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Genomic selection has been around for more than 10 years in the pig industry. Despite 

the popularity, accurately predicting complex with genome-wide markers is still 

challenging. The current limitation in prediction accuracy is, at least partially, due to the 

use of markers that may not directly influence the traits of interest. Some studies suggest 

that whole-genome sequencing can improve genomic predictions within and across 

breeds, but empirical results are inconclusive. Another proposed solution to the problem 

is the use of functional genomics in genomic selection. Functional genomics studies genes 

and their interactions using techniques like expression quantitative trait loci (eQTL) and 

chromatin immunoprecipitation sequencing. Among these techniques, eQTL studies 

identify genomic regions influencing gene expression levels, which in turn affect 

conventional phenotypes. Given this complex connection among genomic variants, 

regulation of gene expression and phenotype formation, there is, therefore, a growing 

recognition of the potential benefit of integrating functional genomic information, 

particularly expression quantitative trait loci, into genomic selection models to enhance 

prediction accuracy. This study was performed in an attempt to find out under what 

circumstances eQTL markers will improve selection accuracy in genomic selection for 

pig breeding.  

The project considered a simulation of a breeding programme selecting a single 

polygenic trait affected by 50 genes. Using the R package “AlphaSimR” the pig genome 

and base population were obtained from a coalescent simulation and used to simulate 

breeding activities. An eQTL mapping study was performed using a simulated 100k chip. 

Genomic selection was performed under three scenarios. Two of the scenarios used 

variants from the eQTL study as markers, and the third used simulated SNP markers 

represented as 1) eQTL only, 2) eQTL plus SNP, and 3) SNP only. Results did not 

indicate any big impact of eQTL markers on genomic selection, despite a successful 

eQTL mapping. The project highlighted some limitations indicating that further 

investigation of eQTLs in genomic selection is necessary. 
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Before using genomics in the pig industry, pig improvement programmes relied on 

best linear unbiased prediction (BLUP) models with relatedness between animals based 

on pedigree information (Henderson, 1976; Quaas, 1988). From the 1970s to the 2000s, 

significant resources were invested in finding the most efficient evaluation model for 

traits of economic importance. For example, in breeding programmes, estimating genetic 

trends is important because it makes it possible to evaluate the advantages of the 

programme and genetic alterations. For commercial breeding, the conventional 

techniques suggested by Hill (1972a) incorporating control groups were expensive. 

Alternative strategies were proposed by Blair and Pollak (1984), while Sorensen and 

Kennedy (1984) showed that mixed models work well in some situations, removing the 

necessity for a control group. Since then, phenotypic and pedigree information has been 

the major contributing factors to genetic progress in the pig industry. However, alongside 

these developments, particularly in the late 1970s and early 1980s, techniques were 

developed that allowed DNA investigation to become available, leading to the discovery 

of polymorphic markers in the genome. Soller and Beckmann (1983) hypothesised that 

markers would be beneficial in constructing more precise genetic relationships for 

determining parentage and identifying quantitative trait loci (QTL). However, the 

widespread of this new marker technology would be cut short because of the high cost of 

genotyping animals.  

 

One of the benefits that came with the development of marker genotyping was the 

birth of marker-assisted selection (MAS). The promise of MAS was that if a profile 

appeared to contain genes that directly affected the trait, then potentially great genetic 

gains could be achieved by selecting animals with the desired marker profile. For 

instance, in the early 1990s, a marker test known as Hal-1843 became available for 

commercial pig breeding (Knol et al., 2016). This test allowed the use of MAS against a 

recessive mutant allele that causes malignant hyperthermia, which is often lethal in 

stressful conditions and can also result in poor meat quality. 

 

However, although it worked very well for traits affected by one or a couple of 

genes, MAS did not contribute appreciably to livestock improvement. Simply because 

Introduction  
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most of the traits of interest were quantitative and complex.  Despite the setbacks in using 

marker-assisted selection, some researchers believed that livestock breeding could still 

benefit from genomic information to generate accurate breeding values, and this could 

only work if a dense SNP assay that covers the entire genome were available. 

 

In an attempt to use genomic information again, Meuwissen and colleagues (2001), 

in a simulation study, extended the idea of incorporating marker information into BLUP, 

a method introduced by Fernando and Grossman in 1989. Meuwissen et al.'s (2001) 

extension of Fernando and Grossman's method is what is now widely known as genomic 

selection.  Genomic selection relies on genome-wide markers such as single nucleotide 

polymorphisms (SNPs) with the idea that each marker contributes to some extent to the 

trait of interest.  In genomic selection, a predictive model is constructed with genotype 

and phenotype information. The animals’ genomic estimated breeding value (GEBV) is 

then predicted by summing the estimated effects of its segments across the genome 

(Meuwissen et al., 2001). Genomic selection has been instrumental in livestock breeding, 

primarily because the breeding values of animals can be estimated as soon as DNA 

information is available. The advantage of genomic selection over conventional tools lies 

in its power to a) increase prediction accuracy and b) decrease the generational interval.  

 

Despite the popularity and advantage of genomic selection over conventional tools, 

accurately predicting traits that are highly polygenic with genome-wide markers is still a 

challenging task. The current limitation in prediction accuracy is, at least, partially due to 

the reliance on neutral markers. To solve the problem, Meuwissen & Goddard (2010) 

suggested that whole-genome sequencing (WGS) could enhance genomic predictions 

within and across breeds. However, results from empirical studies have been inconclusive 

thus far. For instance, in empirical work, the accuracies of genomic predictions based on 

preselected WGS variants were not robust across traits and lines, and the improvements 

in prediction accuracy that were achieved with WGS compared to standard marker arrays 

were generally small (Ros-Freixedes et al., 2022). Another suggestive solution for the 

challenge can be found in the reports of Poland and Rutkoski (2016). They suggested that 

these challenges may be due to the intricate biological processes between genes and 

phenotypes (Poland and Rutkoski, 2016). These processes, such as transcription, 
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translation, metabolism, gene interactions, and epigenetic modifications, could affect the 

expression of economic traits. However, the details regarding these procedures are largely 

unknown. It is worth mentioning that economically important traits have a polygenic 

architecture, and causative variants have small effects, making their detection and 

quantification difficult. Most of these causal variants, with small effects, are reported to 

be likely to be located in regulatory regions and affect complex traits through changes in 

gene expression (Clark et al., 2020). This could be true because several genome-wide 

association studies in humans have shown that more than 88% of variants associated with 

disease traits lie outside protein-coding regions (Edwards et al., 2013). These non-protein 

coding regions have diverse functions that contribute to the complexity and regulation of 

gene expression, which eventually affects phenotypes such as diseases. Secondly, 

because humans and pigs have much in common genetically and hence, non-protein 

coding regions could hold valuable information also for pigs. Given the complex 

connection among genomic variants, regulation of gene expression and phenotype 

formation, there is, therefore, a growing recognition of the potential benefit of integrating 

functional genomic information, particularly expression quantitative trait loci (eQTL), 

into genomic selection models to enhance prediction accuracy (Clark et al., 2020). The 

choice of eQTL markers is because eQTLs are those genomic loci associated with 

regulating gene expression levels, which in turn affect economic traits.  

