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Abstract  

 

Estimation of cervid forage cover is one of the tasks of forest resource management. It improves  

the browsing damage prognosis and allows for planning more precise mitigation strategies. In this 

thesis, I compared the accuracy of four different types of models in predicting the percentage cover 

of cervid forage. I used data on the Swedish Laser Scanning survey (SLSS), climatic variables 

(annual temperature and precipitation) from the wordclim database and tree species volume 

proportions from SLU species maps to train models. The Swedish National Forest Inventory (NFI) 

was a source of the data about forage cover. Canopy height, canopy cover and elevation were either 

taken from or calculated based on data from SLSS. I fitted two generalized linear mixed effect 

models with a beta distribution, one generalized linear additive mixed effect model and one random 

forests model with forage cover of Scots pine (Pinus sylvestris), oak (Quercus robur) and birch 

(Betula pendula and B. pubescens) as the response variable. Results varied both among species and 

methods, but Random Forest was the most accurate model for all species while GAMM performed 

the worst. The pine models achieved the best r2 values, but r2 values were relatively low in all cases. 

This suggests that in addition to the height of the canopy, canopy cover, species composition, mean 

annual precipitation, mean annual temperature and elevation, other predictor variables may  

be needed. Future studies creating predictive models for the percentage cover of these forage plants 

should utilize additional predictor variables.  

Keywords: remote sensing data, random forest, regression models, cervid forage cover 
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1. Introduction 

Maintaining numbers of cervid populations while minimising the damage they 

cause to crops and young forests is a challenging balance to strike. A diet of  

the Cervidae (for example Dama dama — fallow deer, Capreolus capreolus — roe 

deer, Alces alces — moose, Cervus elaphus — red deer) includes green plant 

material such as tree leaves and needles (Felton et al. 2017). Browsing on trees 

caused by cervids causes economic damage to forest owners (Felton et al. 2022).  

It was proven that even a 2% browsing damage level for a stand can decrease 

profitability (Nilsson et al. 2016). These concerns are exacerbated by the high 

density of cervids in Europe (Hardalau et al. 2024).  

The availability of forage is one of the key factors in reducing browsing damage 

on economically important timber species (Felton et al. 2022). Higher pine density 

means higher forage availability, and it decreases browsing on this species. It  

was proven that the proportion of browsed trees was lower in areas with larger 

forage cover (Pfeffer et al. 2021). This proves that there is a link between forage 

availability and browsing damage. There are other factors, such as the distance from 

a forest stand to the edge of the forest or soil type and fertility, that are relevant 

(Jalkanen 2001). 

In Sweden, the amount of cervid forage is monitored through the Swedish 

National Forest Inventory (NFI). The NFI provides a long-term programme  

of monitoring various forest characteristics through annual inventories. Numerous 

features are measured – for instance, details about forest and land use, carbon 

sequestration or timber and non-timber forest resources (Fridman et al. 2014).  

The NFI has over 100 years of tradition and it is an important data source supporting 

the decision-making process related to subjects such as forestry and environmental 

policies in Sweden. For example, it was shown that combining data extracted from 

the NFI database with Airborne Laser Scanning (ALS) data may be applied  

for predicting site index on grid cells of size 12.5m x 12.5m (Appiah Mensah  

et al. 2023). Similarly, combining NFI data with other data sources was utilized  

in Sweden to perform predictive modelling for, among others, stem volume, basal 

area, and weighted mean tree height (Nilsson et al. 2017) and ecosystem services 

like bilberry and cowberry yields (Bohlin et al. 2021). 

In my thesis, I combined LiDAR data with NFI data describing the cover  

of oak (Quercus robur), birch (Betula pubescence and B. pendula) and pine (Pinus 

sylvestris) in selected plots for modelling forage cover. Pine is a staple winter food 

for moose in many regions and is also consumed by other cervids, while birch  

is eaten frequently throughout the whole year (Månsson et al. 2007). Oak is a forage 

highly preferred by cervids (Felton et al. 2022) 
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In my thesis, I aimed to evaluate the accuracy of four different models for each 

species: pine, birch, and oak. The main research objective of my thesis is to evaluate 

which model is best suited for each species. 
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2. Materials and methods 

 

