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Abstract 

Metagenomic Next Generation Sequencing is increasingly being adopted for clinical diagnostic 

use as a valuable complement to traditional methods of pathogen detection. After major 

improvements in accuracy, Oxford Nanopore sequencing represents a viable alternative to 

Illumina. With longer read lengths, lower cost and shorter turnaround times, Nanopore can reduce 

the time to diagnosis and improve patient outcomes. To realize this potential, sensitive taxonomic 

classifiers with support for long-read data are needed. In this study we benchmark the performance 

of different taxonomic classifiers on Nanopore-sequenced viral data from both mock and real 

clinical samples. Custom databases for the Kraken2, DIAMOND, Metabuli, MetaCache and Sylph 

classifiers were built from the same reference sequence data. Classifications were compared to 

BLAST alignments as a gold standard and the classifiers were evaluated in terms of sensitivity and 

precision. 

Metabuli and MetaCache were the most sensitive across datasets and for different viruses, at 

the cost of long processing times and high memory requirements respectively. Kraken2 showed 

excellent precision but was the least sensitive. DIAMOND performed well on the mock data but 

had lower species-level sensitivity on the shorter read length clinical data, likely reflecting the 

limited specificity of protein-based classifiers. Sylph was highly computationally efficient and in 

combination with Minimap2 performed well for most viruses, but was unable to detect some low-

coverage genomes at default thresholds. Given enough memory, MetaCache may be the most 

suitable classifier for a diagnostic workflow, possibly in combination with DIAMOND to leverage 

the benefits of both DNA- and protein-based classifiers. 

Keywords: Bioinformatics, Metagenomics, Nanopore, Benchmarking, Microbiology, Taxonomic 

classifier 

  



 

Acknowledgements 

I would like to thank my supervisors Tobias Allander, Sofia Stamouli and Lili 

Andersson-Li for the ideas, guidance, engagement and support they’ve provided 

throughout the course of this project. 

 

  



 

Table of contents 

Acknowledgements........................................................................................................... 4 

List of figures ..................................................................................................................... 7 

Abbreviations .................................................................................................................... 9 

1. Introduction ........................................................................................................... 10 

1.1 Taxonomic classifiers .............................................................................................. 11 

1.1.1 Kraken2 ......................................................................................................... 12 

1.1.2 Metacache .................................................................................................... 12 

1.1.3 Metabuli ........................................................................................................ 12 

1.1.4 Sylph ............................................................................................................. 13 

1.1.5 DIAMOND ..................................................................................................... 13 

1.2 Aim .......................................................................................................................... 14 

2. Materials and methods ......................................................................................... 15 

2.1 Taxonomic classifier software ................................................................................. 15 

2.2 Viral mock community dataset ................................................................................ 15 

2.3 Clinical samples dataset ......................................................................................... 16 

2.4 Building custom classifier databases ...................................................................... 17 

2.4.1 Building the Kraken2 database ..................................................................... 17 

2.4.2 Building the Metabuli database..................................................................... 18 

2.4.3 Building the MetaCache database ................................................................ 18 

2.4.4 Building the DIAMOND database ................................................................. 19 

2.4.5 Building the Sylph database ......................................................................... 19 

2.5 Read preprocessing ................................................................................................ 20 

2.5.1 Viral mock community data ........................................................................... 20 

2.5.2 Viral clinical sample data .............................................................................. 20 

2.6 Taxonomic classification of sample reads .............................................................. 20 

2.6.1 Classification with Kraken2 ........................................................................... 21 

2.6.2 Classification with DIAMOND ....................................................................... 21 

2.6.3 Classification with Metabuli ........................................................................... 21 

2.6.4 Classification with MetaCache ...................................................................... 21 

2.6.5 Classification with Sylph ............................................................................... 22 

2.6.6 Combined Sylph and Minimap2 method ....................................................... 22 

2.7 Classifier species-level viral abundances ............................................................... 23 

2.7.1 Absolute abundances from normalized read counts .................................... 23 

2.7.2 Estimation of Sylph sequence abundances .................................................. 24 

2.7.3 Mock viral community relative abundances .................................................. 24 

2.8 Estimation of Sensitivity, Precision and F1 score ................................................... 25 

2.8.1 Verification of read-level classifications using BLAST .................................. 25 



 

2.8.2 Computation of detection metrics ................................................................. 25 

2.9 Classifier computational resource requirements ..................................................... 26 

3. Results ................................................................................................................... 28 

3.1 Taxonomic classifier performance on mock data ................................................... 28 

3.2 Taxonomic classifier performance on clinical data ................................................. 31 

3.3 Benchmarking classifier computational requirements ............................................ 34 

4. Discussion ............................................................................................................. 36 

4.1 Classifier performance on mock viral community ................................................... 36 

4.1.1 Lambdavirus may be misclassified as E. coli ............................................... 36 

4.1.2 Sylph may struggle to detect viruses at low coverage ................................. 36 

4.2 Classifier performance on clinical data ................................................................... 38 

4.2.1 DIAMOND’s lower sensitivity on clinical samples......................................... 38 

4.2.2 Metabuli, MetaCache and Sylph + Minimap2 ............................................... 39 

4.3 Computational performance .................................................................................... 39 

4.4 Taxonomic classifier pros and cons ........................................................................ 40 

4.5 Limitations ............................................................................................................... 41 

4.6 Summary and conclusion ........................................................................................ 42 

Data availability ..................................................................... Error! Bookmark not defined. 

References ....................................................................................................................... 43 

Popular science summary .............................................................................................. 48 



7 

 

List of figures 

Figure 1. Read length distribution of clinical and mock viral community ONT 

datasets. The distributions of 5.64 million subsampled reads from the ONT 

Clinical dataset and 4.35 million subsampled reads from the ONT MSA-1008 

dataset are shown as violin plots. The boxplots show the median and first and 

third quartiles. The whiskers extend to 1.5 times the interquartile length (IQR) 

from the nearest hinge. The left pane shows a zoomed in view of the right 

pane. ................................................................................................................. 17 

Figure 2. Abundances of detected species in mock viral community dataset for 

different classifiers and viral loads. Each viral load corresponds to reads 

from two technical replicates each of one DNA and one RNA sample (except 

for 0 gc/mL with only one RNA replicate). Before classification, all samples 

were subsampled to 5Gb and host-reads were removed by mapping to the 

T2T-CHM13 human reference genome with Minimap2.  (A) Normalized read 

counts in RPM for the classifiers, shown as base 10 log(x+1)-transformed 

values. RPM counts of BLAST-positive reads are included as a baseline. 

Phage MS2 and Lambdavirus represent the RNA and DNA internal controls 

respectively and should be present at fixed concentrations. (B) The distribution 

of classified reads per species, relative to the total number of classified reads 

for different viral loads and classifiers. All read counts were normalized to the 

species genome size to compensate for sequencing bias of longer genomes. 

The internal controls are not included. Sylph + MM2 represent abundances 

based on reads mapped to a Sylph-identified genome using Minimap2. *: Sylph 

read counts without Minimap2 are estimates calculated as described in the 

text. ................................................................................................................... 29 

Figure 3. Detection metrics for different classifiers on mock viral community 

dataset. Sensitivity, precision and F1 scores were calculated from the number 

of true positive, false positive and false negative reads, using  a pairwise 

comparison between the read taxonomies assigned by each classifier andto 

per-read BLAST alignments. All species expected to be found in the samples, 

including internal controls, were included in the calculations, . Since Sylph does 

not report per-read classifications, the reported metrics for Sylph are instead 

based on counts of reads that were first mapped to a Sylph-identified genome 

using Minimap2 (MM2) ..................................................................................... 30 

Figure 4. Normalized (RPM) abundances of detected species in ONT patient data 

for different classifiers and species. The read counts include all classified 

reads at or below the species level, including any false positives, and are 

aggregated across PCR-positive DNA samples. The "HL-SAN protocol" 



8 

 

abundances are derived from samples prepared using a HL-SAN host genomic 

depletion protocol, while the "Standard protocol" abundances are from samples 

that underwent DNA extraction without the HL-SAN step. Counts of BLAST-

positive reads are included as a baseline for comparison. ............................... 32 

Figure 5. Detection metrics for different classifiers on patient ONT data. Each dot 

represents a distinct DNA sample, with reads aggregated from one or two 

sequencing replicates using the same extraction protocol. The sensitivity, 

precision and F1 scores were calculated only for species that were previously 

PCR-confirmed to be present in the sample. Comparisons of classifier-

assigned read taxonomies to per-read BLAST alignments were used to 

categorize reads as true positives, false positives or false negatives. The 

boxplots show the median as well as the first and third quartiles. The whiskers 

of the boxplot include all values within 1.5 x IQR from the nearest hinge. The p-

values for Kruskal-Wallis tests of the F1 distributions are shown. ................... 33 

Figure 6. Benchmarking classifier computational resource use. (A) The wall time and 

memory used to build a PlusPF-derived custom database for different 

classifiers, sorted by wall time in ascending order. (B) The wall time required by 

different classifiers to profile a 1.6 Gb ONT sequenced patient sample of 2.1 

million reads. Base 10 log-transformed times are shown in ascending order. 