A successful integration of functional genomics into genomic selection could make 

genomic prediction more accurate for complex traits. Building on this rationale, the 

objectives of this simulation study are therefore to a) simulate a pig breeding program to 

model how causative variants affecting expression levels of various genes impact 

quantitative breeding trait goals, b) to evaluate the potential of genomic prediction with 

eQTL information, and c) conduct genomic resolution analysis of eQTL mapping to learn 

how successful eQTL mapping is at in identifying markers that are in close proximity to 

the causative eQTL variant. 
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2.1 Pig breeding for food security 
 

Successful animal breeding in developed regions involves high-tech evaluation 

methods, biotechnologies, and organisation. In fast-reproducing species like pigs, the 

breeding business has been taken over by large companies exploiting the advantage of 

centralised data management and decision-making to improve genetic gains. For 

example, compared to other domesticated terrestrial animals, pigs are highly prolific and 

have relatively short gestation periods, contributing to their success in the breeding 

subsector. Pigs are useful animals, serving as food, particularly in these times of high 

food demand due to global population growth. This has put immense pressure on 

agricultural systems and resources and threatens global food security (Alexandratos & 

Bruinsma, 2012). For instance, In November 2022, the world's human population reached 

8 billion, which is a significant increase from the estimated 2.5 billion in 1950 (Leeson, 

2018). According to projections, it is expected to reach 9.7 billion by 2050 and 10.4 

billion by 2080 (Ritchie & Roser, 2019). Global population growth is closely linked to 

global food security. However, addressing this complex issue requires a comprehensive 

approach that goes beyond simply providing enough food to meet the needs of a growing 

population. Achieving true sustainability requires careful consideration of various factors, 

including food production, environmental impact, and resource conservation. In an 

attempt to ensure a sustainable future, the pig industry plays a role in the establishment 

of sustainable pig breeding programmes in order to produce enough food for the 

increasing human population. However, when selecting the best-performing pigs, the 

industry faces genetic complexities due to the influence of multiple genes on most 

economically important traits. 

 

Literature review 
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The remaining part of this chapter will review the literature surrounding the 

enhancement of genomic selection by integrating functional genomic information.  The 

choice of functional genomic information is also discussed. 
 

2.2 Quantitative traits in pigs 
 

Several genes influence most economic traits in pigs, and the genetic complexities 

of these traits in pigs become a challenge in advancing breeding strategies. An attempt in 

the past was to identify major genes that affect the trait of interest (Zak et al., 2017). 

Although some level of success was achieved, there are situations where a limited number 

of genes are insufficient to explain all the observed variations in the trait. According to 

Kearsey and Pooni (2020), this inadequacy in explaining the observed variations is 

sometimes evident later. Currently, genome-wide association studies (GWAS) and 

genomic selection are used in quantitative trait studies simply because they are sensitive 

and can capture significant background variations in other unidentified genes. 

Quantitative traits are classified into several categories, including morphological traits 

(e.g., litre size, weight at slaughter, muscle depth), physiological traits (e.g., blood 

pressure), and behavioural traits (e.g., aggression) (Larzul, 2021). Moreover, molecular 

phenotypes like gene expression levels and high and low-density cholesterol levels are 

also considered quantitative traits (Mackay, 2009). An understanding of the type of 

economic trait is therefore important in order to determine which animals should become 

parents of the next generation. 
  

2.3 Selective breeding  
 

Selective breeding has evolved. During the 1970s, it was based on phenotypes and 

pedigree information, lacking genetic or molecular data. Nowadays, selective breeding 

relies on phenotypic and genotypic information, resulting in more predictable outcomes. 

Currently, selective breeding is approached in two ways: the conventional approach based 
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on phenotypes and the modern approach using genetic engineering and advanced 

technologies to identify genes responsible for desirable traits such as disease resistance 

or increased yield (Gjedrem & Baranski, 2010; Meuwissen et al., 2016). The conventional 

approach uses tools like the variance component analysis and best linear unbiased 

prediction (BLUP) models, while the modern approach uses techniques like marker-

assisted selection (for monogenic traits) and genomic selection.  
 

2.4 Conventional approach 
 

2.4.1 Variance component analysis 
 

The genetics of quantitative traits utilises biometrical techniques to understand how 

different factors influence the phenotype (Kruuk et al., 2014). The genetic model of a 

phenotype is influenced by genetics and environment and can be expressed as P = f (G, 

E) (Ritchie et al., 2015). Here, P represents the observed phenotype, while G and E 

represent the genetics and environment, respectively. The decomposition of this model 

allows us to focus on a particular component while keeping the other constant. For 

instance, by assuming no genotype by environment interaction, the phenotypic variance 

can be divided into genetic and environmental variance. This genetic variance can be 

further divided into additive, dominance, and epistatic variance. The additive variance is 

of particular importance because it can be used to predict the performance of the progeny 

(Plomin & Deary, 2015). The variation in the phenotype due to additive variance is known 

as heritability (Visscher & Goddard, 2015). In animal breeding, the narrow-sense 

heritability is particularly significant for traits influenced by additive genetic effects such 

as body weight or muscle depth. An important aspect of genetics is the inheritance of 

traits from one generation to the next. Estimated breeding values (EBVs) are a measure 

of an animal's genetic potential and are influenced by genetic variance. Animals with 

higher EBVs are more likely to pass on favourable traits to their offspring, contributing 

to genetic improvement in the population. Therefore, selecting individuals with higher 

EBVs enhances the genetic quality of a population. 
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2.4.2 Best Linear Unbiased Prediction  
 

Genetic evaluations guide selection decisions by identifying individuals with 

superior genetic potential for desired traits. It is important to understand that certain 

statistical methods used to analyse genetic data are better suited for phenotypic 

measurements obtained from planned experimental designs and with balanced data sets. 

However, such situations may only be possible within the laboratory (biosecure animal 

breeding companies) or greenhouse experimental settings (as in the case of plant 

breeding). Data collected from agricultural species like pigs are generally highly 

unbalanced and fragmented due to numerous relationships. Therefore, when we try to fit 

such data into conventional statistical techniques, we might introduce bias and lose vital 

information. However, with a mixed model methodology like BLUP, we can effectively 

estimate genetic parameters like variance components, heritability, and breeding values 

(Demidenko, 2013). The mixed model methodology is designed to handle extended 

pedigrees, unequal family sizes, sex-limited traits, and assortative mating. This 

methodology helps to estimate the genetic covariance structure and improve predictions, 

even with incomplete or unbalanced data. 