2.1 NFI data 

A National Forest Inventory is carried out as a sample inventory. Sweden  

is covered by a network of inventory tracks that consist of sample plots. Those  

are laid out in rectangular or square patterns, and numerous parameters are recorded 

for them (RIS 2023). I used NFI data collected in the years 2020–2023. I chose  

to narrow my research to three species — birch, pine and oak — mainly due to their 

relevance as forage for moose and other cervids, but also due to their cultural  

and economic value factors (Felton et al. 2022). I chose to model the percentage 

cover of the cervid forage. I used NFI data about game forage in the form of twigs, 

branches and small trees available from 0.3m to 2.5m above ground level, collected 

on non-permanent (7m radius) and permanent (10m radius) plots. Collected 

features included, for instance, the species of game forage and the cover of the game 

feed (RIS 2023). The NFI inventory team estimated the horizontal cover of each 

species per plot using the “diffuse cover” technique. This means that vegetation 

patches were counted as covered within a periphery of forage that  

the NFI inventory team estimated as sufficiently dense based on their experience. 

Such an approach expedites area estimation. Forage cover was measured in square 

metres. Therefore, in order to normalize this quantity, I calculated the percentage 

share of forage cover for each species with respect to the total area of permanent 

and non-permanent plots. For every plot, I divided its area covered with forage  

by its whole area and then multiplied by 100 to obtain percentages (Table 1). That 

allowed me to merge data collected for permanent and non-permanent plots  

for purposes of statistical modelling, since comparing non-processed values  

may lead to misconceptions. I illustrate it by example — since the total area  

of permanent plot equals approximately 314 m2 and the total area of non-permanent 

plot equals approximately 154 m2, direct comparison of non-processed  

values may not take into account those differences — for example, an area  

of 154 m2 of forage would cover 100% of the non-permanent plot and around  

49% of the permanent plot. Such issues need to be resolved.  
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Table 1. Descriptive statistics for the response variables. 

Notes: Minimum and maximum, mean, median, and standard deviation for the response 
variables, before using transformations. The data comes from Swedish NFI. There were 
19142 observations. 

 

Variable name Min Max Mean Median SD 

Forage cover: 

birch 

(proportion) 

0 0.961 0.032 0.006 0.073 

Forage cover: 

pine 

(proportion) 

0 0.792 0.011 <0.001 0.040 

Forage cover: 

oak 

(proportion) 

0 0.896 0.002 <0.001 0.012 

 

2.2 Predictors of forage 

 

2.2.1 Airborne Laser Scanning Data 

 

Light detection and ranging (LiDAR) works by emitting laser pulses  

and measuring the time those pulses take to return to the sensor after being reflected. 

The distance between the sensor and the reflection point is obtained by multiplying 

that time by the speed of light and then halving the result, since the laser pulses 

travel both ways. This allows for the precise determination of the position of that 

point using the known position of the sensor (Figure 1) (Faridhouseini et al. 2011). 

Airborne laser scanning (ALS) data refers to the LiDAR data collected from 

airborne platforms, such as planes or drones (Wehr and Lohr 1999).  

ALS data used in this thesis was collected from 2018 to 2023 as a part  

of the Swedish laser scanning survey (SLSS) (Swedish Land Survey 2020). Data 

was gathered using laser scanners ALS80-HP, Terrain Mapper ALS, City Mapper 

and City Mapper 2 (Lantmäteriet 2022). All of the scanners provide four or more 

returns from a single laser pulse. Point density was 1-2 points per square metre, 

flying altitude ca 3000 metres, scanning angle: maximum ± 20º, side overlap  

of at least 20 % (Lantmäteriet 2022). Predictor variables, which were used to train 

models, are canopy height, canopy cover and elevation. The calculation  

of LiDAR-based metrics was conducted within 7-meter radius buffers around  

the centres of NFI plots. The LidR package (Roussel et al. 2020) in R (R Core Team 
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2024) was used for that purpose. Canopy height was calculated as the 95th height 

quantile from the LiDAR data (Figure 2). Canopy cover was calculated by dividing 

the number of first returns above 10 metres by the number of all first returns  

and then multiplying the result by 100 to obtain percentage values (Figure 3). 

Elevation was extracted from Lantmäteriet’s digital elevation model, which  

has a spatial resolution of 2x2 meters (Figure 4). I calculated the mean elevation 

inside a 7m buffer around the centre of the NFI plot. 

 

 

 

Figure 1. An example cross-section of ALS points of return. 

Notes: Each dot represents one point of return. They have known three-dimensional 
coordinates (X,Y,Z). The X-axis represents changes in the Y-coordinate. 
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Figure 2. A histogram of canopy height. 

