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Soil organic carbon (SOC) is an important pool in the carbon cycle that is dependent on a wide array 
of environmental variables. These are known as the soil forming factors: Parent material, climate, 
biota, topography and time. Which of those are best suited to predict SOC for a given area depends 
on the environmental conditions in that area (e.g. arid or humid, vegetation type), but is also 
understood to be dependent on spatial scale. The aim of this thesis was to investigate this scale 
dependency of the relations between SOC and environmental variables, using the example of 
Swedish forest soils. I hypothesized that climate variables would be most important at the national 
scale, texture would not depend on scale and topographic and chemical variables are the most 
important at smaller scales. 

Data on soil properties, soil chemistry and vegetation from the Swedish forest soil inventory was 
combined with topographic and climatic data to train random forest models of soil organic carbon 
concentrations in different depths and soil organic carbon stocks in the organic layer. These models 
were created for the whole of Sweden and for parts of Sweden in the same way, enabling the analysis 
of how the spatial scale influenced variable importances. The nature of the relationships between 
SOC and environmental variables was investigated with linear regressions.  

The main finding was that carbon concentrations are in general best predicted by chemical 
parameters and that the exact parameters depend more on sample depth than scale. Climate variables 
were more important at national scale as hypothesized, while the hypotheses regarding chemistry, 
topography and texture could not be confirmed. For carbon stocks, chemical variables were in total 
slightly less important and lead by Mn. The lower importance of chemical variables in comparison 
to carbon concentration models is mainly balanced by the higher importance of topographic 
variables. Overall, scale dependencies of relationships were observable only for climate, and overall, 
the variable importances were dominated by chemical variables.  
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Soil organic carbon (SOC) is one of the biggest carbon pools in the global carbon 
cycle, surpassing both the atmospheric and vegetation pool in size 
(Intergovernmental Panel On Climate Change 2023). The uncertainty related to 
SOC stocks and their changes in response to global climate change in earth system 
models is considerable. In order to better predict future climate change, it is 
therefore necessary to improve our understanding of environmental controls on 
SOC. Furthermore, various other soil properties like soil structure, water balance 
and cation exchange capacity are influenced by the amount of soil organic matter 
(SOM) present (Blume et al. 2016). Identifying suitable environmental factors for 
SOC prediction can thus not only benefit climate modelling but also decision 
making in land management (Wiesmeier et al. 2019). Lastly, information on such 
environmental factors is sometimes more readily available than SOC data or can 
easily be obtained by remote sensing techniques. In these cases, being able to 
predict SOC instead of measuring it directly can save costs and time.  
Based on the classic concept of soil forming factors, SOC is understood to be 
controlled by climate, vegetation, topography, parental material and other soil 
properties (Jenny 1941; Wiesmeier et al. 2019). In modern digital soil mapping 
approaches the same concept is expresses as SCORPAN: soil, climate, organisms, 
topography, parent material, age and space (McBratney et al. 2003). It is generally 
accepted that the spatial scales at which these factors operate or work best as 
predictors of SOC can differ substantially (Miller et al. 2015; Guo et al. 2019; 
Wiesmeier et al. 2019; Adhikari et al. 2020).  
One way to conceptualise and understand this finding is to think of a “hierarchy of 
controls” (Wiesmeier et al. 2019). Climate controls for example carbon inputs to 
soil by affecting plant growth and, in conjunction with parent material, soil 
properties by affecting weathering processes and therefore sits on top of a hierarchy 
of controls (Manning et al. 2015). This is why SOC variability/distribution at broad 
scales can be explained by climatic conditions. At finer scales, its variability is no 
longer as pronounced, so that other environmental factors are becoming more 
important in relative terms (Wiesmeier et al. 2019). On pit and field scale for 
example, the variability in climate, land-use and hydrology diminishes, allowing 
researchers to focus on the effect of soil chemical and mineralogical properties 
(Moni et al. 2010).  

1. Introduction 
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The influence of climate on SOC is twofold and commonly seen as the strongest 
environmental control at the largest spatial scales (Wiesmeier et al. 2019). Net 
primary production (NPP), the net carbon fixation by plants at ecosystem scale, is 
mainly controlled by climatic variables. It strongly increases with increasing annual 
precipitation up to roughly 2000-3000 mm year-1 and also shows a positive 
relationship with temperature when excluding the driest ecosystems (Chapin et al. 
2011). Microbial activity and thus decomposition of SOM is strongly promoted by 
increasing temperatures but can be inhibited under high soil moisture that creates 
anaerobic conditions (Chapin et al. 2011; Deluca & Boisvenue 2012). Put together, 
these climatic influences on biota lead to a gradient of increasing SOC stocks from 
warm and dry to cool and humid biomes (Wiesmeier et al. 2019).  
This general pattern has been confirmed in several studies that modelled soil carbon 
at the continental scale in North America and Europe (De Brogniez et al. 2015; De 
Vos et al. 2015; Adhikari et al. 2020). Climatic variables are important predictors 
of different soil related carbon stocks in these studies, but there is no agreement 
whether precipitation or temperature is more relevant. In the study modelling 
carbon in the US, climatic variables exhibit lower relative importances at smaller 
spatial scales while land use and topographic variables gain in relative importance 
(Adhikari et al. 2020). Although I am not aware of a similar publication that 
specifically compares different scales in Europe, a lower importance of climatic 
variables for soil carbon at smaller scales is also evident in other studies (González-
Domínguez et al. 2019; Wiesmeier et al. 2019). An important deviation from the 
general rule of highest SOC under cool and humid conditions can be found in 
European boreal forests where SOC in forest soils is positively related to 
temperature, but not with precipitation (De Brogniez et al. 2015; Spohn & Stendahl 
2022). In this biome, evaporative demand is low and soil moisture is high. 
Therefore, tree growth is mainly controlled by temperature and not by precipitation 
(Osman 2013). Together with high soil moisture that slows down decomposition, 
this strong influence of temperature on tree growth might explain why in this biome, 
SOC increases with increasing temperature, contrary to the global trend.  
Lastly, climatic conditions also influence weathering and soil formation, which 
means they can have an indirect effect on SOC stabilisation via soil geochemistry 
(Doetterl et al. 2015). This type of effect was shown in studies on a continental 
scale in line with the concept of “hierarchy of controls” (Doetterl et al. 2015; 
Rasmussen et al. 2018). 
The type of vegetation and land use is another important factor that affects carbon 
input into soils and can lead to vast differences in SOC even under the same climatic 
conditions. Croplands are clearly the land use type with the lowest SOC stocks 
which can be explained by the change of soil physical properties and the cultivation 
of annual crops which allocate most of their carbon to aboveground biomass that 
gets removed (Wiesmeier et al. 2019; Beillouin et al. 2023). Forests, shrublands 
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and grasslands all have higher SOC stocks than cropland, but there is no general 
order for these vegetation types (De Brogniez et al. 2015; Wiesmeier et al. 2019; 
Beillouin et al. 2023). Wetlands present an extreme case with SOC stocks far 
surpassing the other discussed vegetation types. This is due to anaerobic conditions 
caused by flooding that slow down decomposition of organic matter and therefore 
can result in the build-up of peat (Osman 2013). Histosols, the soils often found in 
wetlands, are precisely defined by thick layers of material rich in organic carbon 
(Blume et al. 2016). In one soil survey covering the whole EU, the median topsoil 
carbon content of wetlands was more than ten times that of woodlands and 
grasslands (De Brogniez et al. 2015).  
 
Understanding how vegetation also causes SOC variation within woodlands has 
remained a challenging task and it is unclear whether tree species affect the SOC 
carbon stock over the whole soil profile (Wiesmeier et al. 2019). The 
methodological challenge is to disentangle the effect of tree species from site 
conditions, like climate, soil type nutrient status that influence both the SOC stock 
and tree species (Vesterdal et al. 2013). Tree species are however one of the most 
important factors for predicting forest floor SOC stocks in Europe (De Vos et al. 
2015). Findings about this effect are consistent between both experimental and soil 
mapping approaches, showing higher SOC stocks under coniferous species (Oostra 
et al. 2006; Vesterdal et al. 2013; Heitkamp et al. 2021). Since the amount of 
litterfall is only weakly related to tree species, explanations for these differences 
focus on factors influencing the decomposition processes, like chemical properties 
of the plat biomass (Vesterdal et al. 2013). Coniferous species have more acidic 
litter and a study in Sweden reported that the C:N:P stoichiometry of the organic 
layer and even the mineral layer is influenced by tree species (Wiesmeier et al. 
2019; Spohn & Stendahl 2022). 
Topography impacts soil organic carbon by its effect on hydrological processes. 
Water erosion transports soil material and thus also SOC away from hillslopes and 
deposits it in lower, flatter areas (Doetterl et al. 2016). Additionally, water 
accumulation is favoured in “sites with a high contributing area, low inclination and 
concave curvature” (Wiesmeier et al. 2019) leading to high soil moisture. As 
previously discussed in relation to climate, high soil moisture inhibits 
decomposition and favours SOC accumulation.  
Topographic features tend to be more useful predictors of SOC with decreasing 
scale, although there is notable variation in their usefulness between regions (Guo 
et al. 2019; Adhikari et al. 2020; Hounkpatin et al. 2021).  
Soil types categorize soil by their properties that arise as a result of soil formation 
processes and thus contain information about soil forming factors that also control 
SOC. SOC content itself is also a criterion in many soil classification systems. 
Therefore soil type influences SOC stocks at different spatial scales and was 