2.5 Marker-based approaches 
 

The accuracy of predictions in conventional animal breeding has not always been 

reliable. This has made marker-based tools popular in pig breeding, particularly genomic 

selection, as they provide more accurate predictions. Previously, marker-assisted 

selection was popular; however, it has been largely superseded by genomic selection, with 

the exception of monogenic traits. 
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2.5.1 Genomic Selection  
 
Genomic selection is a state-of-the-art tool widely implemented in commercial pig 

breeding programs. The genomic selection model starts with a simple linear model 

generally referred to as ordinary least squares or least square regression, which is of the 

form Y = 	1!µ + Χβ + 	ε. (Pohlman & Leitner, 2003). Where Y = n x 1 vector of 

observed phenotypes, µ is the global mean, β = p	x	1 is a vector with marker effects,  ε =

n	x	1 is a vector of random residual effects with ε~N(0, σ"#) . X is a design matrix of 

dimension n x p, where n is the rows which contains the number of individuals or the 

genotypes, and p refers to the columns and it contains the markers. This basic model has 

been modified and improved in a number of ways. Currently, there are models like ridge 

regression, least absolute shrinkage and selection operators, and Bayesian models, just to 

mention a few. The implementation of genomic selection in pig breeding has 

revolutionised the industry by making it more efficient and cost-effective to select choice 

parents. For instance, it has improved selection of traits such as feed efficiency, growth 

rate, and meat quality. In recent years, the pig industry has seen significant improvements 

in feed efficiency, which is a crucial trait in pig breeding. For example, according to Tang 

et al. (2017), feed accounts for 60-70% of the total cost of pig production. Therefore, 

selecting pigs with improved feed efficiency can significantly reduce production costs. 

Furthermore, genomic selection has also helped in selecting meat quality in pigs. The 

quality of meat is an essential factor in the pig industry, as it affects the price and demand 

for pork. Pig breeders are able to select and breed animals with the desired meat quality 

traits, such as marbling, tenderness, and juiciness. This results in higher-quality pork 

products that meet the demands of consumers (Xu et al., 2019).  

 

Despite recent advances in breeding techniques, accurately predicting traits 

controlled by multiple genes remains challenging due to the complex interactions and 

cumulative effects of these genes. To address this, Meuwissen and Goddard (2010) 

proposed that whole-genome sequencing (WGS) could improve genomic predictions 

within and across breeds. Early simulations supported this idea and suggested that WGS 

could be a valuable tool for enhancing breeding outcomes (Meuwissen and Goddard 

2010). However, current empirical evidence on the effectiveness of preselected whole-



17 
 

genome sequencing (WGS) variants in genomic predictions has been inconclusive. For 

example, Ros-Freixedes and colleagues (2022) found that the accuracies of genomic 

predictions were not consistent across traits and lines and that the improvements achieved 

with WGS compared to standard marker arrays were generally small (Ros-Freixedes et 

al., 2022). 

 

In a different proposal, Poland and Rutkoski (2016) suggest that these challenges 

may be due to the intricate biological processes between genes and phenotypes. These 

complex processes include several downstream mechanisms, such as transcription, 

translation, metabolism, gene interactions, and epigenetic modifications. These factors 

could influence the expression of the economic trait of interest. Although the details 

regarding these procedures are mainly unknown, it has been reported that these regions 

contain regulatory elements such as enhancers, promoters, and silencers. These elements 

are pivotal in controlling when and to what extent genes are transcribed and translated 

into proteins. They contribute to the precise regulation of gene expression in different 

tissues and under various conditions. A different report by Pan et al. (2017) shows that 

several genome-wide association studies have shown that the majority of variants 

associated with the traits of interest lie in regulatory regions and could hold information 

vital to the expression of traits of economic importance. This insight highlights the 

importance of researching functional genomics in order to gain a better understanding of 

the function and interaction of genes within an organism. 

2.6 Functional genomics  
 

Functional genomics can help prioritise markers likely to affect traits and thus 

improve the accuracy of genomic prediction. Functional genomics is a branch of 

genomics that studies genes, gene functions and their interactions (Pevsner, 2015). The 

primary objective of functional genomics is to better understand how different aspects of 

an organism interact to produce a specific phenotype. Various techniques, such as 

expression quantitative trait loci studies and chromatin immunoprecipitation sequencing 

(ChIP-Seq), are used to better understand how these genes function within the pig genome 
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(Nonneman & Lents, 2023). Using expression quantitative trait loci (eQTL) studies 

enables us to explore genetic variants influencing gene expression levels in pig 

populations (Liu et al., 2020). Researchers are able to uncover regulatory elements 

controlling RNA abundance and learn about the underlying genetic variants contributing 

to observed expression variation. On the other hand, ChIP-Seq identifies protein-DNA 

interactions, revealing the binding sites of transcription factors, while histone 

modification profiling elucidates the epigenetic modifications associated with active or 

repressed gene expression (O’Geen et al., 2011). The use of these techniques provides a 

more complete picture of the complex regulatory mechanisms underlying cellular 

processes. 

Among these techniques, eQTL studies have a more direct impact on economic 

traits, as they influence gene expression levels, which in turn affect conventional 

phenotypes.  

 

2.6.1 Expression quantitative trait loci 
 
Standard eQTL analysis involves testing the direct association between markers and 

gene expression levels. This test is usually conducted on tens or hundreds of individuals. 

Using the GWAS approach, eQTL mapping allows for the identification of new 

functional loci without requiring any previous knowledge about specific cis or trans-

regulatory regions, which is indicative of how close an eQTL is to the causative variant. 

Over the past decade, eQTL analysis has been applied to various diseases and complex 

traits, including cancer, cardiovascular disease, obesity, and psychiatric disorders (Battle 

et al., 2014). These studies have identified hundreds of genetic variants that are associated 

with gene expression levels and have provided insights into the biological pathways and 

mechanisms that underlie disease susceptibility. In addition to identifying genetic variants 

that regulate gene expression, Battle and colleagues argue that eQTL analysis could be 

used to identify novel drug targets and biomarkers for disease diagnosis and prognosis 

(Battle et al., 2014).  

 

In the pig industry, eQTL analysis has been used to identify genetic variants that 

affect gene expression levels in various pig tissues. For example, in a study by Li et al. 
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(2019), eQTL studies identify genetic variants associated with differences in backfat 

thickness in pigs, an important trait for meat quality and production efficiency. Another 

study by Zhang et al. (2019) employed eQTL analysis to identify genetic variants 

associated with immune-related gene expression levels in response to PRRS infection in 

pigs, which could inform disease prevention or treatment strategies. 

 

In meat quality traits in pigs, Ballester et al. (2017) identified 92 significant eQTL 

associated with lipid metabolism across seven chromosomal regions. In a different report, 

Criado-Mesas et al. (2020) detected 186 significant eQTL associated with six genes 

regulating lipid metabolism and fatty acid composition. These findings show that 

genomic variants significantly affect the expression of genes related to muscle 

metabolism, lipid metabolism, and fatty acid composition, among others, which 

contribute to the observed variation in meat quality traits. To this end, gene expression 

can be considered an "intermediate phenotype" since it is expected to be more closely 

linked to genetic variations than conventional phenotypic characteristics.  
 

