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Estimating the load, allele frequency, and linkage disequilibrium 
of functional and possibly deleterious variants in different cattle 
breeds.  



 

 

The domestication process and artificial selection can lead to an increased proportion and frequency 

of deleterious genetic variants affecting health and productivity in cattle. The aim of this project was 

to estimate the load and allele frequency spectrum of different kinds of functional and possibly 

deleterious variants (missense, potentially loss-of-function, potentially gene-regulatory) in 3 

different cattle breeds (Brahman, Hereford, and Holstein), predict with bioinformatic tools the effect 

of these variants on proteins, and investigate the pairwise linkage disequilibrium between 

deleterious variants, and between deleterious variants with their surrounding area.  

 

For the analysis the 1000 Bull Genome dataset was used. Deleterious missense and loss-of-function 

variants were identified using MutPred2 and MutPredLOF, respectively, and Transcription Start 

Site and enhancer variants were identified using Cap Analysis Gene Expression sequence data. 

PLINK was utilized for the allele frequency and linkage disequilibrium computations. The 

performance of MutPred2 was evaluated by performing MutPred2 analysis on deleterious variants 

present in the Online Mendelian Inheritance in Animals (OMIA) database.  

 

The results showed low deleterious mutation load and an enrichment of deleterious variants at low 

frequencies, indicating the effectiveness of purifying selection at purging them from the population. 

Moreover, balancing selection may be a potential mechanism for the higher frequencies observed 

for a small amount of deleterious variants. The observed breed-specific differences in load and allele 

frequencies may be attributed to differences in effective population size, selection pressure, and 

breeding strategies. Despite lacking proper annotation, the enrichment of regulatory variants at 

lower frequencies suggests that they are under the influence of selection. The observed low linkage 

disequilibrium between and around highly deleterious variants may be attributed to their low 

frequencies and their presence on different haplotypes due to recombination. Evaluation of 

MutPred2 revealed that the inclusion of Position-Specific Iterative Basic Local Alignment Search 

Tool (PSI-BLAST) in the analysis is necessary for the reliable identification of deleterious variants.  

 

This study, if implemented accurately on a large scale, has the potential to facilitate the development 

of a genomic database that can contribute to reducing the frequencies of deleterious variant through 

genomic selection and improving predictions on causative variants linked to genetic defects, 

ultimately enhancing the effective management of genetic diseases. 
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Each genome contains mutations that may have an impact on fitness and health 

(Bosse et al., 2019). All genetic variants that lower the fitness of an organism are 

referred to as deleterious. When these variants are highly deleterious or lethal, they 

are quickly eliminated from the population through the process of natural selection 

(Kimura, 1983), whereas the mildly deleterious variants tend to remain at low 

frequency within a population, primarily in the heterozygous state (Mukai et al., 

1972; Zhang et al., 2016) 

 

The domestication of wild animals creates a population bottleneck because only a 

small subset of the original wild population is chosen to form the initial breeding 

stock (Lu et al., 2006). Additionally, artificial selection for specific traits further 

reduces the effective population size during the process of breed formation (Frantz 

et al., 2020a) and increases the inbreeding (Lush, 1946). Inbreeding, the inheritance 

of identical copies of genetic material from closely related parents, is more 

prevalent in small populations, and can negatively impact health and reproduction 

(Lynch et al., 1995). The reduced fitness observed in inbred offspring, compared to 

outbred offspring, is called "inbreeding depression" (Keller & Waller, 2002) and it 

is associated with the accumulation of recessive harmful mutations in the genome 

and the higher probability of these mutations to become homozygous (Agrawal & 

Whitlock, 2012; Charlesworth & Willis, 2009a).  