Cold run times show the classification time for a single sample, without any 

pre-caching of the database. Warm run times show the classification time after 

an initial (untimed) classification of a different sample, showing potential 

speedups due to database caching. Batch run times are shown for classifiers 

that support batch processing of samples (Sylph, MetaCache) or database 

memory mapping (Kraken2), and represent the processing time for the second 

sample in a batch run. (C)  The peak memory usage by the classifiers when 

processing the sample as in (B). ...................................................................... 35 

 



9 

 

Abbreviations 

Abbreviation Description 

AA Amino acid 

CNS Central nervous system 

HSV-1 Human simplexvirus type 1 

HSV-2 Human simplexvirus type 2 

LCA Lowest common ancestor 

mNGS Metagenomic Next Generation Sequencing 

ONT Oxford Nanopore Technologies 

Taxid Taxonomic ID 

VZV Varicella zoster virus 



10 

 

1. Introduction 

In recent years, the use of metagenomic Next Generation Sequencing (mNGS) for 

clinical diagnostic purposes has seen rapid development. As a broad-range 

diagnostic test, it offers untargeted detection of nucleic acid from all microbial 

pathogens, and it may further be used in the managing of immunocompromised 

patients or to predict antimicrobial resistance genes (Fourgeaud et al., 2024; Gan 

et al., 2024). Additionally, it can be used before starting treatment with 

immunosuppressants to minimize the risk of complications from an ongoing 

infection (Fourgeaud et al., 2024). One area where mNGS has already proven 

valuable is for use in patients with central nervous system (CNS) infections, for 

whom the differential diagnosis is often broad and the supply of sample material 

limited. In a 7-year study conducted in the USA mNGS was found to offer 

superior sensitivity to indirect serologic and direct detection testing (Benoit et al., 

2024). 

Implementing mNGS in routine use has the potential to transform the 

diagnostic landscape. For example, a British diagnostic method for bacterial lower 

respiratory infections using mNGS was recently described, cutting turnaround 

times down to 6h for diagnostic results, compared to typical culture times of 48-

72h (Charalampous et al., 2019). The key to achieving such rapid turnaround 

times was the use of Oxford Nanopore Technologies (ONT) long-read 

sequencing, which allows for real-time sequence analysis (Greninger et al., 2015). 

Traditionally, the short-read Illumina sequencing technology has been the 

standard mNGS platform, largely because of a lower error rate and a higher 

throughput. With the introduction of the most modern ONT technology and 

chemistry however, Nanopore sequencing appears to have largely closed the 

quality gap, with substantially reduced error rates. (Ratcliff et al., 2024; 

Sanderson et al., 2024). 

In order to leverage the improvements in ONT sequencing fully for diagnostic 

metagenomics, highly accurate software is needed to analyse sample reads and 

detect pathogens. Although several taxonomic classifiers are available, until 

recently few were designed specifically to make use of ONT long read data. 

Today the list of long read classifiers include MetaMaps (Dilthey et al., 2019), 

MMSeqs2 (Steinegger and Söding, 2017), MetaCache (Müller et al., 2017), 

Metabuli (Kim and Steinegger, 2024), Sylph (Shaw and Yu, 2024) and others. 

Past studies comparing taxonomic classifier performance on long-read data have 

often made use of methods designed for short-reads (Leidenfrost et al., 2020). 

This is beginning to change, as several long-read taxonomic classifiers have been 

included in benchmarking papers in recent years, reflecting the rapid development 

of classifiers for ONT data (Portik, Brown and Pierce-Ward, 2022; Buddle et al., 

2024). 
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As metagenomic Nanopore sequencing is increasingly being adapted for 

clinical diagnostic use, there is a growing need for the evaluation of long-read 

taxonomic classifiers. In particular, these tools need to be evaluated specifically 

for the clinical use case. Generally speaking, clinical metagenomics aims to 

identify a single or a few pathogens in a human sample, rather than to characterize 

the composition of an environmental microbiome for example. It is therefore 

important that any classifier intended for routine diagnostic use be evaluated 

thoroughly on clinically relevant sample types and pathogenic species. 

1.1 Taxonomic classifiers 

A common class of taxonomic classifiers are the DNA-based classifiers, which 

work by matching nucleotide reads to reference genomes at the nucleotide level. 

This category includes k-mer-based tools such as Kraken2 (Wood, Lu and 

Langmead, 2019) and CLARK (Ounit et al., 2015) or alignment-based methods 

such as MegaBLAST (Morgulis et al., 2008). The DNA-based classifiers are 

effective at distinguishing between closely related and well-studied taxa, using the 

relatively fast pace of change at the genomic level for increased specificity. 

Another category is made up of protein-based classifiers, which translate 

nucleotide reads for comparison against protein reference sequences. This 

category includes classifiers such as DIAMOND (Buchfink, Reuter and Drost, 

2021), Kaiju (Menzel, Ng and Krogh, 2016) or MMseqs2 (Steinegger and Söding, 

2017). Protein-based classifiers are more effective at detecting the homology of 

novel or underrepresented species to closely related taxa, using the higher 

conservation of sequence at the amino acid level. DNA- and protein-based 

classifiers are sometimes combined in a hybrid method to leverage the benefits of 

both types. Typically, this will consist of a classification with a DNA-based 

classifier first, followed by processing unclassified reads with a protein-based 

classifier (Yang, Jiang and Zhang, 2014). 

Marker-based classifiers make up a third category, making use of a curated set 

of marker genes through which different species can be differentiated. The 

advantages of marker-based methods include smaller databases and faster 

runtimes, at the cost of less flexible database customization. Classifiers in this 

category include MetaPhlAn2(Truong et al., 2015) (16) and mOTUs2 (Milanese 

et al., 2019). 

One of the most important factors for classifier performance is the choice of 

database with respect to the quantity and quality of the included reference 

sequences. While most classifiers have pre-built databases available, the databases 

for different classifiers will not necessarily be built from the same reference data. 

For any comparison of classifiers to accurately reflect their differences in 

capabilities and to avoid introducing potential biases, it is therefore important to 

use custom classifier databases built from a common set of reference sequences 
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(Van Uffelen et al., 2024). Marker-based classifiers are an exception to this rule, 

since they are typically designed to make use of highly specific databases. 

1.1.1 Kraken2 

Kraken2 is a widely used k-mer-based classifier, designed primarily for short 

reads (Wood, Lu and Langmead, 2019). It works by splitting a sequenced read 

into k-mers, or subsequences of length k. Each k-mer is then compared to the 

reference genomes in a database and mapped to the lowest common ancestor 

(LCA) taxon of the matching genomes. Read classification proceeds on a 

weighted taxonomic subtree, made up of the LCA taxa and their ancestor nodes, 

where each taxon is weighted by the number of k-mers it contains. The weights in 

each root-to-leaf path is then summed, and the read is assigned to the taxon 

corresponding to the leaf node of the highest scoring path. Ties are resolved by 

assigning the read to the LCA taxon of all tied leaf nodes (Wood and Salzberg, 

2014). 

1.1.2 Metacache 

MetaCache is another DNA- and k-mer-based method that was developed to 

address shortcomings of classifiers like the original Kraken (Müller et al., 2017), 

such as the need to sacrifice either sensitivity or precision when choosing a k-mer 

length. MetaCache is designed to work with short or long reads. It uses a pair of 

hash functions to efficiently map a read to local subsequences on the reference 

genomes, using a subset of the read k-mers. The read is then assigned to the 

genome containing the region with the peak k-mer count intensity. In the case of a 

tie, the LCA of the tied genomes is used. In the original MetaCache paper, 

MetaCache is reported to outperform Kraken in terms of sensitivity and precision 

on bacterial Illumina data. 

1.1.3 Metabuli 

The ONT-ready Metabuli classifier introduces a novel type of k-mer, the 

metamer, which combinees a DNA 24-mer and its translated amino acid (AA) 8-

mer sequence (Kim and Steinegger, 2024). The database is constructed from 

reference genomes and gene prediction is used to identify open reading frames 

(ORFs) for translation and metamer extraction. For the sequence reads, metamers 

are generated using the six-frame translations of the DNA sequence. Read 

classification works by matching read metamers to reference metamers with 

identical amino acid sequence, using the similarity at the DNA level to filter out 

too distant matches. Matches are grouped by species, translation frame and 

location on the read, and each species is scored by looking at paths of continuous 

matches covering the read, with differences on the DNA level used to weigh 
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matches. Similarly to Kraken2, the read is classified as the species with the 

highest score, or in the case of a tie to the LCA of the species with equal scores.  

The main benefit promised by Metabuli is that it can leverage the strengths of 

both DNA-based and protein-based classifiers. In benchmarks on synthetic and 

real metagenomes Metabuli was shown to perform better than individual DNA- or 

protein-based classifiers, and to match optimal choices of hybrid classifiers (Kim 

and Steinegger, 2024). 

1.1.4 Sylph 

Sylph is a DNA- and k-mer based classifier, which constructs a taxonomic profile 

based on estimating the containment average nucleotide identity (ANI) of 

reference genomes within a sample metagenome (Shaw and Yu, 2024). Sylph 

profiling works by first subsampling k-mers from the reference genomes and the 

sample reads to sketches, and then computing the k-mer containment of the 

reference genome sketches in the sample sketch. For each reference genome, the 

k-mer coverage in the sample is modelled using a zero-inflated Poisson statistical 

model, with the inflated frequency of 0-coverage k-mers being due to mutations in 

the reference genome compared to the sample metagenome. The λ parameter of 

the Poisson distribution is known as the effective coverage, which is a function of 

the true genome coverage, k-mer lengths, read lengths, the sequencing error rate 

and sequencing depth. It is used to compute the coverage adjusted ANI, an 

estimate of the true genome ANI. The last profiling step is the reassignment of 

sample k-mers that are shared between reference genomes to the genome with the 

highest estimated ANI. The final profile includes all reference genomes with an 

estimated ANI above a threshold of 95% by default.  

Unlike classifiers like Kraken2, Sylph does not output read-level 

classifications. Sylph’s reported features include rapid processing times and a 

small footprint in terms of memory and storage space (Shaw and Yu, 2024). 

