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Urban planning strategies have a fundamental impact on people’s choice of transport. Many 
European cities are working to shift towards facilitating more sustainable modes of transport and 
reducing motorised traffic. 

Cognitive load can be considered the mental resources that are required to perform a variety of 
tasks, such as cycling in various traffic situations. Human factors, i.e., cognitive load, affect people's 
perceived safety and their choice of transport mode. There is a lack of naturalistic cycling data 
focusing on the influence of different traffic conditions on cognitive load.  

Therefore, this study aims to investigate the influence of different traffic situations on the 
cognitive load of cyclists. For that, people participate in a naturalistic study, cycling through the 
Austrian city of Vienna, in order to advance research regarding the effects of various built 
environment conditions and traffic volume on cognitive load. The effects of the different conditions 
are compared. Cognitive load can be assessed by physiological measurements (i.e., through 
Empatica E4 smartwatch) in the form of electrodermal activity (EDA). For this study, EDA has been 
normalised compared to people’s baseline physiological responses.  

A panel regression model is used to investigate the effect of different built environment 
conditions and traffic volume on cyclists’ cognitive load. The results confirm differences between 
the various traffic segments on cognitive load but are not in line with the hypothesis that higher 
traffic volume leads to increased cognitive load. Although not all results confirm the hypotheses, 
this study shows that cognitive load, measured through EDA can improve understanding of the effect 
of different built environment conditions on cyclists’ cognitive load in a dynamic traffic context. 

Keywords: Cycling, Cognitive Load, Built Environment, Infrastructure Design, Traffic Volume, 
Panel Regression Model 
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1.1 Problem Background 
Greenhouse gas (GHG) emissions are the largest contributor to global warming 
(IPCC, 2014). Human activities, particularly the utilisation of fossil fuels for 
transportation, electricity, and heat, all lead to high GHG emissions (Perera, 2018). 
After industry, the transportation sector was responsible for the highest global GHG 
emissions in 2021 (European Commission, 2023). Among the different modes of 
transport, car traffic is the largest source of GHG emissions in the EU (Kazancoglu 
et al., 2021). The GHG emissions for global transport have been growing steadily 
at 2% per year since 1990, with North America, Europe, and East Asia being the 
largest contributors (Lamb et al., 2021). A significant potential for mitigating these 
emissions lies in shifting from carbon-intensive to low-carbon transportation 
methods for travelling, which rely on large-scale policy changes on international, 
national, and local levels (Cuenot et al., 2012).   

Around the world, and particularly in Europe, cities are therefore developing 
more environmentally friendly plans to move away from car-centric transportation 
networks (Nieuwenhuijsen & Khreis, 2016). Active transport combined with a 
reduction in private motorised traffic has been shown to have a positive impact on 
public health (De Nazelle et al., 2011). Cycling provides benefits to physical 
activity and has been shown to be positively associated with cardiovascular health 
and cognitive function while being negatively associated with cancer mortality and 
morbidity (Oja et al., 2011, Nieuwenhuijsen, 2016). A recent cost-benefit analysis 
including climate, pollution, and health has shown that the cost of automobility 
amounts to €500 billion annually (including costs of climate change impacts, 
pollution, accidents, infrastructure, vehicle, and energy production). In comparison, 
cycling is associated with benefits of €34 billion (Gössling et al., 2019a).  

Urban planning that shifts from car infrastructure towards more sustainable 
infrastructure can be a strategic approach to transition from an environment that is 
more detrimental to health to one that is more beneficial (Nieuwenhuijsen, 2020). 
The discrepancy in impacts between active transport and motorised traffic 
highlights the significance of cycling as a means of improving public health, 
reducing environmental impact, and generating economic benefits, underlying the 

1. Introduction 
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importance of conducting further analysis to ascertain the societal and individual 
effects of cycling. 

In their recent study, Habib et al. (2024) examined how human factors affect 
cycling, through perception, cognitive load, and behaviour and argued that these 
factors affect people’s perceived safety in the traffic context. Perceived safety, in 
turn, affects the likelihood of people choosing sustainable alternatives (i.e., cycling) 
to motorised vehicles in urban settings (Gössling et al., 2019b). Previous research 
has focused on different traffic conditions on cyclists’ cognitive load in virtual 
reality (VR) laboratory studies (e.g., Guo et al., 2023), or studied the influence of 
traffic on car drivers’ cognitive load (e.g., Nilsson et al., 2022). The benefit of VR 
and simulator studies is the control of variables, e.g., weather, traffic volume, and 
interactions with other traffic participants (O’Hern et al., 2017). A drawback of 
those VR laboratory studies is, that they cannot replicate real-world conditions as 
in naturalistic studies (Rupi & Krizek, 2019). Johnson et al. (2010) argued that 
naturalistic studies are the best approach to understanding cycling behaviour as they 
provide real-world information on traffic interactions between different traffic 
participants.  

With this study, we focus on the varying effects of the built environment 
conditions, defined by different road infrastructure designs on cyclists. In 
particular, conducting a naturalistic study allows to quantify the differences that 
several built environment conditions have on the cognitive load experienced by 
cyclists in Vienna. With that, we can answer how different traffic segments defined 
by built environment conditions differ in their influence on the cognitive load of 
cyclists. Therefore, the objective of this study is to contribute to the knowledge of 
the influence of different traffic designs and volumes on cyclists’ cognitive load in 
the context of urban traffic in Vienna, Austria.  

 

1.2 Influence of Built Environment Conditions on 
Cyclists in the Urban Context 

The built environment can influence people’s willingness to cycle in urban contexts 
through a variety of factors (Ye & Titheridge, 2017, Gössling et al., 2019a). 
People’s willingness to cycle is negatively affected when traffic is perceived as 
dangerous, distances are long, and exposure to noise and particle pollution (e.g., 
coming from motor vehicle exhaust) is high (Gössling et al., 2019b, Atkinson et al., 
2018). Chuang et al. (2013) showed in their study that the distance between bicycles 
and cars in traffic affects cyclists’ behaviours (e.g., more stable riding with less 
movement, choosing to maintain constant speed). Harvey et al. (2008) surveyed 
cyclists and found that people will choose longer rather than shorter travel routes if 
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they can thereby increase their safety and comfort. Research has shown that people 
are more likely to use bicycles for travel when cycling lanes are physically 
separated from car traffic, travel distances are short, and perceptions of safety for 
cyclists are high (Gössling et al., 2019a). 

In the context of traffic, the objective safety of cyclists reflects more quantitative 
aspects of safety (i.e., the number of accidents involving cyclists and the risks of 
accidents) while perceived safety refers to cyclists’ assessment of traffic situations, 
e.g., how safe a crossing is perceived (Matviienko et al., 2021). Since perceived 
safety directly influences people’s decision to use bicycles as a means of transport 
(Heinen et al., 2011), it is crucial to focus on this aspect when considering the 
different traffic conditions for cyclists in urban traffic. Choosing the bicycle as the 
mode of transportation is driven rather by perceived safety than by the objective 
and quantifiable aspects of road safety (Dill & Voros, 2007). 