 

Consequently, higher levels of homozygosity, lead to a decrease in the effective 

recombination rate (Moyers et al., 2018), and to the accumulation of deleterious 

variants that are in linkage disequilibrium (LD) with loci that undergo strong, 

positive, artificial selection (Hartfield & Otto, 2011a). Linkage disequilibrium (LD) 

refers to the nonrandom association of alleles at two or more loci. Genetic 

Introduction  
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hitchhiking is the process, in which genetic variants increase in frequency due to 

LD with variants under positive selection, as long as their impact on fitness is lower 

than the strength of selection acting on the targeted variants (Hartfield & Otto, 

2011b). This makes selection less effective at removing mildly deleterious variants, 

and it is more likely that new slightly beneficial mutations will be lost due to genetic 

drift (Lande, 1994; Lynch & Gabriel, 1990; Whitlock et al., 2003). As a result, the 

effectiveness of selection can be limited and, consequently, the genetic gain 

achieved in breeding programs may be reduced (Moyers et al., 2018).  

 

The domestication process can lead to an increase in the number, frequency, or 

proportion of deleterious genetic variants that are either fixed or segregating in the 

genomes of domesticated species (Moyers et al., 2018) Various methods are used 

to assess the proportion of potentially deleterious variants present in domesticated 

species’ populations, including counting the absolute number of variants at derived 

sites, calculating the ratio of deleterious to synonymous variants, and observing an 

increase in the frequency of potentially deleterious variants within a population 

(Lohmueller, 2014; Moyers et al., 2018). In cattle, breeds are categorized under the 

subspecies Bos taurus taurus and/or Bos taurus indicus (Pitt et al., 2019). As the 

founder population sizes differ among breeds, their deleterious mutation load can 

also vary (Elsik et al., 2009). In addition, the variation between breeds in the 

intensity and practices of artificial selection and in the rate of inbreeding can also 

contribute to the variation in deleterious mutation load among cattle breeds (Frantz 

et al., 2020a).  

 

Efficient detection and handling of genetic defects could be accomplished with 

widespread access to genome sequence data from a substantial number of cattle that 

have been phenotyped for specific traits (Daetwyler et al., 2014). The 1000 Bull 

Genomes is a collection of complete cattle genome sequences that can account for 

a significant proportion of global cattle diversity (Hayes & Daetwyler, 2019). This 

dataset can facilitate the detection of harmful mutations that can affect heath, 

welfare and productivity of animals and the identification of relationships between 

specific variants and traits in cattle populations. (Daetwyler et al., 2014). 
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While significant advancements have been made in annotating protein-coding 

genes in livestock species, the majority of these genomes consist of noncoding 

regions that are not well annotated (Halstead et al., 2020). Precise identification and 

annotation of the gene regulatory elements are crucial for gaining insights into the 

possible mechanisms that control gene expression (Salavati et al., 2023) and it will 

enable the identification of causal variants for disease (Halstead et al., 2020) and 

production traits (Alexandre et al., 2021). Epigenomic methods, such as Chromatin 

Immunoprecipitation followed by sequencing (ChIP-seq) and the Assay of 

Transposase Accessible Chromatin sequencing (ATAC-seq), have been utilized for 

the characterization of functional elements in model organisms and livestock 

species (Alexandre et al., 2021; Halstead et al., 2020; Shen et al., 2012) . Cap 

Analysis Gene Expression (CAGE) (Takahashi et al., 2012) has been used 

successfully for the annotation of Transcription Start Sites (TSS) and enhancers in 

cattle (Salavati et al., 2023).  

1.1 Prediction of possibly deleterious variants  

 

The identification of deleterious variants and their associated functional alterations 

is challenging. Variants can have a wide range of functional impact, causing a 

variety of molecular changes even within a single protein. However, most of the 

existing methods do not offer sufficient information about the potential mechanisms 

impacted by mutations and they cannot model the type of alteration in protein 

structure and function (Pejaver et al., 2020). MutPred2 is a machine-learning based 

software that utilizes both genetic and molecular data to assess the deleteriousness 

of amino acid substitutions (Pejaver et al., 2020) and it is developed based on a data 

set that includes Mendelian disease variants present in human. It provides a general 

pathogenicity score ranging from 0 to 1, and a ranked list of molecular alterations 