11 
 

identified as the most important predictor of SOC in mineral soils at the European 
level (De Vos et al. 2015; Wiesmeier et al. 2019). Soil type was also found to 
strongly influence the depth distribution of SOC in forest soils in Germany and 
Alaska (Deluca & Boisvenue 2012; Heitkamp et al. 2021).  
In contrast to climatic conditions that control C input, soil chemical and textural 
properties control SOM stabilisation. While it was accepted for a long time that the 
chemical composition of SOM was a decisive factor for the rate of mineralisation, 
a new understanding of SOM dynamics has emerged recently (Schmidt et al. 2011). 
More emphasis is now put on SOM in the context of its abiotic and biotic 
environment. SOM that is bound to mineral surfaces for example is somewhat 
protected against decomposition. Fine particles of clay minerals or Fe and Al oxides 
and hydroxides can serve as sorption sites for SOM due to their high surface area 
and charge. Clay content or soil texture, for example, have been shown to correlate 
with SOC storage and storage potential on different spatial scales, in numerous 
climate zones and under diverse land uses (Wiesmeier et al. 2019; Heitkamp et al. 
2021; Spohn & Stendahl 2024). Polyvalent metal cations, like Ca2+, Mg2+, Al3+ 
play a crucial role in SOM-clay interaction. SOM and clay by forming cation 
bridges between negatively charged clay minerals and SOM (Wiesmeier et al. 2019; 
Spohn & Stendahl 2024). Several studies have successfully used metal cations for 
predicting SOC contents (Rasmussen et al. 2018; Wiesmeier et al. 2019; Spohn & 
Stendahl 2024). Interestingly, these studies cover very large spatial scales (from 
national to continental) as well as very fine spatial scales (soil horizons in a profile). 
The scale dependency of the effect of metal cations on SOC is thus still an open 
question.  
Soil pH is a key variable for sorption processes and therefore modulates the 
interaction of SOM with mineral surfaces (Rasmussen et al. 2018). Additionally, 
SOC concentrations in Swedish forest soils are higher in more acidic soils which 
can be explained by lower microbial respiration (Spohn & Stendahl 2024). 
While the influence of all these environmental factors is well documented, the 
knowledge about their impact at different scales is often derived from reviewing 
multiple studies whereas studies that explicitly consider different spatial scales are 
rarer (Moni et al. 2010; Zhou et al. 2016; Guo et al. 2019; Wiesmeier et al. 2019; 
Adhikari et al. 2020). This thesis makes use of the Swedish forest soil inventory 
(SFSI), a national survey of forest soils including chemical and physical properties, 
covering all of Sweden (except agricultural and urban areas) to do so. Together with 
data on tree species (the forest soil inventory is linked to a forest inventory) and 
climatic and topographic data which can easily be combined with the SFSI via plot 
coordinates this allows me to cover a wide array of the soil forming factors and 
study how they together relate to SOC stocks. In order to evaluate the scale-
dependence of these relationships, the national dataset is divided into four regional 
subsets which are further divided into four sub-regional subsets each. The aim of 
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this thesis is to construct models predicting SOC concentrations and stocks on the 
basis of the environmental variables at different scales and use their results to 
analyse to analyse how the relationships between SOC and environment variables 
change with spatial scale. This investigation is, though not limited to, guided by 
three hypotheses.  

Mean annual temperature (MAT) in Sweden is strongly correlated with latitude 
and thus varies mostly from north to south. Dividing Sweden into smaller areas by 
latitude should reduce climatic variability and therefore I hypothesize that climatic 
variables, are less important predictors for SOC at smaller spatial scales. 

Soil texture has been found to be a good predictor of SOC in multiple studies, 
conducted at different scales. I hypothesize that the importance of texture for 
predicting SOC in Sweden will be similar across scales.  
Although geochemistry was found to be related to SOC at very large and very small 
scales, I hypothesize that the importance of chemical variables for predicting SOC 
will be relatively higher on smaller scales, owing to the reduced relative importance 
of climatic variables. 
Similarly, I hypothesize that the importance of topographic variables, with the 
exception of Elevation since it can sometimes serve as a proxy for climate, will be 
relatively higher on smaller scales.     
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2.1 Materials 
 

2.1.1 Swedish Forest Soil Inventory 
All soil data used in this study is taken from the Swedish Forest Soil Inventory. 
This Inventory collects data on vegetation and soil properties in all of Sweden, 
except for arable land, urban areas, and the high mountains. Combined sampling of 
vegetation and soils arose out of the National Forest Inventory in the early 1980s 
(Ranneby et al. 1987). The inventory comprises a total of around 23,500 permanent 
plots which are organized in quadratic clusters (tracts) on a triangular grid. Each 
tract is made up of four (in the southwestern part of Sweden) or eight circular plots 
(Figure 1). The plots are circular with a radius of 10m. To reflect the more 
fragmented landscape and diverse geology in the south of Sweden, the grid is denser 
there and the side length of clusters decreases from north to south.  

 

 

2. Materials and Methods 

= soil description. 

= humus sampling. 

= mineral soil sampling  

= no soil description or soil sampling. 

Figure 1: Schematic of tract design. The eight or four circles represent the 10m radius circular and the symbols 
inside them indicate the type of sampling. 
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Field workers collect data on vegetation (dominant tree species, tree diameters, 
stand age etc) on all plots, while organic layer samples are collected at ca. 10.000 
of these permanent plots and mineral soil samples are collected on ca. 4500 plots. 
Every year, around a tenth of plots from all over Sweden are visited, resulting in 
10-year sampling periods, the latest of which started in 2023. Due to time-
consuming laboratory work, not all the data from recent years is available yet so 
this study uses data from 2011 to 2020.   
When a plot is visited, a subplot with a radius of 1m is created inside of it in which 
all soil data is collected. Between 1 and 9 organic layer samples of the entire humus 
layer, up to 30 cm for practical reasons, are taken with a 10cm diameter drill and 
combined into a single sample called H30 (Institutionen för skoglig 
resurshushållning och Institutionen för mark och miljö (SLU) 2022). The number 
of samples is chosen so that their combined volume is at least 1.5 litres. In some 
plots with humus layers exceeding 40cm thickness, an additional singular organic 
layer sample is taken from the depth 30-50cm. For mineral soil sampling and soil 
description, a pit is dug in the subplot and mineral soil sample are collected at 
predefined depth intervals into the mineral soil: 0-10cm, 10-20cm and sometimes 
55-65cm. These samples are called M10, M20, M65. If the 55-65cm sample is 
taken, the soil type and texture, which are usually determined for the top 20 cm of 
the mineral soil, are in addition determined for the 55-65cm interval. The soil 
texture and WRB soil type are both determined at the same depth on site: In the 
presence of an E-horizon the assessment is done 10cm deep into the B horizon, in 
the absence it is done 20cm deep into the mineral soil. If the 55-65cm sample for 
soil chemistry is taken, the texture is additionally determined at this depth 
(Institutionen för skoglig resurshushållning och Institutionen för mark och miljö 
(SLU) 2022).  
The tree species composition and stand age are determined for the 10m radius plots. 
In young conifer stands the age of trees is determined visually, by counting the 
annual shoots. Where this is not possible, trees are bored, and their age is 
determined by counting growth rings. Tree species are recorded as one of twelve 
classes which are simplified into five classes for this thesis (Table A 2).  
The soil samples dried, weighed, sieved (<2mm) and living and dead roots >1mm 
are removed. All chemical analyses are carried out on the fine fraction <2mm: pH 
is measured in water with a solid to liquid ratio of 2.5 using a Pt electrode 
(Aquatrode Plus Pt1000, Metrohm). Calcium, Magnesium and Manganese are 
extracted in 1M ammonium acetate buffered at pH 7, while Aluminium is extracted 
using 1M potassium chloride buffered at pH 7. All cations are measured by 
inductively coupled plasma optical emission spectroscopy (ICP-OES; Avivo 200, 
Perkin Elmer).  
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2.1.2 Additional data 
The climate variables mean annual temperature (MAT) and mean annual 
precipitation (MAP) are extracted from a 1km2 resolution map of monthly historical 
climate data covering the years 1970-2000 from the WorldClim database (Fick & 
Hijmans 2017), based on the coordinates of plots.  
Topographic variables are calculated based on a DEM of Sweden with a resolution 
of 2m which is based on measurements from airborne laser scanning (Seibert et al. 
2007). They are elevation, aspect, downslope index (DSI), topographic wetness 
index (TWI) and accumulated flow. For their computation, smaller, 10km by 10km 
DEMs centred on the respective plot were created from the national DEM. The DSI 
as proposed by (Hjerdt et al. 2004) serves as a substitute for slope that also takes 
downslope conditions into account to better serve as an indicator for drainage 
conditions . It can be defined as the horizontal distance 𝐿𝐿𝑑𝑑in m that “a parcel of 
water has to travel along its flow path to lose a given head potential, d in m”(Hjerdt 
et al. 2004) or as the dimensionless gradient  

tan(𝛼𝛼𝑑𝑑) = 𝐿𝐿𝑑𝑑
𝑑𝑑

  (1) 
In this study, the latter is used. The TWI is defined using the specific upslope area 
a (i.e. the upslope area per contour length) and the local slope tan(ß): 