Notes: It shows the data that underwent scaling but without division into species-specific 
datasets. For each predictor variable, I subtracted the mean and divided it by its standard 
deviation. X-axis represents those scaled values, while Y-axis shows number of 
observations. The histogram shows data before it was split into training and testing 
datasets for each species. 

 

 

Figure 3. A histogram of canopy cover.  
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Notes: For more details, see figure 2. 

 

 

Figure 4. A histogram of elevation.  

Notes: For more details, see figure 2. 
 

 

 

 

 

 

2.2.2 Climatic variables 

 

As plants are susceptible to climatic regimes (Kelly and Goulden 2008),  

I added two bioclimatic variables to the data. I used the variables annual mean 

temperature (Figure 5) and mean annual precipitation (Figure 6) based on the values 

from 1970 to 2000. Both of these have an impact on the pace of vegetation growth 

and species distribution (Drobyshev et al. 2008; Kellomäki and Kolström 1994), 

which directly impacts forage cover. Different tree species have distinct preferences 

in terms of optimal temperature and the amount of rainfall. Places with optimal 

temperature and rainfall for a certain species are more likely to contain this species. 

Data was extracted from datasets available on “worldclim.org” (Fick et.al 2017). 

The spatial resolution is 1km x 1km. I extracted the values using 7m radius buffers. 
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Figure 5. A histogram of mean annual temperature. 

Notes: For more details, see figure 2. 
 

 

Figure 6. A histogram of mean annual precipitation.. 

Notes: For more details, see figure 2. 
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2.2.3 Tree species proportions 

 

Species composition was included as a predictor variable due to its impact  

on forage cover (Götmark et al. 2005). Models for birch and oak forage cover used 

the share of pine and spruce (Picea abies) trees volume in the stands' total volume 

as predictor variable, while models for pine forage cover used only the proportion 

of spruce volume from the total standing volume (Figure 7, 8). Percentages were 

calculated using updated species-specific volume maps based on LiDAR data  

and Sentinel-2 data produced by SLU with a 12.5x12.5m spatial resolution (Nilsson 

et al. 2017). 

 

 

 

 

Figure 7. A histogram of pine volume percentage. 

Notes: For more details, see figure 2. 
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Figure 8. A histogram of spruce volume percentage. 

Notes: For more details, see figure 2. 
 

 

 

 

2.3 Modelling 

Generalized Linear Models are an extension of linear regression that allow 

analysing the influence of predictor variables (Table 2) on the outcome without 

assumption of normal distribution (Su, Yan, and Tsai 2012). Generalized Linear 

Mixed Models (GLMM) extend that approach by taking into account hierarchical 

structure of the data (Bolker 2015). A hierarchical structure means that data 

is divided into groups in such manner, that members of each group are more likely 

to be similar. Some of my mixed-effect models contained “cluster” and “block” 

variables as random intercepts (Barr et al. 2013) to take into account the influence 

of the location on variation of forage cover. Each cluster was uniquely determined 

by tract number of the NFI and year in which the inventory was conducted.  

The variable “block” refers to the scanning blocks of SLSS (Figure 9). There were 

2879 unique clusters and 252 unique blocks. 
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Table 2. Overview of predictor variables.  

Notes: Used predictor variables with definitions, ranges, sources and explanations  
as to their expected links to cover of pine, birch and oak.  

 
Variables Definitions Data ranges Data sources Reasoning 

Canopy height the 95th 

quantile of 

height of 

first echoes 

 

0.00-42.28 

(m) 

SLSS by 

National Land 

Survey 

 

 

SLSS by 

National Land 

Survey 

Highly 

correlated to 

age and light 

availability 

Canopy cover Proportion of 

first echoes 

over 10m to 

all first 

echoes 

 

0-100  

(%) 

Highly 

correlated to 

age and light 

availability 

Percent pine Proportion of 

Pine volume 

to total 

projected 

volume 

 

0-100  

(%) 

 

SLU species 

map  

Influences 

regeneration 

Percent spruce Proportion of 

Spruce 

volume to 

total 

projected 

volume 

 

0-100 

(%) 

SLU species 

map  

Influences 

regeneration, 

can highly 

limit 

understory 

light 

availability 

 
Elevation 

 
Height above 

sea level 

-0.35-936.30 

(m above  

the sea 

level) 

 

SLSS by 

National Land 

survey 

Influences 

species 

distribution 

due to their 

limitations 

 
     

Annual mean 

temperature 

 

Mean annual 

temperature 

at the plot 

 

-2.23-8.33 

(℃) 

Wordclim.org Influences 

growth 

 

 

 

 
Annual precipitation 

 

Mean annual 

precipitation 

at the plot 

 

420-1198 

(mm) 

Wordclim.org Influences 

growth 
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Figure 9. Scanning blocks of the Swedish Laser Scanning Survey.  

