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Abstract  
The quality of forage is a critical factor influencing animal health, productivity, and the 

nutritional value of derived products. Accurate assessment of forage quality and yield is essential 
for optimizing livestock nutrition, improving productivity, and promoting animal welfare. While 
laboratory analyses provide precise nutritional parameters, they are often labor intensive and time 
consuming. Remote sensing technology offers a promising alternative by enabling rapid, large 
scale monitoring of forage characteristics. Widely regarded as a key tool in precision agriculture, 
remote sensing facilitates efficient field monitoring and data-driven decision-making. This study 
investigates the potential of multispectral imaging technology to estimate both the quantity and 
quality of forages. Over a two-year period, data on grass-legume mixtures were collected in 
Northern Sweden using an Unmanned Aerial Vehicle (UAV) equipped with RGB and 
multispectral cameras. Captured images underwent radiometric corrections and were processed 
into orthoimages to extract reflectance data. To predict the key forage quality indicators Dry 
Matter (DM) yield, Crude Protein (CP), Neutral Detergent Fiber (aNDFom), Organic Matter 
Digestibility (OMD), and Metabolizable Energy (ME), four statistical models were tested: 
Multiple Linear Regression (ML), Partial Least Squares (PLS and caretPLS), and Support Vector 
Machine (SVM). Model performance was evaluated using Root Mean Square Error (RMSE), 
Relative RMSE (RRMSE), and Coefficient of Determination (R²). Among the models, PLS 
demonstrated a superior performance in predicting certain parameters in the mixed grass and 
clover dataset. Specifically, PLS achieved an R² of 0.71 for ME and 0.75 for DM yield. ML 
exhibited the lowest RMSE and RRMSE values and the highest R² values across all parameters. 
The ML results were likely effected by overfitting as evidence of multicollinearity was observed, 
suggesting potential redundancy among predictor variables. CP and aNDF showed a lower 
reliability due to the missing data. These findings underscore the potential of forage quality 
prediction using UAVs while emphasizing the need for feature selection to address 
multicollinearity issues. 

Keywords: Multispectral imaging, UAV, forage quality, remote sensing 
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1. Introduction  

1.1 Study context 
To meet the growing demand for food and fiber from a global population 

projected to exceed 9.1 billion by 2050, the 21st century must significantly 
increase production per unit of land while ensuring the protection of soil health 
and the conservation of natural resources (Tilman et al. 2011). 

In this context, forage crops play a crucial role in livestock systems, which are 
essential for converting non-edible crops like grass into energy forms that humans 
can utilize, such as diary and meat (Capstaff & Miller 2018). In Northern Sweden, 
forage grasslands are among the most important crops, accounting for more than 
80% of the total agricultural land use (Jordbruksmarkens användning 2023. 
Slutlig statistik 2023). Due to climatic conditions and the short growing season in 
large parts of Sweden, farmers in these regions primarily grow crops for animal 
feed, such as forage for livestock as well as coarse grains (Facts about Swedish 
agriculture 2009). However, the long, bright summer days allow herbaceous 
plants to accumulate carbohydrates from photosynthesis for almost 24 hours a 
day, while the relatively low temperatures at the beginning of summer reduce 
lignification, promoting forage with high nutritional potential (Krizsan et al. 
2021). 

Forage quality directly influences animal nutrition, critical to both animal 
performance and producer profitability. However, the nutritional composition of 
forages can vary significantly, introducing uncertainties and inconsistencies in 
nutrient delivery to animals. Such variability can, in turn, affect their health, 
productivity, and overall welfare (St-Pierre & Weiss, 2015). Substantial 
differences in forage quality can arise among various forage crops, influenced by 
a range of factors. Key determinants include the stage of maturity at harvest and, 
for preserved forages, the methods of harvesting and storage. Additionally, 
secondary factors, such as soil fertility, fertilization practices, climatic conditions 
during the growth period, and the specific crop variety, also play a significant role 
(Oregon State University 2019). A comprehensive understanding and meticulous 
management of the nutritional variability in forages are, therefore, essential for 
improving dairy farm productivity while simultaneously ensuring enhanced 
animal welfare (Bullet et al., 2007). Forage production is also significantly 
influenced by the cutting intervals. Shorter cutting intervals typically enhance 
forage quality but reduce the yield per cut, while longer intervals lead to higher 
yields per cut but lower forage quality.  

Adjusting cutting intervals is a key management strategy in forage production, 
as it directly affects both the quantity and nutritional value of the forage available 
for livestock (Krizsan et al. 2021). In Sweden, one commonly used method is 
Vallprognos.se, a service operated by the Vallprognos project. This tool relies on 
temperature totals and crop samples, which are analyzed in a laboratory, to 
determine the optimal timing for the first harvest. Weather stations across the 
country provide the necessary data for these predictions (Vallprognos.se, 2025). 
Although Vallprognos is highly effective for estimating the timing of the first cut, 
it does not offer guidance for subsequent harvests. This limitation had led to 
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exploration of remote sensing as a potential solution, as it enables frequent 
monitoring, which is important for a dynamic system like forage crops.  

Remote sensing is generally considered one of the most important technologies 
for precision agriculture, as it uses specialized sensors to detect certain physical or 
chemical properties of an object, area, or phenomenon through data collected by a 
system that is not in direct contact with the observed subject (Plant 2018). It relies 
on, for example, satellite imagery or unmanned aerial vehicles (UAVs) to monitor 
vegetation properties during specific growth stages, weed mapping and 
management, irrigation management, crop spraying, and disease detection 
(Tsouros et al. 2019a). Data collection through remote sensing is a non-
destructive method. Furthermore, the data can be stored and reused multiple times 
without reducing quality (Pranga et al. 2021).Remote sensing in precision 
agriculture offers several key advantages, including the ability to obtain 
measurements across multiple locations and times, the rapid data collection and 
processing, the relatively low cost of various types of data, and the ease of 
obtaining information from areas that are typically difficult to access on the 
ground (Wachendorf et al. 2018). This provides farmers with a comprehensive 
view of their crops in a short time, making it possible to take timely action in case 
of issues (Shy et al. 2016). One of the most significant technologies associated 
with UAVs in agriculture is the use of drones equipped with multispectral 
cameras, which capture images at various wavelengths to collect crucial data on 
plant health and growth. 

This enables farmers to respond promptly to issues such as water stress, 
nutrient deficiencies, or pest infestations, while also providing the ability to 
estimate crop yields (Tsouros et al. 2019b). 

