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The structure of a forest ecosystem is an important ecological, environmental, and socio-economic 
driver. Forest remote sensing is witnessing a rapid development of new technologies 
and methodologies for quantifying forest structure; however, they are not without flaws. Laser 
scanning, as one of the major data collection methods in RS, is negatively affected by both 
the scanned environment and the human error. This master’s thesis aims to address and quantify two 
of the established drawbacks of LiDAR scanning - occlusion, and user focus bias, to further help 
with LS optimalisation.  

A new voxel-based raytracing package for the programming language Julia was developed 
to analyse occlusion, user focus bias and openness of point-clouds. It merges the start and endpoints 
of laser beams to construct laser rays, which traverse the voxel environment. In contrast to traditional 
point cloud analysis, which considers only the endpoints of the beams, introducing ambiguity into 
derived metrics and losing parts of the scanned information, our raytracing method provides a more 
comprehensive approach. The introduced raytracing method was demonstrated on the P-TLS 
platform. With the raytracing analysis performed on five demonstrational scans, we were able to 
illustrate the effect of user focus bias on occlusion and derived tree height. Additionally, we 
proposed a new method of measuring tree height using the openness quantifier – the G-T method. 
In our analysis, the traditional method of deriving tree height using a percentile of a quantile (P90 
and P95) greatly underestimated the presumed height, as well as showed susceptibility to the user 
focus bias quantifier, unlike the more robust G-T method. 
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Forest owners and managers were always interested in the state of their property, 
be it the well-being of their game to hunt or the quality of the wood to build ships 
from for the medieval royalty, or the number of trees to thin and to sell on the 
market at the right price, for the forest companies nowadays. As time passed, the 
information needs of the forest owners and companies became increasingly 
complex with specific niches (Tomppo et al., 2010), like crown density (Solberg & 
Strand, 1999), soil composition (Hanberry et al., 2012), or ecological microhabitats 
(Larrieu et al., 2018) – thus becoming challenging for the surveyors. In general, the 
needs of the managers on the forest plot information should be as precise as possible 
and up to date, and need to accurately describe the stand qualitative and quantitative 
state, such as wood supply and species composition (White et al., 2016). Acquiring 
all necessary information about forest stands has been and still is a labor- and time-
intensive task. With the rise of accurate statistical methods, the forestry community 
saw the rise of National Forest Inventorying (NFI) in many states around the world, 
with Fennoscandian countries being the first (Tomppo et al., 2010). These NFIs 
rely on in situ sample acquiring methods, meaning a survey team would go to the 
forest stand and retrieve the measurable metrics on forest sample plots. Tree 
attributes like stem diameter (DBH – diameter at breast height), tree species 
composition and tree height are measurable in the forest plot by non-destructive 
means and can be used to further derive other tree and stand metrics by the needs 
of the consumer (Wang et al., 2019). Tree height has been measured by either 
destructive or non-destructive means. While destructive methods are acceptable 
while harvesting trees, they are not acceptable during the pre-harvest period. When 
the tree is felled, it is possible to physically measure the length between the tree 
base and its top, thus resulting in a precise measurement. The non-destructive 
methods have usually been carried out using a hypsometer or a similar device based 
on the triangle similarity, thus bringing some accuracy errors (Andersen et al., 
2006). Measuring every single tree in the whole country is an unimaginable task 
but thanks to sampling methods the forest management have been able to predict 
the actual state of the land. However, sample plots can be placed in remote areas 
and far from roads, thus the sampling method carries the burden of higher prices 
and long time to competition. Most NFIs have been carried out once every 5 to 10 

1.  Introduction 
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years, depending on the country and the desired information about the environment 
(Tomppo et al., 2010). 

As a response to the time and cost inefficiency of in situ measurements, both forest 
researchers and managers have been looking for a way to ease the hard work and 
increase the temporal resolution through new technology (Balenović et al., 2020). 
One of the first ideas to use remote sensing in forestry was in the 1950s, when forest 
scientist in Central Europe discussed if aerial black-and-white photographs of forest 
stands could be a useful tool in forestry practice, but there was a lack of interest 
from forest managers for data acquired in this way (Fassnacht et al., 2023). 
However, in 1987 aerial image interpretation methods were already well 
established and used as support information for forest managers while management 
planning (Fassnacht et al., 2023). Thanks to further technological advancement and 
newly introduced remote sensing methods, the forestry community has been able 
to start quantifying both horizontal and vertical forest structure. This task is 
relatively difficult, and in some cases impossible, with traditional in situ surveys. 

It was proven, that vertical and horizontal forest structure, as well as the stand 
species composition, influence local- and micro-climate surrounding the forest 
stand by working as a wind dampener and a temperature buffer, as well as moisture 
reservoir (De Frenne et al., 2021; Zellweger et al., 2019). There is also the argument 
that abrupt changes in the forest ecosystems can lead to change in diversity, 
available niches, and nutrient availability (Von Arx et al., 2013). The ability to 
quantify, model, and predict forest structure and its changes allows for a 
comprehensive understanding of forest biomass, carbon sequestration, storage 
properties, and their responses to disturbances. As such, forest managers and 
owners should strive for healthy ecosystems through sustainable management to 
not only promote quality timber growth, but also to help with climate change 
mitigation. As it was proven, forest ecosystems affect the temperature cycles of the 
stand surroundings, subsequently the macroclimate, with their diverse structure and 
energy transfer cycles (Aussenac, 2000; Ligot et al., 2014). Thus, it is clear that the 
forest research and practice community should be interested in documenting not 
only the current state of the forest structure, but also the changes in it, and what 
benefits it could have for the global climate change mitigation.  

This is where remote sensing methods come into the spotlight, as they enable the 
monitoring of ecosystem changes at various scales, ranging from large ecosystems, 
such as the deforestation state in the Amazon rainforest, to the smallest scales. With 
the ever-increasing resolution and fast processing of acquired data using remote 
sensing methods, the remote sensing community is able to document the three-
dimensional forest structure, with high temporal resolution, like never before 
(Valbuena et al., 2020). Light Detection And Ranging (LiDAR) it is one of the 
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leading data acquiring methods in remote sensing. It emits either near infrared, 
green or SWIR laser beams into an environment and uses sensors to detect returned 
beams that reflected from objects in the scanned area (Wang et al., 2019). Results 
of Laser Scanning (LS) are high-precision three-dimensional point clouds of data, 
based on the returns range and orientation to the scanner (Li et al., 2012) or with 
the use of LiDAR full waveform systems, the results are datasets also containing 
the backscatter distortion of the each returned laser ray (Mallet & Bretar, 2009). 
Forest scientists started adopting simplest forms of laser scanning in the 1990s 
(Bauwens et al., 2016). Publications typically classify LS data collection in forestry 
according to the platform it is mounted to (Bauwens et al., 2016; Calders et al., 
2020). Covering largest areas is the space-born platform on satellites and the ISS 
(space shuttles historically), with its advantage of continuous scanning and creating 
long time series comes faltering spatial resolution in comparison to other platforms. 
Most used platform nowadays is the air-borne one, where the scanner is mounted 
to an airplane or an unmanned aerial vehicle (UAV). Third classification is the 
terrestrial platform, which can be further subdivided into “stationary” and “mobile”. 
All three platforms find their adequate uses in forest inventorying and see 
continuous interest from the scientific community and forest practice. Thanks to the 
mentioned interest from the community, their technology continues to be developed 
to deliver ever higher spatial, spectral, and temporal resolution (Bauwens et al., 
2016; Calders et al., 2020; White et al., 2016). 