Furthermore, distances for people living in inner cities have a significant impact 
on people's travel mode choice, i.e., on whether these residents cycle, walk, or 
choose motorised transport such as cars or public transport (Scheiner, 2010, 
Stefansdottir et al., 2019). A study by Sallis et al. (2016) showed that 
neighbourhoods that are planned in a way that accommodates the needs of 
pedestrians significantly increase the level of walking. The built environment can 
therefore exert a direct impact on people’s travel choices and satisfaction, e.g., by 
factors related to the immediate area around the home and workplace (Ye & 
Titheridge, 2017).  

To facilitate more cycling and create cycling cultures within cities, urban 
planning needs to take into account cyclists’ concerns about safety, comfort and 
interrelation with car traffic (Aldred, 2013). Consequently, urban planning 
strategies must be adopted by cities that wish to encourage a greater number of 
individuals to utilise the bicycle as a mode of transport (Buehler et al., 2017b). A 
cycling-friendly environment facilitates the ease of travelling and thus increases 
travel satisfaction (Ye & Titheridge, 2017).  

For cycling in urban contexts, the interaction with the environment and parts of 
the infrastructure can exert its influence on cyclists’ cognitive load which further 
affects their perceived safety in various traffic situations and consequently, people’s 
choice to choose the bicycle as a mode of transportation (Habib et al., 2024, Heinen 
et al., 2011). 

 

1.3 The Current Study 
To this date, there has been little research on the influence of urban traffic on 
cyclists’ cognitive load. Cognitive load affects people's perceived safety, which in 
turn affects their likelihood of choosing the bicycle as a mode of transport in urban 
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traffic (Gössling et al., 2019b, Habib et al., 2024). Nevertheless, as the majority of 
research focuses on the impact of mental load on cycling or motorised driving 
behaviour (Habib et al., 2024), it is of significant importance to also examine how 
different traffic conditions affect cyclists’ cognitive load. To ascertain the influence 
of differing built environment conditions, physiological measures of cognitive load 
will be employed to be able to quantify and distinguish those differences based on 
various traffic conditions.  

As there are few naturalistic studies quantifying these differences, this study 
aims to advance research in the field by investigating how the impact of the built 
environment on cyclists’ is reflected in different cognitive loads, following a 
deductive approach, by understanding the role of human factors (i.e., cognitive 
load) in designing better road infrastructure for cycling in Vienna. Results will be 
important to increase knowledge regarding factors that are important in 
understanding cyclists’ perceived safety and cognitive load, and through 
accommodating their needs, increase the modal share of cyclists. Quantifying 
cognitive load will be done by collecting and analysing data from physiological 
data readings and self-report measures of people cycling along a pre-determined 
route through the city with different built environment conditions. Specifically, 
differences in different types of road facilities for cyclists in the city will be 
considered. These include mixed paths shared with pedestrians, designated cycle 
paths, roads shared with cars, and roads shared with cars with a continuous line 
separating the cycle lane from motorised traffic. Based on the background and 
information presented, the following research questions will be addressed. 

1.3.1 Research Questions 
 
1. What are the differences in the cognitive load experienced by cyclists based 

on different road-geometric infrastructure designs 
a. mixed cycling path (shared with pedestrians), 
b. designated cycling path (separated from pedestrians with a line),  
c. mixed cycling traffic on roads with cars (no line),  
d. mixed cycling traffic on roads with cars (separated by a continuous 

line),  
of people who cycle in Vienna, Austria?  

 
 

2. What are the differences in cyclists’ cognitive load experience based on 
high and low traffic volume (i.e., peak vs off-peak traffic) of people cycling 
in Vienna, Austria? 
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1.3.2 Hypothesis  
As previous studies have shown, people who choose cycling as a mode of transport 
are willing to cover longer distances if they can thereby increase their safety and 
comfort (e.g., Harvey et al., 2008). Furthermore, cyclists who have to share the road 
with cars experience feelings of threat and emotional stress (Chataway et al., 2014, 
Heesch et al., 2011). Therefore, I hypothesise that the built environment influences 
cyclists' cognitive load in the following ways:  

 
1. Traffic density and shared roads with cars (with no separation) lead to 

higher cognitive load than shared roads with cars (separated by line), than 
designated cycling lanes (shared with pedestrians), than designated cycling 
lanes (separated from pedestrians with line) for cyclists in Vienna, Austria.  

 
H0 = µmixed - µnot-mixed = 0 and Ha = µmixed - µnot-mixed > 0  

 
Previous research has shown that higher traffic volumes have a negative effect on 
levels of leisure cycling (Foster et al., 2011). I therefore hypothesise that:  
 

2. The peak traffic condition (high traffic volume) elicits a higher cognitive 
load than the off-peak condition (low traffic volume) for cyclists in Vienna, 
Austria. 

 
H0 = µpeak - µoff-peak = 0 and Ha = µpeak - µoff-peak > 0 
 

Thus, the density of traffic and shared roads with other road users will increase 
cognitive load which may discourage people from using bicycles as a mode of 
transport. The more the cycling infrastructure is separated from car traffic through 
the built environment, the lower the cognitive load for cyclists.  

 

1.4 Thesis structure 
Chapter 1.2 provides a summary of research on the relationship between the built 

environment in urban contexts and cyclists’ behaviour, perceptions of safety, and 
cognitive load. The section 1.3 describes the current study and introduces the 
research questions and hypotheses. Chapter 2 discusses the concept of cognitive 
load in research and the different ways it has been measured by utilising subjective 
and physiological measurements. In the Methodology section (3), information 
regarding the data collection will be presented (i.e., location and experimental 
route, recruitment, instruments, and procedure), as well as data processing and data 
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analytic methods. In the Results section (4), descriptive statistics are presented 
before the results of the regression model are presented. The Discussion section (5) 
will compare this study with previous research, focus on the limitations of this 
study, and provide possible directions for future research.  
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2.1 Cognitive Load  
This second chapter summarises previous research on cognitive load and how it is 
usually conceptualised and measured using subjective and physiological methods.  

Cognitive load is considered multidimensional, defined by the mental cost of 
subsequent cognitive tasks (Paas et al., 1994), and further as a reserve of mental 
resources that are required to perform a variety of tasks (Armougum et al., 2019). 
It can be represented as a dynamic variable that changes and is influenced by the 
interrelationship between task demands and cognitive processes (Babiloni, 2019). 
The task-oriented mental processes that constitute cognitive load are not observable 
through behavioural methods (Kalyuga, 2011). Cognitive load interacts with causal 
factors (which influence cognitive load) and assessment factors (which are 
influenced by cognitive load) (ibid.). Causal factors are the various characteristics 
of the tasks, the environment, characteristics of the learner, interactions between 
learner and environment, and the task (see figure 1). Assessment factors are mental 
load, mental effort, and mental performance (ibid.).  

