emissions. As additive variance increased to 1 and then 2, the microbial methane 

effect was still at the level of reduced methane emissions. Heritability and 

microbiability values varied significantly across scenarios. At 0.5 additive variance, 

heritability ranged from 0.247 to 0.313, while microbiability increased from 0.103 

(low ym) to 0.228 (high ym). As additive variance goes from 1 to 2, heritability 

increased to a range of 0.360 to 0.677, while microbiability declined. This indicates 

a stronger genetic influence on methane emissions as additive variance increases 

alongside the reduction in microbiability, which indicates less influence from 

microbial communities. Prediction accuracy remained high, with correlation 

coefficients between the methane effect from the methane model, which accounts 

for both host genetics and microbial effect, and the methane-predicted values from 

the BGLR ranging from 0.85 to 0.91. Over ten generations, predicted phenotypes 

decreased with the steepest decline under low ym and the most gentle decline under 

high ym across all additive variance levels but a more pronounced decline at high 

additive variance levels. 

 

Overall, the simulation results showed the significance of maintaining low 

microbial methane effects to reduce methane emissions, especially under higher 

additive variance conditions. Cattle breeding programs could mitigate livestock's 

environmental impact through genetic and microbial management strategies. 

 

5.1 The role of microbial methane effect (ym) in 

reducing methane emission 

 

This study's findings highlight microbial methane's impact on determining methane 

emissions in cattle. The term "microbial methane effect" refers to the influence of 

methanogens in the rumen on total methane emissions. In this study, we simulated 

ym using a gamma distribution to represent three levels of microbial impact: low, 

medium, and high. The results consistently showed that lower microbial effects 

corresponded to reduced methane emissions, regardless of the levels of additive 

genetic variance. 
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Notably, scenarios with high additive genetic variance (variance = 2) demonstrated 

a strong influence of host genetics on methane production. However, this high 

genetic variance is unlikely to occur naturally and was included to explore the upper 

limits of genetic control over methane emissions. The scenario with high genetic 

variance is simulated and does not represent real-world averages. However, they 

provide valuable theoretical insights into how host genetics can dominate methane 

traits in extreme cases. This relationship suggests that targeting microbial methane 

effects with genetic strategies could effectively mitigate emissions. 

 

Research efforts have demonstrated potential in directly addressing methane effects 

via microbiome management. Feed additives, such as 3-nitrooxypropanol (3-NOP), 

have been shown to suppress methanogenic pathways, significantly reducing 

methane emissions (Hristov et al. 2015). Dietary modifications, such as using oils, 

tannins, or fiber-digesting enzymes, have also been explored to reduce the activity 

or population of methanogens in the rumen (Beauchemin et al. 2008). These 

interventions demonstrate how manipulating the rumen microbiome can reduce 

methane emissions in practical livestock systems. 

 

Combining microbiome management with genetic selection could achieve even 

greater reductions. For example, breeding programs targeting cattle with traits 

associated with lower methane production, alongside strategies that optimize rumen 

microbial communities, offer a dual approach to tackling emissions. For example, 

Difford and colleagues highlighted the potential of genomic selection with 

microbiome-informed strategies, such as investigating microbial taxa with low 

methanogenic activity (Difford et al. 2018). In 2019, Wallace and colleagues further 

emphasized that host-determined, heritable microbes contribute significantly to 

methane emissions, supporting the concept of microbiome-led breeding programs 

(Wallace et al. 2019). 

 

In conclusion, effective methane emissions management requires a balanced 

strategy. This strategy should integrate genomic selection with microbiome 

management techniques. It is important to select cattle with traits associated with 

lower methane emissions while implementing interventions such as feed additives, 

probiotics, or dietary adjustments targeting methanogens. Additionally, these 

strategies must not negatively impact other important traits, such as fertility, 

productivity, and overall animal health, which are essential for sustainable breeding 

programs (Lassen & Difford 2020). 
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5.2 Heritability and microbiability of methane 

emissions 

 

Methane emissions are affected by both genetic factors (heritability) and microbial 

contributions (microbiability). Understanding the relationship between these 

components is crucial for creating effective breeding strategies. In this study, 

heritability values for methane emissions ranged from 0.247 to 0.677, with higher 

values associated with increasing the value of additive variance. This indicates that 

host genetics play a more significant role under these conditions. These findings 

are consistent with studies by (Lassen & Løvendahl 2016) and (Difford et al. 2018), 

which reported heritability estimates between 0.16 and 0.45 for methane emissions 

in dairy cattle. 