potentially affecting the phenotype. Currently, MutPred2 considers over 50 

structural and functional properties, including structure, signal peptide and 

transmembrane topology, catalytic activity, metal, and macromolecular binding, 
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PTMs, and allostery. In human, comparative analysis between MutPred2 and other 

methods such as CADD (Kircher et al., 2014), FATHMM (Shihab et al., 2013), 

GERP++ (Davydov et al., 2010), MutationTaster2 (Schwarz et al., 2014), MutPred, 

PhyloP (Pollard et al., 2010), PolyPhen-2 (Adzhubei et al., 2010), SIFT (Ng & 

Henikoff, 2001), and SNPs&GO (Calabrese et al., 2009) revealed that MutPred2 

was the best performing method in terms of AUC and its high sensitivities at lower 

false positive rates (Pejaver et al., 2020).  

 

Loss-of-function (LOF) variants are variants that disrupt the normal function of a 

protein. Frameshifting and stop variants are examples of such variants. 

Frameshifting variants involve insertions and deletions of nucleotides (indels) that 

are not divisible by three, leading to a shift in the mRNA coding frame. Stop 

variants involve the gain or loss of stop codons in mRNA. Unlike missense (Cline 

& Karchin, 2011), LOF variants have not been as extensively studied. Previous 

methods, such as SIFT Indel (Hu & Ng, 2012) and NutVar (Rausell et al., 2014) 

encounter challenges in effectively differentiating between various types of loss-

of-function variants within the same protein. Moreover, these methods limit their 

training data to proteins with high quality annotations, limiting their applicability 

to genes that have not been extensively studied. Therefore, similarly to MutPred2, 

MutPredLOF was created (Pagel et al., 2017), based on data on pathogenic 

(disease-causing) stop gain and frameshifting variants from the Human Gene 

Mutation Database (HGMD), for the identification of potentially LOF variants 

proposing specific molecular changes. Each mutation input into MutPredLOF 

yields a score ranging from zero to one, where higher scores indicate a greater 

likelihood of pathogenicity. Additionally, MutPredLOF provides information about 

up to five structural and functional mechanisms affected in the implicated region of 

the protein, supported by significant prior corrected P-values (below 0.05). 

 

 

 



15 

 

 

1.2 Project Aim  

 

The aim of this project was to estimate the load and allele frequency spectrum of 

functional and possibly deleterious variants of different kinds (missense, potentially 

loss-of-function, potentially gene-regulatory) in different cattle breeds, predict with 

bioinformatic methods the effect of these variants on proteins, and investigate the 

pairwise LD between deleterious variants, and between deleterious variants with 

their surrounding area.  
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The dataset used in this study was the publicly available version of the 1000 Bull 

Genome dataset (Run 9). The data preparation steps, and the software used are 

explained in detail below.  

 

2.1 Data 

 

Variant Call Format (VCF) files for 1,039 animals in total were obtained from the 

1000 Bull Genome dataset (Hayes & Daetwyler, 2019). These animals belonged to 

72 breeds in total, including 92 animals of unknown breed. The number of animals 

in each breed ranged from 1 to 146. There were breeds that belonged to Bos taurus 

taurus and breeds that belonged to Bos taurus indicus. Two hundred six animals 

were females, 349 were males and 484 were of unknown sex, due to insufficient 

information in the metadata available in the European Nucleotide Archive. The 

reference genome used in the analysis was ARS-UCD1.2. Genetic variants on sex 

chromosomes were discarded. To analyze and compare the allele frequency 

spectrum and LD in different cattle breeds, I decided to incorporate breeds that 

represented different selection pressures and strategies. Therefore, both Bos taurus 

taurus and Bos taurus indicus cattle were included, while both dairy and beef breeds 

were considered for the Bos taurus taurus cattle. Consequently, three breeds were 

selected: Hereford (beef breed), Holstein (dairy breed), and Brahman (Bos taurus 

indicus), representing the breeds with the highest number of individuals in each 

category in order to obtain the best estimates.  In total the dataset included 23 

Hereford, 146 Holstein and 37 Brahman cattle. 