 

 

Figure 1. Causal factors and assessment factors (Source: Orru & Longo (2019), p.4). 

Understanding the concept is the first step and provides the basis for empirical 
analysis and practical application. The following section focuses on different 
methods to measure cognitive load. After understanding how it is measured, the 

2. Literature Review 
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next step is to discuss the practical implementation in the form of a naturalistic 
study.  
 

2.1.1 Cognitive Load Measurement 
Traditionally, cognitive load has been assessed using self-report measures in 
educational research (Vanneste et al., 2021). Self-report measures using 
multidimensional scales can measure cognitive load more accurately than those 
utilising unidimensional scales (ibid.). In the human factors and ergonomics field, 
a frequently used multidimensional scale is the NASA Task Load Index (Hart & 
Staveland, 1988). There, the workload is assessed with five scales where cognitive 
load is closely linked to the mental demand assessment factor (Vanneste et al., 
2021).  

In addition to self-report measures, many studies looked into physiological 
measurements to indicate cognitive load (Agarwal et al., 2021). Cognitive load and 
physiological activity can be correlated with each other because cognitive demands 
can lead to automatic and unconscious responses of the autonomic nervous system 
(Wiberg et al., 2015).  

More recently, these physiological measures have been applied in traffic 
research, as the advantage of using physiological measures for cognitive load over 
self-report measures is that they allow continuous recording of cognitive load and 
do not interfere with the driving task (Nilsson et al., 2022). Most of the studies that 
investigate physiological measurements of cognitive load in traffic focus on car 
driver’s cognitive load (Nilsson et al., 2022, Lohani et al., 2019, Wiberg et al., 
2015). Further research is needed to focus on measures of cognitive load in cyclists 
to gain insights into the influence of the built environment and changing 
infrastructure for people cycling in urban traffic (Habib et al., 2024). 

The human cognitive system is always processing information, determining 
whether the information can be related to previous knowledge and is responsible 
for responding to the situational aspects of the environment (Buchwald et al., 2019). 
Studies that have used a variety of physiological measures to analyse their data have 
been able to predict cognitive load with higher accuracy and in a more 
comprehensive way (Agarwal et al., 2021, Zhang et al., 2014).  

Electrodermal Activity  
Previous research has shown that different states of cognitive load can be 

reflected in electrodermal activity (EDA; also known as galvanic skin response), 
with increasing cognitive load being associated with increased EDA levels (Ayres 
et al., 2021, Lohani et al., 2019). Through a sensor that is attached to the skin (often 
on the hand or wrist), the skin’s electrical conductance can be determined 
(Nourbakhsh et al., 2012). Variations in skin moisture (i.e., sweat level) are 
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associated with changes in skin conductance and can provide information about the 
sympathetic nervous system (ibid). The components of skin conductance level 
(SCL) and skin conductance response (SCR) can be identified for the EDA signal. 
The former measures psychophysiological activity and is characterised by slow 
changes for a given time. The latter can reflect more sudden changes, which can be 
distinguished by peaks of the EDA signals (Ayres et al., 2021, Braithwaite et al., 
2013). A study by Mehler et al. (2012) has shown that at different levels of induced 
cognitive load, the function of EDA is related to increasing cognitive load, thus 
validating the sensitivity of measuring EDA. More recently, Vanneste et al. (2021) 
have argued that EDA measures reflect only a proportion of the cognitive load’s 
variance, and further, that a combination of various physiological measures ought 
to increase the accuracy of cognitive load measurement and the proportion of 
explained variance, i.e., by combining EDA measures with eye tracking (Marquart 
et al., 2015) and heart rate measures (Solhjoo et al., 2019). 

Heart Rate and Heart Rate Variability 
Heart rate measures are a common method for determining cognitive load 

because cardiovascular activity is associated with physical and mental demands 
(Hettiarachchi et al., 2018, Fredericks et al., 2005). While heart rate (HR) is 
influenced by factors of both physiological and mental nature, the difficulty lies in 
differentiating those factors. Through a thoroughly conducted study, Mehler et al. 
(2012) provided evidence that HR can serve as an accurate measure of cognitive 
load variations, with increasing cognitive workload being associated with increases 
in HR. Commonly, HR is measured through electrocardiography (ECG) recording 
devices, with HR being the number of heartbeats in a given minute (Lohani et al., 
2019). More recently, it can be measured through wearable devices (e.g., Polar H10 
chest belt) (ibid.). Devices such as the Polar H10 chest belt have shown very high 
accuracy for ECG measures (Terbizan et al., 2002). 

Another ECG measure is heart rate variability (HRV). While HR can be 
constant, the variation of time between two heartbeats may vary and is called HRV 
(Achten & Jeukendrup, 2003). Whilst HR increases with increasing mental 
workload, HRV decreases (Lohani et al., 2019). Cognitive load also affects blood 
pressure, which subsequently results in a decreased HRV, and thus has an indirect 
effect (Ayres et al., 2021). Generally, HR is superior to HRV in measuring cognitive 
load as the changes can be detected faster than HRV (ibid.).  

Eye-tracking  
Eye-tracking devices have also been used to determine cognitive load (Marquart 

et al., 2015). Previous research has shown a strong relationship between pupil 
dilation and cognitive task demands (Kahneman & Beatty, 1966, Van Orden et al., 
2001), as pupil activity provides information about the autonomic nervous system 
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and subsequently cognitive activity (Eckstein et al., 2017). The pupil activity can 
provide information as increasing pupil diameters are associated with increased 
cognitive load (Lohani et al., 2019). An advantage of eye-tracking devices is that 
they also provide information on conscious processes (e.g., focus of the eyes) in 
addition to autonomic processes (e.g., blink rate and pupil dilation) (Ayres et al., 
2021). The additional information regarding conscious processes then provides a 
more detailed picture of cognitive load. Furthermore, the blink rate is related to the 
cognitive workload of a given task (Tsai et al., 2007). Fixation of the eyes, 
compared to the previous two measures reflects more conscious behaviour (Ayres 
et al., 2021). To assess the cognitive load, fixation rate, fixation duration, and 
transition rate are used as the most common measures, where shorter fixation 
duration and more frequent fixation rate are associated with higher cognitive load 
in active tasks like cycling in traffic (ibid.). 

In general, cognitive load that is induced by a specific task cannot be considered 
completely in isolation (Nilsson et al., 2022). Situation- and person-specific factors 
may influence cognitive load through several mechanisms. Situation-specific 
factors may show their influences through the complexity of traffic demands (Di 
Flumeri et al., 2018, Nilsson et al., 2022). In contrast, human-specific factors may 
show their influences through the current mental state and level of fatigue (Schoofs 
et al., 2008, Tanaka et al., 2009). Fatigue is a factor that places a demand on 
cognition that is not considered an aspect of cognitive load (Nilsson et al., 2022). 
Therefore, a pre-questionnaire assesses human-specific factors, such as the amount 
of sleep, and consumption of caffeine, alcohol, and nicotine.  