2.7 Expression quantitative trait loci for genomic 
selection 

 

Incorporating eQTLs into genomic selection is a promising concept, and therefore, 

modelling gene expression data as a predictor in genomic selection is expected to explain 

more complex biological regulation processes and potentially increase predictive 

accuracy. For instance, in human medicine, González-Reymúndez et al. (2017) integrated 

whole-omics data (including whole-genome gene expression profiles) into breast cancer 

prediction and demonstrated that omics and omic-by-treatment interactions explain a 

sizable fraction of the variance of survival time, and further suggested that whole-omic 

profiles could be used to improve prognosis prediction accuracy among breast cancer 

patients. In insect studies, Li and colleagues investigated the usefulness of transcriptome 

data for predicting traits in Drosophila melanogaster using 185 inbred lines (Li et al., 

2019). They utilised two different combined methods, first, an approach integrating 

genomic and transcriptome data,  GTBLUP (i.e., combining GBLUP and transcriptome 
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BLUP (TBLUP)). The second also combined GBLUP, and a reproducing kernel Hilbert 

spaces (RKHS) forming a GRBLUP. Overall, GRBLUP and GBLUP showed similar 

predictive abilities for most traits, but GRBLUP explained a higher proportion of the 

phenotypic variance (Li et al., 2019). Notably, only one trait, olfactory perception to Ethyl 

Butyrate in females, demonstrated a significantly higher predictive ability for GRBLUP 

(0.23) than GBLUP (0.21). 

In plant breeding, Loh and colleagues conducted a comprehensive investigation in 

2011, specifically focusing on soybean plants and their resistance to phytophthora sojae. 

The study compared the effectiveness of using marker genotype data versus gene 

expression data in predicting the resistance levels of these plants. Based on their findings, 

it was observed that using gene expression data yielded better accuracy in predicting 

resistance than using genotype markers alone (Loh et al., 2011). Similarly, in a study 

conducted by Guo and colleagues 2016, the accuracy of gene expression levels alone was 

low in maize breeding. However, when these levels were combined with SNP markers, 

the predictive abilities were significantly increased and were found to be either high or 

comparable to those achieved with GBLUP alone (Guo et al., 2016). 
 

2.7.1 Concept and method 
 

Incorporating eQTLs in genomic selection requires, first, conducting eQTL mapping 

studies. The genomic loci identified in this step represent potential eQTLs which can be 

used directly on chips. However, preselecting sets of variants is very important as 

currently available methods for genomic prediction are not yet capable of handling very 

large datasets without exorbitant computational resources (Ros-Freixedes et al., 2022). 

To this end, the eQTLs markers can be added onto chips as subsets from the pool of 

eQTLs. The eQTL / SNP chip created at this point is treated exactly as discussed earlier 

in conventional genomic selection. 
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3.1 Simulation procedure  

 

The AlphaSimR package in R was used in the entire simulation procedure (Gaynor 

et al., 2021). The general simulation scheme consists of i) simulation of the founder 

population, ii) simulation of quantitative trait loci, iii) simulating gene expression traits, 

iv) creating a new population based on the founder population, v) creating traits based on 

the gene expression traits, vi) simulating breeding programme, vii) performing eQTL 

mapping, and vii) performing genomic selection based on three different scenarios.  

3.2 Simulation founder population and traits 
 

To start the simulation, founder haplotypes were generated using the runMacs 

function. The runMacs function depends on the Markovian Coalescent Simulator 

algorithm developed by Chen and colleagues (2009), which efficiently simulates 

haplotypes under any arbitrary model of population history. The “GENERIC” setting was 

used as it is meant to be a reasonable all-purpose choice (Gaynor et al., 2021). The generic 

population history tries to reflect the shrinkage shape of domesticated population 

histories. 350 pigs were simulated across 18 chromosomes for a generic species since the 

current version of AlphaSimR does not have a built-in model for pigs. Chromosomes 

were simulated with the asrhelper package to have different sizes. These were simulated 

using the pig genome and linkage map reported by Warr et al. (2020) and Tortereau et al. 

(2012). Of these 350 pigs, sex was set using the "yes_sys" condition in AlphaSimR. The 

"yes_sys" condition sets the sex ratio to 1:1. Simulation parameters were then set using 

the SimParam class, and SNP chip containing 5550 markers per chromosome was 

designated for downstream analysis. This number of SNP per chromosome corresponds 

to a 100K SNP chip density. Four different SNP chips were simulated in total for this 

study using the addsnpchip feature in the AlphaSimR package. The densities of the SNP 

chips were 100K and three 80K chips. The 100K chip was specifically used for the eQTL 

mapping. The rest of the chips were used in the different genomic selection scenarios 

Materials and Methods  
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described below. Allele frequency (AF) was calculated by first obtaining the segregation 

site using the pullSegSiteGeno function in the AlphaSimR package and then calculating 

the AF based on the matrix data obtained. A threshold of 0.01 was set to eliminate very 

low frequencies, and a threshold of 0.99 was set to eliminate very high allele frequencies 

soon to be fixed in the population. The simulation focused on 50 genes (ng) and 11 

genomic loci (nl) affecting the expression of these genes and their trait-related parameters. 

The motivation for this number of genes can be found in Teng et al. (2022) report on the 

impact of sample size on the detection of eQTLs. The sample size of 350 was determined 

using power analysis with the genpwr package in R for the major effect (Moore et al., 

2020). The sample size estimation parameters in the package were as follows; alpha at 

10^-4, Power (1 – β) at 0.8, and minor allele frequency set at p, where p is a vector of 

minor allele frequencies of the simulated loci. By examining the relationship between 

sample size and the ability to detect eQTL, the study can assess the reliability and 

robustness of eQTL findings and make informed decisions about the sample size required 

for future studies. Additive variances were simulated such that one of the loci had a very 

high variance of 0.5 contributions, explained, while the 10 had very low variances of 0.05, 

summing up to one. Additive effects were set based on the additive genetic variance due 

to each locus as a = 5V$ 2p(1 − p)9  where V$ is the variance, p is the allele frequency. 

The predicted population mean was also calculated using the additive effects as M =

	∑ a. (p% − 1 +	p%)!
%&' . Heritabilities were set for the gene expression traits based on the 

parameters of the simulated founder population. They were set at relatively high values 

of 0.5 for all 50 genes; this is mainly because of the expectation that gene expression is a 

simpler trait than the downstream quantitative trait. Genetic and environmental 

components were incorporated into the defined gene expression traits.  
 