1.1.5 DIAMOND 

DIAMOND is a protein-based aligner with support for long reads (Buchfink, 

Reuter and Drost, 2021). It was designed as a faster alternative to BLAST at the 

cost of sensitivity, and intended for metagenomic applications. In its blastx 

(translated search) mode DIAMOND aligns translated sample reads to a database 

of protein reference sequences. To accurately detect genes for noisy and error-

prone long read data, DIAMOND blastx makes use of frameshift alignments. This 

means that DIAMOND will align the translated sequence from all three reading 

frames at the same time against the reference, allowing arbitrary frameshifts to be 

tolerated at the cost of a scoring penalty. For Illumina short-read data 

DIAMOND's blastx mode was reported to be around 2000-20 000 times faster 

than BLASTX, depending on the use of DIAMOND’s fast or sensitive mode 
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(Buchfink, Xie and Huson, 2015). The reported sensitivity was around 75% and 

90% of BLASTX respectively. 

1.2 Aim 

The aim of this project is to benchmark the performance of the taxonomic 

classifiers Kraken2, DIAMOND, Metabuli, MetaCache and Sylph for shotgun 

metagenomics using long-read metagenomics viral data sequenced with Oxford 

Nanopore. It is hypothesized that the long-read DIAMOND, Metabuli, MetaCache 

and Sylph classifiers will perform competitively with the widely used Kraken2 in 

terms of sensitivity and precision. 
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2. Materials and methods 

2.1 Taxonomic classifier software 

All the taxonomic classifiers used in this benchmarking study were installed from 

the Bioconda software distribution (Grüning et al., 2018) using the Conda 

package manager. The evaluated classifiers are summarised in Table 1, including 

the versions used throughout this study. 

Table 1. A list of benchmarked taxonomic classifiers.   

Classifier Type Version used 

DIAMOND Protein-based 2.1.11 

Kraken2 DNA-based 2.1.3 

Metabuli Mixed 1.1.0 

MetaCache DNA-based 2.4.3 

Sylph DNA-based 0.8.0 

The computations were enabled by resources provided by the National Academic 

Infrastructure for Supercomputing in Sweden (NAISS) at UPPMAX, funded by 

the Swedish Research Council through grant agreement no. 2022-06725. Most 

analyses were performed on the high-performance computing system UPPMAX 

Bianca. 

2.2 Viral mock community dataset 

Publicly available Oxford Nanopore Technologies (ONT) data was acquired from 

ENI (project PRJEB74559), consisting of 10 DNA samples (accessions 

ERR13488549-555, ERR13488749-750 and ERR13485822) and 9 RNA samples 

(accessions ERR13488556-563 and ERR13488751). The data was derived from 

viral mock community samples prepared by Buddle et al. (Buddle et al., 2024), 

designed to resemble clinical samples with known viral composition. The dataset 

consists of dilutions of the MSA-1008 Virome Nucleic Acid Mix (ATCC) in 

background human DNA or RNA. The dataset will be referred to as ONT MSA-

1008. It consists of a total of 47 million reads between 76 bp and 185 kbp long, 

with most reads concentrated between 1500 to 4000 bp (Figure 1) and with an 

N50 of 3669 bp.    

Table 2. A list of the viral species composition of the ONT MSA-1008 dataset. The 
genome lengths for the viruses included in the ATCC MSA-1008 virome mix are taken 
from the manufacturer. The genome lengths for Bacteriophage MS2 and Lambdavirus 
are taken from the GCF_000847485.1 and GCF_000840245.1 RefSeq genomes 
respectively. 

Species Baltimore classification Genome length (bp) 
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Bacteriophage MS2 +RNA 3569 

Human betaherpesvirus 5 DNA 216 303 

Human mastadenovirus F DNA 34 392 

Human orthopneumovirus -RNA 15 228 

Influenza B virus -RNA 14 520 

Lambdavirus DNA 48 500 

Mammalian orthoreovirus 3 dsRNA 23 416 

Zika virus +RNA 10 952 

 

The MSA-1008 virome mix contains two DNA viruses (Human 

betaherpesvirus 5 and Human mastadenovirus F) and four RNA viruses 

(Mammalian orthoreovirus, human orthopneumovirus, Zika Virus and Influenza B 

virus) at equal concentrations (see Table 2). The ONT MSA-1008 samples 

represent dilutions of the virome mix at 0, 60, 600, 6000 and 60 000 genome 

copies (gc) per mL, with a constant human background. The samples additionally 

contained spike-in internal controls consisting of Lambdavirus DNA for the DNA 

samples and Bacteriophage MS2 RNA for the RNA samples. The ONT MSA-

1008 dataset was generated on R.10.4.1 PromethION flow cells on a P2 Solo 

connected to a GridION, with Q20+ Kit V14 chemistry. 

2.3 Clinical samples dataset 

A dataset of ONT-sequenced clinical patient samples was obtained from 

Karolinska University Hospital. The samples were previously confirmed positive 

for one of 5 different DNA viruses (adenovirus, bocavirus, herpes simplex virus 

type 1 (HSV-1), herpes simplex virus type 2 (HSV-2) or varicella zoster virus 

(VZV)) using PCR. Of the samples, 3 were from nasopharyngeal tissue, 2 were 

from bronchoalveolar lavage fluid, 5 were from cerebrospinal fluid and 5 were 

from serum. For eight of the samples, the DNA had been prepared using both a 

standard extraction protocol and a human-depletion protocol consisting of three 

initial steps of centrifugation, bead beating and HL-SAN treatment. HL-SAN is a 

salt-active endonuclease which has been shown to be able to contribute to 

substantial depletion of human DNA (Charalampous et al., 2019). After 

extraction, DNA was amplified using the REPLI-g kit (Qiagen). Sequencing 

libraries were prepared using Nanopore Rapid Barcoding Kit 96 V14 and 

sequencing performed using Promethion flow cells on a P2 Solo instrument.  

The clinical samples dataset will be referred to as ONT Clinical. It is made up 

of 73 million reads between 1 bp and 735 kbp in length. The read length 

distribution is heavily skewed to the lower end of the range (Figure 1), with an 

N50 of 1001 bp. 

Note that after performing the analyses on the ONT Clinical dataset, it was 

discovered that there was no HSV-2 reference genome included in the list of 
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RefSeq assemblies used to build the custom classifier databases. The HSV-2 

samples were therefore not included in the results section of this report. 

 

Figure 1. Read length distribution of clinical and mock viral community ONT datasets. 
The distributions of 5.64 million subsampled reads from the ONT Clinical dataset and 
4.35 million subsampled reads from the ONT MSA-1008 dataset are shown as violin 
plots. The boxplots show the median and first and third quartiles. The whiskers extend to 
1.5 times the interquartile length (IQR) from the nearest hinge. The left pane shows a 
zoomed in view of the right pane. 

2.4 Building custom classifier databases 

Custom databases for the different classifiers were constructed from a same set of 

sequences, corresponding to those found in the Kraken2 PlusPF database 

(https://benlangmead.github.io/aws-indexes/k2, release 9/4/2024). The PlusPF 

database contains RefSeq human (GRCh38 and T2T-CHM13), bacterial, archaeal, 

protozoal, fungal, viral and plasmid genomic sequences, as well as synthetic 

sequences from the Univec database (2). All FASTA files were decompressed 

before building the databases. 

Files containing taxonomic information needed to build the custom databases 

were downloaded from NCBI (February 2025). The NCBI taxonomy name and 

tree files were downloaded from https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/. The 

accession to taxonomic ID mapping files nucl_gb.accession2taxid, 

nucl_wgs.accession2taxid and prot.accession2taxid.FULL were downloaded from 

https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid, and 

assembly_summary_refseq.txt was downloaded from 

https://ftp.ncbi.nlm.nih.gov/genomes/refseq/. 

2.4.1 Building the Kraken2 database 

The Kraken2 custom database was built according to the Kraken2 manual 

(https://github.com/DerrickWood/kraken2/blob/master/docs/MANUAL.markdow

https://benlangmead.github.io/aws-indexes/k2
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.40/
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_009914755.1/
https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/
https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/
https://github.com/DerrickWood/kraken2/blob/master/docs/MANUAL.markdown
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n). After populating a taxonomy subdirectory with NCBI taxonomy name, tree 

and accession to taxid mapping files, the build process consisted of two main 

steps. First, FASTA files were processed to mask low-complexity regions and to 

create a library of hashed files. For this step, the k2 wrapper script added in 

Kraken 2.1.3 was used. To speed up the library construction, multiple FASTA 

files were processed in parallel using xargs, as shown below. 

cat <list-of-FASTA-files> \ 

| xargs -P 16 -I{} -n 1 \ 

| k2 add-to-library --db <db directory> --threads 

1 --masker-threads 1 --file {} 

In the second step, the database was built from the assembled FASTA library. 

For this step the k2 wrapper script was not used due to a bug 

(https://github.com/DerrickWood/kraken2/issues/942). Therefore, the older 

kraken2-build command was used instead. 

kraken2-build --build --db <db directory> --threads 16 

2.4.2 Building the Metabuli database 

An NCBI-based custom Metabuli database was built according to instructions 

(https://github.com/steineggerlab/Metabuli?tab=readme-ov-file#ncbi-or-custom-

taxonomy-based-database). Since Metabuli requires a single accession to taxid 

mapping file when building a database, the nucl_gb.accession2taxid and 

nucl_wgs.accession2taxid files were combined and the merged map file used as 

input to Metabuli to maximize the number of sequences mapped to taxa. The 

database was then built as below. 

metabuli build <db-dir> \ 

<list of fastas>.txt <merged>.accession2taxid --

taxonomy-path <taxonomy> --threads 16  

where <taxonomy> contains the NCBI taxonomy name and tree files. 