 
 
 
 

1.2 Research objectives 
The objective of this thesis is to evaluate the use of Multispectral Imaging 

(MSI) sensors from an unmanned aerial vehicle (UAV) for estimating forage yield 
and quality of ley fields in Northern Sweden. By integrating advanced imaging 
techniques and laboratory analysis of physical samples, this study aims to 
improve the efficiency and accuracy of field monitoring methods. The ultimate 
goal is to provide farmers with a reliable alternative to optimize crop 
management, enhance forage production, and support sustainable agricultural 
practices. 
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2. Theoretical background  

2.1 Electromagnetic radiation and multispectral 
imaging 

Sunlight, a form of electromagnetic (EM) radiation emitted by the Sun, 
propagates as waves with oscillating electric and magnetic fields at the speed of 
light. Upon reaching the Earth's surface, sunlight is either reflected or absorbed, 
converting into thermal or chemical energy (Huang et al. 2019). 

EM radiation spans from gamma rays (wavelength <1 pm) to radio waves (>1 
cm), with visible light (400–700 nm) between them. The visible spectrum ranges 
from violet (380–450 nm) to red (625–750 nm) and includes the colors blue (450–
485 nm), green (500–565 nm), yellow (565–590 nm), and orange (590–625 nm). 
As shown in Figure 1, healthy vegetation absorbs blue and red light for 
photosynthesis while reflecting near-infrared (NIR) radiation (700–1100 nm), 
providing valuable data for assessing crop health. Stressed plants, due to factors 
like water scarcity or pathogens, show altered ratios of absorbed visible light to 
reflected NIR radiation (Li et al. 2014). 

 
 

 
 
 

Figure 1. Reflectance of healthy vegetation (Lum et al. 2016).  
 
 
 
 
MSI is an advanced technique for capturing images across specific spectral 

bands, which enable the inference of physical and chemical characteristics of 
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observed objects. In agriculture, it is used to study crop interactions with 
electromagnetic radiation. Figure 2 shows the multispectral bands used in this 
study compared to the electromagnetic spectrum. 

The collected data are processed to generate images in multiple spectral bands, 
illustrating the proportion of light absorbed or reflected at different wavelengths, 
including the visible spectrum (Red, Green, Blue), near-infrared (NIR), and, in 
some cases, mid-infrared. MSI facilitate the calculation of vegetation indices 
across various spectral bands, highlighting key vegetation attributes such as 
chlorophyll content and biomass. The resulting outputs are monochromatic 
grayscale images, each corresponding to a specific spectral band (Multispectral 
imaging 2024). 

 
 

  

Figure 2. Electromagnetic spectrum (Ailioaie & Litscher 2020). 
 

2.2 Vegetation indices 
Vegetation indices are calculated using data collected from drones, satellites, 

or other remote sensing technologies to evaluate biomass, health status, and 
vegetation quality. These indices are based on light reflectance in different 
spectral bands, such as visible, NIR, and mid-infrared. Among the most 
commonly used indices is the Normalized Difference Vegetation Index (NDVI). 
This is calculated using the reflectance of electromagnetic radiation in the red and 
NIR bands. The NDVI value ranges between -1 and +1. The greater the reflected 
NIR and the more red light absorbed, the higher the chlorophyll content in the 
plant. A higher NDVI value indicates healthier and more photosynthetically active 
crops (Huang et al. 2021). The NDVI is based on red and NIR reflectance 
according to Equation 1:  
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𝑁𝐷𝑉𝐼 = 	
𝑁𝐼𝑅 − 𝑅𝑒𝑑
𝑁𝐼𝑅 + 𝑅𝑒𝑑 

 

Equation 1 
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3. Method and materials 

3.1 Study area  
For this thesis, a total of 14 missions of drone flights were analyzed across two 

study sites located in Umeå, as shown in Figure 3 and detailed in Table 1. The 
first site, Röbäcksdalen (RBD) (63.809°N, 20.231°W), is a field research station 
jointly managed by the Department of Crop Production Ecology and a research 
barn housing dairy cows, which is affiliated to the Faculty of Veterinary 
Medicine. This site is subdivided into several areas, with fields F17 and F35 
selected for the study. Nine missions of flights were conducted at this site 
between the summer of 2021 and 2022. Agricultural production at RBD includes 
either timothy (Phleum pratense) and red clover (Trifolium pratense) or timothy, 
meadow fescue (Lolium pratense) and red clover. 

The second study site is located in Djäkneböle (DKB) (63.773°N, 
20.049°W),where the plant species composition was not recorded, but consisted 
mainly of timothy and red clover.  

These missions were part of the Cybergrass 1 project 
(https://www.slu.se/en/departments/crop-production-ecology/research/crop-
production-specialized-in-forages/finished-projects/cybergrass/), funded by the 
Interreg Botnia-Atlantica. 

 
 
 

 

Figure 3. Spatial overview of study fields in Umeå [Läntmäteriet Orthophoto RGB 
0.25/0.50 m. Accessed through SLU (Geodata Extraction Tool 2025) and generated with 
QGIS). Map with world administrative boundaries generated with ArcGIS (World 
Administrative Boundaries - Countries and Territories 2025). 
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Table 1.  Overview of the missions with date and site locations. 
Mission  Date  Flight id  Site  
1  2021-06-04  20210604_RBD_CGS_P4MS  RBD  
2  2021-06-08  20210608_RBD_CGS_P4MS  RBD  
3  2021-07-09  20210709_RBD_CG_P4MS  RBD 
4  2021-07-12  20210712_RBD_CG_P4MS  RBD  
5  2021-07-15  20210715_RBD_CG_P4MS  RBD 
6  2021-09-08  20210908_DKB_CG_P4MS  DKB  
7  2022-06-07  20220607_RBD_CG_P4MS  RBD  
8  2022-06-14  20220614_DKB_CG_P4MS  DKB  
9  2022-07-25  20220725_DKB_CG_P4MS  DKB  
10  2022-07-28  20220728_DKB_CG_P4MS  DKB  
11  2022-08-23  20220823_RBD_CG_P4MS  RBD 
12  2022-08-26  20220826_RBD_CG_P4MS  RBD  
13  2022-08-29  20220829_RBD_CG_P4MS  RBD  
14  2022-09-01  20220901_DKB_CG_P4MS  DKB 
 
In each field, samples were collected using quadrats (50×50 cm) before and 

close to each of the three distinct periods during the vegetation season: Period 1, 
Period 2, and Period 3. The positions of these quadrats were recorded using a GPS 
system. Vegetation within each quadrat was cut and transported to the laboratory 
where it was manually separated into grass and legumes. The separated samples 
were weighed and subsequently dried in an oven at 60℃. After drying, the 
samples were weighed again and dry matter yield (DM Yield, kg DM/ha) was 
calculated. Samples were sent to SLUs forage quality lab at Ultuna for forage 
quality assessment. 

These samples were analyzed to estimate various quality-related variables, 
including, Organic Matter Digestibility (OMD, %), Metabolizable Energy (ME, 
MJ/kg DM), Amylase-treated NDF (aNDF, g/kg DM), and crude protein (CP, 
g/kg DM). Table 2 provides a summary of the sampling events conducted across 
various sites and cut periods during the study. 