Notes: Small squares (green) are the closest unit that shares a distinct set of attributes from 
SLSS. Attributes used in this study included canopy cover and height. NFI plots utilized 
within this work are distributed across the laser scanning blocks, but due to the data 
sharing policies of the NFI I was not allowed to have raw coordinates. The sampling 
intensity of the NFI decreases towards the north areas of Sweden. 

 

For reproducibility during models training process and the sake of fair model 

testing, the dataset for each species was split using random sampling into training 

(80% of the data) and testing (20% of the data) sets (Figure 10). I used the caret 

library (Kuhn 2007) for that purpose. I used the seed 123 to initialize pseudorandom 
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number generation for the split. All training datasets contained 15330 observations, 

while testing datasets contained 3812 observations. 

The response variable of all models was forage cover. I applied arcsine square 

root transformation (Lin and Xu 2020) in an attempt to normalize the distribution 

of the response variable. This transformation applied arcsine function to the square 

root of the forage cover. 

The response variable was restricted between 0 and 1, but included both. Since 

modelling response variable using beta regression model requires continuous data 

taking values from open interval [0,1] (Olea 2011), I transformed the data using  

the following formula : 

𝑦′′ =  
𝑦′(𝑛 − 1) + 0.5

𝑛
, 

 

where 𝑛 is the sample size and 𝑦′is the response variable before transformation. 

More details concerning this transformation were presented by Smithson  

and Verkuilen (Smithson and Verkuilen 2006).  

In order to improve convergence of the models, my predictor variables were 

normalized using the “scale” function in R. For each predictor variable, I subtracted 

the mean and divided by its standard deviation. First, I fitted GLMMs with linear 

effects for every species, which means that I assumed a linear relationship between 

the predictor variables and the response variable using the glmmTMB package 

(Brooks et al. 2017). 

Second, for every species I fitted GLMMs with quadratic polynomial terms 

added for some predictor variables to better account for non-linear trends. 

Moreover, I included interactions between variables and their squared values were 

included in the model. 

For instance, a similar approach was used in studies of relationships between 

environmental traits and structures of forest plant communities (Rolhauser, Waller, 

and Tucker 2021). 

Third, I fitted Generalized Additive Mixed Models (GAMM) for every species. 

I fitted smoothing splines for predictors to take into account the non-linear trends 

based on visual examination of the data.  

Smoothing splines partition the model into intervals that allow local flexibility 

within the model and allow to capture more complex non-linear relationships.  

I used the mgcv (Wood 2000) library to include splines. The addition of splines 

makes such models into GAMM. For instance, they were applied  

for the identification of environmental variables that affect the abundance of tree 

species (Antúnez et al. 2017). 

Lastly, I fitted random forests using the randomForest package (Breiman et al. 

2002). Random forests are machine-learning algorithms used in classification  

and forecasting (Salman, Kalakech, and Steiti 2024) that creates multiple decision 

trees. It then takes the average values from the results of those multiple decision 
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trees to make predictions. It is noteworthy that random forest models, as opposed 

to the rest of the models I fitted, do not use beta regression. 

To determine which model best predicted forage cover, I fitted and compared  

all four different models described above, separately for Oak, Pine and Birch, 

resulting in 12 fitted models in total.  

I used three metrics to compare the accuracy of models. I calculated the Root 

Mean Square Error (RMSE), relative Root Mean Square Error (rRMSE)  

and the square of the Pearson correlation coefficient (r2).  

The RMSE measures how far the predicted values are from the observed values 

in the dataset. Smaller RMSE values indicate a better model fit. 

The rRMSE allows a standardized approach through the division of RMSE  

by the mean of observed values. Results are presented as a unitless proportion 

(Farooq, Imteaz, and Mekanik 2025). 

The coefficient of determination (r2) shows the proportion of variance  

of the response variable that can be explained by the predictor variables. It is used 

to show how properly the data fits the model. It can take values between 0 and 1, 

and it could be treated as a percentage of model correctness (Chicco, Warrens,  

and Jurman 2021). It is a measure of linear correlation strength between predictions 

for each model and actual values from respective test datasets.  