 

Materials and Methods  
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2.2 Functional annotation and identification of 

deleterious variants 

 

Ensembl Variant Effect Predictor (VEP, (McLaren et al., 2016)) was used to obtain 

the functional consequences of the variants. Variants within a gene with a missense 

annotation were retained in order to predict their deleterious effect using MutPred2 

(Pejaver et al., 2020). The necessary input files for MutPred2 were prepared, 

formatted in the standard FASTA format with the substitutions specified in each 

sequence's header along with the sequence ID, followed by the protein sequence. 

Every protein sequence was of length >30 and <30,000 residues, in order to be 

analyzed by MutPred2, therefore proteins of length <30 residues were removed. In 

addition, to accommodate reading limitations of MutPred2, the amino acid 

selenocysteine (U) was replaced by cysteine (C) in all protein sequences. Missense 

indels were excluded from the analysis, focusing solely on missense single 

nucleotide polymorphisms (SNPs). To reduce computation time only missense 

variants that belonged to Ensembl canonical transcripts were retained for the 

proteins with multiple transcripts. Canonical transcripts are the ones that are the 

most conserved, most highly expressed, have the longest coding sequence and are 

represented in other resources, such as NCBI and UniProt. In total 436,944 SNPs 

were assessed by MutPred2 (Table 1). MutPred2 provides information about 

possible structural changes due to amino-acid alterations, along with the posterior 

probabilities of the loss or gain of certain structural and functional properties due 

to the substitution (Pr) and empirical p-values (P) calculated as the fraction of 

benign substitutions in MutPred2's training set with Pr values >= to the Pr value 

for the given substitution. It also provides a pathogenicity score between zero and 

one that indicates the probability that the amino acid substitution is pathogenic. A 

score threshold of 0.50 would suggest pathogenicity. However, a threshold 

of 0.68 yields a false positive rate (FPR) of 10% and that of 0.80 yields an FPR of 

5%. Therefore, in this study, substitutions with a score higher than 0.80 were 

considered highly deleterious and substitutions with a score higher than 0.50 and 

lower than 0.80 were considered as moderate.  
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Similarly to missense, variants within a gene that were labelled by VEP as 

frameshift and stop gain were retained in order to predict their deleterious effect 

using MutPredLOF (Pagel et al., 2017). The input files were prepared in a modified 

FASTA format with each variant represented by a pair of two ordered sequences: 

the unmodified wildtype protein sequence and then the mutant protein sequence. 

To generate the mutant protein sequence, the Biostrings R package (Pagès et al., 

2019) was employed to create the mutated coding sequence and subsequently 

translate it into the mutant protein. The header did not need to conform to any 

particular format in MutPredLOF. Every protein sequence that had a length <30 

and >30,000 residues was removed. To reduce computation time only frameshift 

and stop gain variants on Ensembl canonical transcripts were retained for the 

proteins that had multiple transcripts. In total 43,001 number of variants were 

assessed by MutPredLOF. MutPred-LOF assigns a score ranging from zero to one 

for each mutation input, with higher scores indicating a higher likelihood of 

pathogenicity. Furthermore, the model reports up to five structural and functional 

mechanisms affected in the region of the protein influenced by the mutation. To 

facilitate classification, three score thresholds are offered to help distinguish 

between pathogenic and neutral variants, considering different levels of FPR: 0.40 

(10% FPR), 0.50 (5% FPR, recommended), 0.70 (1% FPR). In this study, mutations 

with a score >= 0.50 were classified as highly deleterious, while mutations with a 

score between 0.40 and 0.50 were classified as mildly deleterious. This approach 

aimed to maintain consistency between the classification of missense and loss-of-

function variants. 