𝑇𝑇𝑇𝑇𝑇𝑇 = ln ( 𝑎𝑎
tan (𝛽𝛽)

)  (2) 

Although a unit can be assigned to the TWI, it is commonly and throughout this 
thesis regarded as a dimensionless number. Accumulated flow which can be 
understood as the number of cells or area that is drained through a cell is calculated 
as laid out in the paper by (Seibert et al. (2007).  
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Table 1. Environmental variables to be used as predictors of SOC 

   
Variable Unit/levels Data source 
Soil variables   
Carbon content (target 

variable) 
in g/kg dry weight elemental analyser (TruMac 

CN, LECO) 
pH - soil:water ratio of 1:2.5, Pt 

electrode 
Al concentration mg/kg dry weight 1 M KCl extraction, ICP 

OES 
Ca concentration mg/kg dry weight 1 M sodium acetate 

extraction, ICP OES 
Mg concentration mg/kg dry weight 1 M sodium acetate 

extraction, ICP OES 
Mn concentration mg/kg dry weight 1 M sodium acetate 

extraction, ICP OES 
texture levels: cobble, gravel, coarse 

sand, medium sand, fine sand, 
coarse silt, fine silt, clay  

assessed on site by hand 

WRB soil type levels: arenosol, cambisol, 
gleysol, histosol, leptosol, 
podzol, regosol, ubrisol 

assessed on site 

Climate variables   
mean annual temperature °C WorldClim dataset 
mean annual precipitation mm WorldClim dataset 
Vegetation variables   
stand age years assessed by visual inspection 

or boring 
Tree species levels: pine, spruce, mixed 

conifers, mixed, deciduous  
assessed on site 

Topographic variables   
downslope index (DSI) - derived from 2m DEM 
elevation m derived from 2m DEM 
aspect ° derived from 2m DEM 
topographic wetness index 

(TWI) 
commonly used without derived from 2m DEM 

accumulated flow - derived from 2m DEM 
 



17 
 

 

2.1.3 Plot selection and subset definition 
Not all plots included in the survey are used for analysis, due to disturbances, 
particularities in the sampling design, or missing data. If plots have a disturbed soil 
profile (e.g. old charcoal pits) or show signs of past ploughing this is recorded 
during data collection. Plots with this property are excluded from the analysis in 
this thesis. Among the remaining plots, only productive forests (in the SFSI defined 
as: productivity > 1m3*ha-1*year-1) with the humus form mor or moder are studied.  
The focus on productive forest land serves to exclude wetlands and grasslands that 
are part of the SFSI due to the way that land use classes are defined in Sweden. 
Plots with the humus form mull are sampled differently from those with other 
humus forms, namely to a fixed depth of 10cms, prohibiting comparisons of these 
humus samples with those for other humus forms. At plots with an organic layer 
thickness of more than 40cm, two separate samples are taken at different depths, 
which raises questions about how to combine the results of the chemical analysis 
from those two depths or whether to train separate models for them. Since outside 
of the humus form peat only very few plots are affected by this problem, they are 
also excluded. Plots with the humus form peat are completely exempt from the 
analysis as they by definition have high carbon concentrations and having this 
confirmed by models would not provide any new insights. Lastly, plots with the 
texture class peat are also excluded following the same reasoning. In the SFSI, this 
texture is assigned to soils with an organic layer exceeding 50cm thickness (which 
are not considered in this study), soils with a layer of charred plant material, and 
quagmires and flarks, two types of wetlands.  
To study the effect of scale on the relationship between carbon concentrations and 
stocks and the predictor variables, the original national dataset is split into four 
regional subsets which are further split into four subregional subsets each. These 
divisions are done based on the coordinates of the plots before eliminating plots 
with disturbances, more than 40cm organic layer, etc. Therefore, the number of 
samples used in the analysis is not the same for all regions (and subregions), 
although they were originally of equal sizes. Regions are defined purely by latitude, 
with region 1 containing the southernmost quartile of plots (Figure 2). Subregions 
are defined by first splitting a region along its median longitude into two subsets 
and then splitting those two subsets by their respective median latitudes into two 
subsets each, resulting in four subsets per region (Figure 2).  
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Figure 2. Map of the plots with organic layer sampling used in this thesis. The colours indicate the regions and 
subregion. Subregions 2A, 2B, 2C, 2D were chosen as an example, subregional delineations work the same way for 
the region 1,3 and 4. 
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2.2 Methods  

2.2.1 Distribution and correlations of environmental variables 
The frequency distributions of the environmental variables are analysed for samples 
from all depth increments and all areas separately. In the case of numerical 
predictors and the target variables carbon concentration and carbon stock this was 
done by calculating the minimum, mean, maximum, median, 1st and 3rd quartile. 
Carbon stocks are calculated from SFSI data, namely the product of the organic 
layer stock and the carbon concentration in the organic layer.  To allow for 
comparability across scales as well as between different variables, a dimensionless 
measure of dispersion is used. To deal with the many skewed frequency 
distributions, the robust coefficient of variation (RCV) is chosen. This measure of 
dispersion is a more robust alternative to the coefficient of variation and calculated 
as follows:  

𝑅𝑅𝑅𝑅𝑅𝑅 =  0.75 ∗
𝑄𝑄3 − 𝑄𝑄1
𝑄𝑄2

 

where Q3 is the third quartile,  Q1 the first quartile and Q2 the median (Shapiro 2003; 
Arachchige et al. 2022). In this thesis the RCV is expressed in terms of percentages. 
For the distribution of MAT, the interquartile range (IQR: Q3-Q1) is given 
alternatively, since negative temperatures lead to negative RCVs which are not 
interpretable. The distributions of the three categorical variables WRB soil type, 
texture class and tree species were described by the relative frequency of their levels 
given in percentages.   
The frequency distributions of variables that refer to plots as a whole and not to 
specific depth increments, namely the WRB soil type, the two vegetation variables, 
the two climatic ones, the five topographic ones are presented here for the dataset 
of organic layer samples, as it contains the most plots among the datasets (n = 2585). 
Since the soil texture is separately determined in 55-65cm depth in case the mineral 
layer is sampled at that depth interval, its frequency distribution is given based on 
the data from organic layer samples and mineral layer samples in 55-65 cm depth. 
 
Half of all soil are classified as podzols (50 % of all plots) which are more common 
in the north. Together with regosols (32%), they make up at least 70% of all plots 
in every region and subregion (Table 2). The dominant tree species are mostly 
spruce and pine with more pines towards the north and more spruces towards the 
south (Table 3Table 3). The median stand age increases with latitude from 44 years 
in the southernmost region to 66 in the northernmost region (Table 4). Both MAP 
and MAT decrease with increasing latitude (Table 5) and their associated measures 
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of variability (RCV for MAP and IQR for MAT) decrease from the national to the 
regional and subregional scale, when averaged over the respective datasets (data 
not shown). The frequency distributions of the soil texture class at 10/20 and 55-
65cm depth are similar, with fine sand being the most common texture classes in 
most datasets. An important difference is the fact that the texture class “cobble” is 
not determined for the deeper samples (Table 6). Table 7 shows median values and 
RCV for the five topographic variables at the national scale. For elevation, the RCV 
decreases markedly on average from the national to the regional and subregional 
scale, while for the other four variables there is no such trend (data not shown). 

 

Table 2. Frequency distribution of WRB soil types at national and regional scale 
Area Arenosol 

(%) 
Cambisol 
(%) 

Gleysol 
(%) 

Histosol 
(%) 

Leptosol 
(%) 

Podzol 
(%) 

Regosol 
(%) 

Ubrisol 
(%) 

National 2,6 0,9 3,9 1,9 8,9 49,5 32,1 0,3 

Region 1 2,3 1,1 3,6 3,3 13,1 44,6 31,2 0,9 

Region 2 2,4 1,9 4,4 2,5 11,4 46,2 31,1 0,0 

Region 3 1,7 0,5 3,1 0,9 7,0 52,2 34,4 0,2 

Region 4 3,9 0,0 4,3 0,6 4,2 55,0 31,9 0,2 

 

Table 3. Frequency distribution of dominant tree species at national and regional scale 
Area Deciduous 

(%) 
mixed  
(%) 

mixed conifers 
(%) 

pine 
(%) 

spruce 
(%) 

National 5,1 6,6 13,9 43,8 30,6 

Region 1 7,7 6,9 12,3 26,6 46,5 

Region 2 4,0 4,8 17,6 44,4 29,2 

Region 3 3,9 6,9 11,6 50,0 27,7 

Region 4 4,6 7,9 14,3 54,5 18,6 

 

Table 4. Distribution of stand age at national and regional scale 

Area National Region 1 Region 2 Region 3 Region 4 
median stand age 
(years) 

51 44 47 53 66 

RCV (%) 93 85 87 106 101 
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Table 5. Distribution of climatic variables at national and regional scale 