 

 Table 2. Summary of sampling events across sites and cut periods. 

Site Date Tot. quadrats Cut period 
RBD 2021-06-04 3 1 
RBD 2021-06-08 1 1 
RBD 2021-06-09 1 1 
RBD 2021-06-10 1 1 
RBD 2021-07-09 6 2 
RBD 2021-07-12 6 2 
RBD 2021-07-15 6 2 
DKB 2021-09-08 6 3 
DKB 2022-06-07 6 1 
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RBD 2022-06-14 6 1 
RBD 2022-07-25 6 2 
RBD 2022-07-28 6 2 
DKB 2022-08-23 6 3 
RBD 2022-08-26 6 3 
RBD 2022-08-29 6 3 
DKB 2022-09-01 6 3 

 
3.2   Data acquisition 

Aerial imagery was captured using a DJI Phantom 4 Multispectral UAV, a 
drone specifically designed for agricultural and environmental applications. This 
UAV is equipped with both a high-resolution RGB camera and multispectral 
sensors, capable of capturing images across five spectral bands: blue, green, red, 
red-edge, and near-infrared (NIR) (DJI Phantom 4 Multispectral 2025), with the 
specific wavelengths detailed in Table 3. 

 

Table 3. Band number, name, and wavelengths of the DJI Phantom 4 Multispectral 
UAV.   

Band number Band names   Center wavelength 
(nm) 

 1 Blue      475 
 2 Green      560 
 3 
 4 
 5 

Red  
Red-edge 
NIR 

     665 
     740 
     790 

 

Ground Control Points (GCPs) were strategically placed across the area of 
interest, typically positioned at each corner and in the center of the field. These 
GCPs were essential for ensuring accurate georeferencing of images captured at 
different times and for aligning them during the orthomosaic generation process. 
The coordinates of the GCPs were recorded using a Trimble GPS system. 
Radiometric calibration targets, known as Calibrated Reflectance Panels (CRPs), 
were used to calibrate the images based on daily solar radiation levels. These 
targets allowed for the acquisition of absolute reflectance values, which were then 
used in the second stage of the process to generate reflectance maps and indices 
(Pix4D Documentation 2024). Calibration tiles with reflectance values of 50%, 
46%, and 84%, as well as one with 20%, were placed for calibration. Flights on 
2022-08-26 and 2022-08-29 were conducted at an altitude of 80 meters. 
Additional image acquisition missions were carried out at 50 and 100 meters, 
capturing images from the visible spectrum in JPEG and TIFF formats. 
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3.3  Imaging processing 

The next phase involved processing multispectral imaging through a series of 
steps to extract useful information from the acquired data. The Pix4D Desktop 
software (Pix4D, SA Lausanne, Switzerland) was utilized for image processing 
and orthomosaic creation. The geodetic reference system employed was WGS 84 
(World Geodetic System 1984), with a projected coordinate system in the UTM 
zone 34N (epsg 32634). A full-resolution GeoTIFF file was generated, combining 
the individual tiles. The image processing workflow in Pix4D consisted of three 
main stages: point cloud and mesh generation, creation of the digital surface 
model (DSM), and orthomosaic and index generation. 

Between 5 and 10 Ground Control Points (GCPs) were incorporated into the 
project after the initial processing phase using the Ray Cloud Editor. The Ray 
Cloud Editor enables a three-dimensional representation of the drone-captured 
images. It enables the visualization of a cloud of rays extending from the camera 
to the registered point, ensuring higher precision in the georeferencing process. 

Five reflectance maps were generated by processing the collected data, which 
represent the reflectivity of surfaces at specific spectral bands. For this type of 
map, no color balancing was applied, and the weight of each pixel in the original 
images is calculated to accurately represent the reflectance of the analyzed object. 
Each pixel in the map represents the proportion of light reflected by objects in a 
specific spectral band, providing detailed information about the surface’s physical 
or chemical properties. In addition, NDVI (Normalized Difference Vegetation 
Index) maps were generated using Pix4D software. These maps are derived from 
the reflectance data and are valuable for assessing vegetation health by 
highlighting areas of strong photosynthetic activity. An orthomosaic was also 
generated: a single image that maintains consistent scale and geometry. In this 
case, the software applies color balancing to ensure that the images blend better 
together, producing a visually more appealing result. Both the reflectance map 
and orthomosaic are derived from the DSM (Digital Surface Model) (Pix4D 
Documentation 2024). Additionally, a quality report was produced to provide a 
detailed assessment of the photogrammetric accuracy and the overall data 
processing quality. 

 
 

3.3.1 Data extraction 
 
The analysis of information from the outputs generated by Pix4D was 

subsequently conducted using a geoinformation software Quantum Geographic 
Information System (QGIS) to extract statistical data such as median, mean, 
majority and standard deviation for each sample location. A circular area with a 
diameter of 50 cm was used for data processing in QGIS using the Zonal Statistics 
tool. These sample locations were represented as quadrats of 50x50 cm overlaid 
on the reflectance map. By intersecting the quadrats with the reflectance map, 
QGIS computed the statistical summaries of reflectance values within each 
quadrat, providing detailed insights into the surface properties at these specific 
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locations. These values were then exported as CSV files and converted to Excel 
format for further analysis. Figure 4 shows the workflow for data processing and 
extractions.  

 
 
 
 
 
 

      

Figure 4. Workflow for data processing in Pix4D and QGIS. 
 
 

3.4   Data analysis 
R programming language was used for processing and analyzing data. A 

dedicated R script was developed to estimate forage quantity and quality utilizing 
spectral data collected via remote sensing and laboratory measurements. The 
analysis involved developing predictive models for different outcomes based on 
the observed data and evaluating their predictive performance. 

The predictive spectra variables consisted of the median, standard deviation, 
and majority of the following selected bands: blue, green, red, red-edge, NIR. 
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3.4.1 Predictive models 
For each lab measurement, four alternative prediction models were considered: 
 

1. Multivariate linear (ML) models, where the outcome variable is 
modelled as a linear combination of the spectra variables. 
2. Partial Least Squares (PLS) model as implemented in the R package 
pls, where the correlated spectra variables are first reduced in a set of 
principal components, later used for predicting outcomes. 
3. Similar PLS models implemented in the caret R package (caretPLS), 
which offers a better tuning of hyperparameters to avoid overfitting. 
4. The alternative linear Support Vector Machine implemented in the 
caret R package (caretSVM), where a hyperparameter controls the trade-
off between model complexity and misclassification error. 

 
A 10-fold repeated cross-validation was implemented (except for the ML 

models) to train and evaluate the predictive models to properly characterize their 
predictive performances considering possible overfitting. 

To assess the presence of multicollinearity among the independent variables, 
the Variance Inflation Factor (VIF) was computed using the vif function in the car 
R package. 