An airborne LiDAR platform carried by an airplane or a helicopter is classified as 
an Aerial Laser Scanner (further just ALS), and UAV-based Laser Scanning when 
mounted to a drone (further just UAV-LS). Both ALS and UAV-LS create high 
density point-clouds by combining return data with an Inertial Measurement Unit 
(IMU) and a Global Navigational Satellite System (GNSS), but they operate on 
different flight levels. The flight altitude of ALS in forest inventorying typically 
ranges between 0.5 and 3 km (Goodwin et al., 2006; Næsset, 2009) and can reach 
surface height measurement accuracy of less than a meter (Næsset, 2009; Næsset 
& Bjerknes, 2001). Inventorying with the UAV-LS is typically performed no more 
than 150 - 300 meters above the ground, depending on the law regulations of the 
country where the survey takes place (E. Hyyppä et al., 2020; Puliti et al., 2015). 
The mentioned difference in flight altitude of ALS and UAV-LS, as well as the 
flight speed and path overlap, results in differing spatial resolution, as the laser 
beams footprint is not infinitely small but cone-shaped. Due to the distance 
difference, the ALS LiDAR footprint covers a larger area on the ground, in 
comparison to the smaller footprint UAV-LS in lower flight altitudes (Luo et al., 
2023). Advantage of ALS, in comparison to TLS, is the aforementioned use of 
precise and continuous GNSS geo-location, which is possible due good satellite 
signal coverage in the flight altitudes (Sferlazza et al., 2022). Such ALS point-
clouds represent spatial distribution of elements in the observed canopy and are 
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used to generate terrain maps and both stand and single tree attributes (Bauwens et 
al., 2016; Hyyppä et al., 2008). ALS and UAV-LS can observe large areas 
efficiently; however, this ability is balanced by lower spatial resolution. With less 
return points per m2 the ability of ALS to sufficiently describe the ground vegetation 
is reduced, thus the information about the understory is to some extent obscured 
(White et al., 2016).  

To study ground vegetation in the shrub layer, bushes and lower parts of the canopy, 
Terrestrial Laser Scanning (TLS) takes over the data extraction by scanning from 
below the canopy, inside of the forest stand. TLS, in comparison to ALS, is capable 
of scanning with millimetre-level precision, thus deriving tree metrics such as 
DBH, timber volume, stem curve or Leaf Area Index/Density (LAI/D) or others is 
possible (Bauwens et al., 2016; L. Li et al., 2021; W. Li et al., 2012; Wang et al., 
2019). Approaches to estimating tree height from point clouds differ in the forest 
research community. Two of the most used methods either measure the lowest and 
highest point of the point cloud (Calders et al., 2015; Saarinen et al., 2017) or extract 
the height using a point distribution quantile. Commonly used percentiles of a 
quantile to determine tree height are 90th, 95th or 99th (Mao et al., 2019; Næsset 
& Bjerknes, 2001; Stovall et al., 2017). However, tree height estimation while 
remote sensing has been proven to generally underestimate the actual height if 
compared to destructive methods (García et al., 2011). This phenomenon of tree 
height underestimation while using ground-based methods is explained as the effect 
of lower canopy branches occluding the top parts and having higher density of 
points (Bauwens et al., 2016; García et al., 2011). 

At first, Stationary Single-scan Terrestrial Laser Scans (S-TLS) have been carried 
out, but it was proven that they deliver lacking data due to occlusion effects, as seen 
from Figure 1. To battle occlusion, co-registered Multi-scan Terrestrial Laser 
Scanning (M-TLS) or Mobile Laser Scanning (MLS) methods were presented 
(Bauwens et al., 2016). M-TLS uses the same statically standing scanner, but the 
observed area is captured multiple times, from within and outside the plot, to ensure 
low occlusion ad hight point-cloud overlay. This method of M-TLS delivers very 
dense and precise point clouds; however, it is expensive, time consuming and 
cumbersome. Another branch of TLS: MLS, tries to overcome beforementioned 
problems – occlusion effects and time demands. It does so by mounting a scanner 
on a moving medium, be it a roller on tracks, car, or a person. In a forest ecosystem 
setting cars or ATVs (all-terrain vehicles) are bound either on roads or into sparse 
forests, thus the most progress in the past years has been made with Personal Mobile 
Laser Scanners (P-MLS), especially Handheld Personal Mobile Laser Scanners (H-
MLS or H-PLS) (Balenović et al., 2020; Bauwens et al., 2016). With the H-PLS 
method of data acquisition, the operator holds the scanner in their hand and walks 
inside the forest while continuously scanning. Thus, has a relatively free range of 
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movement to scan, even in a dense environment (Bauwens et al., 2016; Calders et 
al., 2020). While performing ground-based LS, survey crews place multiple spheres 
on the ground and record their GNSS coordinates, for co-registering and 
georeferencing the point clouds during the post-processing. Although the operator 
can move relatively freely, the GNSS signal is degraded by the tree canopy layer 
and difficult terrain where forest ecosystems usually grow, thus making geo-
location harder (Sferlazza et al., 2022). Movement of the operator also negatively 
affects the IMU sensors, making the point-clouds less accurate (Liang et al., 2014). 
While comparing TLS and ALS, it is essential to discuss other trade-offs of TLS. 
The main downsides of TLS and MLS are mainly the cost and time ineffectiveness. 
When a drone or a plane perform laser scanning, it generates a point cloud covering 
the entire observed region. In contrast, ground-based LiDAR point clouds are 
smaller and are typically utilized in a sample plot design. Both line-of-sight and 
footprint size significantly impact the precision of TLS and MLS, especially in 
dense forest environments where the LiDAR beam's effectiveness diminishes 
beyond 100 meters (Calders et al., 2020). Numerous remote sensing inventorying 
papers have presented methodologies that combine ALS and TLS to produce highly 
accurate wall-to-wall maps for expansive areas (White et al., 2016). 

When it comes to remote sensing methods, one must take into consideration the 
shortcomings of the technology used. LiDAR has been proven many times to be a 
powerful tool but some of its downsides have been described by literature. Probably 
the key negative factor of all beforementioned LiDAR platforms is the possibility 
of occlusion (Abegg et al., 2017; Balenović et al., 2020; Bauwens et al., 2016; 
Jurjević et al., 2020; L. Li et al., 2021; Mathes et al., 2023). Occlusion, the opposite 
of inclusion, occurs when an object is unintentionally hidden behind another one 
while scanning. And thus, some information could be missing in the finished point-
cloud – which can carry misleading information and uncertainty in measurements 
and derived metrics. Occlusion is primarily influenced by the scanned environment, 
weather, and to some extent by human error. When the scanned forest plot is either 
dense, has a thick canopy, or an abundant understory growth, we can expect higher 
levels of occlusion compared to sparse open forests (Balenović et al., 2020; 
Bauwens et al., 2016; Jurjević et al., 2020). Fog or rain can also skew the scanning 
result by reflecting laser beams (Abegg et al., 2017). Human error steps into the 
equation if a scanner is nor properly set up or the location of the scanner (flight or 
walking path for ALS/MLS respectively) is not chosen properly (Abegg et al., 
2017; Bauwens et al., 2016). Some efforts to address MLS occlusion were 
undertaken, as seen for example in the work by L. Li et al. (2021). In their trial, the 
team created a new algorithm to choose scanning spots in a plot, so the final 
occlusion rate is minimal. However, the premise for their method is that the location 
has been scanned before and we know the object distribution (trees and stones) in 
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the forest plot. However, for other laser scanning platforms, efforts to minimize 
occlusion are, so far, relatively lacking.  

Part of the occlusion minimizing process is its quantification, which has been done 
by several studies, either on a 2D plane using pixelized rasters or in 3D through 
voxelization (Abegg et al., 2017; Béland et al., 2011; L. Li et al., 2021; Zong et al., 
2021). The primary concept behind voxelization is to populate the scanned space 
with elements - voxels (usually same sized cubes) and determine the attributes of 
these voxels based on the points within them. Point cloud voxelization was at first 
used to quantify volumetric attributes, such as Plant Area Density or LAI/D (Pimont 
et al., 2018) and light availability (Stark et al., 2012) as well as timber volume 
(Bienert et al., 2014) and how are these results affected by LiDAR properties 
(Almeida et al., 2019). However, the mentioned applications rarely involved 
raytracing, and only analysed endpoints encompassed in the voxels. The voxel 
based non-raytracing methods usually divide the voxels discretely as “filled” and 
“empty”, based on the number of points it contains, while losing the information 
about the position and orientation of the scanner. Therefore, not taking into 
consideration possible occlusion. As mentioned before, if occlusion occurs it can 
skew the resulting voxel attributes. A voxel might have had some informational 
value but was hidden from sight of the scanner and might end up bearing no 
information in the end product. Subsequently, voxelization approach has found 
application in ray tracing methods as well (Schneider et al., 2019). The ray tracing 
approach enhances this simple delineation by providing information about the 
trajectory of the laser beam and what voxels it traversed before hitting the return 
point. Thus, it can be determined if a voxel was scanned or occluded from sight of 
the scanner, something the non-raytracing method cannot determine with certainty. 
First uses of raytracing in forest research were done to assess the leaf attributes of 
trees and subsequently stands, as demonstrated by Bittner et al. (2012) and 
Morsdorf et al. (2007). This approach used the Mone-Carlo raytracing method to 
determine reflective properties, to be used in a Radiative Transfer Model (RTM). 
RTMs are models used to predicting the relationships between stand structure and 
radiation cycles happening within the stand (Ligot et al., 2014). Later raytracing 
research papers used the voxel (or pixel) traversal approach to determine occlusion 
in a similar fashion to the approach we decide to take (Abegg et al., 2017; Schneider 
et al., 2019). Abbegg et al. (2017) searched for the relationship between occlusion 
and TLS placement in simulated forest stands. Their raytracing approach was done 
on a 2D plane, and the analysis was done both for single and multi-scan TLS. 
Schneider et al. (2019) used combined above canopy scanning from a crane with 
under canopy TLS to determine the occlusion rates inside of the canopy using 
voxelization and raytracing traversal algorithms.  
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Although all methods of LiDAR scanning are continuously being debated and 
developed by the RS community, not many studies have been made to address how 
to mitigate point cloud biases, such as occlusion or human operator error in H-MLS. 
In this thesis, we present an idea with some suggested methods on how to quantify 
these errors via raytracing, to help streamline LiDAR data acquisition in the future. 
Aim of this study is to: 