3.3 Simulating new populations 
 
A new population, considered generation one, was simulated based on the 

parameters of the founder population. Phenotypic traits were manually created based on 

the gene expression traits. The concept is straightforward: a function was created using R 
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using i) gene expression trait indices, ii) gene expression coefficient, iii) heritability and 

iv) AlphaSimR “pop class” as an input. The concept was to identify genomic variants 

affecting gene expression, and the gene expression, in turn affecting a final trait. In 

mathematical terms, E( =	∑ B)!
!*
%&' . G% +	ϵ)" where E( is gene expression for gene j, G% 

is the genomic variants ( for i = 1,2,3..nl), B)! is the effects of genomic variants i on gene 

expression, nl is the total number of genomic variants ( i.e., 11), and ϵ)" is the random 

error term for gene expression. The effects of gene expression on a trait is mathematically 

expressed as T = 	∑ B+"
!,
(&' . E( +	ϵ- where T is the final trait, E( is the gene expression 

for gene j, ng is the total number of genes in the model (i.e., 50), B+"is the effect size of 

gene expression j on the final trait.  

The combined effect of genomic variants on gene expression and the effects gene 

expression on the final trait is mathematically expressed as T =

	∑ B+"
.
(&' . (∑ B)!

!
%&' . G% +	ϵ)") +	ϵ-. The environmental variance was set based on 

heritability of 0.5. The phenotypic and genetic value obtained from the trait function as 

described above was added to the simulation object in AlphaSimR.  
 

3.4 Modelling breeding programs 
 
A first breeding program was designed to include crosses and selections to model 

successive generations. The breeding programme consisted of 300 dams and 50 sires with 

300 crosses and an expected progeny size of 12 per cross, yielding a total number of 3600 

young per generation. Through continuous selection and crossing, the program sought to 

produce a population with genomic variants affecting gene expression that, in turn, also 

affects the final trait of economic importance. In total, the simulation of this breeding 

program had 9 generations in all. 

3.5 Expression quantitative trait mapping  
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The AlphaSimR data structures were used to prepare genotype and phenotype data for 

eQTL analysis from the breeding programme described above. The GWAS function in 

the rrBLUP package in R was used to perform the expression quantitative trait loci 

mapping. The analysis was based on the mixed model y = Xβ + Zg + Sτ + 	ϵ as 

discussed in Yu et al. (2006) report, where y is a column vector of phenotype values (n x 

1) for n number of pigs, X is the design matrix for fixed effects (n x p),β is a vector of 

fixed effects that can model both environmental factors and population structure with 

dimensions (p x 1) (Endelman, 2023). Z is the design matrix for the random effect g (n x 

m) with g as a column vector of random genetic effects (m x 1)The variable g represents 

the individual pig as a random effect with Var(g) = Kσ#, reflecting the additive genetic 

contribution, where K is an (m x m) genetic relationship matrix  based on genomic 

information, and σ# denotes the additive genetic variance. The vector g contains the 

breeding values for m individuals. Additionally, S is the design matrix for the additive 

SNP effect τ (n x k) with τ as a column vector of additive SNP effects (k x 1). The ϵ is a 

column vector of residuals (n x 1) with residual variance of Var(ε) 	= 	Iσ"# as discussed 

in Endelman's (2023) updated version of the rrBLUP package.  

 

The expression and genotypic information were used as input, along with relevant 

parameters such as a minor allele frequency threshold of 0.05 and the inclusion of 

population structure correction. The analysis focused on identifying genetic variants 

associated with gene expression levels. The significant eQTLs from the eQTL mapping 

were identified and stored as a variable and used in downstream analysis.   

3.6 Genomic Resolution  
 

3.6.1 True location of the causative variant  
 

To ensure that the eQTL mapping results were accurate, the distance between the 

identified eQTLs and the actual location of the causative eQTL variant was calculated, 

and the absolute values were recorded. The genomic distance from the true location on 

the chromosome was determined for each significant eQTL. The calculated distances 
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were then used to evaluate the accuracy of the eQTL mapping in capturing the true 

location of the causative gene and measured in centiMorgan. 

 

3.7 Simulating genomic selection  
 

Genomic selection was conducted under three different scenarios. Scenario one 
consisted of only SNPs, scenario two consisted of SNPs and eQTLs, and scenario three 
only of eQTLs.  

 

3.7.1 SNPs only  
 

Out of the 9 simulated generations, the last six were used in genomic selection. The 

initial training population for the first generation was modelled using 3600 animals. As 

the generation progressed, the previous and the current populations were merged and used 

as the training data set. However, in the fifth (5th) and sixth (6th) generations, only the 

previous three generations are merged and used as the training data set with an 80K chip 

with only SNPs. For each generation in the breeding programme, genomic selection was 

performed using the RR-BLUP method as built in the AlphaSimR package. The selection 

criteria were the estimated breeding values (EBV) of the animals as predicted by the 

simulation model, and the top 350 animals were selected and used as parents in the next 

generation. The data of individuals in various generations were pooled together using the 

mergePops function in the AlphaSimR, enabling the combination of genetic information 

from the different generations. This was to mimic real-life scenarios in pig breeding 

programmes. Prediction accuracy was calculated by assessing the Pearson correlation 

between the genomic values predicted for the phenotypic trait and the true breeding 

values. Genetic mean and variance were obtained for each generation using the in-built 

meanG and VarG, respectively.  
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3.7.2 eQTL only 
 

In this scenario, the chip used in the genomic selection contained pre-selected eQTLs. 

These eQTL markers were the significant eQTLs in the eQTL mapping studies. eQTL 

variants with log-transformed values equal to or greater than 4 were pre-selected. For the 

preselection, the top 16 significant eQTLs per gene were selected, and any other random 

eQTLs, making a total of 80,000 eQTLs. The decision for these numbers is due to the fact 

that economic traits are affected by variants with highly significant associations (usually 

very small) and others with little to no significant associations (usually many). Therefore, 

the top 16 variants per gene and the random variants represent the variants with highly 

significant associations and variants with little significant associations, respectively. 

These 80,000 eQTLs were added onto a marker chip and used in the genomic selection. 

 

3.7.3 SNPs and eQTL 
 

In this scenario, the chip used in the genomic selection included SNP markers and 

additional eQTL markers. For the preselection, the top 4 significant eQTLs per gene were 

selected, and any other random eQTLs as explained in the eQTL only scenario, making a 

total of 20,000 eQTLs. To test the combined impact of the eQTL variants and 

conventional SNPs on genomic selection accuracy, we added the 20K eQTL variants to 

a 60K SNP, making an 80K chip. 
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The eQTL mapping results were obtained using a simulated gene expression dataset 

generated to mimic real-world scenarios. The dataset comprised expression profiles for 

50 genes across a sample population influencing one conventional phenotype. Results for 

the genetic gain, selection accuracies, and genetic variance were obtained by observing 

the progression of the breeding programme over time. There were nine generations in all. 