 

Microbiability showed an inverse relationship with additive variance, ranging from 

0.051 to 0.228. Higher microbiability values occurred at lower additive variance, 

suggesting that microbial effects are stronger when genetic contributions are 

weaker. In high heritability scenarios, host genetics mainly influence methane 

traits, although microbial contributions still affect methane emissions. 

 

The interaction between heritability and microbiability highlights the necessity of 

a balanced breeding strategy incorporating genomic and microbial data. Higher 

values for heritability mean a quicker response to selection. While the heritability 

values increase, microbiability values decrease, so it is important to understand the 

balance between them to have an effective and balanced breeding program. This 

indicates the need to combine genomic and microbial data in a balanced way to 

improve breeding selection strategies. For instance, targeting specific microbial 

taxa with lower methanogenic activity, such as Methanobrevibacter species, can 

enhance reductions when combined with genomic selection (Wallace et al. 2019; 

Abbas et al. 2020). 

 

The maintenance of this balance in real-world conditions relies on the complex 

interactions among diet, environment, and the rumen microbiome, with host 

genetics being significant at higher heritability levels, while microbiability also 

plays a relevant role. For example, (Roehe et al. 2016) showed that host genetics 

and environmental factors affect the abundance of key rumen microbes, indicating 

that microbiability can still play a significant role even in scenarios with high 

heritability. 
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5.3 Long-term response to selection 

 

The simulation results showed that the response to selection reveals critical insights 

into how additive genetic variance and microbial methane effects (ym) influence 

methane emissions over successive generations. The predicted phenotypes for 

methane emissions decline with successive generations, and the rate of decline is 

faster under scenarios of higher additive variance and lower ym. However, 

negatively predicted phenotype values in later generations are also observed, 

especially when additive variance is high. This might be due to the additive genetic 

model used in the simulation, which simulates without explicit biological 

constraints. The simulation tool (AlphaSim R) assumes that additive genetic and 

microbial effects contribute linearly to the phenotypic values, and it does not 

impose a lower limit or biological threshold for methane emissions. As selection 

increasingly favours individuals with lower methane emissions, the predicted 

values could drop below zero, which is biologically unrealistic as methane 

emissions cannot be negative. This situation exemplifies the intense selection 

pressure from high additive variance and low microbial effects. The increased 

genetic variance enhances the chances of identifying extreme individuals within the 

population while leading to reduced predicted phenotypes. In addition, low 

microbial methane effects further empower the selection's capability to lower 

methane emissions, generating a synergistic effect that drives phenotypes to 

implausibly low levels.  

 

To address this, the model could include constraints that set a minimum threshold 

for methane production based on biological requirements. This threshold could be 

derived from experimental data on the lowest observed emissions in low-methane 

cattle, ensuring that predictions remain realistic. Additionally, incorporating non-

linear models that better capture the diminishing returns of selecting for extremely 

low methane emissions would align the simulations with biological processes. 

 

Integrating more comprehensive datasets, such as methane measurements from 

diverse breeds, environments, and diets, would help fine-tune these thresholds. 

Physiological insights, like the minimum methanogenic activity necessary for 

rumen function, could also provide a scientific basis for defining these lower limits. 

These adjustments would make the simulations more reflective of real-world 

scenarios while preserving their ability to explore long-term selection impacts. 

 

Despite this limitation, the trends observed in response to selection demonstrate that 

combining genetic variance with low ym scenarios is a highly effective approach 

for mitigating methane emissions in cattle. In terms of genomic selection strategies, 

the Bayesian model used in this study effectively combined SNP markers and 
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microbial abundances, providing accurate predictions. However, other models 

could also be explored. For example, linear mixed models or machine learning 

approaches could offer alternative ways to analyse data and predict methane 

emissions and are particularly useful for capturing non-linear interactions between 

SNP effects and microbial composition or for dealing with complex real-world 

datasets (Howard et al. 2014; Pérez-Enciso et al. 2021). 

 

The outcomes might differ significantly if selection were based solely on microbial 

composition or SNP effects. Selecting only on microbial composition could result 

in quicker but potentially less sustainable reductions in methane emissions, as 

microbial communities are dynamic and influenced by external factors such as diet 

and environment (Difford et al. 2018). Conversely, selecting only on SNP effects 

would likely yield slower but more stable long-term improvements, as genetic 

changes are permanent and less affected by environmental variability. Comparing 

these strategies in future studies would provide valuable insights into their relative 

efficiency and trade-offs. 