The VIF measures how much the variance of a regression coefficient is inflated 
due to multicollinearity. Generally, a VIF value above 10 suggests a high level of 
multicollinearity, while values between 1 and 5 indicate moderate correlation but 
not severe multicollinearity (Ngabire et al. 2022).  

 

3.4.2 Evaluating model performance 
To measure how well the models predicted the outcome variables, the 

following measures were evaluated: 
• Root Mean Square Error (RMSE): the square root of the mean of the 

squared differences between predicted and observed values. 
• Relative Root Mean Squared Error (RRMSE): the RMSE 

normalized by the mean of the observed values. 
• The coefficient of determination R2: it indicates the proportion of the 

variance in the observed values that is explained by the model, ranging 
from 0 (no predictive value) to 1 (perfect prediction). 

 
Additionally, the selected predictive measures were complemented with 

descriptive scatter plots. For each outcome variable and predictive model, the 
predicted versus the observed was plotted. Scatter plots for superior predictive 
models are expected to exhibit points scattered around the diagonal line. The 
diagonal line (y = x) serves as a reference to illustrate the strength and the 
direction of the correlation, which can be either positive (increasing) or negative 
(decreasing). Data points positioned near the line, indicates a strong relationship 
between the two variables. 
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3.5 Missing values and error exclusion 
Two common issues in prediction of field data relate to the presence of missing 

measurement as well as incorrect or corrupted measurements. 
For missing values, predictive models were trained and evaluated only on the 

subset of complete observation.  
For aNDF and CP, only the samples containing mixed grass and legume were 

used, which reduced the number of observations compared to the other 
estimations and may have affected accuracy of the results.  

For error identification, supervised knowledge of experts in the field was used 
to identify selected measurements, which demonstrated failure in the spectra 
measurements. These identified errors were excluded from the analysis in order to 
ensure the robustness and accuracy of predicted results. 
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4.  Results 

This section presents the results for the different tasks described in the methods 
section. First, a case study demonstrates the process of reconstructing the spectral 
variables for the drone data during an exemplary mission. Then a descriptive 
analysis describes the forage yield and quality and presents the spectral variables 
used in the prediction models. Finally, the predictive performance of the 
constructed prediction models is evaluated and contrasted. 

 

4.1 Case Study 
The mission identified as 20220829_RBD_CG_P4MS was conducted at the 

RBD site to acquire data for the study. The drone flight lasted approximately 30 
minutes. During the mission, operations were temporarily paused when a cloud 
obstructed the sun, ensuring consistency in radiation conditions and minimizing 
potential variability in the dataset. The weather was partially cloudy with medium 
wind. Three spectral targets, with reflectance values of 50%, 84%, and 46%, 
respectively, were placed on the ground to facilitate calibration and validation of 
the data. As shown in Figure 5, five Ground Control Points (GCPs) were 
strategically distributed across the study area. These points were georeferenced 
and used to improve the spatial accuracy of the outputs. As reported in Figure 6, 
Point Cloud visualization of field was generated using Pix4Dmap. 

Calibration was performed using the spectral target with a 46% reflectance 
value. The processing software generated raster index maps for the five bands 
used during the mission and the NDVI index. These raster maps were 
subsequently imported into QGIS for further analysis. Specifically, Zonal 
Statistics were calculated to evaluate the distribution and characteristics of the 
indices in specific zones of interest (Figure 7). 
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Figure 5.  Field mapping using Pix4Dmap, with GCPs indicated in blue.  
 
 

 

Figure 6. 3D Point cloud visualization of field vegetation generated using Pix4Dmap. 
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Figure 7.  NIR reflectance raster overlaid with polygon boundaries in QGIS for zonal 
statistical analysis. 

 

4.2 Data selection and descriptive summary of the 
forage quality and yield  

All the multispectral analyses were conducted according to the schedule. Due 
to a problem with the reflectance panel, three missions were excluded from the 
statistical analysis (2021-07-09, 2021-07-12, 2021-07-15). The mission from 
2021-09-08 was excluded as there was no reflectance panel used during this 
flight. Moreover, the mission 2022-06-14 was also excluded due to missing 
values. 

The results of the descriptive analysis for the spectral parameters are presented 
in Table 4. The average reflectance values for the red band were 0.04 for RBD in 
2022 and 0.05 in 2021, while DKB had a lower reflectance value of 0.03. The 
green band showed similar values for RBD in both 2021 and 2022, but DKB had 
a notably lower value of 0.073. 

For the NIR band, RBD in 2021 had the highest average value of 0.816, while 
RBD in 2022 and DKB exhibited similar reflectance values, also averaging 
around 0.5. In this experiment, no remarkable differences were observed in the 
NDVI values across sites and years. The median NDVI values averaged around 
0.8, with a maximum of 0.902 and 0.892 for RBD, respectively in 2021 and 2022, 
and 0.914 for DKB.  

The measured yields and quality parameters followed an expected distribution 
(Table 5). The DM yield showed significant differences between years for RBD 
and DKB. In 2021, the average DM yield for RBD was 2986 kg DM/ha, 
decreasing significantly in 2022 to 1690 kg DM/ha. For DKB, the average DM 
yield was approximately 1900 kg DM/ha. Similar trends were observed in the 
minimum and maximum values for both fields, indicating that the yield was not 
directly correlated with NDVI. 
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For OMD, there were no substantial differences, with an average value of 
around 75%. The minimum and maximum values were also consistent across 
samples. In contrast, CP showed greater variability. The average CP for RBD 
increased from 172 g/kg DM in 2021 to 212 g/kg DM in 2022, while DKB had a 
lower average CP of 158 g/kg DM. 

aNDF showed differences between years for RBD and DKB as the average 
value for RBD was 469 g/kg DM and decreased in 2022 to 450. For DKB the 
average value was approximately 436 g/kg DM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



27 
 

Table 4.  Descriptive analysis for the spectral parameters divided per site and year. 
Site Year mean sd min p25 median p75 max 