 
• Create an open-source raytracing package for the RS community. 

• Demonstrate LiDAR errors of Occlusion rate and User focus bias using the 

introduced methodology. 

• Suggest a new method of calculating tree height using acquired raytracing 

metrics. 

 

 

Figure 1. Occlusion effect happening while performing a single scan TLS. An entire section of a 
tree, represented by the blue oval, is occluded by a trunk of another tree. The red arrow represents 
a beam direction from the scanner. Scan “static”. 
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2.1 Data Acquisition 

2.1.1 Used instrument - GeoSLAM THLS  
For acquiring the LiDAR point-clouds analysed in this thesis we used the H-PLS  
GeoSLAM ZEB Horizon (see Figure 2). Technical specifications: laser wavelength 
903 nm, maximum range 100 m, scan rate 300 000/s (16 lines @ 10 GHz), beam 
divergence 3.0 mrad. We chose the H-PLS platform, as it has received a lot of 
attention in recent remote sensing studies, for its novelty and great potential in 
forest inventorying. 

The 3D point information is created by spinning its 2D time-of flight (TOF) laser 
range scanner while connected to an inertial measurement unit (IMU) on its motor. 
Instead of the need to geo-reference or add co-registering points into the scanned 
plot a simultaneous localization and mapping (SLAM) algorithm accurately creates 
the resulting point-cloud from the IMU and TOF data. The SLAM algorithm relies 
on objects and features being inside of the scanned area, not on GNSS data, which 
are often inaccurate in forests and other dense environments (Balenović et al., 
2020). The algorithm co-registers the map (or the point-cloud) based on scanning 
these objects repeatably. Thus, it is important for the operator to create loop closures 
while scanning the area. In our case, at least one loop closure was ensured by 
starting and ending the scanning process at the exact same spot. To further help the 
algorithm, walking in circular pattern and regularly aiming the scanner back at what 
has already been scanned was also done according to the recommendation of the 
manufacturer. 

The collected raw data by the scanner needed to be processed by a GeoSLAM Hub 
processing software before the analysis. The software is fed raw mapped data in a 
.geoslam format and the processing results in two files needed for the ray tracing 
analysis – first the .laz file which contains data about end points of the point cloud, 
and second a .traj-gs file with data about scanners position (rays beginning). 

2. Methodology 
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Figure 2. GeoSLAM ZEB Horizons scanning head with a handle and a data logger.  

2.1.2 The trial site 
The demonstrational trees used in the project are two well-established pines (Pinus 
sylvesteris) in a city-park setting in proximity of the Umeå (Sweden) SLU building 
– 63.81N, 20.31 (WGS84). These two trees were chosen for their height, which is 
tall enough to mimic trees in a mature forest stand, as well as for their accessibility 
for repeated scanning (see Figure 3). The surrounding of the trees, given its park 
structure, was open and thus the operator had free range of movement during the 
demonstrational scanning, as well as clear view of the treetops for the scanner to 
register them, and for measuring the tree height using a hypsometer for reference. 
The pines stand close to each other and given the open structure in their 
surroundings, they would be easily spotted in the point cloud during the 
segmentation. GNSS positioning spheres were not placed in the scanned area, as 
geo-referencing was not necessary in this study. 

We measured tree height in situ with a hypsometer Haglöf EC II-D five times for 
both pines respectively, to later average the values and use it as a reference to 
LiDAR height measurement. 
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Figure 3. Pine A (background) and Pine B (foreground). 

2.1.3 Demonstrational scans 
To demonstrate user bias (focus) and its effects on scan quality and occlusion, we 
made five scans of the two pines (see Figure 4). All five scans had the same starting 
and end point – about 10 meters from pine B. The scans were done as follows:  

• Scan 1 “static” – simulated a stationary TLS, scanner was not moved and 
was left running for roughly 30 seconds. 

• Scan 2 “line” – the operator walked in a straight-line diagonal to the tree 
axis for 20 meters and back to the starting point, turning in the middle to 
ensure a good loop cycle for the SLAM algorithm. The operator did not aim 
the scanner at the trees but in the direction in which they walked. 

• Scan 3 “bottoms” – The operator intentionally looked at the base of the tree 
trunks and walked close to them, under the canopy. This scan is supposed 
to simulate operators who would not scan the crown area properly, thus the 
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point density is to be higher for lower parts of the canopy and the tree trunks, 
than for the top of the crowns. 

• Scan 4 “tops” – In this scan, the operator was intentionally paying more 
attention to the treetops than in the previous scans. They walked further 
away from the trees in a circle. In comparison to scan C, this scan was meant 
to emphasise the opposite, thus in the end create more balanced point 
density for both the crowns and the rest of the trees. 

• Scan 5 “control” – Last scan was created as a control for the other scans, as 
the operator did not intentionally make any mistakes, walked both close and 
far around the trees, as well as in the middle of them, aiming at both tree 
trunks and crowns. 

 

 

Figure 4. Schematized paths taken during the five scans we took. X in the bottom represents the start 
and end position of the scanner during all five scans. Green circles A and B represent the two 
scanned pines.  
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2.2 Data Analysis using the traditional point cloud 
method 

Traditional point cloud analysis for all five scans was done using the lidR package 
(Roussel et al., 2020) for the programming language “R”, with which we segmented 
individual trees, extracted pines A and B and derived height metrics from them, we 
also classified ground points for later use. 

The individual tree segmentation started by creating a Canopy Height Model and 
rasterizing the point cloud, using the rasterize_canopy() function with arguments 
rasterize_canopy(las = las, res = 0.5, algorithm = p2r(0.15)). The rasterized canopy 
was smoothed out using a median filter with a 3x3 kernel. To locate trees 
themselves we used the locate_trees() function, with arguments locate_trees(las = 
schm, lmf(4, hmin = 15, shape = ("circular"))), which identifies possible tree. The 
segmentation was performed using the segment_trees() function, with the Dalponte 
algorithm - segment_trees(las = las, algorithm = dalponte2016(chm = schm, 
treetops = ttops)). 

After the individual trees had their IDs, we could manually extract pine A and B 
from the point cloud into their separate .laz files. Before deriving the tree height 
metrics, we have filtered out the ground points, to reduce the effect these points 
would have on skewing of the results. Filtering out the ground points was done 
using the filter_poi(las, Classification != LASGROUND) function. 

To extract tree metrics, we deemed important for this project, we used another 
package from the lidR environment called “lidRmetrics”. The metrics extracted for 
both pines were zmax, zq95 and zq90. Zmax indicates the height of the highest 
point in a segmented point cloud. Zq95 and zq90 refer to the height of the 95th and 
90th percent of the height quantile within the segmented point cloud. 