2.4.3 Building the MetaCache database 

The MetaCache database was built according to the MetaCache authors’ 

instructions (https://muellan.github.io/metacache/building.html). First, all FASTA 

files to be included in the database were copied to a new directory and the 

database was then built as below. 

metacache build \ 

 <db name> <directory with FASTA files> -taxonomy 

<taxonomy> -taxpostmap <taxonomy>/nucl_*.accession2taxid 

where <taxonomy> is a directory containing the NCBI taxonomy files. 

https://github.com/DerrickWood/kraken2/blob/master/docs/MANUAL.markdown
https://github.com/DerrickWood/kraken2/issues/942
https://github.com/steineggerlab/Metabuli?tab=readme-ov-file%23ncbi-or-custom-taxonomy-based-database
https://github.com/steineggerlab/Metabuli?tab=readme-ov-file%23ncbi-or-custom-taxonomy-based-database
https://muellan.github.io/metacache/building.html
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2.4.4 Building the DIAMOND database 

To achieve equal taxonomic representation between the DNA-based databases 

and DIAMOND's amino-acid-based database, protein sequences of the RefSeq 

plasmids and the coding sequences of the genomic assemblies included in the 

Kraken2 PlusPF database were downloaded from NCBI. Those sequences were 

then used to construct the custom DIAMOND database. As some protein 

sequences were duplicated between the plasmid collections, the assembly 

sequences and assemblies from related species, all protein sequences were first 

merged and processed with SeqKit ((Shen et al., 2016)3) to remove duplicate 

sequences. 

seqkit rmdup <duplicated FASTA> \ 

> <deduplicated FASTA> 

The deduplicated FASTA sequences were then used to build the DIAMOND 

custom database. 

diamond makedb --in <deduplicated FASTA> \ 

--db <db name> \ 

--taxonmap prot.accession2taxid.FULL \ 

--taxonnodes nodes.dmp \ 

--taxonnames names.dmp \ 

--threads 16 

2.4.5 Building the Sylph database 

The Sylph database was built according to the Sylph cookbook 

(https://github.com/bluenote-1577/sylph/wiki/sylph-cookbook). Following the 

recommendation to sketch small genomes at lower subsampling rates (-c flag), all 

viral genomes were sketched at -c 1 and all other genomic sequences were 

sketched at -c 100. Sketching all genomes at -c 1 was unfeasible as the system 

ran out of memory after sketching only a small fraction of the genomes.   

 Sylph requires a tsv file that provides the taxonomic lineage for each FASTA 

file used to build the database. Prior to building the database, custom bash scripts 

were therefore used to extract the taxid of every genome assembly using the 

information in the NCBI assembly_summary_refseq.txt file, as well as to extract all 

plasmid and UniVec sequences to new FASTA files. This resulted in a new library 

of FASTA files containing sequences of only one taxid each. These FASTA files 

were used to build the Sylph database as below. 

sylph sketch -c 1 -l <viral genome FASTAs>.txt \ 

-t 16 -o <viral output>  

sylph sketch -c 100 -l < non-viral genome FASTAs>.txt \ 

-t 16 -o <non-viral output> 

https://github.com/bluenote-1577/sylph/wiki/sylph-cookbook
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The NCBI names.dmp and nodes.dmp taxonomy files were then used together 

with custom python scripts to generate a custom Sylph taxonomy tsv-file to allow 

for the later conversion of Sylph genome profiles of metagenomic samples to 

taxonomic profiles. 

2.5 Read preprocessing 

The preprocessing of the ONT sequencing data was carried out in accordance 

with the workflow of the nf-core/taxprofiler pipeline (Stamouli et al., 2023). The 

nf-core/taxprofiler pipeline is intended to act as a unified front-end to several 

different metagenomic taxonomic profilers and databases within a single pipeline 

run for both Illumina and ONT data. The recommended preprocessing workflow 

consists of quality control, optional adapter removal and length- and/or read 

quality-based filtering, followed by removal of human host reads. 

2.5.1 Viral mock community data 

To increase comparability across samples, all reads in the ONT MSA-1008 

dataset were randomly subsampled to 5Gbps using Rasusa (Hall, 2022) before 

further preprocessing. Since the samples showed distributions of predominantly 

long and high-quality reads, no length- or quality-based filtering was performed. 

No adapter trimming was performed either, as all adapters in the data have been 

removed prior it being uploaded to ENI. Removal of host reads was performed by 

mapping the samples to the T2T-CHM13v2.0 human reference genome with 

Minimap2 (Li, 2018) and discarding all mapped reads. 

2.5.2 Viral clinical sample data 

Since the ONT Clinical data represent samples from different patients, consist of 

different sample materials and were DNA-extracted using two different protocols, 

no initial subsampling of the sample reads was performed. The data showed a 

high degree of extremely short reads, down to 1bp in length. To decrease the 

number of uninformative reads, the samples were therefore filtered using nanoq 

(Steinig and Coin, 2022) to exclude all reads shorter than 50 bp. Adapter 

trimming was not performed and host removal was carried out the same way as 

for the ONT MSA-1008 data. 

2.6 Taxonomic classification of sample reads 

Following removal of human host reads, each sample was processed by all five 

classifiers to generate taxonomic profiles. For each classifier, default options were 

used. In some cases some non-standard values were used to increase sensitivity or 

to speed up the processing time. Such non-standard options are noted below for 
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each classifier. All input sample files were gzipped fastq files and all classifiers 

were configured to make use of all 16 available CPU threads. 

2.6.1 Classification with Kraken2 

To reduce the classification time when running multiple samples, the Kraken2 

custom database was preloaded into memory prior to read processing and samples 

were then classified with Kraken2 using the --memory-mapping flag. This 

prevents Kraken2 from loading the database in and out of memory between each 

sample, allowing Kraken2 to act in a batch-like mode for more rapid processing. 

Individual samples were classified as below. 

k2 classify \ 

 --db <db in shared memory> --threads 16 --memory-

mapping --output <output file> --report <report file> 

<sample fastq file> 

2.6.2 Classification with DIAMOND 

Samples were classified using DIAMOND's blastx mode, aligning translated reads 

to the reference protein sequences. Due to issues with processing some samples, 

the fastq input files were first converted to FASTA format before classification. 

The --long-reads flag was used to optimize ONT read processing. To reduce 

the sample processing time at the expense of higher memory use, the --block-

size and --index-chunks parameters were set to non-default values. 

Classifications were performed as:  

diamond blastx \ 

--db <database> --out <output> --threads 16 --

outfmt 102 --long-reads --block-size 6 --index-chunks 1 --

query <FASTA> 

where –outfmt 102 ensures that a taxonomy is assigned to each read using an 

LCA algorithm. 

2.6.3 Classification with Metabuli 

The Metabuli classifier was run in sequencing mode 3 (--seq-mode 3), 

corresponding to long read data. Samples were processed as below.  

metabuli classify \ 

--seq-mode 3 <input fastq> <database> <output> <output 

prefix> --threads 16 --taxonomy-path <NCBI taxonomy> 

2.6.4 Classification with MetaCache 

Similarly to Kraken2, MetaCache was run in a batch-like mode, processing 

samples one after another without unloading the database in between. In 
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MetaCache this is known as "interactive mode" and is activated when no query is 

supplied as an argument. To enable processing samples in batches, queries are 

added to a shell variable, one line per query, which is then piped to MetaCache to 

be processed as a batch. An example run with two queries is executed according 

to 

queries="-out <output query 1> <fastq query 1>\n"  

queries="${queries} -out <ouput query 2> <fastq query 2>\n"  

echo -e ${queries} \  

| MetaCache query <database> -threads 16 -taxids -

separate-cols -lowest species  

where the -taxids and -separate-cols flags alters the output file format to 

include taxids in a separate column, and -lowest species tells MetaCache to 

assign classifications at the species level as the lowest taxonomic rank. 

2.6.5 Classification with Sylph 

Sample fastq files were sketched at a subsampling rate (-c) of 1 according to  

sylph sketch -t 16 -c 1 -r <fastq files>  

and the sketched files were then profiled with Sylph using  

sylph profile \ 

<db directory>/*.syldb *.sylsp -u --min-number-

kmers 3 -t 16 -o <output> 

where --min-number-kmers is used to lower the default (50) number of k-mers 

that are needed to get a result, as recommended for small genomes such as 

viruses. The -u flag makes it so that Sylph estimates the true genome coverage 

instead of the effective coverage, making the estimated sequence abundance 

proportional to the total number of sample reads. Finally, the Sylph genomic 

profiles are converted to taxonomic profiles using the sylph-tax utility and the 

Sylph taxonomy generated previously in the database construction section. 

sylph-tax taxprof <Sylph results file> -t <Sylph taxonomy> 

2.6.6 Combined Sylph and Minimap2 method 

To compensate for Sylph’s limitation in not providing read-level classifications, 

an alternative combined method was devised utilizing Minimap2 in addition to 

Sylph. For each sample profiled with Sylph, the detected genomes were matched 

to a species taxonomy using the assembly_summary_refseq.txt file. A genome 

was considered positive if it belonged to an expected species of the processed 

sample. The sample reads were mapped to each positive genome using Minimap2 

and the alignments were saved as a sorted BAM file using SAMtools (Danecek et 

al., 2021): 
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minimap2 -a -x map-ont -t 16 <genome> <input fastq> \ 

 | samtools view -b - \ 

 | samtools sort -m 7G -o <BAM output> 

If multiple genomes of the same species were detected, the genome with the 

highest breadth of coverage at a minimum depth of 1x was selected for that 

species. The breadth of coverage was computed by dividing the number of bases 

with coverage ≥ 1x by the genome length. The reads mapped to the selected 

genome were then extracted using SAMtools to acquire a set of individually 

classified reads. 