NDVI 
RBD 2021 0.872 0.025 0.804 0.862 0.875 0.890 0.902 

RBD 2022 0.862 0.018 0.834 0.851 0.856 0.869 0.892 

DKB 2022 0.880 0.026 0.843 0.853 0.878 0.902 0.914 

NIR 
RBD 2021 0.816 0.094 0.670 0.760 0.786 0.893 0.951 

RBD 2022 0.553 0.113 0.453 0.471 0.491 0.663 0.818 

DKB 2022 0.525 0.081 0.401 0.471 0.499 0.555 0.697 

Green 
RBD 2021 0.138 0.035 0.097 0.105 0.136 0.166 0.233 

RBD 2022 0.142 0.054 0.077 0.097 0.128 0.183 0.233 

DKB 2022 0.073 0.012 0.058 0.061 0.075 0.080 0.094 

Red 
RBD 2021 0.056 0.011 0.040 0.049 0.056 0.062 0.088 

RBD 2022 0.040 0.006 0.032 0.037 0.039 0.042 0.051 

DKB 2022 0.033 0.010 0.022 0.024 0.033 0.039 0.052 

Red edge 
RBD 2021 0.474 0.059 0.400 0.416 0.474 0.551 0.556 

RBD 2022 0.328 0.104 0.204 0.219 0.308 0.422 0.514 

DKB 2022 0.331 0.045 0.281 0.292 0.325 0.351 0.428 

Blue 
RBD 2021 0.068 0.032 0.030 0.040 0.057 0.088 0.143 

RBD 2022 0.054 0.014 0.033 0.039 0.057 0.063 0.075 

DKB 2022 0.045 0.015 0.031 0.032 0.038 0.061 0.065 
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Table 5. Descriptive analysis for the measured yields and quality parameters. 
Site Year mean sd min p25 median p75 max 

Crude protein mixed grass and clover 
RBD 2021 171.9 12.6 153.7 163.2 171.2 176.5 199.7 
RBD 2022 212.3 19.4 193.3 200.3 208.9 220.9 238.1 
DKB 2022 157.7 12.5 140.4 149.1 158.7 168.1 171.3 

DM Yield (kg DM/ha) 
RBD 2021 2986 558.8 1686 2666 3048 3394 3936 
RBD 2022 1690 535.5 696.6 1310 1751 2007 2638 
DKB 2022 1899 470.7 925.7 1664 1997 2155 2673 

ME (MJ/kg DM) 
RBD 2021 10.7 0.4 10.1 10.3 10.7 11.1 11.7 
RBD 2022 11.2 0.7 9.9 10.6 11.3 11.8 12.3 
DKB 2022 10.9 0.6 9.8 10.6 10.8 11.4 11.7 

OMD (%) 
RBD 2021 74.9 2.6 71.2 72.6 74.3 76.9 80.3 
RBD 2022 77.3 3.5 70.7 74.8 78.7 79.9 81.2 
DKB 2022 74.9 3.0 68.2 74.5 76.1 76.8 78.1 

aNDF mixed grass and clover 
RBD 2021 468.6 34.9 421.1 437.0 466.1 496.8 523.7 
RBD 2022 449.5 37.4 395.0 440.6 462.8 471.7 477.2 
DKB 2022 435.7 15.5 413.8 427.3 435.7 443.9 458.1 

 
 
In the descriptive matrix plots the association between selected outcomes, i.e. 

lab measurements, and the median values of the predictor spectra variables are 
provided for DM yield (Figures 8), ME (Figure 9), OMD (Figure 10). 

The DM yield was centered around 2000 kg DM/ha, with a range from 1000 to 
3000 kg DM/ha. The scatter plots on the outer diagonal illustrate the associations 
between the median of spectral variables and the outcomes, as well as with one 
another. A positive association is evident between all spectral variables and DM 
yield, with correlations ranging from 0.2 to 0.7. 

ME centered around 11 MJ/kg DM, and ranges from 9.8 to 12.3. A negative 
association is identified between most spectral variables (with the exception of the 
blue spectral value) and ME, with correlations ranging from -0.187 to -0.700. 
Conversely, the blue spectral value exhibits a positive non statistically significant 
correlation of 0.156 with ME. Regarding OMD, the distribution is centered 
around 76%, with values ranging from 68.2% to 81.2%. The blue spectral value 
shows a positive correlation of 0.370 with OMD, while the other spectral values 
exhibit negative correlations, ranging from -0.613 to -0.096.  
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Figure 8. Correlation matrix and scatterplots depicting the relationships between dry 
matter yield (DM Yield) and several spectral indices and reflectance values, including 
NDVI, blue, green, red, NIR (near-infrared), and red-edge bands. * indicates statistically 
significant differences. 
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Figure 9. A correlation matrix and scatterplots depicting the relationships between 
Metabolizable energy (ME) and several spectral indices and reflectance values, including 
NDVI, blue, green, red, NIR (near-infrared), and red-edge bands.* indicates statistically 
significant differences. 
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Figure 10. A correlation matrix and scatterplots depicting the relationships between 
OMD and several spectral indices and reflectance values, including NDVI, blue, green, 
red, NIR (near-infrared), and red-edge bands. * indicates statistically significant 
differences. 

 

4.3 Prediction models  
The predictive performances of the described models are presented in Table 6. 

For all laboratory measurements, the RMSE and RRMSE indicate a lower 
prediction error for the ML models compared to the alternative ones. The 
magnitude of the RMSE depends on the scale of the laboratory measurements 
considered. In contrast, the RRMSE allows for the comparison of prediction 
errors across outcomes measured on different scales. A RRMSE ranging from 
0.05 to 0.10 was consistently observed, with the exception of DM Yield, where 
higher values (from 0.16 to 0.22) indicate a greater relative prediction error 
compared to the other laboratory measurements.  

The coefficient of determination (R²) in Table 6 complements the described 
prediction errors. Specifically, the R² values of ML model is very high, with 0.8 
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for aNDF in mixed grass and clover and 0.9 for CP, and around 0.7 for predicting 
OMD (%), ME (MJ/kg DM), and DM Yield (kg DM/ha). These results suggest 
that the model explains a significant portion of the relationship between the 
dependent and independent variables. However, the analysis also revealed 
extremely high VIF values as shown in Table 7, which strongly indicate the 
presence of multicollinearity among the independent variables. Multicollinearity 
can lead to unreliable coefficient estimates, making their interpretation 
problematic. In this case, the high VIF values suggest that some independent 
variables are highly correlated, which increase the risk for overfitting. The VIF 
analysis suggests that there is multicollinearity among the spectral bands, 
confirmed by the high values for the variance inflation factor, which were all 
above 10. 

The R² for the alternative models was generally lower, with values around 0.4 
for CP mixed grass and clover, between 0.4 and 0.88 for aNDF in mixed grass 
and clover, around 0.6 for OMD (%), and 0.7 for ME (MJ/kg DM) and DM Yield 
(kg DM/ha). Because of that, alternative models such as PLS might be preferable, 
as their collinear predictors are reduced to a lower number of uncorrelated 
principal components.  