Area National Region 1 Region 2 Region 3 Region 4 
median MAP (mm) 651 704 704 651 582 
RCV of MAP (%) 15.4 24.2 15.1 9.5 9.7 
median MAT (°C) 3,38 6,27 4,57 2,21 0,68 
IQR of MAT (°C) 4,33 0,60 1,74 1,22 1,57 

 

Table 6. Frequency distribution of texture classes at national scale 

texture class clay fine silt coarse 
silt 

fine 
sand 

medium 
sand 

coarse 
sand 

gravel cobble 

relative frequency at 
10/20cm depth (%) 

2,6 4,0 16,4 37,0 23,4 7,5 1,1 8,2 

relative frequency at 
55-65cm depth (%) 

3,3 4,8 15,9 34,2 28,1 11,1 2,6 0 

 

Table 7. Distributions of topographic variables at national scale 

Variable 
 

Elevation (m) Aspect (°) DSI (-) TWI (-) accumulated flow (-) 

median 226 175 69.8*10-3 4.19 4.24 

RCV (%) 76 75 94 37 184 

 
The five remaining variables (pH, Al, Ca, Mg, Mn) have vastly different values for 
the different depth increments, but there are distinct patterns across the four 
datasets. All five variables decrease with depth as can be seen in the tables below. 
The variability on the other hand only decreases with depth for pH while it increases 
for Mn and Mg. There is no clear pattern for Al and Ca. In most cases, the RCVs 
decrease from the national to the regional and subregional scale, but these 
differences are less pronounced than with depth or between variables. The RCVs 
of the pH distributions are the lowest, followed by Al, Mg, Ca and finally Mn.    

 

Table 8. Distribution of chemical parameters in the organic layer at national level 

Variable pH Al Ca Mg Mn 
median (- or mg*kg-1) 3.74 211.5 1876.6 357.4 124.9 
RCV (%) 9.0 91 61 48 129 
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Table 9. Distribution of chemical parameters in the mineral layer (0-10cm)at national level 

Variable pH Al Ca Mg Mn 
median (- or mg*kg-1) 4.35 198.7 43.7 13.6 1.43 
RCV (%) 7.6 71 154 103 262 

 

Table 10. Distribution of chemical parameters in the mineral layer (10-20cm) at national level 

Variable pH Al Ca Mg Mn 
median (- or mg*kg-1) 4.66 134.9 29.1 7.4 0.93 
RCV (%) 6.1 86 222 122 257 

 

Table 11. Distribution of chemical parameters in the mineral layer (55-65cm) at national level 

Variable pH Al Ca Mg Mn 

median (- or mg*kg-1) 4.94 43.0 18.0 3.0 0.49 
RCV (%) 6.1 89 177 166 175 

2.2.2 Carbon prediction models: random forest with random 
feature elimination  

Random forest (RF) models with recursive feature elimination were trained to 
predict carbon concentrations of all four sample types and carbon stocks of the 
organic layer for all datasets using the R package caret (Kuhn & Max 2008).  
Random forest is an algorithm for classifications and regressions that combines the 
results of numerous decision trees into one final output by voting or averaging over 
the results of the prediction trees. In general, the input to these models consists of 
the 16 environmental variables in Table 1 with the models for the sample type M65 
using the texture class determined at 55-65cm depth into the mineral soil and the 
models for other sample types all using the texture class determined higher up in 
the mineral layer.  
However, the preprocessing tool in the caret package (Kuhn & Max 2008) was used 
to filter out highly correlated variables. If the correlation between two predictors 
exceeds 0.8, the one with the higher mean absolute correlation, i.e. the average 
correlation to all other predictors, is removed. Across all areas and depth intervals 
this affects five variables: MAT, MAP, Elevation and the concentrations of calcium 
and magnesium. Elevation and MAT are highly correlated in most regional and 
subregional datasets, but never on the national scale. Elevation is more often 
excluded than MAT from the affected models. In the subregion 2B, MAP is 
additionally correlated to both MAT and temperature. This results in the exclusion 
of MAP from the models for subregion 2B. The chemical variables only exceed the 
correlation threshold in the mineral layer and more frequently in the lower depth 
increments within it. The concentrations of calcium and magnesium are highly 
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correlated in roughly half the datasets for the mineral layer, but just like elevation 
and MAT never on the national scale. Calcium is excluded more often than 
magnesium in these cases. 
Among the remaining variables, recursive feature elimination (RFE) is used to 
identify the optimal set of predictors, which works as follows: (1) a random forest 
model is trained using all remaining predictors, (2) its performance is evaluated, (3) 
the importances of all included predictors are calculated and (4) the least important 
predictor is removed. This procedure is repeated until only one predictor remains. 
Finally, the best performing model and its associated predictors are selected.  
The RF models were trained with 10-fold cross-validation, meaning the data for the 
according region is split into ten evenly sized subsets (folds) of which nine are used 
as calibration data and one as validation data. This is then repeated 10 times so that 
every fold is used once as the validation data. Model performance is evaluated via 
the metric root mean square error (RMSE) which is defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  (
1
𝑛𝑛
∗� (𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜−𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)2

𝑛𝑛

𝑖𝑖=1
)1 2�  

where n is the number of samples, Cobs is the observed carbon concentration or 
stock and Cpred is the predicted carbon concentration or stock. Variable importance 
is evaluated via the metric mean decrease in accuracy. This metric is calculated by 
comparing the accuracy of the RF model at hand with the accuracy of the same 
model for which the values of the predictor variable in question have been 
permutated. Permuting the predictors values is meant to break the causal link 
between this predictor and the target variable (carbon concentration/stock) and the 
difference in model accuracy is then seen as a measure for how much the predictor 
contributes to the accuracy model.   

2.2.3 Model evaluation 
The random forest models’ performances are evaluated with the three measures 
coefficient of determination (R2), root mean square error (RMSE), and mean 
absolute error (MAE). R2 is chosen due to its wide usage and good interpretability, 
RMSE because it is the measure that the RFE uses to pick the best model and MAE 
offers information about the direction of errors, which the other measures can’t. 
RMSE is defined as above, the other two measures as follows: 
   

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
∗� (𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

𝑅𝑅2 =  
∑ (𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜������)2𝑛𝑛
𝑖𝑖=1

∑ (𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜������)2𝑛𝑛
𝑖𝑖=1

 

Where n denotes the number of samples, Cpred,i the predicted carbon concentration 
or stock of the sample i, Cobs,i the observed carbon concentration or stock of the 
sample i and 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜������ the mean observed carbon concentration or stock. All three 
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measures are given with standard which are deviations calculated based on the 
results for each fold in the 10-fold cross-validation of the final model with the 
optimal set of predictor variables. Variable importance of the variables included in 
the final model for a given area and sample type is calculated as the MDA just like 
for the selection of the optimal subset of variables. The resulting values are 
subsequently scaled, so that their sum equals 100% i.e. 1 to enable comparisons of 
variable importance between different models. Scaled down importances are 
referred to as relative importances from here on. 

2.2.4 Linear regressions 
Given the low interpretability of RF models, linear regressions (MLR) are 
calculated to gain a better understanding about the nature of the connection between 
important predictors and carbon concentrations and stocks. Linear regressions rely 
on linear relationships between predictor and predicted variables which may not 
always apply to the data used in this thesis. In cases where linear regressions are a 
suitable choice, they offer better interpretability than RF models due to their easy 
visualisation and by expressing the connection between predictors and carbon as a 
simple, linear function.  
Linear regressions are calculated using the three most important predictors in the 
final RF models for carbon concentration and carbon stocks in the organic layer. 
For the purpose of this analysis, some variables were log transformed, to achieve 
linearity. DSI and carbon stocks are transformed by directly applying the decimal 
log, metal cation concentrations are transformed by adding one and then applying 
the decimal log. This is necessary since these concentrations can sometimes be 
below the detection limit (ergo 0 in the database) and therefore their logarithms are 
not defined. Results of the regression are only reported if the coefficient of the 
environmental variable is significantly different form 0 (p < 0.05). The normality 
of residuals is assessed with the Shapiro-Wilk normality test and models that pass 
(p > 0.05) are labelled.    
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3.1 RF model evaluation and predictor importances 

3.1.1 Organic layer 
 
The RF models for the carbon concentrations in the organic layer performed better 
than those for carbon stocks across scales and regardless of the metric used to 
evaluate model performance (Figure 3, Table A 3, Table A 4. Cross-validation 
results of the RF models for carbon stock in the organic layer). For both model 
groups, the performance tended to be better on larger scales, but there was 
considerable variation, especially on the subregional scale. Carbon stock models 
used on average more variables than carbon concentration models (9.9 compared 
to 4.2), complicating comparisons of single variable importances between these 
groups.  
Carbon concentration models almost exclusively relied on chemical predictor 
variables, with pH being the most important, independent of scale. Next to chemical 
variables, only vegetation and climate variables were used. At the national scale, 
only MAT and the five chemical variables were used, at the regional scale both 
climatic variables and stand age were used in addition to chemistry and at the 
subregional scale, stand age and tree species were the only non-chemical variables. 
The combined importance of chemical predictor variables peaked at the subregional 
scale (96.3%), while the combined importance of MAT and MAP declined from 
8.8% at the national scale to 3.4% at the regional and 0% at the subregional scale. 
   