All statistical analyses were performed using R version 4.4.1 (R Core Team 

2024).  

 
 

Figure 10. A density histogram of birch, oak, and pine forage cover. 

Notes: Values are after transformation, shown separately for training and testing datasets. 
I chose a density histogram over a frequency histogram due to the different sizes of the 
compared datasets. The training datasets contain 15330 observations each, while the test 
datasets contain 3812 observations each. 
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3. Results 

A comparison between results for all of models revealed that in terms  

of RMSE, rRMSE and r2, the Random Forest models performed the best (Table 3). 

They are followed by GLMM with quadratic polynomial terms and then GLMM, 

which achieved similar results, worse than Random Forest. GAMMs turned  

out to have the worst accuracy. 

Models for oak had the lowest RMSE and highest rRMSE values. Models  

for birch had highest RMSE values but lowest rRMSE values (with an exception  

of GAMM). 

Pine models had the highest values of r2 amongst the species. The highest 

achieved value overall was 0.312 (random forest model for pine) while the lowest 

was 0.004 (GAMM for birch). 

Figures 11, 12 and 13 provide a graphic representation of all model results. 

Tables 4, 5 and 6 provide estimates, standard errors and p-values for predictor 

variables that I used to fit GLMM, GLMM with quadratic polynomial terms  

and GAMM models. Figure 14 provides %IncMSE of the variables used  

to fit random forest models. More details, including metric descriptions,  

are provided in respective table and figure legends. 

According to the table 4, annual mean temperature and elevation were 

consistently significant in birch models. These predictors were associated  

with negative coefficient estimates, with an exception of variable s(Annual mean 

temperature). According to figure 14, canopy cover, percent pine, canopy height 

and annual mean temperature were the most important for birch random forest  

model (~ 47 - 63% IncMSE). 

According to table 5, canopy cover and canopy height were consistently 

significant in pine models. Those predictors were associated with negative 

coefficient estimates, with an exception of their squared terms. According to figure 

14, canopy cover and annual mean temperature were most important for pine 

random forest model (~ 47.5% IncMSE). 

It is noteworthy that I was not able to obtain estimates, standard errors  

and p-values for predictor variables of oak GAMM model, which is also the model 

with highest rRMSE among the models. According to table 6, only annual mean 

temperature was consistently significant in oak models. This predictor  

was associated with positive coefficient estimates. According to figure 14, annual 

mean temperature and annual mean precipitation were the most important  

for oak random forest model (~ 28% IncMSE). 
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Table 3. Root Mean Square Error (RMSE), relative Root Mean Square Error (rRMSE)  
and the square of the Pearson correlation coefficient (r2) for all models. 

 

Species Model RMSE 
rRMSE 

(proportion) 
r2 

Birch 

Linear 0.090 1.147 0.058 

Polynomial 0.090 1.141 0.066 

GAMM 0.172 2.189 0.004 

Random 

Forest 
0.083 1.058 0.189 

Pine 

Linear 0.057 1.741 0.229 

Polynomial 0.056 1.701 0.274 

GAMM 0.062 1.895 0.004 

Random 

Forest 
0.052 1.568 0.312 

Oak 

Linear 0.022 3.823 0.128 

Polynomial 0.022 3.806 0.162 

GAMM 0.023 4.029 0.051 

Random 

Forest 
0.019 3.315 0.267 

 

 

 

Figure 11. Comparison between predicted and actual values for each model made  
to predict birch forage cover. 
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Notes: It contains 4 scatterplots; each of them shows the performance of one model. The 
x-axis represents observed values while the y-axis represents predicted values. I set the 
axis limits in order to enhance figure interpretability. The blue dashed line represents an 
ideal scenario – if all points fell exactly on the line, the model would have 100% accuracy. 
Models with points more clustered around that line have higher accuracy compared to 
models with less such clustering.  Colours indicate absolute error.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Comparison between predicted and actual values for each model made  
to predict pine forage cover.  

Notes: It contains 4 scatterplots; each of them shows the performance of one model. The 
x-axis represents observed values while the y-axis represents predicted values. I set the 
axis limits in order to enhance figure interpretability. The blue dashed line represents an 
ideal scenario – if all points fell exactly on the line, the model would have 100% accuracy. 
Models with points more clustered around that line have higher accuracy compared to 
models with less such clustering. Colours indicate absolute error. 
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Figure 13. Comparison between predicted and actual values for each model made  
to predict oak forage cover. 