Finally, the agreement between observed and predicted laboratory 
measurements was visually inspected in the scatter plots in Figures 11-14. 
Overall, a good agreement between observed and predicted laboratory 
measurements was observed for the ML models, where most points scatter around 
the diagonal line (y=x), whereas the alternative prediction models show greater 
variability and weaker consistency. The scatter plots indicate varying levels of 
agreement between observed and predicted values, with the models generally 
showing better performances for certain parameters (e.g., aNDF and OMD) than 
others (e.g., CP). 
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Table 6.  Performance of predictive models. 
Model RMSE RRMSE R2 

Crude protein mixed grass and clover (g/kg DM) 
ML 6.22 0.04 0.905 
PLS 16.01 0.09 0.370 
caretPLS 16.45 0.09 0.463 
caretSVM 17.74 0.10 0.481 

aNDF mixed grass and clover (g/kg DM) 
ML 10.83 0.02 0.897 
PLS 11.48 0.02 0.884 
caretPLS 27.03 0.06 0.483 
caretSVM 21.79 0.05 0.661 

OMD (%) 
ML 1.62 0.02 0.734 
PLS 1.85 0.02 0.656 
caretPLS 2.16 0.03 0.549 
caretSVM 2.07 0.03 0.605 

ME (MJ/kg DM) 
ML 0.28 0.03 0.797 
PLS 0.33 0.03 0.711 
caretPLS 0.35 0.03 0.724 
caretSVM 0.36 0.03 0.675 

DM Yield (kg DM/ha) 
ML 361.0 0.16 0.787 
PLS 390.6 0.17 0.751 
caretPLS 457.2 0.21 0.690 
caretSVM 483.1 0.22 0.677 
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Table 7. Variance Inflation Factor for ML model. 
Variable Crude protein 

mixed grass and 
clover (g/kg DM) 

aNDF 
mixed grass and 

clover (g/kg 
DM) 

OMD 
(%) 

ME 
(MJ/kg 

DM) 

DM 
Yield (kg 

DM/ha) 

Majority_NDVI 448 448 13 13 13 
SD_NDVI 337 337 10 10 10 
Median_NDVI 1903 1903 51 51 51 
Majority_Blue 2164 2164 391 391 391 
SD_blue 5852 5852 57 57 57 
Median_blue 3832 3832 535 535 535 
Majority green 3232 3232 254 254 254 
SD_green 20525 20525 143 143 143 
Median_green 16520 16520 400 400 400 
Majority_red 1877 1877 116 116 116 
SD_red 1697 1697 98 98 98 
Median_red 1691 1691 320 320 320 
Majority_Nir 40065 40065 1054 1054 1054 
SD_Nir 370 370 56 56 56 
Median_Nir 56965 56965 834 834 834 
Majority_red_edge 20130 20130 1055 1055 1055 
SD_red_edge 624 624 70 70 70 
Median_red_edge 25857 25857 904 904 904 
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Figure 11.  Prediction plot showing the scatterplot between predicted and observed 
DM Yield (kg DM/ha) from fitted prediction models, colored by site. The solid black line 
represents the diagonal (y = x). 



36 
 

 

 Figure 12. Prediction plot showing the scatterplot between predicted and observed 
OMD% from fitted prediction models, colored by site. The solid black line represents the 
diagonal (y = x). 
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Figure 13. Prediction plot showing the scatterplot between predicted and observed 
aNDFom mixed grass and clover from fitted prediction models, colored by site. The solid 
black line represents the diagonal (y = x). 



38 
 

 

Figure 14. Prediction plot showing the scatterplot between predicted and observed 
crude protein mixed grass and clover from fitted prediction models, colored by site. The 
solid black line represents the diagonal (y = x). 
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5. Discussion 

5.1 Evaluating the grassland vegetation using NDVI 
and reflectance bands across different sites and 
years 

In this study, the NDVI values were generally high across all sites and years, 
indicating healthy vegetation. The NDVI, which is based on red and NIR 
reflectance, are associated with the photosynthesis process (Geipel et al. 2014). 
This vegetation index is usually related to biomass and chlorophyll content as it 
helps determine the nitrogen content of crops (Shu et al. 2024). The highest mean 
NDVI value of 0.872 was observed in RBD 2021, with a relatively narrow 
standard deviation (0.025) indicating uniform vegetation health across the site. In 
2022, a slight decrease in mean NDVI (0.862) compared to 2021, along with a 
narrower range (min: 0.834, max: 0.892), may indicate the different stages of 
growth. The mean NDVI value of 0.880 in DKB 2022 is slightly higher than RBD 
in 2022 but lower than RBD in 2021. The maximum value (0.914) suggests better 
peak vegetation health, but the higher standard deviation (0.026) indicates greater 
variability in vegetation across this site. 

NIR values showed notable variations between sites and years, which correlate 
with the health and density of the vegetation. The highest mean NIR value (0.816) 
was recorded for RBD 2021, with a broad range from 0.670 to 0.951. This reflects 
dense and healthy vegetation. A significant drop in mean NIR (0.553) in 2022 
may suggest lower biomass or reduced water content. The minimum value (0.453) 
further supports this observation. NIR values for DKB were similar to RBD 2022, 
with a mean of 0.525 and a narrower range (0.401–0.697). Red reflectance, which 
is absorbed by chlorophyll, showed variations across years and sites. A higher 
mean red reflectance (0.056) was recorded in RBD 2021, suggesting slightly less 
chlorophyll absorption compared to 2022. While in 2022, the lowest mean red 
reflectance (0.040) indicates vegetation with higher chlorophyll content. Similar 
to RBD 2022, the red reflectance value (0.033) in DKB suggests high 
photosynthetic activity. Green reflectance values were generally low, consistent 
with healthy vegetation that absorbs green light for photosynthesis. 
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5.2  Site and year variability in forage quality: 
correlations with spectral indices and nutritional 
parameters 

The dataset highlights differences across sites (RBD and DKB) and years 
(2021 and 2022) in key parameters related to forage quality, including CP, DM 
yield, ME, OMD and aNDF. CP is a key determinant of forage quality, with its 
variation typically being positively correlated with precipitation and negatively 
correlated with annual temperature (Lugassi et al. 2019; Irisarri et al. 2022). 
Accurate detection of changes in the herbage mass of CP would enable more 
efficient pasture management, including optimal timing and amount of fertilizer 
application. NDVI is considered the most appropriate index for assessing CP (Lim 
et al. 2015) as it demonstrates a stronger correlation with the ratio-based index 
using red and NIR bands (Watanabe et al. 2014). Furthermore, several studies 
have reported a correlation between chlorophyll content in plant tissue and 
nitrogen concentration (Rodriguez & Miller 2000). Nitrogen is a critical 
component of amino acids, essential for protein synthesis, leading to higher CP 
content. For this reason, NDVI, which reflects chlorophyll content (as healthy 
plants with higher chlorophyll absorb red light and reflet NIR), can serve as a 
reliable indicator of CP. However, the results did not show any significant 
findings (Figure 15 in the appendix) where a stronger correlation with the green 
band is observed. Crude protein content varied significantly between years and 
sites. At RBD, there was a notable increase in crude protein from 171.9 g/kg DM 
in 2021 to 212.3 g/kg DM in 2022, reflecting improved forage quality potentially 
influenced by environmental factors or management practices, such as fertilizer 
application. In contrast, the mean crude protein at DKB (157.7) was the lowest 
among all groups, indicating reduced forage nutritional quality compared to RBD 
in the same year. During sample collection, it was observed that the fields 
appeared to exhibit signs of nitrogen deficiency. The variation in protein content 
could be attributed to the balance of plant species present, as clover is naturally 
richer in protein than grasses. Accurately estimating crude protein content in the 
crop remains fundamental for effective forage monitoring.  