Samtools view -F 0x4 <BAM output> | cut -f 1 > <reads file> 

2.7 Classifier species-level viral abundances 

2.7.1 Absolute abundances from normalized read counts 

Normalized viral abundances were derived from the individually classified reads 

output by the Kraken2, Metabuli, MetaCache, DIAMOND and Sylph + Minimap2 

classifiers. For each metagenomic sample, the read classifications were compared 

against the viruses expected to be found in the sample. Only taxa at the species-

level were considered: classifications at lower taxonomic levels were summarised 

to their ancestor species node while any classification above the species-level was 

disregarded. In other words, any classification at or below the species level of an 

expected virus was counted as a positive read for that species.   

For the ONT MSA-1008 dataset, the expected viral composition was known 

beforehand exactly down to the species level, with every expected virus 

corresponding to exactly one taxon. For the ONT clinical dataset, the expected 

species was known beforehand only for the PCR-confirmed HSV-1, HSV-2 and 

VZV samples, while the exact species of adenovirus or bocavirus present were 

not known beforehand. To avoid biasing the results, reads from these samples 

were therefore considered positive if they were classified as any adenovirus or 

bocavirus species known to infect humans, as determined from the NCBI 

taxonomy browser (Schoch et al., 2020). In total, 63 such adenoviruses, including 

Human Mastadenovirus A-F, as well as 5 different bocavirus species were 

included. 

For the ONT MSA-1008 data, positive DNA and RNA virus reads were only 

counted from the DNA and RNA samples respectively. The total positive read 

counts were computed per species and viral load, and the raw read counts were 

normalized by the total number of sequenced sample reads and converted to reads 

per million (RPM). ONT Clinical samples were treated similarly: samples were 

grouped by PCR-verified species and the extraction protocol used (+/- HL-SAN 

method). The within-group positive read counts were then summed and 

normalized to RPM abundances. 
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2.7.2 Estimation of Sylph sequence abundances 

Unlike the other benchmarked classifiers, Sylph does not provide read-level 

classifications but instead estimates the containment of reference genomes within 

a metagenomic sample. Abundances in terms of normalized read counts therefore 

could not be calculated directly, but were instead estimated. For each of 𝑞 

genomes assigned to a profiled metagnome, Sylph outputs a sequence abundance 

estimate according to 
λ𝑖 ⋅ 𝐺𝐿𝑖

∑ λ𝑖
𝑞
𝑖=1 ⋅ 𝐺𝐿𝑖

, 

 

where λ𝑖 is the effective coverage of genome 𝑖 and 𝐺𝐿𝑖 is the corresponding 

genome length in bp. The total fraction of classified sample reads is estimated as 

 

∑ δ𝑖
𝑞
𝑖=1 ⋅ 𝐺𝐿𝑖

∑ 𝑅𝐿𝑖
𝑛
𝑖=1

, 

 

where δ𝑖 is the true coverage of the genome and 𝑅𝐿𝑖 is the read length in bp of the 

𝑖th read of a total of 𝑛 sample reads. When run with the -u flag, Sylph estimates 

the true coverage instead of the effective coverage and the sequence abundance is 

multiplied by the estimated fraction of classified reads, becoming 

 
δ𝑖 ⋅ 𝐺𝐿𝑖

∑ 𝑅𝐿𝑖
𝑛
𝑖=1

, 

 

which is the fraction of all sample base pairs assigned to genome 𝑖. This is then 

taken as an approximation of the fraction of sample reads assigned to the genome, 

and the read count was estimated by multiplying this fraction with the total 

number of input reads. The estimated read counts were then normalized to RPM 

as described previously. 

2.7.3 Mock viral community relative abundances 

For each species in the MSA-1008 virome mix, genome length normalized read 

counts were calculated for each taxonomic classifier at the different viral loads by 

dividing the classified read count with the genome length (see Table 2). The 

normalized read counts were divided by the sum of normalized read counts for all 

species to generate relative genome length adjusted abundances. 
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2.8 Estimation of Sensitivity, Precision and F1 score 

2.8.1 Verification of read-level classifications using BLAST 

For each host-filtered sample, all unmapped reads were aligned to a subset of the 

nt_viruses database using BLAST+ (version 2.15.0) with the MegaBLAST 

(Morgulis et al., 2008) module. To speed up the alignments, a list of NCBI taxids 

was used to limit the search space to viruses within the same taxonomic order as 

the viral species that were expected to be found in the sample. To filter out 

spurious hits, thresholds were set to limit detection to sequences with at least 90% 

nucleotide identity, an e-value of 10−5 and a minimum 50% query coverage of 

the reference. The -duster flag was also used to mask low-complexity regions, 

and the number of hits per read was limited to 10. A read was considered a true 

positive if at least one hit sequence belonged to a taxon at or below the species 

level of one of the expected viruses for the sample of that read, otherwise the read 

was considered negative. 

The read classifications of each taxonomic classifier were compared to the 

BLAST results. If a read was positive for the same species using both the 

classifier and BLAST, it was considered a true positive (TP). If a positive 

classification was not confirmed by BLAST (either negative or positive for a 

different species) the read classification was considered a false positive (FP), and 

if the classification was negative but there was an expected BLAST hit the read 

was counted as a false negative (FN) for that classifier. 

2.8.2 Computation of detection metrics 

The taxonomic classifier performance was quantified by computing read-level 

sensitivity, precision and F1 scores for each classifier. Using the true positives, 

false positives and false negatives from the BLAST verifications, the sensitivity 

was computed as the rate of true positive reads, according to  

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. 

 

The precision was computed as the proportion of all reads classified as positive 

that were true positives, according to 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. 

 

The F1-score is defined as the harmonic mean of sensitivity and precision and 

was computed as 

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
. 
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For the ONT Clinical data, the sensitivity, precision and F1 metrics were 

computed per biological DNA sample and aggregated according to the virus 

expected to be found in the samples. For each virus, the distribution of F1 scores 

was tested for differences between taxonomic classifiers using the non-parametric 

Kruskal-Wallis test at a significance level of 5%. 

2.9 Classifier computational resource requirements 

The wall time and peak memory usage for building the PlusPF-derived custom 

databases for the different taxonomic classifiers was measured using the GNU 

find utility. All computations were performed on cluster nodes with 16 CPU cores 

and either 128GB or 256GB of memory depending on classifier database size. All 

reference sequences used to build the databases were in uncompressed FASTA 

format. 

For DIAMOND the time needed to merge and deduplicate the input FASTA 

files was included in the wall time. Similarly, for Metabuli the wall time includes 

the time needed to merge the nucl_gb.accession2taxid and 

nucl_wgs.accession2taxid files. 

GNU find was also used to measure the wall time and peak memory usage 

when classifying one of the host-filtered ONT Clinical samples, consisting of 2.1 

million reads and 1.6 Gbp. To investigate the impact of database caching and 

loading times, three different types of runs were measured: 

 

 cold run, defined as a classification of a single sample without any pre-

caching of the database. 

 Warm run, an initial untimed cold run was performed with a different 

warmup sample, immediately followed by a timed classification of the 

target sample. The purpose of the warmup run was to measure the 

potential effect of database caching between sample runs. 

 Batch run, measured only for Sylph, Kraken2 and MetaCache and 

defined as the processing of samples in batches without unloading of 

the database from memory in between samples. For each batch run the 

target sample was processed together with the warmup sample, and the 

additional time required for the target sample was measured. 

 

For Kraken2 and MetaCache, the batch runs were executed using memory 

mapping and interactive mode respectively, as described previously. For 

MetaCache, the target sample processing time was extracted from the classifier's 

standard output during execution and for Kraken2 the target processing time could 

be measured directly using GNU time. For Sylph, the time added by the target 

sample was measured by first classifying the warmup sample by itself, followed 

by classifying the warmup and target samples together. The additional target 
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sample time was then calculated by subtracting the warmup sample time from the 

two-sample total time. 
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3. Results 

3.1 Taxonomic classifier performance on mock data 

The performance of Kraken2, DIAMOND, Metabuli, MetaCache and Sylph was 

first compared on ONT data from a simulated, mock viral community dataset. The 

dataset contained a known mix of constituent viruses at viral loads between 60-60 

000 gc/mL in a background of human DNA or RNA with internal spike-in 

controls of Lambdavirus DNA and Bacteriophage MS2 RNA. Following 

subsampling to 5Gb and removal of host-reads, the ability of the classifiers to 

detect reads at different viral loads was assessed in the form of per-species 

abundances (Figure 2A). 

Among the tested classifiers, DIAMOND, Metabuli and MetaCache detected 

reads from 7 of the 8 expected species at 60 000 gc/mL, while Kraken2 and Sylph 

detected 6 and 5 species, respectively. The Lambdavirus DNA was not detected 

by any classifier across all samples, although positive BLAST-aligned reads were 

present.  

While both Kraken2 and Sylph failed to detect Influenza B, it should be noted 

that this virus was detected in only one read by the other classifiers and BLAST. 

Interestingly, Sylph also failed to detect Human betaherpesvirus 5 at the default 

minimum average nucleotide identity (ANI) threshold of 95%, despite it being the 

largest of the investigated genomes and all other classifiers detecting it at viral 

loads down to 600 gc/mL. 