Notes: It contains 4 scatterplots; each of them shows the performance of one model. The 
x-axis represents observed values while the y-axis represents predicted values. I set the 
axis limits in order to enhance figure interpretability.  The blue dashed line represents an 
ideal scenario – if all points fell exactly on the line, the model would have 100% accuracy. 
Models with points more clustered around that line have higher accuracy compared to 
models with less such clustering. Colours indicate absolute error.  
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Table 4. A table showing the estimates, standard errors and p-values for predictor 
variables used to fit all of the birch models (except random forest models).  

Notes: “Estimate” shows the estimated coefficients (they represent the effect that the 
raising of the predictor variable has on the outcome), while “Standard error” shows the 
standard errors of the coefficients. p-value gives the significance of the predictor, with 
values below p < 0.05 being considered significant. Polynomial models included linear 
and second-order polynomial terms of predictor variables. 

 

Models Variables Estimates 
Standard 

error 
p-value 

Birch 

linear 

Canopy height -0.194 0.014 <0.001 

Canopy cover -0.045 0.014 0.001 

Percent pine -0.049 0.013 <0.001 

Percent spruce -0.096 0.012 <0.001 

Annual mean temperature -0.247 0.026 <0.001 

Annual mean precipitation 0.112 0.020 <0.001 

Elevation -0.087 0.022 <0.001 

Birch 

polynomial 

Canopy height -0.376 0.020 <0.001 

Canopy height2 -0.061 0.012 <0.001 

Canopy cover -0.017 0.025 0.482 

Canopy cover2 -0.161 0.014 <0.001 

Percent pine -0.060 0.014 <0.001 

Percent pine2 -0.127 0.013 <0.001 

Percent spruce -0.038 0.016 0.016 

Percent spruce2 -0.030 0.011 0.006 

Annual mean temperature -0.232 0.028 <0.001 

Annual mean temperature2 -0.062 0.018 0.001 

Annual mean precipitation 0.055 0.026 0.035 

Annual mean precipitation2 0.024 0.011 0.033 

Elevation -0.075 0.024 0.001 
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Canopy height x Canopy height2 0.043 0.005 <0.001 

Canopy cover x Canopy cover2 -0.012 0.014 0.381 

Birch 

GAMM 

Canopy cover -0.091 0.015 <0.001 

s(Canopy height) -0.290 0.177 0.102 

s(Percent pine) 0.138 0.111 0.215 

s(Percent spruce) -0.135 0.106 0.204 

s(Annual mean temperature) 1.176 0.250 <0.001 

s(Annual mean precipitation) 0.216 0.248 0.383 

s(Elevation) -0.400 0.141 0.005 

 

Table 5. A table showing the estimates, standard errors and p-values for predictor 
variables used to fit all of the pine models (except random forest models).  

Notes: For explanation of the column headings, see table 4. 

 

Models Variables Estimates 
Standard 

error 
p-value 

Pine linear 

Canopy height -0.102 0.012 <0.001 

Canopy cover -0.280 0.012 <0.001 

Percent spruce -0.049 0.009 <0.001 

Annual mean temperature -0.110 0.019 <0.001 

Annual mean precipitation 0.023 0.015 0.112 

Elevation -0.052 0.017 0.002 

Pine 

polynomial 

Canopy height -0.146 0.017 <0.001 

Canopy height2 0.023 0.009 0.007 

Canopy cover -0.285 0.013 <0.001 

Canopy cover 2 0.041 0.012 0.001 

Percent spruce -0.104 0.010 <0.001 
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Percent spruce 2 0.056 0.007 <0.001 

Annual mean temperature -0.176 0.026 <0.001 

Annual mean temperature2 -0.098 0.017 <0.001 

Annual mean precipitation 0.002 0.014 0.880 

Elevation 0.001 0.018 0.969 

Elevation2 -0.040 0.008 <0.001 

Canopy height  x Canopy height2 0.021 0.004 <0.001 

Annual mean temperature x 

Annual mean temperature2 
0.019 0.011 0.086 

Pine 

GAMM 

Canopy cover -0.241 0.013 <0.001 

Annual mean precipitation -0.005 0.014 0.727 

s(Canopy height) -0.342 0.157 0.030 

s(Percent spruce) -0.151 0.077 0.052 

s(Annual mean temperature) -0.273 0.225 0.226 

s(Elevation) 0.045 0.093 0.626 

 

Table 6. A table showing the estimates, standard errors and p-values for predictor 
variables used to fit all of the oak models (except random forest models). 