Utilising cognitive load and its measurements in this study context 
Having explored cognitive load and its measurement, it is clear that applying the 

concept can provide insight into how external factors, such as traffic conditions can 
affect cyclists’ perceptions of traffic. Understanding how cognitive load is 
conceptualised and measured, through self-reports and physiological measures that 
can quantify the difference in cognitive load, is particularly relevant to 
comprehending the varying cognitive demands of road conditions and traffic 
interactions on cyclists.  

Building on this concept, the methodology section outlines the context in which 
this study takes place, the route and the instruments used to capture the differences 
between the route segments. By applying statistical analysis based on the 
methodology, cognitive load is assessed in different traffic conditions thereby 
providing empirical data to test the hypotheses.  
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The methodology chapter addresses the research process of the thesis, and more 
specifically how the data collection (3.1) for the naturalistic investigation was 
carried out. The context in which took place as well as the procedure of the 
experiment will be discussed. Furthermore, a detailed overview of the data 
processing (3.2) activities will be given to show how the data were prepared for the 
analysis (3.3). 

In order to answer the research questions of this study, a naturalistic study was 
designed in which participants cycled twice along a predetermined route of 4.98 km 
in Vienna, Austria for approximately 20 minutes each time. Dividing the route into 
different sections and cycling at two times allowed to gather information on the 
impact of different traffic segments and traffic volume. For that, the participants 
cycled with an instrumented bicycle. The bicycle is equipped with sensors to collect 
information about speed, acceleration, steering and braking behaviour. Participants 
were also equipped with a range of devices to measure physiological responses 
while cycling, which provides information about the cognitive load experienced 
during the task. The data analysis requires the application of several research 
methods, including precedent large-scale data collection and management, and 
multivariate analysis in the form of panel regression. 

3.1 Data Collection 

3.1.1 Location 
The naturalistic study was conducted in Vienna, Austria. The city has a population 
of around two million inhabitants. Although the city has an excellent public 
transport network (Buehler et al., 2017a), it is still largely focused on car 
infrastructure. In recent years, more attention has been paid to cycling in 
infrastructure planning. Nevertheless, in many cases, cyclists have to share the road 
with motorised vehicles.  

Traditionally, cycling is not considered a defining part of Vienna’s transport 
culture, with public transport and motorised traffic constituting a larger role in most 
people's choice of transport (Rauhofer, 2019). In comparison to some other 
European cities of comparable size, Vienna has a lower modal share of cycling, 

3. Methodology 
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around 9% in 2022. This can be attributed to the hilly topography and the fact that 
cycling is not a central mode of transport in the city’s culture (Buehler et al., 2017b, 
Wien, 2023). The latter is also reflected in studies about people’s perspectives on 
bicycles as a mode of transport in Vienna (Füssl & Haupt, 2017). The studies 
indicate that the respondents perceive cycling as not normal but rather 
extraordinary. Additionally, they express concern about the potential risks 
associated with exposure to high-traffic areas in urban cycling (Füssl & Haupt, 
2017, Mobilitätsagentur, 2016). 

Other cities with a higher modal share of cyclists have commonly adapted to the 
needs of cyclists by having a higher share of physically separated bike lanes in 
comparison to roads that are shared with cars (e.g., in Rotterdam and Copenhagen), 
while around two-thirds of the roads in Vienna are used by motorised transportation 
users (Furchtlehner & Lička, 2019, Buehler et al., 2017b).   
 

3.1.2 Experiment Route 
The route was chosen to include distinct types of traffic infrastructure designs and 
had the same start and end point B (see figure 2).  
 

 

Figure 2. Route of the cycling task in Vienna. 
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The infrastructure designs and layouts of the sections varied in terms of 
surrounding buildings, tree cover and interactions with other road users (see figure 
3). The mixed cycling lane shared with pedestrians (completely separated from car 
traffic, top/left) followed along the Danube channel with trees lining the channel 
side and along a stone wall on the other side for most of the section. The dedicated 
cycle path (top/right) also includes tree cover and is separated from car traffic and 
tram lines by a curb with green space and trees on both sides. The two sections 
where roads were shared with cars (on the bottom) are characterised by surrounding 
buildings on both sides of the road with the buildings being predominantly five to 
seven stories tall. In the section where the cycling traffic was separated from car 
traffic by a continuous line on the asphalt (bottom/left), the cycling lane in this 
section was situated between the moving traffic and parked cars.  
 
   

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Photographs of the cycling route. 
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For safety reasons, the route did not include sections where participants had to 

cycle along tram lines. In order to minimise the confounding effects of 
physiological responses as much as possible, i.e., due to changes in altitude, the 
route chosen has a limited ascent of 50 metres and a descent of 50 metres over a 
distance of 4.98 km. 

A traffic census was also carried out prior to the study to determine the traffic 
volume of pedestrian, cyclist, and motorised traffic during different times of the 
day. Traffic data was collected over four days at approximately the middle point of 
each traffic segment for ten minutes at two different times within each time period. 
A significant difference in traffic volume was found between the timeframe of 
13:00-15:00 and 16:00-18:00 local time. Based on the results of the traffic analysis, 
the former period was considered to be the off-peak traffic condition with lower 
overall traffic volume at all levels and the latter as the peak traffic condition. This 
is related to the second research question. 

 

3.1.3 Recruitment 
A total of thirteen participants were recruited. Due to errors in the measurement 
devices, data was only available for eleven participants of which six were female 
(55%) and five were male (45%). Participants were recruited using convenience 
sampling, including the staff of the Institute of Transport Studies at the University 
of Natural Resources and Life Sciences, Vienna, and the researcher’s social 
network.  
 

3.1.4 Instruments 
For the route, participants were provided with an instrumented bicycle (see figure 
4) and a safety helmet. A Raspberry Pi computer attached to the bicycle recorded 
time, braking, steering, and acceleration. A smartphone was mounted on the 
handlebar to collect GPS data (to determine speed and sections) and film the traffic 
events in front of the bicycle.  
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Figure 4. Instrumented bicycle with a smartphone attached to the handlebar and E4 smartwatch on 
the wrist. 

 
Moreover, several devices have been used to collect the physiological responses 

of participants. These included an Empatica E4 smartwatch (see figure 5) to provide 
electrodermal activity (EDA)-data, and a Polar H10 chest belt for measuring heart 
rate (HR) and heart rate variability (HRV). Participants who were not reliant on 
wearing glasses were equipped with a VPS 19 eye-tracking device to determine 
pupil dilation, blink rate, fixation duration and fixation rate of the eyes.  
 

 

Figure 5. Empatica E4 smartwatch collects physiological data in the form of EDA with sensors 
seen from two perspectives of the device. 