Overall, the abundance estimates from the classifiers were similar to those 

obtained from BLAST, with a tendency for Kraken2 to report lower abundances 

and the estimated Sylph abundances to be inflated up to a hundredfold for some 

species compared to BLAST. Sylph genome profiling followed by the mapping of 

reads to the detected genomes with Minimap2 (Sylph + Minimap2 method) 

resulted in abundances largely in line with those of BLAST. 
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Figure 2. Abundances of detected species in mock viral community dataset for different 
classifiers and viral loads. Each viral load corresponds to reads from two technical 
replicates each of one DNA and one RNA sample (except for 0 gc/mL with only one RNA 
replicate). Before classification, all samples were subsampled to 5Gb and host-reads 
were removed by mapping to the T2T-CHM13 human reference genome with Minimap2.  
(A) Normalized read counts in RPM for the classifiers, shown as base 10 log(x+1)-
transformed values. RPM counts of BLAST-positive reads are included as a baseline. 
Phage MS2 and Lambdavirus represent the RNA and DNA internal controls respectively 
and should be present at fixed concentrations. (B) The distribution of classified reads per 
species, relative to the total number of classified reads for different viral loads and 
classifiers. All read counts were normalized to the species genome size to compensate for 
sequencing bias of longer genomes. The internal controls are not included. Sylph + MM2 
represent abundances based on reads mapped to a Sylph-identified genome using 
Minimap2. 
*: Sylph read counts without Minimap2 are estimates calculated as described in the text. 

Excluding the internal sequencing controls, the theoretical viral composition of 

the mock community was expected to be made up of viruses from the virome mix 

in equal concentrations. To evaluate the ability of the classifiers to accurately 

reflect the composition of the viral community, relative abundances normalized to 
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the genome size of each species were computed (Figure 2B). The purpose of 

using relative abundances normalized to genome size was to compensate for 

biased read counts between different species due to the higher probability of 

sequencing longer genomes. The results show that the theoretical composition is 

not reflected by the data, with Zika virus making up more than half of the 

normalized BLAST distribution at all viral loads with detectable viruses. Overall, 

the classifier distributions follow BLAST closely for detected species, with the 

exception of Sylph diverging significantly by inflating the proportion of 

adenovirus.  

The accuracy of the taxonomic classification for the mock community was 

evaluated on the read level by computing sensitivity, precision and F1 detection 

metrics for each classifier across the different viral loads (Figure 3), using BLAST 

read alignments as a baseline to verify classifications. As shown in Figure 3, 

Kraken2 displays the lowest sensitivity, correctly identifying around 70-80% of 

positive reads at different viral loads, while Metabuli and MetaCache held stable 

at over 95% sensitivity for all non-zero viral loads. The sensitivity of DIAMOND 

drops off sharply at the highest viral load, likely reflecting lower read counts 

assigned to the highly abundant adenovirus (see also Figure 1A for comparison). 

The sensitivity of Sylph meanwhile suffers at the higher viral loads, mainly 

because it was able to detect fewer species. While Kraken2 shows the highest 

precision, reaching 100% at 0, 6000 and 60 000 gc/mL, the other classifiers are 

close behind with values between 96% and 99%, such that the F1 scores closely 

resemble the sensitivity curve. 

 

Figure 3. Detection metrics for different classifiers on mock viral community dataset. 
Sensitivity, precision and F1 scores were calculated from the number of true positive, 
false positive and false negative reads, using  a pairwise comparison between the read 
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taxonomies assigned by each classifier andto per-read BLAST alignments. All species 
expected to be found in the samples, including internal controls, were included in the 
calculations, . Since Sylph does not report per-read classifications, the reported metrics 
for Sylph are instead based on counts of reads that were first mapped to a Sylph-
identified genome using Minimap2 (MM2) 

3.2 Taxonomic classifier performance on clinical data 

Having evaluated ONT-ready classifiers on a mock viral community, the 

classifiers were next benchmarked on an ONT dataset from clinical DNA samples 

containing known PCR-verified DNA viruses. Following read preprocessing and 

host-removal, the read counts of the target viruses were normalized using reads 

per million (RPM). The normalized per-virus read counts from different samples 

were then aggregated to compute abundances for both HL-SAN and non-HL-SAN 

DNA extraction protocols (Figure 4). 

As a first observation, the samples treated with HL-SAN had substantially 

higher abundances in terms of RPM compared to the standard protocol samples, 

likely reflecting a higher proportion of viral genomic sequence being sequenced in 

the host-depleted samples. Further, similar to the mock community data Metabuli, 

MetaCache and the Sylph + Minimap2 method consistently reported slightly 

higher abundances than those from BLAST alignments. While Sylph was able to 

detect all expected viruses, the abundances calculated from estimated Sylph read 

counts showed opposite trends between the +/- HL-SAN samples. For the non-

HL-SAN samples, the estimates were about 2-3 times higher than the BLAST 

abundances, similar to the behaviour seen for the mock viral community data. In 

contrast, the estimated Sylph abundances for the HL-SAN+ samples were 

substantially lower than the BLAST values for 3 out of 4 viruses. Kraken2 and 

DIAMOND abundances were lower than BLAST across all viruses, and this was 

especially pronounced for Herpes Simplex Virus 1. 
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Figure 4. Normalized (RPM) abundances of detected species in ONT patient data for 
different classifiers and species. The read counts include all classified reads at or below 
the species level, including any false positives, and are aggregated across PCR-positive 
DNA samples. The "HL-SAN protocol" abundances are derived from samples prepared 
using a HL-SAN host genomic depletion protocol, while the "Standard protocol" 
abundances are from samples that underwent DNA extraction without the HL-SAN step. 
Counts of BLAST-positive reads are included as a baseline for comparison. 

To investigate the relationship between classifier accuracy and viral species, read-

level detection metrics were computed for the patient DNA samples and grouped 

by the known PCR-verified viral pathogen (Figure 5). A clear difference can be 

seen between the classifiers in terms of sensitivity, with MetaCache, Metabuli and 

Sylph + Minimap2 consistently outperforming Kraken2 and DIAMOND. Metabuli 

performed particularly well, detecting reads with near 100% sensitivity with the 

exception of one HSV-1-positive sample, for which none of the classifiers were 

able to detect any reads. The Sylph + Minimap2 method also posted near-perfect 

sensitivity, but was unable to classify any reads from an additional HSV-1 

sample. MetaCache meanwhile classified this and most other samples with 

sensitivity exceeding 95%.   

For Kraken2 and DIAMOND the sensitivity was around 70%-75% for 

adenovirus and bocavirus, increasing to 80%-85% for VZV. For both classifiers 

the sensitivity dropped considerably for the HSV-1 samples however, going down 

to 25% for Kraken2 and around 40% for DIAMOND. 
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Figure 5. Detection metrics for different classifiers on patient ONT data. Each dot 
represents a distinct DNA sample, with reads aggregated from one or two sequencing 
replicates using the same extraction protocol. The sensitivity, precision and F1 scores 
were calculated only for species that were previously PCR-confirmed to be present in the 
sample. Comparisons of classifier-assigned read taxonomies to per-read BLAST 
alignments were used to categorize reads as true positives, false positives or false 
negatives. The boxplots show the median as well as the first and third quartiles. The 
whiskers of the boxplot include all values within 1.5 x IQR from the nearest hinge. The p-
values for Kruskal-Wallis tests of the F1 distributions are shown. 

All classifiers were able to detect true positive reads with high precision for 

adenovirus, bocavirus and VZV samples, with median values between 87% and 

97%. The precision was overall lower for HSV-1-positive reads, with the more 

sensitive Metabuli, Metacache and Sylph + Minimap2 methods reporting median 

precisions of 62%, 64% and 44%, respectively. Kraken2 and DIAMOND had 

higher median precisions of around 95%. 

When considering sensitivity and precision together, the distribution of F1 

scores overall favored the Metabuli, MetaCache and Sylph + Minimap2 methods, 

although no statistically significant differences were found for any of the viruses 

at a 5% significance level. For VZV, all classifiers performed similarly, while 

Metabuli and MetaCache were the strongest performers for classifying HSV-1 

samples, with Kraken2 bringing up the rear. 
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3.3 Benchmarking classifier computational 

requirements 

When considiering the implementation of  a taxonomic classifier within a routine 

clinical metagenomics workflow, it is important to take into account not only the 

classification performance but also the computational requirements of putting the 

tool into use. When comparing the wall time and memory needed to build the 

custom PlusPF-derived databases (Figure 6A), Sylph was the fastest tool by far, 

finishing in 9 minutes compared to the second fastest DIAMOND at 2 hours. 

Kraken2 was the slowest at 21 hours, taking almost twice as long as Metabuli. In 

terms of memory usage, DIAMOND was the least taxing with a peak use of 6 GB 

of RAM, followed by Sylph at 23 GB. MetaCache required the most memory with 

a peak use of 191 GB, about twice as much as Metabuli or Kraken2.  

Using the respective custom databases, the classifiers were further 

benchmarked in terms of the wall time needed to process a sample of 2.1 million 

reads (Figure 6B). For the purpose of classifying a single sample without pre-

caching of the database, Metabuli took the longest with 8 hours, 14 times slower 

than DIAMOND. Sylph meanwhile finished in 1 min, while Kraken2 and 

MetaCache followed closely at around 3 min. When processing the same sample 

after an initial untimed run with a different sample in order to take advantage of 

potential database caching, only Sylph, Kraken2 and MetaCache showed small 

improvements in speed. Running the sample as part of a batch run resulted in 

greater speed gains, with Sylph and MetaCache reducing the processing time by 

around 85%, while Kraken2 finished almost 75% faster. This indicates that Sylph 

and MetaCache provide competitive processing times compared to Kraken2, 

whereas DIAMOND and especially Metabuli may slow down the analysis 

workflow. It should be noted that since Sylph reports classifications only at the 

genome level, additional tools such as Minimap2 must be used to map sample 

reads to an assigned genome if reads-level data is desired. This may considerably 

extend the sample processing time, depending on the number, size and complexity 

of the Sylph-classified genomes to be mapped. 