The first four were used in the eQTL mapping analysis, and the last six generations were 

used for genomic selection. Each generation in the simulation is equivalent to a breeding 

cycle. The results show differences in using different marker scenarios in genomic 

selection; however, the differences are not robust. 

 

4.1 Expression quantitative trait loci  
 

The first part of the study focused on eQTL analysis, which showed significant 

associations between genetic variants and gene expression levels. The eQTL analysis 

detected 3333 significant eQTLs, using a threshold of 4 after log transformation. All 50 

genes used in the study had at least one significant eQTL detected. Figure 1, here are 

randomly selected examples where significant variants were detected. 
 

Results  
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Figure 1: The Manhattan plots A, B, and C show the negative logarithm of the p-value 

on the vertical axis and chromosome number on the horizontal axis. The blue horizontal 

line indicates the significant threshold. A variant is significantly associated with gene 

expression when the variant is on or above the blue line. Plot B represents an up-close 

view of a single chromosome. Plot D is a Quantile-Quantile plot with the observed 

negative logarithm of p-values on the y-axis and an expected negative logarithm of p-

values on the x-axis. 
 

The highest count of significant eQTL from the analysis was observed in gene 9, with 

189 eQTL variants. The lowest eQTL counts were in genes 19 and 40, with counts of 3 

eQTL variants each. There was an observed average count of 67 and a standard deviation 

of 43.68.  
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Figure 2: Counts of significant eQTLs within genes 

Figure 2. Counts of significant eQTLs within genes. This distribution is not organised in any order. 
The y-axis shows the frequency of genes. The x-axis represents the range of significant eQTLs.  

 

 

4.1.1 Genomic Resolution  
 

In the context of eQTL mapping, genomic resolution refers to the ability to pinpoint 

the specific location of a genetic variant that is associated with a change in gene 

expression levels. Because this is a simulation study, the location of the causative eQTL 

variant is known, and therefore, the distances of lead eQTLs from the causative variant 

can be measured. In the analysis of distances, lead eQTLs from 42 gene expression traits 

were found between 0 and 10 cM from the causative variant (Figure 3). There were no 

lead SNPs between 40 and 60 cM from the causative variant.  
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Figure 3: A histogram showing the distribution of distances of lead eQTL SNPs per 

gene expression trait from the causative variant. The y-axis represents frequency (i.e., the 

number of observations). The x-axis shows the distance grouped into bins. The vertical 

bars represent the frequency of observations within each bin. 
 

 

The average distance between significant eQTLs and the causative variant of 

corresponding gene expression traits was also analysed. It was observed that eQTLs from 

20 gene expression traits were located between 0 and 10 cM from the causative variant 

(Figure 4). eQTLs from only one gene expression trait were found between 70 and 80 cM 

from the causative variant (Figure 4). The resolution in this simulated study provides 

insight into how accurately the eQTL analysis finds the location of the causative variant. 

After completing the power analysis, we found that our eQTL mapping strategy has 

performed strongly. In particular, the study was able to successfully identify at least one 

significant eQTL for each gene we examined. This result provides solid evidence for the 

effectiveness of the approach in capturing the genetic variations that influence gene 

expression levels throughout the genome. The study design is comprehensive, and the 

statistical methods are reliable, as evidenced by the detection of significant eQTLs in all 
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genes. This suggests that we have well-calibrated our sample size, effect size 

assumptions, and chosen statistical thresholds to uncover the genetic architecture that 

governs variations in gene expression. 

 

 

 
Figure 4: A histogram showing the distribution of average distances of significant 

eQTL from causal variants per trait. The y-axis represents frequency (i.e., the number of 

observations). The x-axis shows the distance grouped into bins. The vertical bars 

represent the frequency of observations within each bin. 
 

 

4.2 Genomic Selection  
 

The second part of this study analysed genomic selection using conventional SNPs, 

eQTLs, and a combination of both as markers. The analysis includes mean genetic gains, 

selection accuracies and genetic variance across the last 6 generations of the breeding 

programme. For some of the following figures, lines represent different marker scenarios, 

and the vertical bars in those lines represent standard deviations. 

 



33 
 

 

4.2.1 Genetic gain  
 

The estimated genetic improvement was for the entire population in each breeding 

cycle. For easy interpretation, a baseline was established by subtracting generation one 

from all other generations. This makes generation one the reference point for all the 

scenarios under study, as shown in Figure 6. From the analysis, it was observed that the 

mean genetic gain ranged from 4.1 ± 0.4 to 20.5 ± 1.05 across generations one to six when 

eQTL alone was used as a selection marker. Similarly, when SNPs were only used as 

markers in the genomic selection, the mean genetic gain values ranged from 4.1 ± 0.5 to 

20.5 ± 0.14 over the same generational span. 

When eQTLs and SNPs were combined as selection markers, the analysis showed 

mean genetic gain values ranging from 4.05 ± 0.5 to 19.8 ± 1.3 across generations one to 

six, as seen in Figure 5 below. 
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Figure 5: This figure provides a visual representation of genetic gain by different 

marker scenarios in genomic selection. The y-axis shows the mean gain, and the x-axis 

represents the generations. The black, blue, and red lines show the trends by eQTL, SNPs, 

and eQTL+SNPs, respectively. 

 
 

4.2.2  Selection accuracies  
 

The analysis showed that the mean selection accuracies were relatively constant 

between cases and increased somewhat over generations from 0.309 ± 0.06 to 0.33 ± 0.05 

for generations two and six, respectively. For the scenario where SNPs were only used as 

markers in the genomic selection, the selection accuracies ranged from 0.31 ± 0.064 to 

0.343 ± 0.064 across generations two to six. When eQTLs and SNPs were combined, the 

analysis showed mean selection accuracy values ranging from 0.31 ± 0.06 to 0.35 ± 0.07 

across the same generational span, as seen in Figure 6 below. 
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Figure 6: This figure provides a visual representation of selection accuracies of 

different marker scenarios in genomic selection. The y-axis shows the mean accuracy, 

and the x-axis represents the generations. The black, blue, and red lines show the trends 

by eQTL, SNPs, and eQTL+SNPs, respectively. 

 
 
 
 
 

4.2.3 Genetic variance 
 

The genetic variance was recorded for all generations in the genomic selection 

programme. From the analysis, it was observed that the genetic variance values ranged 

from 1.6 ± 1.8 to 1.54 ± 1.28 across generations one to six. Similarly, when SNPs were 

only used as markers in genomic selection, the genetic variance values ranged from 1.6 ± 

1.8 to 1.5 ± 1.30 for generations one to six, respectively, as shown in Figure 7. When 

eQTLs and SNPs were combined, the analysis showed mean values ranging from 1.644 

± 1.8 to 1.45 ± 1.2 across generations one to six. 
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Figure 7: This graph is a representation of the genetic variance of different marker 

scenarios in genomic selection. The y-axis shows the mean-variance, and the x-axis 

represents the generations. The black, blue, and red lines show the trends by eQTL, SNPs, 

and eQTL+SNPs, respectively. The vertical lines in the data points represent the standard 

deviations.  
 