In addition, a questionnaire was administered, based on the NASA Task Load 
Index (Hart & Staveland, 1988), and adapted for this study. Mental demand, 
physical demand, performance, effort, frustration levels and perceived safety were 
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assessed on a 5-point scale. There are several shortcomings of retrospectively 
administered self-reports, e.g., being vulnerable to biases such as being 
reconstructions instead of actual reflections of previous states, differences in 
interpreting the questions etc. (Vanneste et al., 2021). Thus, pictures of different 
segments of the route have been taken to aid the reconstruction of the perceived 
load at different points of the route. To further support recollection of the different 
segments, people had to colour-code the previous variables on a map (with five 
different colours representing five different levels). The advantages of 
physiological measures are real-time measurements (Vanneste et al., 2021), and can 
measure cognitive load without interfering with the cycling task. 
 

3.1.5  Procedure 
 

At the starting point, participants were provided with an information sheet 
containing all the information regarding the tasks of the experiment, the 
measurement devices being used, and the route that had to be followed. As there is 
just one test bicycle, only one participant at a time could participate. After filling 
out the consent form, participants provided answers to a pre-questionnaire (see 
figure 6 for steps of the experimental procedure), assessing their suitability for 
cycling, basic demographics, and physical conditions, (i.e., amount of caffeine, 
alcohol, and tobacco consumed before cycling, as well as hours of sleep).  

 

 

Figure 6. Overview of experimental procedure. 

 
Then, the saddle height was adapted to the subsequent participants, and they 

were equipped with the physiological measurement devices. The route was 
reviewed again. Before the cycling task, participants had to stay in a resting state 
for three minutes to assess their baseline physiological responses as a reference for 
the active cycling part. Capturing the baseline response allows to put the 
physiological responses during the cycling part into perspective (see Buchwald et 
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al., 2019). Participants were reminded to obey the traffic laws and cycle as they 
would do in their daily lives. For the cycling experiment, the researcher followed 
the participants at a distance of around 15 metres to ensure the correct route choice 
and to aid in case of any unforeseen situations due to the dynamic nature of traffic. 
Otherwise, there were no interactions for the duration of the cycling task. After 
finishing the ride, sensors were removed, and participants colour-coded their mental 
and physical demands, frustration, perceived safety, performance, and effort for 
different segments of the route, which assesses the factors of the NASA Task Load 
Index. Retrieval of memory was aided by providing pictures of different sections 
of the route.  

 

3.2 Data Processing 
Due to the limited timeframe of the thesis (15.01.2024-02.06.2024), time was not 
sufficient to analyse the heart rate data acquired from the Polar H10 chest belt and 
the eye-tracking data from the VPS 19 eye-tracking device and conceptualise them 
into a cognitive load index. Thus, the analysis focuses on the EDA-related data 
captured by the Empatica E4 smartwatch. Data had to be pre-processed before 
checking basic assumptions and running a statistical model (see Figure 7 for an 
overview of the research process). 

 

Figure 7. Overview of data collection, processing, and analysis. 

 
The EDA data from the Empatica E4 smartwatch is sampled in micro-Siemens 

(µS) and should be in a range between 0 and 100 µS (empatica, 2020). If there were 
values beyond that threshold, the data was cleaned. Further, the sampling frequency 
of the smartwatch is 4 hertz, indicating one datum being collected every 250 
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milliseconds. Due to the nature of EDA data potentially fluctuating in frequency, 
steps should be taken to account for this. Thus, EDA has been averaged in five-
second windows for each data point collected when moving and averaged to counter 
the frequency fluctuations, as typically done in other studies considering EDA 
(Picard et al., 2001, Caviedes & Figliozzi, 2018). The obtained moving averages 
are then used to normalise the EDA data based on the EDA mean in a resting state 
to be able to compare the EDA during the task, as conceptualised in other EDA 
studies (Healey, 2000, Caviedes & Figliozzi, 2018). This is further important 
because people vary in their physiological data and thus, comparing their responses 
during the task with the baseline takes into account their person-dependent profiles 
(Vanneste et al., 2021). 

 
 

𝑒𝑒𝑛𝑛 = (𝑒𝑒𝑎𝑎 +  𝑒𝑒𝑚𝑚)/𝑒𝑒𝑚𝑚) 
 
 
𝑒𝑒𝑛𝑛 = normalised EDA signal  
𝑒𝑒𝑎𝑎 = 5-second average for EDA data a while cycling  
𝑒𝑒𝑚𝑚 = EDA baseline mean measured for three minutes before cycling  

 
Using the method shown in the formula above has the advantage that the output 

for EDA data during the ride can be considered in relation to the EDA responses 
that each participant shows when in a resting state, which should represent the 
typical EDA response when in a calm state and not moving.  

The first independent variable road design has been conceptualised and is 
represented by different sections that vary in their built environment conditions. 
The sections for the data analysis are based on GPS-specific ranges. Sections that 
represent the different traffic segments (built environment) have been determined 
on the different road conditions (path shared with pedestrians, bike path, road 
shared with cars, road shared with cars separated by a continuous line). The 
different sections can be seen in figure 8: Section 1, green line = mixed path with 
pedestrians. Section 2, orange line = dedicated bicycle path. Section 3, red line = 
road shared with cars. Section 4, purple line = road shared with cars but separated 
by a continuous line painted on the asphalt. The blue lines are the connection pieces 
between the different sections.  
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Figure 8. Different sections of the cycling route. 

 
The sections have been determined based on GPS point ranges. For statistical 

analyses, the sections have been dummy-coded. Dummy coding is used in 
regression models when categorical variables are included, e.g., section, traffic 
volume, and gender (Alkharusi, 2012). A numerical value is assigned to a specific 
group, e.g., 1 to section 1 and 0 to all different sections (see table 1 for an example 
of dummy coding). For regression analyses, it is necessary to have quantitatively 
representable data, a feature that categorical variables do not inherently possess and 
thus are required to be transformed by dummy coding (Cohen et al., 2013, 
Alkharusi, 2012).  

Table 1. Example of dummy coding section 

Section 1 Section 2 Section 3 Section 4 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 
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The second independent variable traffic volume was assessed before the 

experiment phase took place. For the off-peak traffic volume condition, participants 
cycled between 13:00-15.00 local time and for the peak traffic volume condition, 
participants cycled between 16:00-18:00 local time. The traffic volume variable has 
also been dummy-coded for the analysis in the same scheme as displayed in Table 
1.  

While participants were not moving, e.g., at a traffic light or due to being behind 
cars that stopped on the road, GPS signals were still being sampled. Here, the 
occurrence of random errors was increased. The GPS errors could be due to the 
reflection of the signal by buildings, their blockage of the signal of the satellite 
orbit, or receiver application issues (Jun et al., 2006, Ogle et al., 2002, Zito et al., 
1995). As the moving satellites created a cluster of GPS points close together, the 
data had to be cleaned (Jun et al., 2006). To account for this issue, GPS data has 
been visually inspected. If the speed of three consecutive points was below than 0.8 
m/s or less, it was set to zero to account for errors in the GPS signal. The recorded 
videos of the test rides have been checked at respective points linked to GPS errors, 
to determine whether the odd GPS data is linked to situations like traffic light stops 
or other stops and have been confirmed.  