For the carbon stock models, the most important predictor variable was always a 
chemical one, Mn in 17 and Ca in 4 models. The total importance of chemical 
variables was one third to one half lower than for carbon concentration models at 
the same scale, but chemical variables were still the most important group while 
topographic variables accounted for around half the importance of the non-chemical 
variables. In contrast to the carbon concentration models, there was no 
environmental variable that wasn’t used in at least one carbon stock model. 

3. Results 
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Climatic and topographic variables reached their highest total importance at the 
national scale, while the highest total importance of chemical variables was 
recorded at the subregional scale. The total importance of climatic variables was 
11.3% at the national scale, decreasing to 6.5% at regional and 4.7% at subregional 
scale. The total importance of topographic variables was 27.2% at the national 
scale, decreasing to 19.1% at regional and 19.0% at subregional scale. The total 
importance of chemical variables was 46.8% at the national scale, increasing to 
62.3% at regional and 65.6% at subregional scale. Texture was rarely used at all 
and its importance in a single model peaked at 5.1% resulting in low (<3%) average 
importances at all three scales. 

 
 

 

Figure 3: Performance of carbon concentration and carbon stock models for the organic layer in 
comparison. 
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Figure 4: Relative variable importances of final random forest models for the organic layer. Panels 
A to D refer to models for  carbon concentration, panels E to H to models of carbon stocks. Panels 
A and E show the average varaible importance across all 21 models, B and F only the variable 
importances in the respective national models, C and G the average across the four regional models 
and D and H the average across the 16 subregional models.
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3.1.2 Mineral layer (M10, M20 and M65 samples) 
In contrast to the organic layer models, the RF models for the different mineral 
layer samples did not show clear, consistent patterns for their performance with 
scale or sample type (Table A 5, Table A 6, Table A 7). Looking at R2, the only 
measure that is not influenced by the scale of the carbon concentration and therefore 
comparable across sample types, the values for the national models and the median 
and mean values of all regional subregional models across the three mineral sample 
types were withing a range of 0.41 to 0.51 (Figure 5). Models for the 0-10cm depth 
interval (M10) used on average 7.9 variables, models for 10-20cms (M20) 8.1 and 
models for 55-65cm (M65) used 6.8 variables on average.  

 

 

Figure 5: Performance of carbon concentration and carbon stock models for the mineral layer in 
comparison. Sample type refers to the depth interval, M10 is 0-10cm, M20 10-20cm and M65 55-
65cm. 
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At all scales and for all depths, Al was rated as the most important predictor 
averaged over the respective models and reached its highest importance of for the 
deepest samples. The total importance of the chemical predictor variables was 
higher than for the carbon stock models, but lower than for the carbon concentration 
models in the organic layer, with values ranging from 57% to 78%.  
In M10 models the total average importance of chemical variables peaked at the 
subregional scale, for M20 models at the national scale and for M65 models at the 
regional scale. The average combined relative importance of the climatic variables 
MAT and MAP decreased from the national to the regional and from the regional 
to the subregional scale for all depths and averaged across scales, it was highest for 
the M20 models, with 7.5%. Across all depths and scales, topographic variables 
were of similar importance to the climatic ones but did not exhibit patterns like the 
latter. Like for the chemical variables, the average combined importance of 
topographic variables was highest at different scales for different depths. The 
texture class was used in about a third of mineral layer models as a predictor, with 
a maximum importance of 19.1% in a single subregional model for 55-65cm. The 
average importance of texture was low at all scales and for all depths though, at 
most 3.9%.  
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Figure 6: Relative variable importances of final random forest models for the mineral layer. Panels A to 
D refer to the depth increment 0-10cm, panels E to H to 10-20cm and panels I to L to 55-65cm depth. The 
panels in the first row show the average variable importance across all 21 models, those in the second 
row only the variable importances in the respective national models, those in the third row averages across 
the four regional models and those in the last row the averages across the 16 subregional models. 
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3.2 Linear regressions 
 
In the organic layer, there were negative relationships between pH and the carbon 
concentration (R2 from 0.10 to 0.41, Table 12) in all areas and positive relationships 
between the log-transformed magnesium concentration (R2 from 0.04 to 0.44, Table 
12) and the carbon concentration in nearly all areas. In regressions with calcium, 
the relationship between the log-transformed calcium concentration was also 
positive, with one exception in subregion 3D. The coefficients  of determination 
were lower than for Mg and pH, with values between 0.03 and 0.15 (Table 12). 
Stand age was also found to be positively related to the carbon concentration in 
three areas each (Table 12). For none of the regressions regarding the carbon 
concentration were the residuals normally distributed.  
 
In comparison, slightly more different variables were used in the regressions for the 
carbon stocks in the organic layer, since the corresponding RF models used more 
predictors. The most frequently used variables for the linear regressions of organic 
layer stocks were the log transformed Mn and Al concentrations with only one and 
two areas for which they were not used. Mn was negatively related to carbon stocks 
(R2 from 0.04 to 0.40, Table 13)  and Al was positively related to carbon stocks (R2 
from 0.05 to 0.26, Table 13). Although Ca was among the top 3 predictors in 9 RF 
models, only two of its regressions featured p-values below 0.05. Similarly, pH was 
used for four regressions, but none of those were statistically significant. Lastly, 
carbon stocks were negatively related to the log transformed DSI (9 cases) and 
positively related to the TWI (2 cases). The residuals of about two thirds of all 
significant regressions were normally distributed (Table 13). 
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Table 12. Results of the linear regressions w
ith carbon concentration in the organic layer as 

dependent variable. Variables w
ere transform

ed as described in 2.2.4.The 1
st, 2

nd and 3
rd predictor 

refer to the ranking of the predictors in the final RF m
odel for the respective area. The bracketed 

signs (+
) and (-) refer to the sign of the slope.  

Area 
1st predictor 

p-value 
adj. R

2 
2nd predictor 

p-value 
adj. R

2 
3rd predictor 

p-value 
adj. R

2 
N

ational 
pH 

< 0.01 
0.22 (-) 

M
g 

< 0.01 
0.15 (+) 

Ca 
< 0.01 

0,05 (+) 
Region 1 

pH 
< 0.01 

0.30 (-) 
M

g 
< 0.01 

0.36 (+) 
Ca 

< 0.01 
0.10 (+) 

Region 2 
pH 

< 0.01 
0.34 (-) 

M
g 

< 0.01 
0.17 (+) 

Ca 
< 0.01 

0.04 (+) 
Region 3 

pH 
< 0.01 

0.27 (-) 
M

g 
< 0.01 

0.04 (+) 
stand age 

< 0.01 
0.10 (+) 

Region 4 
pH 

< 0.01 
0.13 (-) 

M
g 

< 0.01 
0.09 (+) 

Ca 
< 0.01 

0.03 (+) 
Subregion 1A 

pH 
< 0.01 

0.36 (-) 
M

g 
< 0.01 

0.28 (+) 
Ca 

< 0.01 
0.11 (+) 

Subregion 1B 
pH 

< 0.01 
0.29 (-) 

M
g 

< 0.01 
0.31 (+) 

Ca 
< 0.01 

0.09 (+) 
Subregion 1C 

M
g 

< 0.01 
0.43 (+) 

pH 
< 0.01 

0.28 (-) 
Ca 

< 0.01 
0.15 (+) 

Subregion 1D 
M

g 
< 0.01 

0.44 (+) 
pH 

< 0.01 
0.27 (-) 

Ca 
< 0.01 

0.13 (+) 
Subregion 2A 

pH 
< 0.01 

0.41 (-) 
Ca 

> 0.05 
 

M
g 

< 0.01 
0.10 (+) 

Subregion 2B 
pH 

< 0.01 
0.39 (-) 

M
g 

< 0.01 
0.13 (+) 

Ca 
> 0.05 

 
Subregion 2C 

M
g 

< 0.01 
0.36 (+) 

pH 
< 0.01 

0.24 (-) 
Al 

> 0.05 
 

Subregion 2D 
pH 

< 0.01 
0.33 (-) 

M
g 

< 0.01 
0.17 (+) 

- 
 

 
Subregion 3A 

pH 
< 0.01 

0.20 (-) 
M

g 
< 0.01 

0.15 (+) 
Ca 

 0.01 
0.04 (+) 

Subregion 3B 
pH 

< 0.01 
0.31 (-) 

M
g 

< 0.01 
0.09 (+) 

Ca 
< 0.01 

0.07 (+) 
Subregion 3C 

M
g 

< 0.01 
0.07 (+) 

pH 
< 0.01 

0.14 (-) 
Ca 

> 0.05 
 

Subregion 3D 
pH 

< 0.01 
0.31 (-) 

Ca 
> 0.05 

 
 

 
 

Subregion 4A 
M

g 
< 0.01 

0.15 (+) 
pH 

< 0.01 
0.12 (-) 

Ca 
< 0.01 

0.04 (+) 
Subregion 4B 

pH  
< 0.01 

0.11 (-) 
M

g 
< 0.01 

0.08 (+) 
Ca 

> 0.05 
 

Subregion 4C 
pH 

< 0.01 
0.18 (-) 

Ca 
> 0.05 

 
stand age 

< 0.01 
0.05 (+) 

Subregion 4D 
M

g 
< 0.01 

0.19 (+) 
pH 

< 0.01 
0.10 (-) 

Ca 
< 0.01 

0.09 (+) 
 



33 
 

 

Table 13. Results of the linear regressions w
ith carbon stock in the organic layer as dependent 

variable. Variables w
ere transform

ed as described in 2.2.4.The 1
st, 2

nd and 3
rd predictor refer to the 

ranking of the predictors in the final RF m
odel for the respective area. Variables in bold font indicate 

norm
ality of residuals. The  bracketed signs (+

) and (-) refer to the sign of the slope.  