 

5.4 Comparative analysis with a recent study 

 

The results of this study can be compared with those of the study by Cristina Casto-

Rebollo and colleagues (Casto-Rebollo et al. 2024).They used the HoloSim R 

simulation framework. They also emphasized the significance of host genetics and 

the use of microbiota in influencing phenotypic traits. Both studies highlight the 

contribution of additive genetic variance and microbial effects, particularly in 

contexts that explore the microbiota's effect on the phenotypic response to selection. 

However, these studies differ in scope and methodology. This simulation study 

focuses specifically on methane emissions and studies how varying levels of ym and 

additive genetic variance influence heritability, microbiability, and methane 

emissions. 

 

In comparison, Casto-Rebollo and colleagues simulated different scenarios of 

microbial heritability. They also included the effects of the maternal and housing 

environment and the symbiosis between microbial species to see how host genetics 

and microbial interactions shape the overall microbial composition and affect the 

phenotype, and they explored the coevolution of genomes and microbiomes under 

different selection pressures (Casto-Rebollo et al. 2024). 

 

In this simulation study, the negative predicted phenotypic values, particularly 

evident under high additive variance, reflect a limitation of additive genetic models 

that lack biological constraints. Extreme selection pressure can push phenotypes 
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into unrealistic ranges, such as negative methane emissions, which are not 

biologically plausible. They simulated phenotypic values by considering symbiosis 

effects and environmental microbiota contributions (Casto-Rebollo et al. 2024). 

This highlights the importance of integrating biologically realistic parameters into 

simulation models to enhance their applicability to real-world breeding programs. 

However, both studies highlight the importance of microbial contributions to 

phenotypic variance. 

 

5.5 Limitations of the simulation study 

 

This study showed how the rumen microbiome and host genetics influence methane 

emissions, but several limitations should be considered. One significant limitation 

is the simplified modeling of microbial effects, where the ym parameter serves as a 

scalar for microbial contributions. This simulation study does not consider any 

interactions among microbial species, such as symbiosis or competition, which 

ultimately affect microbial communities. Incorporating these interactions in future 

models could lead to a better understanding of the microbiome's role in methane 

emissions. 

 

This simulation study may not entirely reflect real-world variability in microbial 

and genetic influence on the phenotype. Many other factors can affect the 

phenotype, such as environmental effects, maternal effects on microbial 

communities, vertical transmission of the microbiome, changes in diet, 

management practices, and temporal changes in the microbiome. All these effects 

could enhance the model's applicability. For example, accounting for shifts in the 

rumen microbiome during early life stages or dietary transitions could improve the 

accuracy of assessed microbial contributions to methane emissions (Meale et al. 

2021). 

 

The additive variance-based genetic framework also has its constraints as it does 

not account for non-additive genetic effects such as epistasis or dominance, which 

may also play a role in complex traits like methane emissions. Including these 

effects in future modeling efforts could provide a more comprehensive perspective 

on host genetics. 

 

Host genetic variation significantly influences the rumen microbiome, including the 

abundance of specific microbial taxa associated with methane production, 

suggesting the presence of gene-by-microbe interactions in cattle (Roehe et al. 

2016). This implies that non-additive effects could shape microbial communities in 

ways that additive models do not fully capture. Similarly, microbial composition 
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may exhibit non-additive patterns, as interactions between microbial species can 

influence the overall community structure and its contributions to methane 

production (Martínez-Álvaro et al. 2020). 

 

Incorporating non-additive effects into genomic selection in the context of methane 

emissions could provide a more complete picture of how host genetics and 

microbial factors work together. For example, certain SNPs might only impact 

methane traits in the presence of specific microbial taxa, or vice versa, creating 

epistatic or synergistic interactions between genes and microbes. Accounting for 

these interactions could improve the predictive power of selection models and help 

identify cattle with optimal combinations of genetic and microbial traits for 

methane reduction. 

 

As we know, microbial communities are dynamic and change with different diets 

and environmental conditions (Hristov et al. 2015; Smith et al. 2022). There may 

also be a difference in microbial communities in different breeds of cattle, and there 

may be a maternal effect that can influence the early microbial environment of cattle 

and can affect their abundances (Meale et al. 2021)This study is generalized, so 

prediction reliability needs to be improved; future studies can focus on the 

dynamics of microbial communities under different conditions.  