The study did not find significant improvements in genomic prediction accuracy with 

the use of eQTLs compared to conventional marker arrays. However, small improvements 

in selection accuracy were observed. 
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In this study, simulations were used to analyse the response to genomic selection 

using eQTLs, SNPs, and a combination of eQTLs and SNPs as markers in a pig breeding 

programme. The study was in two parts; the first focused on the analyses of eQTL 

mapping, and the second used eQTLs from the mapping results as markers in the genomic 

selection. The simulated SNP chips in this study were designed with some preselected 

eQTL variants (with the exception of the scenario with only SNP arrays) such that the 

density of variants remained similar across sets. The study did not find significant 

improvements in genomic prediction accuracy with the use of eQTLs compared to 

conventional marker arrays. Only small improvements in selection accuracy were 

observed. This section will discuss (1) the effectiveness of eQTL mapping in this study, 

(2) the selection accuracy that was achieved with the different marker scenarios, and (3) 

the implications of this study for animal breeding. 

5.1 The effectiveness of eQTL mapping  
 
In empirical studies, eQTL mapping often finds a major locus for gene expression that 

maps back to the same location (“local”) of the major locus (i.e., the genetic variant 

influencing the expression of a particular gene is found near or within the gene's genomic 

region), as well as other “trans-acting” loci that tend to have smaller effects (Liu et al., 

2020). As such, the present study simulated the genetic model in the same way. Here, 11 

loci affect the gene expression traits, with one major locus. This major locus explained 

0.5 of the additive genetic variance, while the remaining 10 had very low variance of 

0.05. Aside from this, heritabilities were set for the gene expression traits based on the 

parameters of the simulated founder population, as discussed in Chapter 3 above. They 

were set at relatively high values of 0.5 for all 50 genes; this is because of the expectation 

that gene expression is a simpler trait than the downstream conventional quantitative trait.  

 The output of the eQTL mapping was analysed to find how well it performed in 

locating the causative variant. This was done by determining the distance of the lead 

 Discussion 
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eQTLs from the causative variant expressed in centimorgans. Here, genetic distance in 

centimorgans has to do with recombination and not any physical positions in base pairs.  

Recombination events during gamete production are less likely to occur between 

two genetic loci if their recombination frequency is low, that is, a low genetic distance. 

These loci, therefore, have a higher likelihood of being inherited jointly, which means 

that they typically get passed down as a connected unit from one generation to the next 

generation. From a biological perspective, 84 % of all the detected lead eQTLs are likely 

to be inherited with causative variants and passed on to the next generation of animals.  

However, as this was a simulated study, the eQTL mapping successfully detected variants 

near the causative variant. What this means is that eQTL mapping is able to detect variants 

more tightly linked to causative variants. Therefore, in the future, there is a potential use 

of eQTL mapping to find causative variants for functional studies. From the results, eQTL 

mapping can partially overcome the limitations of relying on neutral markers in 

incomplete linkage disequilibrium with causative genetic variants in genomic selections 

(Clark et al., 2020). For instance, breeding programmes can prioritise functional variants 

for inclusion in genomic selections to enhance the accuracy of genomic selections. 

5.2 The selection accuracy 
 
The observed variation in selection accuracies was large, most importantly with 

overlapping standard deviations in the three scenarios in the study. This makes it difficult 

to confidently state that one scenario (e.g., the marker set) has a significantly different 

accuracy. However, the eQTL marker sets have the highest means. This result is 

consistent with Loh and colleagues' report that showed improved prediction accuracy 

with eQTLs in genomic prediction. In their findings, it was observed that using gene 

expression data yielded better accuracy in predicting resistance than using genotype 

markers alone (Loh et al., 2011). The second-highest mean selection accuracy was 

observed in the combined eQTL and SNPs marker set. Theoretically, the inclusion of pre-

selected variants associated with a trait in the SNP marker array should improve genomic 

prediction accuracy (Schulz-Streeck et al., 2011). This is because a combination of 

conventional SNP array and preselected eQTL markers on a chip is expected to provide 

a wide coverage of the genome and, therefore, hold more information than SNP marker 
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arrays alone. In biological contexts, this combination encompasses a range of variants 

(SNPs and functional variants) and, therefore, provides a broad coverage of the genetic 

structure relevant to the trait. These different variations linked to the trait may be in 

linkage disequilibrium with other nearby variants and, to some extent, aid in capturing 

information from neighbouring causative variants.  

The mean selection accuracy observed when SNPs were only used as markers in 

the genomic selection was not different from that of the genomic selection with eQTL 

plus SNP markers set over a number of generations. To this end, the selection accuracies 

observed in all the scenarios were variable, and it remains complicated to distinguish 

them. For instance, particularly in marker sets with only eQTLs and eQTL plus SNP 

combinations, the accuracies were not constant throughout the breeding programme. 

Although eQTL mapping was successful, the lack of differences in marker scenarios may 

have reasons. To begin with, in this study, most of the markers were selected randomly, 

which means they were not guided by prior knowledge or specific features of the markers. 

This raises the concern of whether the randomly selected markers capture all relevant 

information. Specifically, whether the chosen markers effectively encompass the genetic 

variation and factors influencing the trait under consideration. Lastly, the lack of 

difference may be due to inadequate representation of genetic diversity and complexities 

of studied traits by chosen markers. This leads us to a critical analysis of the constraints 

that our marker selection strategy imposes, shedding light on issues that require careful 

attention when interpreting our results. 

5.3 Limitations of this study 
 

The flexibility of simulation scripts enables easy adaption to various parameter values, 

offering an outlet for detailed examinations of the resilience and sensitivity of the models. 

Even though time and computational resources are the only things standing in the way of 

such research, advances in technology and computer power will pave the way for 

increasingly comprehensive and intricate simulations.  
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It is important to acknowledge that the present study has several limitations that could 

affect the accuracy of the results. To address this, it is necessary to outline these 

limitations and suggest possible alternatives for the simulation. Therefore, the following 

points highlight some of the limitations of the study and provide alternative solutions that 

could be implemented to improve the study's validity and reliability. 

1. The breeding programme structure contained relatively small populations 

compared to the databases commonly available to pig breeders. A larger 

population usually represents a broader genetic diversity. With more 

individuals, there is a higher likelihood of capturing a wider range of genetic 

variants contributing to the trait of interest. The larger sample size provides 

more information for estimating the effects of individual markers, leading to 

more precise predictions of genetic merit, and consequently, the differences 

between scenarios might be revealed with more data. 

2. There is a possibility of using a whole genome sequence; however, this 

study used a 100K chip for the eQTL mapping. The use of a 100K chip 

might lead to missing relevant variants that could contribute to the trait. 