 

Area 
1st predictor 

p-value 
adj. R

2 
2nd predictor 

p-value 
adj. R

2 
3rd predictor 

p-value 
adj. R

2 
N

ational 
M

n 
< 0.01 

0.29 (-) 
Al 

<0.01 
0.12 (+) 

DSI 
< 0.01 

0.09 (-) 
Region 1 

M
n 

< 0.01 
0.34 (-) 

Al 
<0.01 

0.14 (+) 
DSI 

< 0.01 
0.08 (-) 

Region 2 
M

n 
< 0.01 

0.25 (-) 
Al 

<0.01 
0.10 (+) 

Ca 
>0.05 

 
Region 3 

Ca 
>0.05 

 
M

n 
< 0.01 

0.18 (-) 
Al 

<0.01 
0.05 (+) 

Region 4 
M

n 
< 0.01 

0.19 (-) 
Al 

<0.01 
0.09 (+) 

DSI 
< 0.01 

0.11 (-) 
Subregion 1A 

M
n 

< 0.01 
0.23 (-) 

Al 
<0.01 

0.08 (+) 
W

RB soil type 
< 0.01 

0.18 
Subregion 1B 

M
n 

< 0.01 
0.34 (-) 

W
RB soil type 

< 0.01 
0.14 

DSI 
< 0.01 

0.15 (-) 
Subregion 1C 

M
n 

< 0.01 
0.33 (-) 

Al 
<0.01 

0.17 (+) 
M

g 
< 0.01 

0.05 (-) 
Subregion 1D 

M
n 

< 0.01 
0.35 (-) 

Al 
<0.01 

0.20 (+) 
TW

I 
0.01 

0.03 (+) 
Subregion 2A 

M
n 

< 0.01 
0.28 (-) 

Ca 
>0.05 

 
Al 

<0.01 
0.06 (+) 

Subregion 2B 
M

n 
< 0.01 

0.40 (-) 
Al 

<0.01 
0.10 (+) 

DSI 
< 0.01 

0.12 (-) 
Subregion 2C 

M
n 

< 0.01 
0.23 (-) 

Al 
<0.01 

0.17 (+) 
DSI 

< 0.01 
0.07 (-) 

Subregion 2D 
M

n 
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0.07 (-) 
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< 0.01 
0.08 (-) 

Ca 
>0.05 

 
Subregion 3A 

Ca 
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Al 

<0.01 
0.26 (+) 
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Al 
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Ca 
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0.02 

0.02 (+) 
pH 

>0.05 
 

Subregion 3D 
Ca 

<0.01 
0.05 (+) 

M
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0.30 (-) 

pH 
>0.05 

 
Subregion 4A 

M
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0.24 (-) 
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0.15 (-) 
Al 
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0.08 (+) 
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M
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< 0.01 

0.31 (-) 
Ca 
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DSI 
< 0.01 

0.14 (-) 
Subregion 4C 

M
g 

>0.05 
 

M
n 

< 0.01 
0.16 (-) 

Al 
<0.01 

0.12 (+) 
Subregion 4D 

M
n 

< 0.01 
0.04 (-) 

Ca 
0.01 

0.03 (+) 
pH 

>0.05 
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In this thesis I compared relative variable importances from RF models that were 
trained to predict soil organic carbon concentrations at different depth increments 
and soil organic carbon stocks in the organic layer of Swedish forest soils. The 
clearest finding regarding the selection of variables was the high importance of 
chemical variables in these models, at all scales and for all depths. For most 
relationships though, the hypotheses about the way they behave on different scales 
were not confirmed. 
Model performances in this thesis were slightly better compared to those in a similar 
study that also used RF models to predict SOC stocks in Sweden at two scales, 
although with different environmental variables (Hounkpatin et al. 2021). The 
authors divided Sweden into three sub-areas based on climatic conditions and 
reported R2 values from cross validation of RF models with different sets of 
predictors ranging from 0.15 to 0.28 for the national models and from 0.08 to 0.32 
for models for the sub-areas. The final carbon stock model in my case achieved an 
R2 of 0.44±0.07 at the national scale and the final models at regional scale 
0.40±0.14. I am not aware of other studies with a comparable scope and geographic 
focus against which to compare the performance of the models in this thesis.  
Fewer studies seem to model carbon concentration as compared to carbon stocks. 
Given this, two studies using data from the Tibetan plateau for training RF models 
of carbon concentration have to be used for comparison (Yang et al. 2016; Dai et 
al. 2022). Using somewhat similar environmental variables (topography, climate, 
land cover/use) the authors reported R2 of 0.32 and 0.68 for RF models of the carbon 
concentration in the top 20cm. This range roughly corresponds to the range of 
performances of the RF models trained for this thesis and underlines how much 
variation in model variation can be observed even with similar data inputs between 
areas. Especially for the organic layer models it is also important to note that the 
carbon concentration in these samples is by definition high as the organic layer is 
defined by its organic matter content which is closely related to soil organic carbon 
concentration (Blume et al. 2016; Institutionen för skoglig resurshushållning och 
Institutionen för mark och miljö (SLU) 2022). Variation of carbon concentration 
can thus probably be best explained by mixing in of mineral material due to 
biological activity, an aspect not directly covered by the environmental factors 
chosen for this study which mostly focus on decomposition of SOM (Institutionen 

4. Discussion 
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för skoglig resurshushållning och Institutionen för mark och miljö (SLU) 2022). 
Carbon stocks on the other hand should arguably be less affected by this caveat.  

 
Mn was found to be the most important predictor of SOC stocks in the organic layer 
in this study and this relationship is practically independent of scale. This prominent 
role of exchangeable Mn is in line with findings by Stendahl et al. (2017) who also 
studied Swedish forest soils using SFSI data and found Mn to be the most important 
predictor of SOC, using another statistical approach than this thesis. The authors 
propose a mechanism centred around Mn-peroxidases produced by fungi to explain 
the negative relationship between Mn and SOC stocks (Stendahl et al. 2017). Given 
the nature of this thesis this mechanism could neither be confirmed not rejected, but 
their findings about the relevance of Mn for SOC storage held.  
For this specific relationship between Mn and SOC stocks, a connection to scale 
can be seen in the variable importance. The relative importance of Mn in the models 
for the organic layer stock increases from 17.0% to 20.1% at the regional and 22.4% 
at the subregional scale. Neither for Mn in other model types nor for the chemical 
variables taken together a comparable gradient of importance with regards to scale 
was observed, so that the hypothesis regarding geochemistry could not be 
confirmed. Depending on the model type, i.e. sample depth and target variable, the 
highest total importance of chemical variables was reached at different scales or 
increased. 
 
The importance of climatic variables in relation to scale were in agreement with my 
hypothesis and they also changed with depth in line with what the literature 
suggests, although there have also been studies in which models did not exhibit 
interaction between depth and the climate to SOC relationship (Wiesmeier et al. 
2019; Heitkamp et al. 2021). The combined importance of the climatic variable 
MAT and MAP mostly decreases with depth and at smaller spatial scales. In 
contrast to this trend, subregional models for the organic layer carbon concentration 
do not use climatic variables at all, while they are to some degree used at all other 
scales and for all model types, which does not necessarily mean that all 
(sub)regional models included them. This can be explained by the fact that the 
carbon concentration models for the organic layer generally utilize the fewest 
number of variables with an average of 4.2. Decreasing importance of climatic 
variables as predictors can plausibly be explained by their decreasing variability. 
The IQR of MAT for example is 4.3°C at the national scale, decreasing to an 
average of 1.3°C at the regional and 1.0°C at the subregional scale. The trend of 
decreasing importance with depth is also unsurprising, given that the deeper parts 
of soils are somewhat insulated from influence of e.g. temperature fluctuations at 
the surface. 
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Elevation can be seen as a variable standing somewhat in between other 
topographic and climatic variables. It obviously is a topographic one by definition 
but also used as a proxy for climatic conditions (Wiesmeier et al. 2019). In nearly 
all datasets for this thesis, elevation was highly correlated to climate mostly to 
MAT. This impacts how the total importance of topographic variables behaves. 
Including elevation, the total importance of topographic variables for the organic 
layer carbon stock models steadily decreases from the national to the regional and 
subregional scale, from 27.2% to 19.0%. Leaving out elevation and only adding up 
the remaining four topographic variables, accumulated flow, aspect, TWI and DSI, 
removes this clear pattern, resulting in values of 21.77% at the national, 17.8% at 
the regional and 18.6% at the subregional scale. Similarly, the total importance of 
topographic variables excluding elevation doesn’t vary strongly between scales for 
the carbon concentration models too. With both approaches, the fourth hypothesis 
does not hold, since the total importance of topographic variables is either highest 
at the national scale or fairly similar across scales, but certainly not the highest at 
the subregional scale. 
 