2.3 Raytracing method 
The goal of the presented method is taking into consideration not only the end 
points of the laser point-cloud, which can report skewed data due to occlusion and 
operator bias, but to create and analyse a voxel environment and laser rays 
traversing it, through ray tracing. Ray tracing sees the ray as a line segment with a 
starting point (scanner head) and an end point (object from which the laser returned 
from). These segments traverse a three-dimensional space made with cubic voxels. 
While performing the analysis we generate the rays and test how they interfere with 
the voxels in the environment. For each individual voxel we check if rays passed 
through it, stopped in it, or did not interact at all. At the end of the analysis, the 3D 
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environment of voxels tells us not only in which voxel how many laser beams ended 
but also through which voxels the beams have passed and what voxels were not 
transacted by any laser rays. With this information, we can quantify and visualize 
the empty space, occlusion, and user bias, perhaps more. 

2.3.1 Julia Programming language 
For writing the code needed to run our ray tracing analysis efficiently, we chose the 
Julia programming language (Bezanson et al., 2017). Julia was developed under the 
MIT license and is meant to be both high-level and fast language for general use, 
however it is now used mostly for numerical analysis and computational science. It 
is regarded as an easy-to-read programming language for humans, similarly to 
Python. Being released in 2012, Julia is a relatively new coding language in the 
open-source world, but there are many high-level packages created for various uses 
already. We took advantage of the Meshes.jl package, which helps to create 2D and 
3D geometrical objects in space, as well as LazIO.jl for laser data manipulation and 
DataFrames.jl (Bouchet-Valat & Kamiński, 2023) with SortMerge.jl for easy data 
frame manipulation, as well as Makie.jl (Danisch & Krumbiegel, 2021) for 
visualization. 

2.3.2 Creating the LiDAR rays 
To be able to perform the ray tracing analysis, we must find and merge 
corresponding start and end points of the LiDAR rays. Start and end point data files 
contain large quantity of information about the laser beam, but only two are 
important in our case. Those are the coordinates of both points and their time stamp. 
In some applications, laser intensity or other knowledge about the laser ray might 
be useful, but we decided not to use them. Since the scanner head shoots more than 
3,000 rays each second, we cannot simply merge the end and start points based on 
their row number but using their mentioned timestamp. Due to the speed of light 
not being infinite the points rarely had an identical timestamp, that is why we chose 
a merging method with a threshold – 50 milliseconds in this thesis – to find points 
that should theoretically match. We used a SortMerge.jl packages sortmerge() 
function to successfully find corresponding trajectory and end points.  

To ensure good ray coverage while performing the ray tracing analysis, we added 
a 5-meter buffer to both sides in the X and Y axis while filtering out the endpoints 
from the master point cloud. To filter the LiDAR points, we used the introduced 
filter!() function, which filters only the points contained in a given geometry – the 
segmented tree plus the buffer in this project. If we took ray end points only from 
within the segmented tree area, we would introduce artificial errors (faux 
occlusion), as some rays might have passed through the analysed space but not 
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ended there. Size of the buffer is something to be tested in other studies, as it could 
be changed according to the density of the analysed forest plot. 

When a data frame of all rays – corresponding starting and end points – from within 
the segmented tree area with added buffer was generated, we randomly selected 
400,000 rays and used them for the ray tracing analysis. The main reason for 
running the ray tracing analysis with only a random sample of rays is performance, 
nonetheless we accept that sampling of rays could lead to some inconsistencies if 
the original data frame from which we sampled is marginally bigger. 

2.3.3 Voxelization of the environment 
First step of ray tracing analysis is creating a three-dimensional space made of 
voxels – environment.  

While taking advantage of Julias structs, we created our own mutable struct called 
“Voxel”, this object bears 3 sets of information: 

• Its dimension and location in space in the .poly field. It takes over the 
characteristics of an object called Box from the Meshes.jl package. The 
dimensions and location in space are given by a starting point and an end 
point. The presumption for creating such Voxel is that it will be 
perpendicular to the Cartesian 3D space with axes X, Y and Z and it will 
have a given side length. 

• Second field of the Voxel struct is .pass, which tells us how many rays 
passed through this Voxel. In this case passing means the ray could both 
only pass and continue or pass through the voxel and end in it. If a ray ends 
in a voxel, it must also pass through it. 

• Last field .stop holds the information of how many rays ended in this voxel. 

We came up with a function that creates this 3D environment of cubic voxels named 
create_voxels(), this function takes the extent of the point cloud to be analysed in 
X, Y, Z axis and our desired voxel side length. Within the function, we take 
advantage of the Meshes.jl package and create a cartesian grid, to act as a building 
guide (scaffolding) for the .poly part of the voxels to be made. Result of this 
function is a vector of Voxels of given locations and uniform side length, with 
empty .pass and .stop fields to be written into in the latter parts of the analysis. 
When creating the environment, it is important to make sure both the extent and the 
desired voxel resolution are in the same units.  
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For purpose of this study, we decided to run the ray tracing analysis (for both trees 
in all five scans) in three different resolutions – voxel side lengths of: 50 cm; 25 cm 
and 10 cm. 

2.3.4 Raytracing analysis 
At first, a function to delete all voxels under presumed ground was implemented - 
filter_underground_occ(). This function is crucial especially with sloping plots, as 
the voxel environment is created according to the coordinate extent of the point 
cloud. Thus, with sloping plot, the environment would contain a considerable 
number of voxels underground and the raytracing analysis would result in higher 
occlusion rates. The function firstly groups all the voxels within the environment 
into columns with the same X and Y coordinates using our get_middles() and 
DataFrames groupby() functions. The introduced get_middles() helps with 
grouping voxels into columns, as it extracts the coordinates of each voxels centre. 
For every column, a kernel filters corresponding ground points using the introduced 
filter!() function. The size of the filtering kernel was established as 3x3 times the 
voxel resolution – meaning nine columns. When the ground points are filtered, their 
mean Z value represents the ground height and all voxels below it, in the particular 
column, are deleted.  

After an artificial 3D environment encompassing the point-cloud was constructed 
and the underground voxels were filtered out, we could proceed to the ray tracing 
itself. The raytracing analysis was done by testing intersection of both the 
trajectories and the return points of the LiDAR rays with the voxels in the created 
environment. We formulated two new intersect functions, as the computational time 
of the inbuilt Meshes.jl hasintersect() function was unacceptable. 

Both of the new intersect function iterations test how a given geometry interacted 
with an observed voxel. First iteration tested if a LiDAR ray (represented by a 
segment geometry) passed through the voxel or not. The segment intersection test 
was based on the Möller–Trumbore intersection algorithm (Möller & Trumbore, 
1997). The segment representing the LiDAR ray is projected on each axis and then 
is checked for parallelism with the planes defined by the voxel extent. If the plane 
and the projected segment were parallel, there was no intersection. In other cases, 
intersect points with the plains were calculated and if they lied in the extent of the 
voxel, the ray and the voxel intersected. The second iteration checked if an end 
point (represented by a point geometry) of a given laser ray ended in the observed 
voxel. Coordinates of the end point were extracted, and a simple evaluation was 
carried out. A Boolean TRUE value was returned only if the X, Y and Z coordinates 
lied in-between max and min coordinates of the voxels corresponding axis. 
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These two intersect functions were wrapped in an umbrella function that cycles all 
given voxels with a ray vector and a stop point vector. If a ray passed through the 
observed voxel, a value of 1 was added to the .pass data field and if a ray stops in 
the voxel, 1 was added to the .stop field. Due to longer calculation time, a progress 
bar from the macro @progress in TerminalLoggers.jl and ProgressLogging.jl was 
included to keep track of the process. The result of the raytrace!() function was a 
modified voxel vector with filled in information in the .pass and .stop fields. 