Speed was the first control variable considered for the statistical analysis (see 
table 2 for an overview of independent and control variables). It has been calculated 
based on the GPS data that was sampled every second and the distance travelled to 
the next GPS point in a given second. Odd values of speed that occurred due to GPS 
errors with more than 10 m/s (36 km/h) have been filtered out. A study that was 
conducted in Vienna and other cities in Austria focused on capturing people’s 
movement data and considered the maximum speed for average cyclists in the urban 
context at 36 km/h (Schnötzlinger et al., 2022). Speeds above that threshold were 
considered not possible with the test bicycle having only one gear. As no significant 
downhill slope was present during the study route, speeds above that threshold were 
therefore filtered.  

The slope is important to consider as it potentially influences physical demand 
leading thereby to higher EDA values. It has been calculated based on GPS points 
of longitude, latitude, and altitude. The changes in distance travelled per second and 
altitude changes are an indicator of slope. The slope had some unusually high values 
for some participants, which are due to errors in the GPS measurements. Outliers 
that were three standard deviations below or above the mean were removed.  

In the pre-questionnaire, people indicated whether they consider themselves 
active cyclists or not, which provided further information about participants' 
cycling habits and experiences in the urban context. For the statistical analysis, 
active cycling has also been dummy-coded. Temperature data of the given day and 
time has been acquired on the website https://www.timeanddate.com/ (Date and 

https://www.timeanddate.com/
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Time, 2024). The overall temperature range was between 11-23°C, and was coded 
into three temperature ranges, low: 11-14°C, medium: 15-19°C, and high: 20-23°C. 
Lastly, gender has also been dummy-coded into male and female participants. 

Table 2. Description of independent and control variables 

Independent/Control variables* Description  
Section (1, 2, 3, 4) Different sections of built environment 

conditions 
Run (1, 2) Differences in traffic volume (peak vs off-peak 

traffic) 
Speed* Measured in m/s 
Slope* Continuous value indicating ascent or descent 
Active* People indicating being active or not active 

cyclists, dummy-coded 
Temp* Temperature, dummy coded into low (11-

14°C), mid (15-19°C) and high (20-23°C) 
ranges. 

Gender* Male and female, dummy-coded 

3.3 Data Analysis 
To investigate the effects of one or several independent variables on a dependent 
variable, regression models are oftentimes used to showcase these effects. While 
simple linear and multiple regression models may be useful in certain instances, the 
analysis of this naturalistic study with repeated measures calls for a different 
statistical model to analyse the data. The aforementioned regression models for this 
study would produce biased estimates of the effects due to unobserved confounding 
variables (Brüderl & Ludwig, 2015).  

A fixed effects regression can take these unobserved errors into account and 
deliver estimates that are unbiased (ibid.). Time series, or so-called panel data 
models are useful if each participant is observed chronologically and data is merged 
on top of each other (i.e., pooled) (Brüderl & Ludwig, 2015). The dependent 
variable is typically continuous, while independent variables can be measured in 
different scales. The fixed effects model especially takes the errors into account.  

 
𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽1 + 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽2 + ⋯+ 𝛼𝛼𝑖𝑖 +  𝜖𝜖𝑖𝑖𝑖𝑖 

 
In the formula above, y is the dependent variable, in this case, the observed EDA 

value of participant i at time t. 𝛽𝛽1 is the coefficient of the independent variable 1 
level 1 (i.e., road design 1). 𝛼𝛼𝑖𝑖 is the first error term that relates to characteristics 
specific to each participant that are time-constant and cannot be observed by the 
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researcher (e.g., personality, resilience in traffic) but still affect the covariates. The 
𝛼𝛼𝑖𝑖 replaces α which in standard regression models is seen as the intercept and would 
lead to collinearity issues with the first error term. 𝜖𝜖𝑖𝑖𝑖𝑖 is the second error term, also 
called idiosyncratic error, which accounts for the variability across time and 
participants (Brüderl & Ludwig, 2015).   

The two error terms can be identified through panel data as participant 
characteristics can be assumed based on the repetitive observations. Thus, a panel 
regression model with fixed effects was used for the acquired data to test the 
relationship between road conditions, traffic volume and cognitive load, measured 
through EDA. 
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4.1 Relation to Research Questions 
This study aimed to better understand the influence of the built environment on 
cyclists. More specifically, the scope was to investigate the influence of different 
traffic segments and traffic volume on the cognitive load experience of cyclists in 
Vienna, Austria. The first research question aimed at understanding the differences 
of road segments on cyclists’ cognitive load, with participants cycling on a 
dedicated cycle path, on paths mixed with pedestrians, on roads separated from car 
traffic with a continuous line and on roads in between cars. The second research 
question was aimed at understanding the differences in traffic volume (i.e., peak vs 
off-peak traffic) on cyclists’ cognitive load.  

 

4.2 Descriptive Statistics 
The average speed of the participants was 13.51 km/h with a standard deviation 
(SD) of 7.47 km/h. The mean time participants needed to cover the route was 
00:19:58 with a range of 00:16:14-00:25:11.  

After outliers of the EDA data (dependent variable) have been removed, the 
EDA data has been normalised (see Equation in Chapter 3.2). The overall mean 
response of normalised EDA was 1.76 with a SD of 3.06. The different distributions 
of the normalised EDA based on the road-geometric infrastructure designs can be 
seen in Figure 9. Normalised EDA responses were skewed to the right with the 
lowest ranges in the condition mixed bicycle path (shared with pedestrians; see 
figure 9. top/left) and the highest ranges for the condition mixed cycling traffic on 
roads with cars (separated by a continuous line; figure 9. bottom/right). 
 
 
 
 

4. Results  
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Figure 9. Histograms of normalised EDA distributions: from upper left in clockwise direction; 
section, 1, 2, 3, 4. 

 
For most participants, the residuals are approximately normally distributed (see 

figure 10). The variability in the individual-specific effects is moderate, with 
residual values of Participant 7 being skewed to the right, indicating that this 
participant showed a larger random effect than expected, meaning an individual-
specific deviation of EDA from the average.  

 

 

Figure 10. Distribution of individual-specific random effects regression model 
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A fixed effect panel regression was applied to test the hypothesis of whether 
road design and traffic volume differ in their influence regarding their varying 
levels of cognitive load measured by EDA. Issues of multicollinearity have been 
checked through the Variance Inflation Factor (VIF). VIF values of all independent 
variables are well below 10, indicating that the independent variables are not highly 
correlated with each other, i.e., showing no violation of multicollinearity. The 
explained variance, R² indicates how much of the variance of the dependent 
variable can be explained by the independent variables. In this case, R² equals 
27.85%. This value indicates that 27.85% of the normalised EDA variable can be 
explained by the model.  

Table 3. Parameter estimates, R² = 0,2785. 