The texture class was rarely used in my models and evaluated as being relatively 
unimportant, which was surprising since previous research using a smaller part of 
the data from the SFSI found higher carbon concentrations in the upper 10cm of the 
mineral layer of fine-textured soils (Spohn & Stendahl 2024). For other regions of 
the world, soil texture has been successfully used as a predictor in regression 
models of the SOC storage capacity; an overview can be found in Wiesmeier et al. 
(2019). The low importance of the texture class as a predictor of SOC in this thesis 
could be due to the way in which this variable is recorded. In the SFSI texture is 
recorded as one of eight classes, while Wiesmeier et al. (2019) compiled studies 
utilizing the proportion of the fine mineral fraction. However, as previously stated, 
other authors still reported significant influence of soil texture on the SOC content 
in the organic layer at the national scale working with the same type of texture data 
from the SFSI, so this explanation cannot fully account for the low relevance of 
texture in my models (Spohn & Stendahl 2024). Secondly, most samples have either 
the texture class fine or medium sand, meaning that for a sizeable proportion of 
samples in all datasets, regardless of scale, differences between their SOC cannot 
be explained by looking at their texture. 
Keeping the problem of overall low importance of the texture class in mind, it can 
still be said that there is no clear trend for the importance of texture with scale and 
that there are only small differences between the importance of texture at different 
scales. Therefore, the second hypothesis, i.e. that the importance of texture will be 
similar across scales, can be tentatively confirmed but given the low overall 
importance of texture, I advise for caution regarding the validity of this finding. 
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In this thesis the carbon content in Swedish forest soils and the carbon stocks in the 
organic layer were modelled on the basis of up to 16 environmental using random 
forest with recursive feature elimination variables at different spatial scales. The 
performance of the final RF models and the number of predictors that were actually 
used varied strongly between the organic and mineral layer and between the target 
variable: carbon concentration or carbon stock.  
Across all model types and scales, chemical variables as a group were of the highest 
importance for the RF models, while the most important variable depends on scale 
and model type. Mn was found to be of high importance for SOC stocks in the 
organic layer and negatively related to them, in line with prior research on Swedish 
forest soils.  
 The hypothesis of decreasing importance of climatic factors at smaller scales was 
confirmed for all model types and can be explained by a decreasing variability of 
MAT at smaller scales. Texture, which was hypothesised to be of similar 
importance across scales, was in total one of the least important predictors on my 
models while many authors were able to produce quite well performing models of 
SOC with texture as a predictor. This difference might arise from the fact that 
texture in the SFSI is recorded as a categorical variable with 8 classes most of which 
were rare. In any case the hypothesis of similar importance across scales for texture 
is not refuted by my findings. For none of the other variable types could the 
hypothesis regarding how their relationships to SOC change with scale be 
confirmed. Elevation presents itself as a somewhat special case, being categorised 
as a topographic variable, but its role in the models often closely resembles that of 
MAT to which it is highly related.  
In summary, the statistical approach was able to uncover the influence of the factor 
scale onto relationships between SOC and environment variables, but less often 
than hypothesised. For the cases that were found, the influence of scale was 
expected to show itself in that way and can be explained.  

 
 

5. Conclusion  
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Soils around the world contain vast amounts of carbon, more than the atmosphere 
and vegetation combined. Most of this carbon stored in soils, especially in Sweden 
is soil organic carbon (SOC). The storage of SOC is influenced by environmental 
conditions, like the climate, vegetation, topography and other soil properties. 
Relationships between these environmental variables can be used in statistical 
models to predict SOC. It is recognised that these relationships change with scale, 
meaning that depending on what area you look at, different sets of variables are 
well suited to set up models for SOC prediction. In this thesis I use Swedish soil 
data to test the following hypotheses: Climatic variables are more important when 
predicting SOC for larger areas, texture is similarly important for different areas 
and topography and chemistry are more important for smaller areas.  
Data on soils and vegetation from the Swedish forest soil inventory was combined 
with topographic and climatic data to serve as the input for statistical models. The 
soil samples in this inventory are taken from different depths in the soil, so that five 
model are created for every area: One for the carbon concentration and one for the 
stocks in the organic layer and three for different depths in the mineral layer. 
Additionally, I divided Sweden into four regions and each of these regions into 4 
subregions, so that models were trained for 21 areas each. The type of model is 
called random forest (RF) with recursive feature elimination. It works well with all 
types of data and choses the variables that are best suited itself, but its output cannot 
be nicely expressed in a simple function, because it basically is the combined output 
of many smaller models. Although the importance of variables can be assessed by 
it, I additionally used linear regressions which gave information about the types of 
relationships between the most important predictors in RF models and SOC.  
Across the three scales, all models gave very high importances to chemical 
variables, with Mn being most important for organic layer carbon stocks, pH for 
organic laser concentrations and Al for mineral layer concentrations. The climatic 
variables were more important at the national scale, as I hypothesized. Texture was 
mostly unimportant in all models, making it hard to satisfyingly draw conclusions 
about the second hypothesis. Topographic and chemical variables didn’t exhibit a 
clear pattern like climate. Their highest importances occurred at different scales in 
different models.  

Popular science summary 
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Table A 1. Definition of texture classes 

Texture class Grain size 
Cobble 20-200 mm 
Gravel 2-20 mm 
Coarse sand 0.6-2 mm 
Medium sand 0.2-0.6 mm 
Fine sand 0.06-0.2 mm 
Coarse silt 0.02-0.06 mm 
Fine silt 0.002-0.02 mm 
Clay <0.002 mm 

 

Table A 2. Definition of tree species classes 

Tree species class Definition corresponding values of 
“tradblandning” in the SFSI 

Pine > 70% Pine 1  
Spruce > 70% Spruce 2 
Mixed conifers > 70% Pine + Spruce 3 
Deciduous > 70% deciduous 4, 5, 10, 11 
Mixed < 70% conifers and < 70% deciduous 6, 7, 8, 9 
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Table A 3. Cross-validation results of the RF models for carbon concentration in the organic layer 

  10- fold cross- validation  
Area number of 

predictors used 
R2 RMSE  

(g C*kg-1 d.w.) 
MAE  

(g C*kg-1 d.w.) 
National 6 0.71 ± 0.03 49.3 ± 2.26 38.9 ± 1.66 
Region 1 6 0.74 ± 0.05 50.4 ± 4.13 40.6 ± 3.67 
Region 2 6 0.69 ± 0.08 53.2 ± 4.68 42.7 ± 2.90 
Region 3 6 0.64 ± 0.06 54.4 ± 5.21 42.4 ± 4.32 
Region 3 6 0.52 ± 0.11 53.6 ± 6.26 40.6 ± 4.22 
Subregion 1A 4 0.70 ± 0.14 56.5 ± 10.50 45.7 ± 6.97 
Subregion 1B 3 0.64 ± 0.21 54.0 ± 9.67 45.4 ± 8.27 
Subregion 1C 6 0.57 ± 0.10 57.0 ± 7.19 47.2 ± 6.33 
Subregion 1D 4 0.70 ± 0.12 53.2 ± 8.38 42.5 ± 6.48 
Subregion 2A 3 0.63 ± 0.15 53.3 ± 8.89 42.8 ± 7.27 
Subregion 2B 4 0.65 ± 0.14 59.0 ± 10.62 47.0 ± 7.79 
Subregion 2C 4 0.60 ± 0.19 57.3 ± 10.22 46.8 ± 7.61 
Subregion 2D 2 0.57 ± 0.19 58.0 ± 12.04 45.4 ± 9.32 
Subregion 3A 3 0.61 ± 0.13 57.7 ± 12.24 46.0 ± 8.07 
Subregion 3B 3 0.68 ± 0.17 57.4 ± 16.30 46.2 ± 8.60 
Subregion 3C 3 0.55 ± 0.13 45.6 ± 6.96 35.7 ± 5.47 
Subregion 3D 2 0.55 ± 0.17 58.3 ± 13.92 46.6 ± 11.49 
Subregion 4A 4 0.50 ± 0.11 58.7 ± 12.51 47.2 ± 10.15 
Subregion 4B 4 0.41 ± 0.28 56.2 ± 13.48 43.4 ± 11.79 
Subregion 4C 6 0.41 ± 0.19 60.2 ± 13.33 47.2 ± 9.79 
Subregion 4D 3 0.60 ± 0.20 49.7 ± 10.12 38.4 ± 7.37 
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Table A 4. Cross-validation results of the RF models for carbon stock in the organic layer 