In this thesis, we used the ray tracing information about the voxel intersections to 
calculate three quantifiers – openness, user bias and occlusion. Openness (Eq. 1) 
tells us the proportion of ray passes to passes and stops in a voxel, thus assessing 
how much interference, causing rays to stop, there is in the voxel. If openness of a 
voxel is 1, then we can presume that all the rays passed a voxel and there was 
nothing the rays could return from. If on the other hand it results in 0, there is an 
object from which all the rays bounced from. While working on this project, we 
labelled voxels as “open” if their openness was higher or equal to 0.95. In the 
equation .passVi represents the number of LiDAR beams passing the given voxel 
and .stopVi represents the number of beams returning from the given voxel. 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑉𝑉𝑉𝑉 =  
(.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑉𝑉 −. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝑉𝑉)

.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑉𝑉
 (1) 

User bias quantifier – Focus (Eq. 2) tells us the proportion of a given voxel .pass to 
the environments .pass sum, hence quantifying how much attention was given to a 
given voxel. We could then calculate variability of user bias for the whole system 
– by calculating standard deviation and variability using the Julia package 
Statistics.jl. This variability tells the user if the area was scanned evenly or 
inconsistently. If the standard deviation was high, we can presume the plot was 
scanned heterogeneously as some voxels received significantly more attention than 
others. If on the other hand the variability is low, we presume the scanning was 
done more homogenously. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉 =  
.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑉𝑉
∑. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉

 (2) 

Last thing we checked with the ray tracing results was the occlusion, that is if the 
voxel had zero rays passing through it. If that was true, the voxel was classified as 
occluded – hidden from view or unscanned by the operator.  

For ease-of-use, we implemented the rt_quantifiers() function which calculates the 
mentioned quantifiers for each voxel and adds them to the raytraced DataFrame.  
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An example of a few Voxels after the raytracing analysis can be seen in the Figure 
5. 

 

Figure 5. Example of six voxels after the raytracing analysis was performed, as well as the 
raytracing quantifiers were added (scan “tops”; voxel resolution 0.25; Pine B). 

To project the representation of the raytraced voxel space, we created four 
visualization functions - voxel_viz_openness(), voxel_viz_focus(), 
voxel_viz_solids() and voxel_viz_occlusion(). Iteration of the functions for 
visualizing the quantifiers were based on the Meshes.jl viz function. Each of the 
functions returns a GLMakie 3D Scene for visual interpretation. For details See 
Appendix 1 – list of introduced functions. 

2.3.5 G-T height method 
In this thesis, we present an alternative to the established tree height measurement 
methods derived from pure point cloud interpretation, with the information we got 
from the ray tracing analysis. The presented G-T method uses the openness and 
occlusion metrics we calculated to determine the individual tree height. In this 
suggested method, the tree height is the distance between the highest voxel of the 
tree, which is not considered open, and the ground point with the same X and Y 
coordinates (see Figure 6). 
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Figure 6. Illustration of G-T tree height assessment. Tree height is measured as the distance 
between the highest non-open and non-occluded voxel (TopVoxZ) of the tree and the mean Z value 

of a 2x2 m rectangle on the ground below it (GroundZ). 

To find the highest voxel of the tree, post ray tracing voxels within the environment 
(a segmented single tree) were firstly grouped into columns of equal X and Y 
coordinates but changing Z coordinates, as done before for the 
filter_underground_occ() function. Then we took each column separately and found 
its highest non-occluded and non-open voxel, using a top_vox() function. For the 
voxel to be considered not open, its openness must have been lower than 0.95. As 
a failsafe to eliminate scanner errors and outliers, the chosen voxel also must have 
been hit by at least two laser beams – its .stop value must have been greater than 
one. Then using get_topvox() function, the initial topvox() function was cycled 
through all of the voxel columns and detected the global maximum. The 
get_topvox() function returns the X, Y and Z coordinates of the highest non-open 
voxel of the segmented tree - TopVox.  
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After the TopVox coordinates were known, we measured the length between its 
centre and the ground perpendicular to it (Eq. 3). Using the lidR package for R, we 
classified ground points with the Cloth Simulation Function (Zhang et al 2016). 
CSF uses an algorithm which turns the point-cloud upside down and lets a 
simulated cloth cling onto the reversed surface. Points in the closest proximity of 
this draped cloth are then classified as ground points. When the classified ground 
points were loaded into our Julia code, we found the GroundZ value with the X and 
Y coordinates of TopVox. To prevent errors, we calculated the GroundZ as an 
absolute value of the mean of the ground Z coordinates within a two-by-two-meter 
square buffer. 

𝐺𝐺 − 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑍𝑍 + �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍� (3) 

The whole process of measuring the G-T height was wrapped inside of the 
gt_height() function which performs the calculation itself using the mentioned 
functions – see Appendix 1. Both the raytracing analysis and the follow-up G-T 
height calculation can be traced in the flowchart diagram (Figure 7) inserted below. 

 

 

Figure 7. Flow chart diagram of the raytracing analysis with the G-T height estimation. 



28 
 

DISCLAIMER – The raytracing package with the analysis code can be found on 
our GitHub page: https://github.com/JanZrn/ForesTRACE.jl. 

3.1 Voxelization 
We performed a successful voxelization and ray tracing analysis for tree different 
voxel resolutions, 10 cm, 25 cm, and 50 cm voxel side lengths. Voxel resolution 
played a significant role in the time needed to perform the analysis. Fastest analysis 
was performed for the 50 cm voxels with around 2 hours to analyse 400,000 rays. 
Voxels with 25 cm sides took around 20 to 25 hours to compute and the highest 
voxel resolution took around 100 hours, again with 400,000 randomly selected rays. 
The analysis was performed for 5 scans at a time on a regular workstation in the 
university computer lab. From Figure 8, we can see the change in voxelization 
quality for two different scans of the same tree. 

 

 

Figure 8. Side by side comparison of scan quality and voxel openness of pine B. Scan on the left 
shows scan "static" and on the right "tops". The voxel side length is 10 cm. The lighter the colour 

(from dark purple to yellow), the higher the voxels openness is and vice versa.  

3. Results 
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3.2 User bias – Focus 
In the Figure 9, we can see that the simulated scanner operator errors/biases are 
clearly visible with the Focus metric we calculated using the results of our 
raytracing analysis. On both trees we can see a descending pattern of user focus. 
Scans in which we intentionally simulated operator errors show higher focus 
standard deviation than those that were supposed to be error-free. Focus standard 
deviation on the Y axis represents the mean results of the analysis for 10, 25 and 50 
cm voxel size. For both pines the scan “bottoms”, where the operator walked close 
to the trees and intentionally scanned bottoms of the trees, shows the highest user 
bias. Scans “static” and “line” show the second highest mean focus variability, for 
Pine A the scan “line” resulted in a higher mean standard deviation and for Pine B 
scan “static” has higher variability. Scans “control” and “tops show the least 
amount of variability in user focus, meaning the distribution of voxels within the 
scanned area is presumed to be more uniform than the beforementioned scans. 

 

 

Figure 9. Histogram of the mean standard deviation of the Focus metric. Mean is taken from all 
three voxel resolutions for each scan. 

3.3 Occlusion 
Thanks to the results of the raytracing analysis, we could compute individual 
occlusion rates of the scans as the percentage of not scanned voxels from the entire 
voxel environment. The finest voxel resolution (10 cm voxel side length) resulted 
in the highest the highest occlusion rates in all but one scan – the control scan, 
where no intentional operator errors were included (See Figure 10). The “static” 
scan produced the highest percentage of unscanned area, followed by “line” and 
“bottoms.” The “line” scan presented an anomaly in form of almost identical 
occlusion rate for 25 and 50 cm voxel resolution. On the other hand, in the “control” 
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scan the 25 cm voxel analysis delivered lower occlusion rate than that of the 10 cm 
voxels. 

 

Figure 10. Bar chart of the occlusion rate in the performed scans dependant on the voxel resolution. 
Caption box in the top right corner informs about the mean occlusion rate for each voxel resolution. 
The scans are ordered on the X axis in a descending order of focus variability. 

3.4 Tree height 
In the Figure 11, we present tree height calculated using four methods of 
acquisition. Methods Zmax, P95 an P90 represent metrics derived from pure point 
cloud analysis using the R lidRmetrics package and G-T is our raytracing analysis 
method. Mean tree height measured with a traditional method using a hypsometer 
is added as a reference line. Not only do the two quantile methods (90th and 95th 
percentile) substantially underestimate the real height if compared with the 
traditional hypsometer method, but Figure 11 also show how susceptible they are 
to user focus, as the estimated height is reported higher with descending user focus. 
Zmax and G-T method heights are in proximity of results using a hypsometer. The 
method of tree height calculation using the raytracing analysis (G-T method) seems 
to be on par with the Zmax method, which takes the highest point of the point cloud, 
but shows slightly higher variability in its results as can be seen in the caption box 
in the bottom right corner. The standard deviation of Zmax is 0.43 and of G-T 0.51. 
The 10 cm voxel resolution seems to be the least affected by user focus, as its 
standard deviation is the lowest and it also predicts the tree height to be closest to 
the height measured in situ (See Figure 12). Lower resolutions show higher 
variability of the results for the 5 scans and underestimate the height more, if 
compared to the 10 cm voxel results. Mean height for all three voxel resolutions is 
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as follows: For 50 cm voxels 18.2 m, for 25 cm voxels 18.4 m and for 10 cm 18.6 
m, the mean tree height of the reference hypsometer measurement is 19.1 m. Mean 
height of the point cloud analysis without ground points resulted in: Zmax 18.7 m, 
95th percentile 12.8 m and for 90th percentile 11.7 m. 