Coefficient Parameter Std. Err. t-value p-value 
Intercept 2.6252 0.0355 73.897 < .001 
Section 1 -0.9372 0.0301 -31.094 < .001 
Section 3 1.2083 0.0347 34.845 < .001 
Section 4 1.7419 0.0291 59.864 < .001 
Run 2 -0.6526 0.0164 -39.847 < .001 
Speed -0.0522 0.0048 -10.971 < .001 
Slope 0.0649 0.0205 3.1656 < .01 
Active -2.2544 0.0192 -117.50 < .001 
Temp_low 1.7411 0.0246 70.906 < .001 
Temp_med 0.1808 0.0193 9.3482 < .001 
Gender_female 0.7734 0.0173 44.636 < .001 
 

As it was hypothesised that people cycling on the bike path would show the 
lowest cognitive load, it has been included in the intercept of the regression model 
(see table 3 for an overview of the parameter estimates). For the traffic volume 
conditions (reflected by variable run 1 and run 2), run 1, reflecting the off-peak 
traffic condition has also been included in the intercept. The other sections and run 
2, representing the peak traffic condition, have been included in the model. 
Contrary to the first hypothesis, people during the mixed bike path with pedestrians 
showed a lower normalised EDA response, than on the dedicated cycling lane, t(-
31.09) = -0.94, p < .001. Participants on roads shared with cars and no line showed 
a higher normalised EDA response t(34.84) = 1.21, p < .001. Participants on the 
roads shared with cars and separated by a line showed a higher normalised EDA 
response than on the dedicated cycle lane t(59.86) = 1.74, p < .001. That is also 
higher than the road condition shared with cars without a line.  
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Also, contrary to the second hypothesis, participants in the high traffic volume 
condition show a lower normalised EDA response compared to the low traffic 
volume condition t(-39.85) = -0.65, p < .001.  

Control variables of slope t(3.17) = 0.06, p < .01, active t(117.5) = 2.25, p < .001 
and gender t(44.64) = 0.77, p < .001 are also significantly influencing the EDA 
response, with females showing a higher EDA response than males. Higher speed 
is linked to a lower EDA response t(-10.97) = -0.05, p < .001. The lowest 
temperature range 11-14°C showed the highest EDA response t(70.91) = 1.71, p < 
.001, and the middle-temperature range 15-19°C also showed a higher EDA 
response t(9.35) = 0.18, p < .001, compared to the high-temperature condition 20-
23°C.  
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The present study aimed to investigate the influence of different traffic conditions 
on cyclists’ cognitive load in the context of Vienna, Austria. For that, physiological 
measurements have been used as an indicator of cognitive load, more specifically 
normalised EDA data of the Empatica E4 smartwatch, which have been validated 
as an indicator of cognitive load (Ayres et al., 2021). It was hypothesised that 
different traffic conditions vary in their influence on cyclists’ cognitive load, with 
cycling on a dedicated cycling lane eliciting the least cognitive load response and 
cycling on the road shared with cars without a separation of a line eliciting the 
highest cognitive load response. In addition, as participants cycled twice, one time 
during peak traffic and one time during off-peak traffic, the former conditions were 
hypothesised to elicit higher cognitive load responses.  
 In contrast to the first hypothesis, the cognitive load experience in the dedicated 
cycling path condition has shown a higher response than in the mixed path with 
pedestrians, which could be due to the layout of the cycling path. It involved an 
interrelation with motorised traffic including several intersections with traffic 
lights. As expected, the cycling path condition showed a lower cognitive load 
response as in the two conditions where the road was shared with cars. Nonetheless, 
the road condition where participants were separated from cars with a continuous 
line painted on the asphalt showed a higher cognitive load experience compared to 
the condition where the road was shared with cars without any separation.  
 Further, in contrast to the second hypothesis, overall, participants showed a 
lower cognitive load response during the high-volume traffic condition compared 
to the low-volume traffic condition.  
  

5.1 Comparison with Previous Studies 
Research has shown that the built environment influences the likeliness of people 
to choose the bicycle as a mode of transport (Gössling et al., 2019b). Concerns 
regarding safety, comfort, and the interrelation with car traffic are important aspects 
to consider when aiming at increasing the modal share of cycling (Aldred, 2013). 
Previous studies have looked at built environment conditions and stress in the 
context of North America and validated EDA measures in naturalistic studies 

5. Discussion  



35 
 

(Caviedes & Figliozzi, 2018). Others have investigated the effect of cognitive load 
on cycling in virtual environments (Guo et al., 2022). To this date, the current study 
is one of the first which considers the impacts of the built environment conditions, 
defined by varying road infrastructure designs as causal factors on the cognitive 
load of cyclists in a naturalistic way. Investigating these influences adds to the 
research by providing information about how the infrastructure designs differ in 
their influence on cognitive load and perceived safety thereby adding to the 
understanding of the needs of cyclists in urban traffic.  

5.2 Limitations 
This study has several limitations. In a naturalistic study, the variables of interest 
cannot be controlled to the same degree as in a laboratory study. City traffic is 
dynamic and changes constantly. Thus, for the participants who cycled at different 
times, traffic situations were always at least slightly different. Examples of the 
dynamic nature of traffic include an accident involving a pedestrian and a car which 
certainly influenced the cognitive load experience of the cyclist. Further, a car 
crossed the line that separated bicycle traffic from car traffic and required the 
participant to stop and wait, which also significantly influenced the cognitive load 
experience.  
 In addition, while traffic volume was determined before the start of the 
experiment, there have been instances where participants experienced different 
situations, e.g., if a bus was cycling behind the participants during peak traffic in 
the section where the road was shared with cars, the bus and the following cars have 
often not been able to overtake and thus creating a more calm traffic situation for 
the participant. In contrast, during the off-peak traffic, participants could find 
themselves in more dynamic traffic situations. 

In relation to the second research question, the majority of participants cycled 
the route first during the off-peak traffic condition. Several participants reported the 
influence of the familiarity of the route and how it affected their concentration 
levels and perceived cognitive load. Harms et al. (2021) showed that familiarity 
with travel routes affects the cognition and behaviour of traffic participants, 
including cyclists, in urban settings by reducing task difficulty and the required 
cognitive control needed for navigating in traffic. Relating to this study, participants 
may thus have perceived a lower cognitive load in the second run during the peak 
traffic condition as they felt more familiar with the route and did not need to concern 
themselves as much with the route navigation anymore. Thereby uncertainty of 
what to expect from the study route was removed. Furthermore, not all participants 
were residents of Vienna and thus not familiar with the city and traffic dynamic 
itself, which poses further difficulty in navigating and subsequently increasing the 
demand on cognitive load compared to those who have been living in Vienna for 
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some time. While familiarity has not been considered for the data analysis, it 
constitutes an important factor that should be considered in future research.  

A few participants reported profound experience with cycling in urban traffic 
and did not consider the different segments as varying in their impact on cognitive 
load or that higher traffic volume would affect them more. That could be explained 
by previous research, which has shown that more experienced cyclists are less 
affected in their level of comfort when cycling along motorised traffic during their 
commute (Stinson & Bhat, 2004).  