 

Additionally, this study focused on OTUs known to contribute to methane 

emissions. In a real-world scenario, many more OTUs would be measured, 

including those with little or no impact on the trait. This added complexity could 

dilute the predictive power of microbial-based selection models. Advanced feature 

selection methods, such as LASSO regression or dimensionality reduction 

techniques like Principal Component Analysis (PCA), could help identify the most 

relevant OTUs and improve prediction accuracy in real-world datasets (Howard et 

al. 2014; Pérez & De Los Campos 2014). Including these methods in the selection 

process might make the model more robust and better suited for practical 

applications. Addressing these limitations can further enhance the model's utility 

for breeding programs aimed at sustainability and climate change mitigation. 

 

5.6 Future Research and Implications for breeding 

practices  

 

As this study focused on methane emissions, the same framework could be 

extended to other important traits, such as feed efficiency and disease resistance, 

which are also influenced by genetics and the microbiome. The model used in this 

study provides valuable insights into how host genetics and microbial interactions 
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shape traits. Future research could study microbial taxa's specific in shaping these 

traits. For instance, low-producing methanogens help identify microbes that 

enhance feed efficiency, guiding the development of probiotics or dietary 

supplements to reduce methane emissions and improve livestock productivity. 

 

Integrating microbial data into selection decisions in breeding practices could 

significantly reduce methane emissions. This study helps align the cattle breeding 

program with climate goals. However, making this practical requires advancements 

in microbiome sampling and involvement in breeding evaluations. Developing 

simple, cost-effective tools for field use could bridge the gap between research and 

real-world applications like measuring methane emissions or sampling rumen 

microbiome communities. Developing cost-effective tools for field use could make 

microbial data integration more practical for breeding programs. Instead of 

expensive metagenomic sequencing, targeted approaches like 16S rRNA 

sequencing can reduce costs while identifying key microbial taxa. Portable 

biosensors that detect microbial metabolites or marker genes associated with 

methane production are another promising alternative.  

 

It is also important to ensure that this focus does not negatively affect other 

important traits, such as production, fertility, or other health traits. Ethical issues, 

such as genetic diversity or intensive selection for reduced methane emission, may 

arise. This could make populations more vulnerable to disease outbreaks and 

environmental changes. Thus, it is important to maintain a balance between 

reducing methane and preserving the population's overall genetic health and 

diversity. 

 

Additionally, we need to support and incentivize small-scale farmers, who often 

emphasize production traits over environmental considerations, to adopt these 

practices. One important ethical issue is that not everyone may have the same access 

to advanced breeding tools. For example, smaller farms or those with limited 

resources might struggle to utilize these technologies. Future policies must tackle 

these obstacles by promoting inclusivity and ensuring that new tools are accessible 

and affordable for all farmers, regardless of their size or resources. 

 

Future research could consider the challenges and ethical implications before 

transitioning this approach from theory to practice, benefiting the industry and 

society. 
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6. Conclusion 

Using a computational model, this study explored how cattle genetics and the 

rumen microbiome influence methane emissions. By simulating different genetic 

and microbial scenarios, we found that minimizing microbial methane effects is key 

to reducing emissions, especially in populations with higher genetic variance. The 

study also demonstrated that genomic and microbial data improves prediction 

accuracy and can effectively help design breeding programs over multiple 

generations. While the model is highly accurate, it does not fully account for real-

world complexities, like environmental changes or microbial dynamics, which 

future research should address. This simulation study provides valuable insights for 

developing sustainable cattle breeding strategies to mitigate the environmental 

impact of livestock. 
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Popular science summary 

Cattle play a crucial role in agriculture but are also significant contributors to the 

emission of methane, which is a greenhouse gas that affects climate change. 

Methane is produced during digestion by microbes living in the cow’s stomach (the 

rumen). This study examined how a cow’s genetics and the types of microbes in its 

rumen affect methane production.  

 

We tested various scenarios using AlphaSim R simulations to determine how 

genetic traits and microbial activity contribute to methane emissions. Our findings 

revealed that cattle with fewer methane-producing microbes and selective breeding 

based on their genetic makeup could significantly reduce methane emissions over 

time.  

 

Additionally, this simulation study showed that genetic factors substantially 

influence methane traits when combined with low microbial effects. These findings 

provide a framework for sustainable breeding practices that reduce methane 

emissions and support livestock production, aligning with global efforts to combat 

climate change while maintaining productivity.  
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