Whole-genome sequencing has the potential to identify a broader spectrum 

of genetic variations, including those located in regulatory regions and non-

coding regions that may be crucial for trait regulation. 

3. Chromatin sequence data were not taken into consideration in this 

investigation. To simulate genetic variants linked to chromatin states, the 

study might have benefited from modelling chromatin quantitative trait loci 

(cQTLs). To represent how chromatin sequence data affects the simulated 

characteristic, these cQTLs can be added to the simulation model. For 

example, by comparing models with solely genomic predictors, only 

epigenomic predictors, only eQTLs, and a combination of the predictors, 

the study may have investigated the relative contributions of genetic 

markers, chromatin sequence data, and eQTLs.  

4. Lastly, the current study used a simple RR-BLUP for prediction. RR-BLUP 

is a linear model that assumes a genetic architecture where the effects of 

genes are additive in nature. However, there is nothing linear in biological 

terms. The assumption of the additivity of gene effects may not completely 
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explain the complexities of genetic interactions in the real world. Therefore, 

for a more comprehensive understanding and improved predictive accuracy 

in real-world scenarios, it is necessary to explore advanced Bayesian models 

that can capture nonlinearity and intricate genetic relationships. 

 

In addition to the points stated above, it is worth mentioning that the complexity of 

successful prediction phenotype may lie in how various factors are interconnected to 

produce it. For instance, Boyle and colleagues argue that a large fraction of all genes 

expressed in relevant tissues can affect a phenotype and that much of the trait variance is 

mediated through genes not directly involved in the trait in question (Boyle et al., 2017). 

However, this argument appears at odds with conventional ways of understanding the 

links from genotype to phenotype. The conventional way assumes a relatively direct 

molecular pathway from genotype to phenotype. Even so, Boyle and colleagues (2017) 

provide a clear demarcation of the variance distribution of phenotypes. Although this 

simulation study followed a similar path by looking at genomics regions that affect gene 

expression, which in turn affect some final phenotype, the variants captured were unable 

to fully explain the variabilities in the final trait.  

 

 

5.4 Implications for breeding practices 
 

The molecular mapping from genotype to phenotype remains unclear for the highly 

diffuse genetic basis of most economic traits. The results did not indicate a big impact of 

eQTLs on genomic selection. This can be related to the fact that, in this simulation, eQTL 

marker sets are less, and their contribution to the selection accuracy was rather small. As 

no significant impact in selection accuracy was observed with eQTLs, the genetic gain 

was also not influenced. However, compared to SNPs and eQTL plus SNP marker sets, 

eQTL was better for a majority of the generations in the simulation. It is worth mentioning 

that selection accuracy is directly related to genetic gain, and so, therefore, methods that 
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lead to better estimation of breeding values will lead to higher genetic gain in the 

population.  

 

 

Therefore, considering the potential of eQTLs' effect on the estimation of breeding 

values can positively contribute to a more accurate selection of pigs. For instance, in a 

breeding company, there are a number of considerations for implementing eQTL mapping 

in large pig breeding programmes. The core of this lies in understanding the biology of 

eQTLs and how they influence gene expression. The industry could work with genomics 

and bioinformatics specialists to build a solid body of knowledge about the function of 

eQTLs in pig genetics. Integrating eQTL mapping data into currently used genomic 

prediction models such as Bayesian models is the next stage. To further increase the 

precision of genomic predictions, the industry could investigate ways to efficiently 

combine data from eQTLs with those of conventional genetic markers.  

 

In the pig population, the industry could perform eQTL mapping on a subset of the 

pig population and evaluate the effect on the accuracy of genomic predictions. Verify the 

outcomes using conventional genomic prediction methods and established breeding 

values. If the pilot experiments yield encouraging results, the industry could think about 

expanding the use of eQTL-informed genomic selection. Using the combined data from 

eQTLs and genetic markers, update breeding values and evaluate the results in terms of 

genetic gain and selection accuracy.  

 

It is interesting to consider the potential uses of eQTL mapping data in the pig 

breeding industry beyond genomic prediction. Functional annotation of pig genomes, 

discovery of novel biomarkers, and understanding of gene regulatory networks are all 

promising areas that could benefit from this technology. 
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5.5 Future research  
 

In future research, there is potential to enhance the results by exploring the 

simulation settings, such as the number of gene expression traits. Many other 

combinations of variables, such as the number of pigs, SNPs, and genes, can be 

experimented with by researchers. Additionally, future research attempts may dive into 

combining real-world eQTL data to enhance the realism of simulations, bringing the 

virtual models closer to the intricacies observed in biological systems. 

 

In such studies, researchers should consider models such as the ominigenic model 

(Boyle et al., 2017); this will ensure that genetic contributions to complex traits, which 

can be partitioned into direct effects from core genes and indirect effects from peripheral 

genes acting in trans, are captured.  

Finally, future research will benefit from large computational resources and time, 

as this is a computational-intensive task.  
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Simulations are useful tools for examining different situations, pinpointing areas 

where knowledge is lacking, and gaining a better understanding of the important factors 

within a model system. However, the accuracy of the inputs is crucial for simulations to 

be effective, and they can be difficult to carry out for complex systems. In a study that 

only considered one productive trait, a simplified model was used to identify gaps using 

eQTL in genomic selection.  

 

The lack of a big impact of eQTL markers on selection, despite a successful eQTL 

mapping, could raise arguments against its implementation in pig breeding programmes. 

The beginnings of big things start small, and although there was no big impact, a number 

of factors could have been involved in the simulations or done differently. Therefore, an 

expansion of this study should consider a better combination of the marker densities, 

statistical models, number of genes, and population size, which are needed to allow 

drawing more assertive conclusions regarding the impact of eQTLs in genomic 

predictions in pigs.  
 

 

 

 

 

 

 

 

Conclusion  
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This study aimed to improve the accuracy of genomic selection for pig breeding by 

addressing the challenge of accurately predicting highly polygenic traits using 

genome-wide markers. Although genomic selection is popular, the current accuracy 

limitations are due, in part, to relying markers not specifically selected for their 

functional relevance. In this case the markers might not capture the underlying 

genetic variations responsible for the traits we aim to predict.  

 

To address this, the study explored genes and their expressions within genomic 

selection, specifically using markers that affect gene expression levels. The study 

simulated a breeding program targeting a single trait influenced by 50 genes to 

investigate the circumstances under which eQTL markers could enhance selection 

accuracy in pig breeding. I simulated a pig breeding program in a computer, and 

three genomic selection scenarios were explored. Two of the scenarios used 

variants from the markers from gene expression, while the third used simulated SNP 

markers. These scenarios aimed to evaluate the impact of markers on selection 

accuracies. 

 

The results did not reveal a substantial impact of eQTL markers on genomic 

selection, contrary to expectations. The study's findings underscored certain 

limitations and emphasized the necessity for further investigation into the role of 

gene expression markers in optimising genomic selection strategies. 

Popular science summary 
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