Temperature data could also not be controlled. The timeframe for the data 
acquisition was planned to be as short as possible. Due to several factors, the time 
for data collection extended beyond the initially planned timeframe. As the time to 
participate required cycling twice, availability of consecutive days was not always 
given, leading to a spread of data collection over many weeks. Further, during the 
easter break, data collection was postponed due to uncertain changes in traffic 
volume. As the study route passes a school, the traffic situation would have changed 
dramatically. Also, due to the shift from winter to spring, the temperature range was 
between 11-23°C. Results suggest higher EDA response at lower temperatures. 
While it appears counterintuitive, it could be due to clothing, as more layers were 
worn at lower temperatures, where thermal insulation and reduced sweat 
evaporation are associated with layers of clothing (Gavin, 2003, Corbett et al., 
2015). 

Another factor that may have influenced the results is the choice of the 
experiment route with different characteristics of the four sections. Nawrath et al. 
(2019) showed the influence of urban green infrastructure and how it positively 
affects people’s willingness to cycle. While both sections separated from car traffic 
included tree cover, the section shared with pedestrians followed along the Danube 
channel. Previous research showed that exposure to water in urban areas has a 
positive effect on reducing stress levels (Ulrich et al., 1991). Consequently, the 
calming effects of the water while cycling may have influenced the cognitive load 
experience of the participants, potentially explaining the lower response compared 
to the dedicated cycling lane.  

Participants in the section that was shared with cars and separated by a line from 
motorised traffic felt less safe compared to the section without the separation, due 
to the fear of dooring (i.e., doors of parked cars opening when passing). As a 
previous study regarding safety perceptions in mixed bicycle and motorised traffic 
has shown (Chataway et al., 2014), cyclists reported feeling unsafe in traffic 
situations where they are “sandwiched” between parked cars and motorised traffic.   

Wind data has not been considered as a factor influencing the physical demand 
possibly affecting EDA measurements but could be an additional influencing 
factor. There have been some wind gusts at times in the first segment representing 
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the traffic condition with the bike path mixed with pedestrians, along the Danube 
channel.  

The sample size (n = 11) was small which can be explained by the complexity 
of the study and the time it took to prepare the route, materials, and the time each 
participant needed to complete the two runs including briefing and debriefing. The 
inference based on the data could be improved by having a larger sample size. Thus, 
the generalisability to a larger population of the study is limited.  

Lastly, based on the data, some participants are more predictable than others as 
can be observed in the residual distribution of their normalised EDA values (see 
Participant 7 in Figure 9). Potential influences might be personality traits, for 
example how people react to certain traffic events.  
 

5.3 Future Research 
This study contributed to research by investigating the differences between several 
road infrastructure designs and traffic conditions on the cognitive load of cyclists, 
measured by normalised EDA. Future research should provide a more holistic 
assessment of cognitive load by analysing further physiological measures of 
cognitive load that provide more detailed information, e.g., eye-tracking data. Eye-
tracking data in addition to EDA data measures cognitive processes through the 
focus of the eyes and thereby shows a more holistic assessment of cognitive load 
(Ayres et al., 2021). 

Furthermore, the route of 4.98km had four different built environment 
conditions. Future research should let participants cycle in a variety of different 
infrastructure designs to learn more about the influences that were not covered by 
these designs. An important aspect for cyclists was familiarity with the route. As 
familiarity affects the task difficulty in traffic, it is something future studies should 
consider. It was reported by several participants that it affected their concentration 
and perceived cognitive load. Furthermore, this study did not take specific events 
within each section into account. The dynamic nature of traffic can influence 
cognitive load through numerous factors. To learn more about the specific aspects 
of the different infrastructure designs, events within those designs should be 
considered. Eye-tracking data combined with a video analysis of the ride would 
enable the consideration of specific events that trigger high cognitive load 
responses that are influenced by traffic events. So, urban planning strategies can 
account for those situations and prevent them by making changes to the built 
environment conditions.  

Lastly, including human factors, such as personality traits, allows to gain insight 
into how people react differently to the same situations and what aspects of the built 
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environment are shared by people with different personality dispositions, thereby 
highlighting its overall importance.  
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The transport sector is responsible for the second highest level of GHG emissions 
after the industry sector, with car traffic accounting for a large proportion of the 
transport sector’s emissions. Many European cities are therefore setting plans for 
more sustainable city planning, with a particular focus on cycling infrastructure.  

One contribution of this study for research is the use of EDA as a measure of 
cognitive load for cyclists in different traffic environments. The results provide 
information on how the differences in traffic conditions induce different levels of 
cognitive load for cyclists and which road conditions are thus more suitable for 
creating a safe infrastructure for cyclists.  

The results suggest that cycle lanes that are physically separated from motorised 
traffic, either as dedicated cycle lanes or mixed paths with pedestrians elicit lower 
cognitive load and should therefore be favoured in urban infrastructure planning.  
 Although not all hypotheses were confirmed, the results contribute to the 
knowledge regarding the cognitive load experienced by cyclists and highlight the 
differences between built environment designs in which cyclists have to share the 
roads with cars and where they are separated from car traffic by built environment 
elements.  

One possible application of the findings of this study for urban planners and 
policymakers is to design more bicycle-friendly infrastructure that is physically 
separated from motorised traffic. Further research could use larger sample sizes as 
well as replicate the study in different cities.  

 

6. Conclusion 
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Cycling offers a range of benefits to those who cycle, including health, social and 
economic advantages. It is a form of transport that requires little to no greenhouse 
gas emissions and can provide a good transport option for urban transport in light 
of global warming.   

Many European countries are aiming to increase the proportion of people who 
cycle. To encourage people to choose cycling over motorised vehicles in urban 
areas, it is important to consider factors of the built environment. To understand the 
influence of the built environment and traffic situations better, this thesis focuses 
on the cognitive load of cyclists.  

Cognitive load can be understood as the mental cost of performing tasks and is 
a limited resource. It has an influence on the behaviour and perceived safety in 
traffic, which further influences the likelihood of people choosing the bike as a 
mode of transport. Therefore, understanding the differences in built environment 
conditions on the cognitive load of cyclists, provides information about what factors 
are important for urban planning strategies for traffic.   

This study measures the cognitive load of cyclists not in the laboratory, as in 
many previous studies, but in a naturalistic way in the real-world context in the city 
of Vienna, Austria. Statistical measures are used to understand the differences 
between the different traffic segments and the volume of traffic. The results show 
that cyclists have lower cognitive load measures when they are physically separated 
from car traffic, either on mixed pathways or on cycle lanes that include built 
elements separating bicycles and cars. When cyclists are required to share the road 
with cars, their cognitive load levels are higher. The highest cognitive load response 
is observed when cyclists are cycling on a lane between car traffic and parked cars, 
separated by a line painted on the asphalt. 
 The findings help to understand what traffic segments lead to higher cognitive 
load levels of cyclists and therefore can be considered by urban planners and 
policymakers when working to improve the built environment conditions for people 
cycling in the urban context. 
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