DM yield is a key indicator of overall productivity as it measures the total mass 
of plant material (excluding water content), providing insight into the amount of 
biomass produced. NDVI is also correlated to biomass as it increases with greater 
vegetation cover and leaf area (Goswami et al. 2015; Barboza et al. 2023). 
However, exploring different band combination can reveal variations in the 
relationship. The weaker correlation observed in this study can be explained by 
saturation during the peak season as reported in other studies (Zhu & Liu 2015)  
(Santin-Janin et al. 2009). At higher biomass levels, the relationship between 
biomass and NDVI may plateau due to increased canopy density, where 
additional biomass does not result in a significant increase in NDVI. This suggests 
that NDVI might not be strongly correlated with DM yield in this specific dataset. 
While higher NDVI values generally correspond to higher biomass and 
potentially greater DM yield, Table 5 reveals that RBD exhibited significant 
differences in DM yield between 2021 and 2022, despite relatively small changes 
in NDVI values for the same site. This variability in DM yield, particularly 
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between years in RBD, can be attributed to the sampling strategy. Samples were 
deliberately collected two to three times to harvest rather than at the peak growth 
stage, ensuring variability in yield and quality. This approach supports the 
development of more robust and accurate predictive models. However, there 
appears to be a correlation between DM yield and the spectral indices of NIR, red 
edge, and red, as they show a higher correlation value as reported in Figure 8. As 
noted in previous studies, the relationships between vegetation indices, such as 
NDVI, and biophysical parameters, like biomass, are often non-linear, which can 
restrict the predictive effectiveness of linear models. 

OMD and ME are interconnected, as they all measure the digestible portion of 
the feed that can be effectively utilized by the animal. OMD reflects the 
proportion of forage organic matter that can be digested by the animal. It is 
strongly influenced by plant maturity, as digestibility decreases with age due to 
the accumulation of structural carbohydrates. In general, immature plant tissue are 
more digestible than mature, stem-dominated material (Ball et al. 2001). The plant 
species also plays a significant role in digestibility. For example, clovers tend to 
maintain relatively higher digestibility compared to grasses as they mature, as 
they preserve a higher leaf to stem ratio (Forejtová et al. 2005). In case of  
timothy grass, when the temperature sum reaches 250 degrees-days, the OMD is 
estimated to be around 76% which is considered a suitable lower limit for high 
quality for dairy cows (Hjälp 2024). In this study, OMD values ranged from 70% 
to 81%. The relationship with spectral indices shows a strong negative correlation 
with red edge band (-0.613) and NIR band (-0.490).  

ME estimates the portion of energy content in feed that is absorbed through the 
digestive tract and utilized for metabolic process in ruminant animal, excluding 
energy lost in feces, urine and gases. Values of ME were relatively stable across 
sites and years, with minor differences. At RBD, an increase in ME from 10.7 
(MJ/kg DM) in 2021 to 11.2 (MJ/kg DM) in 2022 reflects slightly improved 
energy content in forage. Meanwhile, the ME at DKB (10.9) was comparable to 
RBD in 2021, indicating similar energy availability in forage. The relationships 
between ME and spectral indices shows a strong negative correlation with red 
edge band (-0.7).  

The aNDF represents the fibrous component of forage, which varies based on 
species, maturity and growing conditions. It includes the slowly digested 
hemicellulose and cellulose, as well as indigestible lignin within the plant. 
Adequate aNDF in diet is essential for dairy cows to maintain proper rumen 
function and optimize milk production (Oba & Allen 1999). Slight changes in 
aNDF values contributed to the training of the predictive models. A decrease from 
468.6 at RBD in 2021 to 450 in 2022 suggests that lower aNDF indicates reduced 
fiber content and greater digestibility. The lowest aNDF value (435.7) was 
observed at DKB in 2022, highlighting improved digestibility compared to RBD 
in 2021. All the reflectance values showed a positive correlation with aNDF. In 
particular, NIR and red-edge wavebands exhibited significant correlation with this 
forage quality variable, as shown in Figure 16 in the appendix. 
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5.3 Evaluating the performance of predictive models 
for forage quality parameters 

The evaluation of multiple models for predicting forage quality parameters, 
such as CP, aNDF, OMD, ME, and DM yield, revealed varying levels of accuracy 
and reliability. In this study, VIF was used to assess multicollinearity among 
spectral indices within ML prediction model and its impact on forage quality 
estimation. The findings reveal that multiple spectral indices elevated VIF values, 
indicating considerable overlap and redundancy within the dataset. This 
multicollinearity poses challenges in predictive modelling, as highly correlated 
variables can inflate variance and affect result interpretation. The ML model 
consistently outperformed other models across most parameters, as evidenced by 
lower RMSE, lower RRMSE, and higher R² values. However, it also experienced 
significant multicollinearity issues due to strong correlations among spectral 
bands, potentially undermining model stability and interpretability. Exceptionally 
high VIF values further confirmed this issue, indicating that some predictors were 
excessively correlated, which could lead to unreliable results and overfitting. 

In contrast, PLS, caretPLS, and SVM models were less affected by 
multicollinearity, as they transform correlated variables into uncorrelated 
components. This approach effectively mitigates redundancy, enhances model 
robustness, and improves predictive performance. 

For CP prediction, the missing data likely disrupted the relationship between 
the variables, reducing the model ability to make accurate prediction. The ML 
model demonstrated the highest accuracy (R² = 0.905), with a significantly lower 
RMSE (6.22) and RRMSE (0.04) compared to other models. However, the 
presence of missing values in the dataset significantly affected the predictive 
performance of ML. This limitation is evident in Table 8, which highlights issues 
of multicollinearity and predictor ability. The PLS, PLS caret, and SVM models 
showed lower R² values (ranging from 0.370 to 0.481), indicating a limited ability 
to accurately predict crude protein.  

Similarly, for aNDF, ML achieved superior results (R² = 0.897), with the 
lowest RMSE (10.83) and RRMSE (0.02). However, these results may not be 
entirely reliable due to evidence of multicollinearity, which raises concerns about 
the model’s interpretability. While the PLS model achieved a comparable R² 
value (0.884), its RMSE (11.48) and RRMSE (0.02) suggest slightly lower 
performance. The PLS caret and SVM caret models demonstrated weaker 
predictive capabilities, with R² values of 0.483 and 0.661, respectively. Missing 
values have reduced the predictor ability. 