 

 

Figure 11. Tree height according to different acquisition methods. Comparison of Zmax, P95, P90, 
G-T (10 cm voxel resolution) and a hypsometer height as a reference. Caption in the bottom right 
corner shows the mean height and the variability of the results using the given methods. The scans 
are ordered on the X axis in a descending order of focus variability. 

 

Figure 12. G-T height according to different voxel resolution. Comparison of 10 cm, 25 cm and 50 
cm voxel resolution with the height measured with a hypsometer as a reference. The caption box in 
the bottom right corner shows the mean height, as well as variability of the results. 
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In this thesis, we present a new idea for quantifying LiDAR point cloud occlusion, 
and other metrics, through raytracing analysis. The goal of this project was to create 
an open-source raytracing package within the programming language Julia, for the 
remote sensing community. Conventional methods of LiDAR point cloud analysis 
take into consideration only the end points of the laser beams, deriving the user 
defined metrics according to them. Herein presented method voxelizes the point-
clouds similarly to established method. However, unlike them, it takes into 
consideration the trajectory of the laser beam and the space it has passed through. 
Thanks to this information, we can detect occluded voxels and determine the 
openness of a given voxel. The mentioned conventional methods cannot accurately 
predict either of these quantifiers. 

In contrast to other voxel-based LS methods, our method is also able to quantify 
volumetric information about the open space in the plot. In a normal LS point cloud, 
open (negative) spaces can be identified, but true open space and occluded space 
are indistinguishable, as we have previously stated – occlusion is one of the major 
drawbacks while using RS methods. Although the raytracing analysis was 
performed with H-MLS, we firmly believe our method can be broaden to other LS 
data acquiring methods, such as drone-based UAV-LS. 

There is an ongoing discussion within the remote sensing community about what is 
an “optimal” scan and how to quantify the point cloud quality (Calders et al., 2020). 
So far, no consensus has been reached and therefore we present the user focus 
quantifier as it could be the deciding quantifier for what an optimal data set could 
be. With the user focus quantifier, we can analyse if the area of interest is scanned 
homogenously or if the operator missed certain parts and fixated on other areas of 
the plot. Ideally, the plot should be scanned as consistently as possible, to reduce 
the occlusion effect and increase the scanning completeness of the trees (Bauwens 
et al., 2016). With the ray tracing approach, we were able to demonstrate the effect 
of human error introduced by not choosing the adequate walking path with the 
scanner or if the operator focused on one part of the scanned area more than the 
rest. We discuss that the introduced focus quantifier is of a similar nature to the off-
nadir scanning angle while performing ALS. It was proven, that higher scanning 
angles while airborne scanning affect the results. The research shows that higher 

4. Discussion 
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scanning angle results in higher underestimation of results, namely tree height and 
gap fractious, as well as other structure metrics (Holmgren et al., 2003; Liu et al., 
2018). The operator focus variability we quantified with the raytracing approach 
affected both the occlusion rate and the resulting tree height. However, the 
occlusion rate in our case is tied to the chosen voxel resolution as well. Using this 
Focus quantifier, determining an optimal walking path for various environments 
using a H-PLS can be the subject of further studies. This has been done to extent 
done with the TLS scanners (L. Li et al., 2021) and ALS (Næsset, 2009), but there 
is a lack of research for the H-PLS platform. 

García et al. (2011) discusses that the voxel-based approaches are a common tool 
for volumetric point cloud calculations, but they also state that voxel resolution 
affects the result. However, relatively few studies on the effect of voxel size were 
carried out (Ross et al., 2022). We have tested our raytracing method on three 
different voxel resolutions – 10-, 25- and 50-centimetre voxel side length. And both 
the occlusion rate and the tree height were impacted by the resolution. The tree 
height acquired using the G-T method was only slightly affected by the resolution, 
as will be discussed later. However, the occlusion rate is strongly influenced by the 
voxel size. Higher voxel resolution (smaller voxels) demonstrated higher occlusion 
rates for the same scan in comparison to bigger voxels. The mean occlusion for 50 
cm voxels was 34.6 %, for 25 cm 43.5 % and for 10 cm voxels 51.3 %. This can be 
explained by the voxels with lower resolution having bigger size and thus reaching 
into space that would be qualified as occluded with higher voxel resolution. This 
result agrees with Mathes et al. (2023), where they stated the optimal voxel 
resolution for minimizing occlusion while still providing good results detail is to be 
around 20 cm or less. Herein, we demonstrated that voxel resolution effects the 
occlusion, as also observed by Mathes et al. (2023) using the same H-PLS scanning 
approach. Their conclusion is that higher voxel size mitigates occlusion but lowers 
the calculated metric precision. The G-T height with changing voxel size agrees 
with their tested hypothesis, as visible from Figure 12.  

However, according to García et al. (2011) if voxels are too small, the void between 
the points may be misinterpreted, potentially skewing the results if not 
appropriately filled. The voids in the voxelized point cloud can be interpreted 
twofold, either because the object within it was occluded or due to a lack of objects. 
Thanks to the ray tracing approach, one would be able to distinguish the nature of 
the void – whether it was occluded from view or actually free of objects, thereby 
providing more insight about the environment. The understanding of occlusion, 
according to García et al. (2011), is also useful for further filling in these empty 
voxels with artificial information based on their surroundings. They describe this 
case for the Plant Area Density (PAD) measures with the AMAPVox tool (Vincent 
et al., 2017), in which there is an option to fill occluded voxels for ALS data but 
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has not yet been implemented for ground-based scans. Voxelized forest 
environment, with filled in information in the occluded voxels can also further help 
the research community working on Radiative Transfer Models (RTMs), which are 
being developed to better understand the processes driving the biochemistry of 
forest stands. The methods of forest ecosystem management should take these 
environmental drivers into consideration to actively help with climate change 
mitigation, as forests affect microclimate within them and help buffer temperature 
cycles in their vicinity (Aussenac, 2000; Ligot et al., 2014). RTMs link forest 
structure, ranging from 1D to 3D, with the light absorption and reflection 
mechanisms. Data needed to describe the forest structure for RTMs are pieced 
together from field inventorying and ALS data. However, some gaps in the 
parameters based on traditional field inventories are theorized to be filled with some 
ground-based LS approach (Calders et al., 2020). These gaps may include, given as 
examples by Calders et al. (2020), leaf distribution and density within the canopy, 
crown shapes or branching angles of the habitus (wooden skeleton). If these metrics 
could be calculated using voxel openness, as introduced in this thesis, is a question 
for further research but we believe there is a promising potential. The openness 
quantifier describes the density of points within the voxel and number of rays 
passing through it – hence models to predict for example the beforementioned leaf 
distribution inside of the canopy can be created in the future efforts. 