  10- fold cross- validation  
Area number of 

predictors used 
R2 RMSE  

(t C*ha-1) 
MAE  

(t C*ha) 
National 16 0.44 ± 0.07 22.4 ± 2.82 14.4 ± 0.78 
Region 1 10 0.41 ± 0.08 29.2 ± 5.62 19.3 ± 2.28 
Region 2 14 0.39 ± 0.15 22.8 ± 3.38 15.7 ± 1.49 
Region 3 6 0.43 ± 0.19 17.1 ± 5.10 11.4 ± 1.88 
Region 3 16 0.36 ± 0.14 17.1 ± 3.71 11.0 ± 1.43 
Subregion 1A 6 0.53 ± 0.15 21.4 ± 6.80 14.9 ± 3.77 
Subregion 1B 6 0.45 ± 0.24 33.1 ± 16.29 21.7 ± 7.70 
Subregion 1C 5 0.36 ± 0.17 29.1 ± 8.92 21.1 ± 4.70 
Subregion 1D 7 0.40 ± 0.27 27.9 ± 7.45 20.5 ± 4.03 
Subregion 2A 3 0.34 ± 0.27 22.7 ± 7.85 15.8 ± 4.06 
Subregion 2B 14 0.42 ± 0.26 27.8 ± 8.68 19.7 ± 4.54 
Subregion 2C 14 0.26 ± 0.18 21.6 ± 6.77 16.2 ± 3.46 
Subregion 2D 11 0.28 ± 0.20 18.7 ± 6.94 13.9 ± 3.95 
Subregion 3A 4 0.45 ± 0.23 19.6 ± 7.90 13.6 ± 3.89 
Subregion 3B 7 0.37 ± 0.24 15.5 ± 5.45 11.4 ± 3.32 
Subregion 3C 15 0.23 ± 0.19 15.6 ± 5.83 11.2 ± 2.88 
Subregion 3D 3 0.61 ± 0.24 15.5 ± 4.18 10.7 ± 2.25 
Subregion 4A 15 0.50 ± 0.27 16.5 ± 6.39 10.8 ± 2.07 
Subregion 4B 15 0.39 ± 0.19 21.0 ± 11.65 14.7 ± 5.35 
Subregion 4C 11 0.18 ± 0.12 12.5 ± 3.88 9.1 ± 2.21 
Subregion 4D 10 0.24 ± 0.14 14.5 ± 4.99 10.3 ± 2.29 
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Table A 5. Cross-validation results of RF models for carbon concentration in the mineral layer (0-
10cm) 

  10- fold cross- validation  
Area number of 

predictors used 
R2 RMSE  

(g C*kg-1 d.w.) 
MAE  

(g C*kg-1 d.w.) 
National 9 0.51 ± 0.14 18.4 ± 6.65 9.3 ± 0.58 
Region 1 15 0.50 ± 0.13 23.0 ± 12.22 12.6 ± 2.52 
Region 2 9 0.51 ± 0.19 21.6 ± 12.17 11.2 ± 1.33 
Region 3 9 0.38 ± 0.15 11.7 ± 2.56 8.3 ± 1.24 
Region 3 13 0.43 ± 0.15 12.3 ± 4.30 7.8 ± 1.62 
Subregion 1A 9 0.41 ± 0.19 25.2 ± 27.83 15.0 ± 8.54 
Subregion 1B 2 0.52 ± 0.23 21.4 ± 14.92 13.9 ± 5.96 
Subregion 1C 2 0.67 ± 0.23 20.5 ± 15.47 11.3 ± 4.99 
Subregion 1D 2 0.60 ± 0.19 13.8 ± 2.47 9.7 ± 1.53 
Subregion 2A 10 0.35 ± 0.27 31.1 ± 30.99 17.1 ± 9.82 
Subregion 2B 11 0.55 ± 0.19 23.3 ± 9.99 15.7 ± 4.26 
Subregion 2C 3 0.68 ± 0.18 14.2 ± 6.19 9.3 ± 2.80 
Subregion 2D 9 0.63 ± 0.18 9.7 ± 2.94 6.6 ± 0.92 
Subregion 3A 2 0.38 ± 0.2 15.3 ± 5.36 10.5 ± 2.84 
Subregion 3B 5 0.29 ± 0.24 10.5 ± 5.39 7.9 ± 3.04 
Subregion 3C 9 0.42 ± 0.21 11 ± 3.29 8.1 ± 2.30 
Subregion 3D 5 0.32 ± 0.28 9.8 ± 2.26 7.6 ± 1.34 
Subregion 4A 13 0.40 ± 0.20 13.7 ± 8.98 8.3 ± 2.77 
Subregion 4B 5 0.45 ± 0.18 9.4 ± 1.97 6.9 ± 1.05 
Subregion 4C 15 0.40 ± 0.33 15.4 ± 5.94 10.1 ± 1.91 
Subregion 4D 9 0.41 ± 0.23 9.3 ± 3.28 6.3 ± 1.56 
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Table A 6. Cross-validation results of RF models for carbon concentration in the mineral layer (10-
20cm) 

  10- fold cross- validation  
Area number of 

predictors used 
R2 RMSE  

(g C*kg-1 d.w.) 
MAE  

(g C*kg-1 d.w.) 
National 9 0.48 ± 0.10 15.2 ± 5.63 8.3 ± 0.64 
Region 1 7 0.46 ± 0.19 20.2 ± 14.07 10.3 ± 2.86 
Region 2 6 0.50 ± 0.08 14.7 ± 2.07 9.5 ± 0.99 
Region 3 6 0.36 ± 0.11 11.4 ± 1.69 8.2 ± 0.85 
Region 3 14 0.38 ± 0.11 10.5 ± 4.07 6.3 ± 0.78 
Subregion 1A 13 0.40 ± 0.26 22.4 ± 31.19 13.5 ± 11.79 
Subregion 1B 14 0.44 ± 0.22 24.9 ± 27.09 14.3 ± 8.18 
Subregion 1C 9 0.55 ± 0.12 12.4 ± 4.70 8.8 ± 1.99 
Subregion 1D 7 0.60 ± 0.21 13.8 ± 4.05 9.7 ± 2.30 
Subregion 2A 3 0.48 ± 0.25 15.2 ± 9.02 10.5 ± 4.44 
Subregion 2B 11 0.57 ± 0.24 13.1 ± 6.60 9.9 ± 4.18 
Subregion 2C 10 0.51 ± 0.17 14.3 ± 5.24 10.8 ± 2.02 
Subregion 2D 4 0.63 ± 0.24 13.2 ± 7.03 8.3 ± 3.23 
Subregion 3A 7 0.53 ± 0.16 12.0 ± 3.13 8.7 ± 1.94 
Subregion 3B 4 0.44 ± 0.16 8.6 ± 1.66 6.7 ± 1.13 
Subregion 3C 5 0.41 ± 0.25 10.3 ± 3.10 7.7 ± 1.95 
Subregion 3D 12 0.25 ± 0.25 12.5 ± 5.01 9.0 ± 2.40 
Subregion 4A 9 0.51 ± 0.24 6.8 ± 2.77 4.7 ± 1.36 
Subregion 4B 10 0.51 ± 0.18 7.5 ± 2.28 5.9 ± 1.46 
Subregion 4C 2 0.42 ± 0.29 12.8 ± 6.73 8.5 ± 3.07 
Subregion 4D 8 0.42 ± 0.26 7.3 ± 3.05 5.2 ± 1.45 
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Table A 7. Cross-validation results of RF models for carbon concentration in the mineral layer (55-
65cm) 

  10- fold cross- validation  
Area number of 

predictors used 
R2 RMSE  

(g C*kg-1 d.w.) 
MAE  

(g C*kg-1 d.w.) 
National 15 0.51 ± 0.07 5.9 ± 2.38 3.1 ± 0.51 
Region 1 6 0.58 ± 0.16 7.0 ± 3.30 3.9 ± 1.11 
Region 2 6 0.50 ± 0.26 5.4 ± 2.08 3.2 ± 0.54 
Region 3 2 0.42 ± 0.25 4.3 ± 2.05 2.6 ± 0.88 
Region 3 12 0.55 ± 0.10 5.1 ± 4.29 2.6 ± 0.85 
Subregion 1A 3 0.66 ± 0.30 6.8 ± 5.40 4.5 ± 2.75 
Subregion 1B 2 0.42 ± 0.31 8.9 ± 6.47 5.3 ± 2.91 
Subregion 1C 1 0.79 ± 0.20 5.4 ± 1.70 4.0 ± 1.16 
Subregion 1D 13 0.59 ± 0.30 6.5 ± 4.21 4.2 ± 1.72 
Subregion 2A 6 0.49 ± 0.33 4.5 ± 1.54 3.3 ± 0.84 
Subregion 2B 7 0.41 ± 0.33 5.3 ± 2.80 3.6 ± 1.44 
Subregion 2C 2 0.33 ± 0.31 4.1 ± 0.96 3.0 ± 0.59 
Subregion 2D 3 0.81 ± 0.09 5.5 ± 3.25 3.3 ± 1.77 
Subregion 3A 1 0.46 ± 0.35 4.3 ± 2.06 2.9 ± 0.87 
Subregion 3B 14 0.30 ± 0.22 4.3 ± 2.87 2.9 ± 1.10 
Subregion 3C 13 0.40 ± 0.22 3.4 ± 2.62 2.3 ± 1.09 
Subregion 3D 7 0.51 ± 0.31 3.8 ± 2.31 2.4 ± 0.95 
Subregion 4A 10 0.56 ± 0.34 2.7 ± 1.47 1.7 ± 0.57 
Subregion 4B 2 0.41 ± 0.31 3.8 ± 2.00 2.4 ± 0.88 
Subregion 4C 15 0.48 ± 0.31 8.9 ± 9.12 5.6 ± 3.18 
Subregion 4D 3 0.58 ± 0.17 2.0 ± 1.06 1.3 ± 0.40 
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