Notes: For explanation of the column headings, see table 4. 

 

Models Variables Estimates 
Standard 

error 
p-value 

Oak linear 

Canopy height 0.022 0.012 0.072 

Canopy cover -0.029 0.012 0.013 

Percent pine -0.023 0.011 0.039 

Percent spruce -0.038 0.011 0.001 

Annual mean temperature 0.155 0.016 <0.001 

Annual mean precipitation -0.063 0.012 <0.001 
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Elevation 0.016 0.014 0.241 

Oak 

polynomial 

Canopy height 0.031 0.018 0.083 

Canopy height2 -0.001 0.011 0.951 

Canopy cover -0.014 0.022 0.537 

Canopy cover2 -0.012 0.013 0.348 

Percent pine -0.012 0.012 0.288 

Percent pine 2 -0.007 0.011 0.557 

Percent spruce -0.027 0.014 0.062 

Percent spruce2 -0.003 0.010 0.786 

Annual mean temperature 0.189 0.016 <0.001 

Annual mean temperature2 0.074 0.011 <0.001 

Annual mean precipitation -0.061 0.016 <0.001 

Annual mean precipitation2 0.002 0.014 0.892 

Elevation 0.021 0.017 0.211 

Elevation2 0.019 0.012 0.129 

Canopy height x Canopy height2 -0.007 0.005 0.205 

Canopy cover x Canopy cover2 -0.003 0.012 0.826 

Annual mean precipitation x 

Annual mean precipitation2 
0.001 0.004 0.803 

Elevation x Elevation2 -0.004 0.004 0.381 
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Figure 14. The figure presents the importance of the variables that were used  
to fit the birch (A), pine (B), and oak (C) random forest models. 

Notes: %IncMSE is an indicator that tells how much Mean Squared Error increases after 
performing random permutation of predictor variables (Tompalski et al. 2015). 
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4. Discussion 

In my thesis, I trained 12 models. Differences in accuracy between types  

of models were mostly expected at the beginning of my work, but differences 

between species were not. Due to the consistent NFI methodology, I expected  

the possible negative impact of under-sampling or incomprehensive sampling  

on model accuracy (Fei and Yu 2016) to be  low. However, it is important to note 

the major differences in prevalence of the three tree species in Sweden, which could 

influence the outcome of the modelling. Pinus sylvestris covers around  

39% of productive forest land in Sweden in comparison to approximately  

12% in the case of Betula spp. and just around 1% in the case of Quercus robur 

(Samuelsson et. al. 2020). The possible impact of this is further discussed below. 

On the other hand, such differences between the species’ distribution cannot explain 

why the highest r2 values were just 0.267 for oak, 0.189 for birch,  

and 0.312 for pine, especially due to oak achieving higher r2 than birch. Moreover, 

descriptive statistics for the response variable achieved highest values for birch 

(Table 1), a species that is neither most prevalent in Sweden nor achieved highest 

r2 values. Those values suggest that chosen predictor variables were not enough, 

and that future attempts at creating predictive models should be made using 

adjusted sets of predictor variables. 

The height of the canopy, canopy cover, species composition, climatic variables, 

and elevation were my predictor variables of choice. Global environmental factors, 

such as climate change and nitrogen deposition, can interact with local factors  

to affect plants (Hedwall 2021). A deeper understanding of such interactions would 

help to choose meaningful predictor variables in the future. For example, one study 

indicates that boreal biome forest structure response to moose presence is higher  

in areas with higher temperatures (Petersen et al. 2023). The impact of cervidae 

presence on forest structure and availability of forage cover has not been tested  

or included as a part of this thesis. Other factors that could be included in future 

studies are LiDAR metrics describing the canopy in detail, such as the surface 

roughness, as they have been proven to be useful for creating forest attribute maps 

(Bohlin et al. 2017). 

The theoretical strength of the GAMM lies in its properties that should account 

for the local data variation better. It seems logical that, for example,  

the non-parametric and highly flexible smoothing splines could capture variation  

in a way that could allow for better prediction than using linear terms. However, 

smoothing splines, by being very sensitive to fluctuations in data, are prone  

to overfitting (Yandell 1993), especially with a large number of predictor variables. 

It is possible that with more data and fewer predictor variables, results for GAMMs 

would have been better than for the GLMMs. However, my results show that they 

performed worst out of all models tested (Table 3). One indicator of possible reason 
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can be found in table 4. For example, annual mean temperature predictor variable 

for birch GAMM model had the absolute value of standard error of the coefficient 

estimate larger than the absolute value of the coefficient estimate itself for annual 

mean temperature predictor variable of other models. The difference between  

the accuracy achieved by the Random Forest models and the alternatives is clear. 