As discussed earlier, the absence of return points in a part of the point cloud is 
explained by either the object in this space being occluded from the view of the 
scanner or by the lack of objects the laser could return from. Due to the chosen test 
method in our project, a voxel was deemed occluded if no rays passed through it. 
As such, one problem we came across during our analysis was that we could not 
tell apart voxels that were occluded from the view of the scanner and those being 
intersected by rays that left the scanned area without returning. This issue can be 
explained by the GeoSLAM product. If certain endpoints are absent, due to the rays 
leaving without returning, the trajectory cannot be paired with anything and is 
consequently ignored in the merging process. A significant fraction of all occluded 
voxels were located in the higher parts of the voxel environment, as the laser beams 
could not return from the object-free sky. The high occlusion rates are, therefore, 
specific to the demonstration site we selected. The demonstrational site was chosen 
so that the operator had free range of movement and clear view of the crown tops, 
hence the objects in the vicinity of the trees were sparse and the laser beams, apart 
from those returning from the two pines and the ground, had nowhere to return 
from. To mitigate this issue into some extent, a 5-meter buffer was added to extract 
end points from the surrounding of the segmented trees. We can presume, that this 
effect would be lower in an actual forest stand, where the density of objects is 
significantly higher than in that of a city park setting. Size of the “miss mitigation” 
buffer could be an interest of further studies on how it affects the runtime of the 
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analysis, as well as its results. This problem is mainly an issue of ground-based 
scanners, as we presume that ALS and UAV-LS point clouds would not be affected 
as much. ALS and UAV-LS scans in a downward motion to scan the 
canopy/ground, however ground-based scanners scan the other way around and 
thus have a high potential of rays leaving and never returning. Another potential 
issue could be our decision to randomly select 400,000 rays for analysis. This 
decision was made to save time during the test. If we tested all rays, as done by 
Schneider et al. (2019), the analysis may have yielded different results. We are 
aware that the runtime of the raytracing analysis is still quite high, if we compare it 
to Schneider et al. (2019), where the team ran the analysis in C++ (code unknown) 
and was able to test more than 90 million beams on a 60x60 m plot with voxel 
resolution of 10x10 cm in around three days. Our code has not yet reached this 
speed level and requires further optimization, namely manually allocating mutable 
memory and making multithreading viable. Their analysis also combined point 
clouds from both TLS and ALS methods, thus had a better coverage of the crowns 
– something our analysis lacked.  

Although our analysis suffered from limited coverage of the crowns, resulting in a 
significant underestimation of tree height using the quantile methods, the G-T 
method we introduce demonstrated potential for future applications. In all 5 scans 
for both trees the G-T method was affected by the operator bias only to some extent, 
as well as showed relatively low variability and result similarity, if compared to the 
traditional method using a hypsometer, unlike the percentile methods. The results 
of the quantile approach align with previous studies indicating that ground-based 
scanning generally results in height underestimation (García et al., 2011). This 
phenomenon is primarily attributed to the occlusion of the tops by the lower 
branches of the canopy, which also results in a higher point density, thereby placing 
greater emphasis on the lower part of the canopy with the quantile approach. The 
quantile approach's resulting underestimation is noticeable, even though the 
selected demonstrational site lacked understory hedges or tall grasses. This effect 
could be even more pronounced if the scanning took place in a forest plot with 
dense understory and was not addressed during post-processing. Unlike the quantile 
methods, the introduced raytracing G-T approach does not face this problem, 
eliminating the need to filter points from the lower parts of the point cloud, even in 
the presence of a dense understory. The introduced G-T height calculation still 
resulted in a slight height underestimation, if compared to the hypsometer approach, 
but much closer to the presumed height. Figure 11 also highlights the non-
negligible spread of results for both of the height quantile methods with changing 
user focus variability. The standard deviation of the calculated height for 95th and 
90th percentile was 0.91 and 0.84 respectively. This result variability can be 
discussed as susceptibility of derived height to quality of a given point cloud, 
defined by the Focus quantifier. Even though the quantile methods were introduces 
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as a mean to describe biomass on a stand level, they are also used in the RS 
community to measure top height of stands (Mao et al., 2019). We can presume, 
that this susceptibility of quantile methods for measuring top height to human error 
and point cloud quality on individual tree level, as described in this project, will be 
noticeable even on the stand level. However, it has not been tested and needs further 
research. The variability of the G-T height resulted in a slightly higher variability, 
if compared to the Zmax method (0.43 for Zmax and 0.51 for G-T with 10 cm 
voxels), but the variability response to user focus resulted in about a half of the 
quantile approach. This slightly higher variability of G-T, compared to Zmax, can 
be explained by a failsafe included in the G-T method. This failsafe allows a voxel 
to be the TopVox one only if there are at least two returns from within the voxel. It 
should negate scanner errors and outliers occasionally present in point clouds, 
something the Zmax method lacks. Another advantage of the G-T method is that it 
does not require point cloud height normalization, unlike some established 
methods. It is advised against using point cloud height normalization as it affects 
the retrieved plant metrics in sloped stands  as demonstrated on PAD by Liu et al. 
(2017). The mentioned topographical point cloud normalization moves the points 
from their original position and thus the relationships between points, based on their 
position in space, cannot be interpreted. These relationships between points (or 
voxels) could indicate branching angles, canopy shape or stem growth curve. And 
with the orientation and distance links severed, the derived results are presumably 
incorrect, hence non-normalizing methods should be favoured by the RS 
community.  

The resulting G-T height variability for 50 cm voxels (0.55) corresponded to that 
of the 10 cm voxels (0.51), but it was higher for the 25 cm voxels (0.75). We explain 
this result, and perhaps even the resulting variability of the other resolutions, as the 
effect of the random ray selection. We chose to analyse random 400,000 rays for 
time sakes, but if the raytracing is further optimized and we can analyse more rays, 
perhaps all, we presume higher result precision will be achieved. We presume even 
better results would be achieved, if the ground-based data was combined with above 
canopy data, like TLS on top of a crane as demonstrated by Schneider et al. (2019) 
or UAV-LS. UAV-LS data, with its high ray density in the crown tops, could better 
describe the voxel openness quantifier, as explained in the preceding paragraphs. 
As stated in the introduction, the flight altitude for UAV-LS and ALS is different 
and results in differing spatial resolution. Therefore, we argue against using 
raytracing methods with the ALS platform. The ALS flight altitude is typically up 
to several kilometres and thus its laser beam is considered a cone and not a line, 
which is the premise of the raytracing approach. However, small-footprint drone-
based laser scanning methods are arguably good candidates for further raytracing 
trials using the introduced package.  
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We firmly believe that the height method we present may bear flaws, but it should 
inspire members of the remote sensing and forest practice communities to come up 
with new ideas how to use raytracing results and introduced quantifiers. The 
package we present, and plan to continue adjusting and optimizing, should stand as 
an easy-to-use base for researchers and forest management practice. The vision for 
the tool is to be further developed and implemented not only by the forest RS 
community, as the raytracing approach appears to be the next step in quantifying 
the environment around us. We believe that the approach presented by the package 
can be adopted by the rest of LS acquisition platforms and methods, not only by H-
PLS as used in our demonstration. However, the footprint size and beam divergence 
should be considered. A potential use for the raytracing approach and 
ForesTRACE.jl package introduced in this project could be quality control of point 
clouds while inventorying. The longer analysis time would make larger number of 
point clouds to be raytraced ineffective, however quality control on a smaller 
sample would be viable. With this approach, the homogeneity of the scanned 
inventory could be verified. Another example of use for the ForesTRACE.jl 
package is exploring the ways of quantifying the negative space within the scanned 
area. Open space quantification is not possible with the current method of simply 
analysing the end points in a point clouds. Alternatively, it could help with species 
habitus recognition as its voxels can represent the tree structure, with added value 
in the voxel openness value which could represent either woody or leafy parts of 
the trees. These ideas were not developed further in this thesis, as it would the time 
limit for this project. 
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Documenting the state of the forest property is not an easy task for forest managers. 
Forest managers usually measure the stand and tree metrics with either direct or 
indirect methods, using callipers, tape measures and height meters. Unfortunately, 
some stand metrics quantifying the horizontal and vertical structure cannot be 
acquired using these physical methods. Thus, remote sensing methods are used, to 
obtain these otherwise immeasurable metrics and to streamline the work in a more 
time- and cost-efficient way. One of the widely used remote sensing technologies 
– laser scanning, is usually classified by the platform it is mounted to, be it in the 
air or under the canopy. However, all of these platforms suffer from one major 
drawback – occlusion. Occlusion is a technical term describing an object being 
hidden from view of the scanner, thus not being registered. This absence of 
information in the three-dimensional point cloud can skew the results, for example 
indicating fewer trees in a forest plot or underestimating tree height due to lower 
branches obstructing the treetops. Another drawback of some LS platforms (mainly 
the hand-held ones) is the inconsistency among human operators. One operator may 
focus on one part of the plot while another concentrates on a different area. 
However, the goal is to achieve scans that are as homogeneous as possible. 