35 

 

 

Figure 6. Benchmarking classifier computational resource use. (A) The wall time and 
memory used to build a PlusPF-derived custom database for different classifiers, sorted 
by wall time in ascending order. (B) The wall time required by different classifiers to 
profile a 1.6 Gb ONT sequenced patient sample of 2.1 million reads. Base 10 log-
transformed times are shown in ascending order. Cold run times show the classification 
time for a single sample, without any pre-caching of the database. Warm run times show 
the classification time after an initial (untimed) classification of a different sample, 
showing potential speedups due to database caching. Batch run times are shown for 
classifiers that support batch processing of samples (Sylph, MetaCache) or database 
memory mapping (Kraken2), and represent the processing time for the second sample in 
a batch run. (C)  The peak memory usage by the classifiers when processing the sample 
as in (B). 
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4. Discussion 

ONT sequencing has gained popularity for metagenomic analyses both in research 

and clinical diagnostics due to its long read length, short turnaround time, and 

lower cost. While taxonomic classification tools for ONT data are continuously 

being developed, comprehensive benchmarking of those remains limited. In this 

study, we evaluated five taxonomic classifiers for ONT metagenomics data using 

both a mock viral community and clinical samples. 

4.1 Classifier performance on mock viral community 

4.1.1 Lambdavirus may be misclassified as E. coli 

In this study we failed to detect the internal lambdavirus DNA control. This was 

also observed in the original paper of the dataset (Buddle et al., 2024), where 

lambdavirus reads were being classified as Escherischia coli (E. coli) due to the 

presence of an integrated lambda phage in E. coli reference genomes. To check if 

similar results were observed across the classifiers in this study, the classifications 

of the 33 reads with positive BLAST hits for lambdavirus were cross-checked for 

Kraken2, DIAMOND, Metabuli and MetaCache. All reads were classified as E. 

coli by MetaCache compared to none by Kraken2, 1 by DIAMOND and 7 by 

Metabuli. Among the reads not classified as E. coli, all were unclassified by 

DIAMOND, while Metabuli classified 4 as bacteria above the species level. 

Kraken2 classified 20 reads as Eukaryota (10 at the species level and 10 at higher 

levels) and 10 as bacteria at the species level. 

Since the BLAST verification was based on the virus-only nt_viruses database, 

integrated lambdavirus and E.coli sequences couldn’t be accurately predicted. To 

address this, the reads with lambdavirus BLAST hits were also aligned to the 

nt_core database using the NCBI BLAST web tool. All reads gave strong hits of 

over 90% identity to both E. coli and lambdavirus. These results are compatible 

with the conclusion drawn by Buddle et al., that lambdavirus DNA tends to be 

misclassified as E. coli and that lambda DNA may therefore not be suitable for 

use as an internal sequencing control for metagenomics. 

4.1.2 Sylph may struggle to detect viruses at low coverage 

Sylph was notably the only benchmarked taxonomic classifier that failed to 

detect Human betaherpesvirus 5 at any viral load. This was surprising given the 

previously reported high sensitivity of Sylph on nanopore data (‘Genomic and 

epigenomic insights into microbial biology with nanopore metagenomic and 

isolate sequencing’, 2024), combined with the detection of the virus by all other 

classifiers at lower viral loads. To further investigate this unexpected result, the 
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ONT MSA-1008 samples were reprofiled using Sylph with lower thresholds for 

the minimum containment ANI (the –minimum-ani parameter) required for a 

reference genome to be included in the Sylph profile. At a minimum ANI of 

around 85% Sylph was able to detect not only Human betaherpesvirus 5 at viral 

loads down to 600 gc/mL but also Influenza B virus at the highest load, bringing 

Sylph’s detection rate up to the level of Metabuli, MetaCache and DIAMOND. 

A possible explanation for Sylph not detecting Influenza B virus at a minimum 

ANI of 95% is that the Influenza viruses are known to have variable genomes 

(Tsai and Chen, 2011). To explore this the single Influenza B BLAST-positive read 

was aligned to the reference genome used to build the Sylph database, with a best 

match of 92% identity. This could indicate that the default minimum ANI of 95% 

may be too stringent for profiling highly variable viruses with Sylph. 

For the less variable Human betaherpesvirus 5 DNA virus a different 

explanation is likely needed. While it is known that Sylph detects viruses with 

lower sensitivity than bacteria due to the smaller genome size (Shaw and Yu, 

2024), this does not apply for Human betaherpesvirus 5 given that it has the 

largest genome of all the viruses in the ONT MSA-1008 data. We therefore 

speculated that the failure to detect the virus may also have been due to low 

coverage of the reference genome in the sequencing data. 

Sylph estimates the containment ANI using an effective coverage-adjusted 

measure, which can compensate for low genome coverage. For bacteria Sylph has 

been shown to correct ANI estimates to >95% for effective coverages as low as 

0.008x (Shaw and Yu, 2024) when the true ANI was >99%, although the 

estimates became lower and less accurate with decreasing coverages. We 

therefore hypothesized that the ANI estimate may break down below a certain 

coverage level, and that this detection limit would depend on both the true 

genome ANI as well as the genome size. 

To investigate this, the viral genome coverage in the host-filtered metagenomic 

samples was checked by mapping the sequenced reads to the reference genomes 

identified by Sylph with Minimap2 and then calculating the breadth of coverage at 

a minimum of 1x coverage depth. The viral genomes detected at a minimum ANI 

of 95% all had coverages above 36%, whereas the coverage of the Influenza B 

genome was at 11%. For the Human betaherpesvirus 5 genome coverages ranged 

from 2% to 25% between samples. This indicates that while the 95% ANI 

threshold may be sufficient for low-abundance bacterial genomes, it may not 

apply in the same way to viral genomes. Due to their smaller genome sizes, we 

would expect Sylph to require a higher minimum coverage of a reference genome 

to reach the 95% containment ANI estimate for viruses compared to bacteria. 

Given that the viruses that Sylph failed to detect at the 95% ANI threshold were 

also those with the lowest coverage, it seems likely that low viral genome 

coverage may explain the limited detection rate of Sylph on this dataset. This also 
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suggests that the containment ANI approach of Sylph may put it at a disadvantage 

for the detection of low-abundance viruses compared to classifiers that operate on 

the level of single reads. To achieve higher sensitivity for such samples, an 

adjustment of the minimum ANI level appears to be necessary. 

4.2 Classifier performance on clinical data 

4.2.1 DIAMOND’s lower sensitivity on clinical samples 

On the mock viral community dataset the performance of DIAMOND was 

equivalent to that of Metabuli and MetaCache for most viral loads, showing high 

precision and clearly outperforming Kraken2 in terms of sensitivity. When 

classifying reads from real patient samples however DIAMOND showed 

consistently lower sensitivity than Metabuli and MetaCache, performing at a 

similar level as Kraken2. The sensitivity of DIAMOND as well as Kraken2 was 

especially low for HSV-1 reads compared to the other viral species. We 

investigated this by checking the HSV-1 BLAST-positive reads that KRAKEN2 

and DIAMOND failed to detect. For DIAMOND there were 10 944 such reads, out 

of which 83% were classified as Simplexvirus at the genus level, meaning that 

DIAMOND was failing to distinguish between the reference sequences of HSV-1 

and closely related viruses. This is in line with protein-based classifiers being 

known to have lower specificity due to higher sequence conservation at the 

protein level (Kim and Steinegger, 2024), resulting here in classifications that fail 

to resolve below the genus level. This then manifests as lower sensitivity when 

classifications above the species level are discarded. 

For Kraken2 only around 10% of the false negative reads were correctly 

classified at the genus level, with 90% being unclassified. This indicates the 

opposite problem of DIAMOND, with Kraken2 being unable to detect conserved 

homology between divergent nucleotide sequences. Of note, 67% of Kraken2 and 

59% of DIAMOND false negatives reads were not shared between the two 

classifiers, indicating that the classifiers were indeed struggling to classify the 

reads for different reasons. 

A noticeable difference between the mock and clinical datasets is that the 

clinical samples had many more short reads compared to the mock data (Figure 

1). Longer read lengths have previously been associated with higher specificity 

(Buddle et al., 2024). Since DIAMOND is a protein-based classifier, it may be that 

its performance suffers more from the loss of long-read information, given that 

there is an additional reduction in sequence length from the translation of DNA to 

protein. Additionally, as genes are more conserved on the amino acid-level 

compared to the nucleotide-level, it is likely that longer reads would be especially 

helpful for protein-based classifiers in resolving closely related sequences. In a 

previous benchmarking study on ONT data by Portik et al. (Portik, Brown and 
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Pierce-Ward, 2022), a DIAMOND+MEGAN protein-based method saw a sharp 

drop in performance when the dataset was altered to include a higher proportion 

of short reads, while the performance of Kraken2 was mostly unaffected. This is 

largely in line with our results, although a direct comparison is difficult to make 

due to the use of metrics at the level of species detection in Portik et al.’s study, 

instead of the read-level metrics used here. Taken together, this suggests that the 

shorter read length in the clinical dataset likely explains some of the observed loss 

of sensitivity for DIAMOND. 

4.2.2 Metabuli, MetaCache and Sylph + Minimap2 

The superior performance of MetaCache over Kraken2 seen in this study is in 

agreement with the observations of MetaCache’s authors (Müller et al., 2017). 

This may reflect the use of shorter default k-mer lengths in MetaCache, which is 

supposed to increase sensitivity without reducing specificity due to MetaCache’s 

context aware minhashing method. Meanwhile, Metabuli is designed to achieve 

both high specificity and homology sensitivity by simultaneously encoding 

sequence information at the nucleotide and the amino acid-level (Kim and 

Steinegger, 2024), which could help explain its strong performance also on the 

seemingly challenging HSV-1 data. Unlike the mock data, Sylph detected the 

viruses in all clinical samples except two HSV-1 samples that had 1 and 8 BLAST-

positive reads respectively. Given the previous discussion on the likely impact of 

genome coverage on Sylph’s sensitivity, the improved performance may be 

explained by the higher viral abundances observed overall for the clinical data, 

which is likely to correlate with higher genome coverage. Finally, the fact that 

Minimap2 classified reads in strong agreement with BLAST is not surprising, as 

the two alignment-based tools have previously been found to report similar 

abundances on metagenomic data (Bahk and Sung, 2024). 