The results of my thesis, along with other works related to environmental niche 

modeling (Bonsoms and Ninyerola 2024), suggest that Machine Learning (ML) 

methods should be utilized instead of GAMM and GLMM models.  

I briefly considered the usage of the Stacking Ensemble Machine Learning 

method (Nguyen Van and Lee 2025) that could potentially greatly boost final 

accuracy in comparison to Random Forest. This method utilizes multiple predictive 

learning models, such as Random Forest and Linear Regression. Those models, 

called base-learners, are trained individually on the same datasets. After that,   

one model, referred to as meta-learner, is trained on the other models' outputs. 

If done correctly, this should result in an integrated model that outperforms its parts. 

A comparison between rRMSE results for Random Forest (Nguyen Van and Lee 

2025), and less complex methods made me wonder if a similar scale of difference 

would be seen between the Random Forest and the integrated model. Then again, 

some more complex models trained on huge datasets require high computational 

power to fit, and such fitting process may several days. In the end, the choice  

of the best modelling method depends not only on the desired accuracy but also  

on available resources and the size and other individual characteristics of available 

datasets. Utilized methods cannot fully overcome influence of the training data  

on the metrics of model accuracy, though. A density histogram of response variable 

for the models (Figure 10) shows that the density of values near 0 in case  

of oak and pine is larger than in the case of birch. This might partially explain  

why oak models achieved lowest RMSE, highest rRMSE and higher values  

of r2 than birch models. 

The future holds many challenges. One such example is related  

to the climatic data. Annual mean temperature was a consistently significant 

predictor for birch and oak models other than random forest. % IncMSE of random 

forest model predictors also indicated at annual mean temperature relative 

importance amongst other predictors. Taking into consideration the range  

of climatic conditions across whole Sweden and the fact that my datasets contained 

NFI information from all over the country, it is not so surprising. It is known that 

climate change increased the frequency of drought and heat events in the region 

(Knutzen et al. 2025). European forests are susceptible to damage from such 

disturbances. Reduced vitality of stands harms their economic and ecological 

relevance. This puts drive behind planned and tested countermeasures like assisted 

migration of the seed provenances (Chakraborty et al. 2024). Exact knowledge 

about the impact of climate on the vegetation and on the variables used to predict 
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vegetation-related measurements can be useful in making informed choices  

of predictor variables for models. For example, annual mean temperature  

was associated with negative coefficient estimates for most birch models and with 

positive coefficient estimates for oak models. A better choice of variables means 

more accurate models. More accurate models can be referred to with higher 

confidence when using them as a reference for management decisions in conditions 

of climate change. 

Models with best RMSE, rRMSE and r2, that is pine models, had canopy cover 

and canopy height as consistently significant predictors. Moreover, values  

of estimates and %IncMSE  further indicate their importance.  The results of this 

thesis suggest that scientists preparing models for forest management should  

put more focus on testing the impact of variables and the relations between them. 

Differences between estimates and p-values of predictor variables between models 

for different species indicate that variables should be chosen separately for each 

species.  

If a similar study were to be conducted, models should be fitted using  

the same method but with including different set of variables and different variables 

combinations. 
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5. Conclusions 

Random forest models represented the best accuracy amongst all the models 

tested and all used performance metrics for prediction of oak, birch, and pine forage 

cover. Canopy cover, canopy height and annual mean temperature were the most 

versatile amongst predictor variables I used to fit the models. However, used 

predictor variables were not enough to achieve high accuracy. Moreover, the choice 

of predictor variables should have been made separately for each species. Future 

works in this field should focus on the choice of predictor variables. 
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Popular science summary 

Trees are food for such species as, for example, Moose or Deer. Those animals 

can cause economic losses by simply feeding themselves. Information about 

availability of food for them can enhance decision-making aimed  

at mitigating economic impact of their eating. At the same time availability of this 

information is limited to sample plots. By combining information from those 

sample plots with other data, such as data that comes from drone laser scannings, 

we can create statistical models that allow us to predict the amount of available 

forage on large areas.  After all, it would be impossible to manually inventory entire 

Sweden. In my work I fitted four types of predictive models for three different 

species — oak, pine and birch. My goal was to compare accuracy between  

the resulting models. 
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