ForesTRACE,jl is a newly introduced raytracing package for the programming 
language Julia, which aims to quantify these errors. Quantifying occlusion and user 
bias is the first step to scanning optimalization. Unlike traditional point cloud 
methods, raytracing takes into consideration not only the end points, but merges the 
endpoints with the scanner’s location. The merged laser beams traverse a three-
dimensional environment made out of voxels – cubes. After the analysis is 
performed, we can quantify the cubes which did not interact with any rays, as well 
as the attention given to each of the cubes, or the openness quantifier (given by the 
proportion of rays ending in a voxel to rays passing through it). With this 
information, the forest remote sensing community can decide if a given scan is good 
enough to work with or needs a re-do, to create tree and stand metrics as close to 
reality as possible. 

In this project, we were able to describe how tree height derived from traditional 
point cloud analysis is susceptible to user focus variability, unlike the introduced 
G-T tree height method, which takes advantage of the raytracing quantifiers. 

Popular science summary 
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ForesTRACE.jl 
List of introduced functions 
Made under the MIT License 
Copyright (c) 2023 Jan Zrnovský, Cameron Pellett 
https://github.com/JanZrn/ForesTRACE.jl 
 
Function name: within() 

Arguments:  LasPoint, LasHeader, bounding box (Meshes.Box) 
Returns:  LasPoint, LasHeader 
Description:   Identifies what laser points lie within a bounding box 

(Meshes.Box geometry). The bounding box can be 
either a 2D or a 3D object. If it is a 2D object, will 
include all Z values. 

 
Function filter_pixel!() 

Arguments:  LasPoint, LasHeader, bounding box (Meshes.Box) 
Returns:  Modified LasPoint, LasHeader 
Description:   Filters the point cloud to contain only the points within 

a given bounding box. The bounding box can be either 
a 2D or a 3D object. If it is a 2D object, will include all 
Z values. 

 
Mutable struct Voxel 

Arguments:  .poly, .pass, .stop 
Returns:  Voxel 
Description:   A custom mutable struct containing geometry, number 

of stops and number of passes. It is a cube with a given 
voxel side length and position in the environment, as 
determined by the Meshes.Box in .poly. 

 
 
 

Appendix 1 – ForesTRACE.jl Documentation 
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Function create_voxels() 

Arguments:  extentx, extent_y, extenet_z, voxel side length 
Returns:   Vector of Voxels with given .poly and empty .pass, 

.stop 
Description:   Creates a 3D environment of Voxels within a given 

extent and a given resolution.  
 

Function intersects()  
Arguments:  Meshes.Box, Meshes.Segment 
Returns:  Bool (0/1) 
Description:   Intersects a Voxel (Meshes.Box) with a laser ray 

(Meshes.Segment) using the Möller–Trumbore 
intersection algorithm 

 
Function intersects()  

Arguments:  Meshes.Box, Meshes.Point 
Returns:  Bool (0/1) 
Description:   Intersects a Voxel (Meshes.Box) with an end point of a 

laser beam (Meshes.Point) 
 

Function ray_voxel_intersect() 
Arguments:  Voxel, Meshes.Segment 
Returns:  adds 0 or 1 to .pass value of a Voxel 
Description:   intersects(Meshes.Box, Meshes.Segment) test is 

performed, if the ray intersects the Voxel, value of 1 is 
added to .pass of the tested Voxel. 

 
Function stop_voxel_intersect() 

Arguments:  Voxel, Meshes.Point 
Returns:  adds 0 or 1 to .stop value of a Voxel 
Description:   intersects(Meshes.Box, Meshes.Point) test is 

performed, if the endpoint intersects the Voxel, value 
of 1 is added to .stop of the tested Voxel. 

 
Function raytrace! 

Arguments:  Vector of Voxels, Vector of rays, Vector of endpoints 
Returns:  Vector of analysed Voxels 
Description:   Loops ray_voxel_intersect() and 

stop_voxel_intersect() through the entire system. 
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Function get_middles() 

Arguments:  DataFrame 
Returns:  DataFrame with coordinates of Voxel middles (X, Y, Z) 
Description:   Calculates the coordinates of the Voxel middles 

according to their Meshes.Box geometry in the .poly 
field. Columns “middles_x”, “middles_y” and 
“middles_z” are added to the DataFrame. 

 
Function openness() 

Arguments:  DataFrame 
Returns:  Openness quantifier of a Voxel  
Description:   Calculates the openness quantifier of a given Voxel (or 

of a vector of Voxels) based on the number of rays 
passing through the Voxel and ending in the voxel. The 
formula is as follows:  

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑉𝑉𝑉𝑉 =  
(.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑉𝑉 −. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝑉𝑉)

. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑉𝑉
 

 

Function focus() 
Arguments:  DataFrame 
Returns:  Focus quantifier of a Voxel  
Description:   Calculates the focus quantifier of a given Voxel (or of a 

vector of Voxels) based on the number of rays passing 
through the Voxel to the sum of .pass of the entire 
environment. The formula is as follows:  

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉 =  
.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑉𝑉
∑. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉

 

 

Function occlusion() 
Arguments:  DataFrame 
Returns:  Occlusion of the Voxel (0/1) 
Description:   Determines if the Voxel is occluded based on the 

number of rays passing through the Voxel. If there are 
no rays traversing the Voxel, it is considered occluded 
(1). If there are rays traversing it, the Voxel was not 
occluded (0). 
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Function rt_quantifiers() 

Arguments:  DataFrame 
Returns:   DataFrame with added raytracing quantifiers – 

openness, focus, occlusion 
Description:   Calculates the raytracing quantifiers of openness, user 

focus and occlusion and adds them in separate 
columns to the raytraced DataFrame. 

 
Function filter_underground_occ() 

Arguments:  DataFrame, voxel resolution, GroundPoints, 
GroundHeader 

Returns:   DataFrame containing only the Voxels above presumed 
ground 

Description:   Determines if a voxel is above or below ground. If it is 
below the presumed ground, it is filtered out. 

 
Function occlusion_rate() 

Arguments:  DataFrame 
Returns:   percentage (%) of occluded Voxels in the given 

environment 
Description:   Calculates the proportion of occluded Voxels to the 

number of Voxels in the environment, returns 
percentage (%) value. 

 
Function top_vox() 

Arguments:  GroupedDataFrame, threshold  
Returns:  Coordinates of a TopVox (Z, X, Y) in a column  
Description:   Finds the highest non-occluded and non-open voxel in 

a given column (GroupedDataFrame). This local 
TopVox must have at least two laser beams returning 
from it as a failsafe against outliers and scanner errors. 
If a voxel is considered open or not is decided according 
to the given threshold. If the openness value exceeds 
the threshold, Voxel is open. If the openness is equal or 
lower than threshold, it is not open. 
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Function get_topvox() 

Arguments:  DataFrame, threshold 
Returns:  Coordinates of a global TopVox (Z, X, Y) 
Description:   Cycles the top_vox() functions through all groups in a 

GroupedDataFrame and finds the coordinates of the 
global TopVox. 

 
Function gt_height() 

Arguments:  DataFrame, threshold, GroundPoints, GroundHeader 
Returns:  G-T height 
Description:   Using the get_topvox() finds the TopVox coordinates 

and measures the distance between its centre and the 
ground perpendicularly below it. The Z value of the 
ground is taken as a mean value of a 2x2 metre square 
with the TopVox X and Y coordinates in its middle. 

 
Function voxel_viz_openness() 

Arguments:  Voxel DataFrame, solid, threshold 
Returns:  GLMakie Scene 
Description:   Visualization of the openness, colour and alpha 

represent openness. If solid = true, will visualize only 
non-open voxels, given by the threshold argument; if 
solid = false, will visualize all voxels. 

 
Function voxel_viz_focus() 

Arguments:  Voxel DataFrame 
Returns:  GLMakie Scene 
Description:   Visualization of the user focus, colour and alpha 

represent the focus quantifier. To better visualize the 
user focus quantifier, it is exaggerated by a function: 

100 ∗ �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑉𝑉𝑉𝑉 
 
Function voxel_viz_solids() 

Arguments:  Voxel DataFrame, clr, threshold 
Returns:  GLMakie Scene 
Description:   Visualization of non-open voxels, colour of voxels is 

given by the clr argument, non-openness is set by the 
threshold argument, alpha is set to 0.5. 
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Function voxel_viz_occlusion() 

Arguments:  Voxel DataFrame, clr 
Returns:  GLMakie Scene 
Description:   Visualization of occluded voxels within the 

environment, colour of voxels given by the clr 
argument, alpha is set to 0,5. 
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