For OMD, ML achieved moderate performance with an R² of 0.734, while the 
PLS, PLS caret, and SVM models showed slightly lower accuracy, with R² values 
ranging from 0.549 to 0.656. Although ML performed better, the relatively lower 
R² for all models compared to other parameters suggests that OMD may be more 
challenging to predict accurately using these models. The prediction of ME 
showed similar trends, with ML outperforming the other models (R² = 0.797, 
RMSE = 0.28). The PLS and caretPLS models yielded R² values of 0.711 and 
0.724, respectively, indicating relatively good performance.  

The analysis shows that the constructed models exhibited good performance in 
predicting quality parameters using UAV-collected multispectral data. PLS and 
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caretPLS demonstrated superior predictive ability with predictive R2 ranging 
between 55% to 70% for ME, DM yield and OMD. SVM exhibited variation in 
performance, with values ranging from 48% to 67%. These models performed 
better with some variables than others, possibly because not all variables are 
strongly correlated with the wavelengths or because a larger number of 
observations may be needed.  

The results demonstrate that the ML model consistently provides superior 
performance is particularly evident for crude protein, and aNDF, where it 
achieves both high R² values and low error metrics. However, despite these strong 
results, ML model was affected by certain limitations, particularly 
multicollinearity within the spectral data and the missing data in the dataset. 
These issues likely reduced the model’s reliability and prediction accuracy, and 
further refinement is needed to address data issues. 

While the results indicated good parameter estimation, the validation was 
internal, as the data used came from the same fields and methods. Although cross-
validation can help reduce overfitting, it has its limitations. To enhance the 
model's reliability, external validation should be performed by testing the models 
with data from new fields and missions. This would allow for assessing their 
performance in different conditions, ultimately confirming whether the models 
can be successfully applied beyond the original study area. 

Many studies have shown that using multiple vegetation indices derived from a 
combination of different spectral bands can improve nitrogen estimation, helping 
to understand stress variability and its potential agronomic benefits.   

A notable strength of this study lies in the utilization of a multiyear dataset 
collected from diverse field conditions. This approach enables the development of 
models that account for a wide range of variables, including temperature 
fluctuations, varying weather patterns, and differences in soil properties, all of 
which significantly influence crop health. Furthermore, the adoption of a cost-
effective multispectral imaging sensor mounted on UAVs to estimate forage 
agronomic traits presents a clear advantage over traditional near-ground 
measurement methods, which are frequently invasive and destructive. 
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6. Conclusions 

 
• The use of UAV-mounted multispectral sensors for estimating 

forage quality may present advantages over traditional methods. However, 
data issues such as missing values and multicollinearity within the spectral 
bands affected the model’s performance, suggesting that further 
refinement is needed for reliable predictions.   

• Multilinear regression (ML) models showed the highest R2 and 
lowest RMSE values all forage quality characteristics. However, high 
values for the variance inflation factor (VIF > 10) suggested 
multicollinearity between predictor variables and, therefore, occurrence of 
overfitting, which limits their applications on other datasets.  

• Alternative modelling approaches such as PLS showed relatively 
good performance for predicting aNDF (R2 = 0.88, RMSE = 11.48 g/kg 
DM), OMD (R2 = 0.66, RMSE = 1.85%), ME (R2 = 0.71, RMSE = 0.33 
MJ/kg DM) and DM yield (R2 = 0.75, RMSE = 390.56 kg DM/ha).  

• PLS and SVM models showed limited ability to accurately CP (R2 
ranging from 0.37 to 0.48, and RMSE ranging from 16.01 to 17.74 g/kg 
DM). 

 
 

 
General perspectives and recommendations: 
 

• UAV data acquisition and analysis offers significant potential for 
near real-time decision-making in agriculture, enabling targeted 
interventions within days and reducing management costs. Moreover, by 
assessing the quality of the forage, the model can ensure that the forage 
meets the nutritional needs of livestock, potentially improving animal 
health and productivity. Higher quality forage may also reduce the need 
for supplementary feeding, which can lower costs and improve the 
efficiency of the operation. 

• Future studies should adopt more accurate protocols to ensure the 
collection of complete and reliable datasets. For instance, placing 
reflectance panels on the ground during data acquisition would improve 
calibration and prevent data loss. 

• A deeper analysis of forage quality parameters across different 
harvest times is recommended to gain further insights, as this aspect was 
limited in the current study due to time constraints. 
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7. Reflections  

During this study, I had the opportunity to learn how to process images with 
PIX4D and gain a deeper understanding of the most common applications of 
UAVs in Precision Agriculture. I learned to acquire data across multiple 
wavelengths captured by a drone to generate high-resolution orthomosaic images 
and digital surface models, ensuring that pixels are perfectly aligned with their 
actual geographic positions by using GCPs and triangulation to guarantee spatial 
accuracy. 

Using QGIS, I developed the ability to compute various statistics based on the 
values of raster cells within zones defined by another raster or vector dataset. 
Additionally, I learned to use the R programming language to create scripts for 
regression analysis aimed at predicting agronomic variables, employing cross-
validation to train my model effectively. 
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Popular science summary 

For livestock farmers, forage quality is a key factor affecting animal health, 
productivity, and the nutritional value of meat and milk. However, laboratory 
analyses required to assess its characteristics can be costly and time-consuming. 
This study explored the use of drones equipped with advanced sensors to collect 
data on forage crops, highlighting the potential of remote sensing in precision 
agriculture. Due to their small size, drones can be effectively used in agriculture 
to capture high-resolution images. In this study, the drone was equipped with a 
multispectral camera capable of capturing images at different wavelengths. The 
data obtained were processed using specialized software, allowing the calculation 
of statistical parameters to develop predictive models for estimating forage 
quantity and quality. Four different statistical models were tested, giving variable 
results: some proved to be more accurate than others in making predictions. A 
major advantage of this approach is that the models were tested across different 
locations and time periods, showing adaptability. However, further validation 
using additional datasets will be needed to confirm their reliability. Despite its 
potential, integrating drone technology into agriculture comes with challenges. 
The vast amount of data collected by onboard sensors requires sophisticated 
software and specialized expertise to interpret effectively. Overcoming these 
obstacles will be crucial for fully leveraging drone-based remote sensing in 
precision agriculture. As technology continues to evolve, drones may soon 
become indispensable tools for farmers, helping them optimize crop management 
and improve efficiency. 
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Appendix 

 

Figure 15. Correlation matrix and scatterplots depicting the relationships between 
Crude Protein (CP) and several spectral indices and reflectance values, including NDVI, 
blue, green, red, NIR (near-infrared), and red-edge bands. * indicates statistically 
significant differences. 
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Figure 16. Correlation matrix and scatterplots depicting the relationships between 
aNDF and several spectral indices and reflectance values, including NDVI, blue, green, 
red, NIR (near-infrared), and red-edge bands. * indicates statistically significant 
differences. 
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