4.3 Computational performance 

The computational benchmarks performed in this study showed significant 

differences between the compared taxonomic classifiers in terms of time, memory 

and storage requirements. All classifiers support building custom databases, 

allowing for a uniform set of reference sequence data to be used. The database 

build time varied considerably, with Sylph taking only minutes to complete a 

database from over 200GB of sequence data. While the database construction step 

may typically not be the most time critical in a metagenomics workflow, it can 

still be advantageous to be able to quickly modify or update the database with 

minimal delay. The Sylph database was also highly memory efficient, with the 

memory and storage requirements being adjustable through the use of different k-

mer subsampling rates. These results are in line with previous benchmarks of 

Sylph (Shaw and Yu, 2024). Notably, the MetaCache database needed more than 
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twice the memory of Kraken2, indicating that the previously reported (Müller et 

al., 2017) advantage of MetaCache over the original Kraken in terms of memory 

efficiency no longer holds after 

the improvements made in Kraken2 (Wood, Lu and Langmead, 2019). It should 

be noted that MetaCache provides an option to build a database in several parts 

for reduced memory use, although this was not explored in this study. 

In processing sample reads there was a clear division of performance in terms 

of speed between the classifiers. Importantly, through processing samples in 

batches Sylph, Kraken2 and MetaCache could process samples up to 100 and 

1000 times faster than DIAMOND and Metabuli respectively. In terms of memory 

use Metabuli stood out by using only a few GB, which could explain its slow long 

processing times. Without the tweaks made to DIAMOND as reported in the 

methods it used very little memory at the cost of substantially longer processing 

times. Attempts were made to similarly tweak Metabuli’s memory use through the 

–max-ram parameter to achieve shorter processing times, but this appeared to 

have no effect.  

It is important to note that processing times for the combined Sylph + 

Minimap2 method used to get classifications at the level of individual reads are 

not presented. This is because the time added will depend on the number of 

detected genomes, which of these the user is interested in having mapped to reads 

as well as the size and complexity of the genomes. 

4.4 Taxonomic classifier pros and cons 

From an analysis of the benchmarking results it is clear that the optimal choice of 

classifier will depend on the specific use case and computational resources 

available to the user. In making a recommendation we will approach this question 

from the perspective of a clinical use case, where the goal of performing the 

metagenomic analysis is typically to detect a single viral pathogen in a patient 

sample. This is unlike other perhaps more common use cases for these tools, such 

as characterising the overall composition of a complex microbiome. In clinical 

use, a metagenomic assay is often performed for immunocompromised patients, 

or in situations where traditional methods have failed to identify an infectious 

agent. Important criteria for a suitable classifier for this use case therefore include 

high sensitivity under different viral loads and for different viral families, 

reflecting the diversity of sample types and pathogens found in the clinical setting. 

In this study we have benchmarked the DNA-based methods Kraken2, 

Metabuli, MetaCache and Sylph, as well as the protein-based DIAMOND. The 

overall picture produced by the sensitivity, precision and F1 scores indicates that 

the Metabuli, Metacache and Sylph + Minimap2 methods present substantially 

higher sensitivity in classifying viral reads from patient samples compared to 

Kraken2 and DIAMOND at the species level, at a comparatively small loss in 
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precision. Further, the improvement in sensitivity may be particularly pronounced 

for certain viral species such as HSV-1, potentially indicating that the 

performance of Kraken2 and DIAMOND could vary across different viral species. 

 While Kraken2 offered competitive computational performance, its limited 

sensitivity and poor ability to detect HSV-1 makes it difficult to recommend. 

DIAMOND performed very well overall on the synthetic data but saw a sharp 

drop in species-level read sensitivity when moving to the clinical samples, likely 

reflecting the cost in specificity of its greater ability to detect homology through 

conserved amino-acid sequence. As this feature could potentially be used to detect 

pathogens with poor representation in the reference database, such as novel viral 

strains, a potential use case for DIAMOND could be as a secondary classifier in 

combination with a highly sensitive DNA-based tool. DIAMOND would then be 

used on reads that the first tool did not classify correctly. Here MetaCache could 

be a suitable choice for primary classifier if its greater memory requirements can 

be satisfied, having performed well across datasets and all investigated species, 

while offering efficient processing times.  

Metabuli meanwhile showed best-in-class sensitivity and potentially offers the 

strengths of both DNA- and protein-based classifiers in one tool, which could 

remove the need to combine DNA- and protein based classifiers. A serious 

drawback of Metabuli found in this study however was its highly inefficient 

sample processing times. Further research would also be needed to compare the 

performance of Metabuli and protein-based classifiers in terms of detecting 

underrepresented genomes through related species on clinical data, which was 

outside the scope of this study. 

While Sylph performed best-in-class on the computational side, its poor 

performance on low-coverage viruses and inaccurate abundance estimates are 

serious drawbacks. Sylph’s lack of read-level classifications are also a problem, as 

it makes results difficult to verify with a secondary method. We worked around 

this by mapping reads to Sylph-detected genomes with Minimap2, with overall 

strong results. A potential problem with this approach though is that individual 

reads could be assigned to different taxa, complicating the interpretation of the 

results and potentially adding further complexity to the workflow. 

4.5 Limitations 

There were several limitations of this study. First, the taxonomic classifiers were 

only evaluated on viruses, but from a clinical perspective their performance on 

bacterial pathogens is also highly relevant, and in particular for bacterial species 

that are challenging to culture. Second, although we only looked at a few viruses 

in this study, we could see differences in the performance of some taxonomic 

classifiers between species. This is an indication that the performances reported 

here may not generalize to other viral pathogens, and that further evaluations on 
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additional species is needed. It would also be valuable to evaluate different 

sample types such as feces, as the microbial load and diversity can vary greatly 

between different human sites. 

We used mostly the default parameters of the evaluated classifiers. While 

outside the scope of this study, it is possible that careful tuning of classifier 

parameters could significantly alter some of the performances reported here. 

4.6 Summary and conclusion 

We evaluated the Kraken2, DIAMOND, Metabuli, MetCache and Sylph 

taxonomic classifiers on viral ONT datasets. Overall, Metabuli and MetaCache 

classified reads with the highest sensitivity and F1 scores across both mock and 

clinical datasets. DIAMOND performed well on the mock data but saw reduced 

species-level sensitivity on the clinical data, likely due to a shorter reads 

distribution. For use in a clinical diagnostic workflow, the DNA-based 

MetaCache is an attractive option due to its strong performance and fast 

processing times. DIAMOND could be used as a complement to leverage amino-

acid level conservation to detect species with low representation in the reference 

database. Metabuli might combine the strengths of DNA- and protein-based 

classifiers in one tool, but suffered from slow processing times. Before adapting a 

classifier for clinical use, more research is needed using additional viral and 

bacterial species as well as different sample types. 
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Data availability 

Scripts written in bash, Python and R used for running the analyses described in 

the methods section and to generate the figures in the report are made available in 

a git repository at 

https://github.com/bewh0001/metagenomics_taxclass_master_project. 

https://github.com/bewh0001/metagenomics_taxclass_master_project
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Popular science summary 

With metagenomics the characteristics of all genetic material from a sample can 

be analyzed simultaneously. Applied to diagnostic medicine, this means that the 

DNA from infectious organisms can be detected in patient samples using one test. 

This can provide a valuable complement to traditional tests, or be used to detect 

previously uncharacterized pathogens, such as new strains of an evolving virus. 

Metagenomics relies on next generation sequencing technologies. The 

technology of choice has typically been Illumina, due to its high throughput and 

low error rate. The alternative Nanopore platform has become increasingly viable 

in recent years due to major improvements in sequencing accuracy. Nanopore can 

sequence DNA in much larger segments compared to Illumina, which can 

improve downstream analysis. Nanopore is also faster, allowing for a reduction in 

the time to diagnosis, and often cheaper. Metagenomics with Nanopore therefore 

has the potential to save costs and lead to improved patient outcomes. 

The identification of pathogens from metagenomic data requires specialized 

taxonomic classifiers. A classifier uses efficient algorithms to compare sequenced 

segments to a database and identify the species. There are several classifiers for 

use with Nanopore data, but there is a need to compare their performance on 

clinically relevant data before being put in use. In this study we compared the 

performance of five different classifiers on Nanopore data derived from samples 

containing different viruses. To evaluate performance we computed sensitivity 

and precision. Sensitivity measures the ability of a classifier to find the sequenced 

DNA segments that belong to a given species, or so called true positives. A high 

precision meanwhile means that the classifier is unlikely to generate false 

positives, that is to assign the species to a segment in error. 

Our results showed that the Metabuli and MetaCache classifiers were the most 

sensitive, finding almost all true positives. The widely used Kraken2 classifier 

was considerably less sensitive, while DIAMOND performed better on data with a 

higher proportion of long sequenced DNA fragments. This is likely because 

DIAMOND works by first translating the DNA to protein, which is evolutionarily 

more conserved. This means that longer sequences may be needed to distinguish 

closely related species from each other. Finally, the Sylph classifier seemed to 

have problems with detecting viruses whose genomes were poorly represented by 

the sequenced fragments, which could make Sylph unsuitable for detecting small 

viral quantities. The computational requirements of the classifiers varied. 

Metabuli was slow, which could be a problem for analysis times. Overall, 

MetaCache may be the strongest candidate due to a combination of high accuracy 

and fast run times, but its high memory requirements could be a barrier to 

implementation. It may be a good idea to combine MetaCache with DIAMOND, 

in order to also get the benefits of a protein-based classifier. 
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