 

2.3 Identification of variants in gene regulatory regions 

 

To identify genetic variants within promoter and enhancer regions, we utilized 

predictions of transcription start site (TSS) and TSS-enhancer sets derived from on 

CAGE sequence data that were available in the study of  (Salavati et al., 2023). In 

their study, CAGE sequencing was employed to identify TSS across a set of 24 
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tissues from 3 different cattle populations: one dairy (Belgian Holstein Friesian), 

one beef– dairy cross (German Charolais × Holstein F2), and the Canadian Kinsella 

composite cattle (beef). They considered a putative TSS or TSS-Enhancer region, 

as valid only when it was present across at least two-thirds of the tissues (Salavati 

et al., 2020) resulting in the detection of 51,295 TSS and 2,328 TSS-Enhancers. All 

the coordinates from the TSS and TSS-Enhancers were extracted, and subsequently, 

all genetic variants located within these specified genomic regions were identified 

by cross-referencing with the original VCF files in our dataset. This process 

involved determining which positions of the variants in our VCF files coincided 

with the coordinates of TSS and enhancers. The total number of TSS and TSS-

enhancer variants are shown in Table 1.  

 

2.4 Allele frequency spectrum for different classes of 

variants 

 

For the allele frequency analysis, minor allele frequencies (MAF) were computed 

separately for each breed (Brahman, Holstein, and Hereford) using PLINK (Purcell 

et al., 2007). Initially, the analysis focused on determining the distribution of allele 

frequencies for different types of variants, including synonymous, missense, 

frameshift, and stop-gain. For each breed, a MAF histogram was generated, and a 

different color was assigned to each variant type. In addition, to investigate whether 

predicted deleterious mutations showed generally lower allele frequencies or if 

there were deleterious variants enriched for high frequencies in specific breeds, the 

distribution of allele frequencies of variants with different MutPred2 and 

MutPredLOF scores were determined. For missense variants, MAF histograms 

were generated for each breed, with different colors representing each MutPred2 

score category (low <0.50, moderate 0.50-0.80, high >0.80). Similarly, for loss of 

function variants, MAF histogram were created for each breed, and each 

MutPredLOF score category was distinguished by a different color (low <0.40, 

moderate 0.40-0.50, high >0.50). Lastly, the distribution of allele frequencies for 
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the variants within the TSS and TSS-enhancer regions was determined. MAF 

histograms were generated for each breed, with TSS and enhancer variant types 

represented by a different color. To identify any potential enrichment of rare 

variants in the TSS and TSS-enhancer regions, all SNPs annotated as intergenic by 

VEP were used as control for comparison. For the MAF histograms in the X axis I 

used 10 bins with a bin size of 0.05, and the Y axis represented density, indicating 

the number of variants in each bin divided by the total number of variants in that 

specific category. To ensure the comparison of allele frequencies of variants that 

are still segregating within the breeds, excluding those already fixed, all variants 

with a MAF of 0 were removed.  

 

2.5 Mutation Load  

 

To determine the deleterious mutation load, the count of high MutPred2 score and 

high MutPredLOF score variants was assessed for individuals within the Holstein, 

Hereford, and Brahman breeds. The process involved creating a list of individual 

sample IDS that belonged to the three breeds of interest and extracting their 

genotypes from the VCF files at each position using BCFtools (Li, 2011). 

Subsequently, the positions of all missense variants predicted to be highly 

deleterious by MutPred2 and all loss of function variants predicted to be highly 

deleterious by MutPredLOF were identified and the highly deleterious alleles were 

counted based on the genotypes. For instance, a genotype of 0/0 indicated a 

deleterious mutation load of 0 for that position, a genotype of 0/1 or 1/0 indicated 

a deleterious mutation load of 1 for that position, and a genotype of 1/1 resulted in 

a deleterious mutation load of 2 for that position. The counts for all positions were 

then summed to calculate the total deleterious mutation load for each individual. 
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2.6 Linkage Disequilibrium (LD) 

 

To examine LD patterns and to assess the presence of highly deleterious variants in 

LD, pairwise LD analysis was conducted by calculating r2 values between all 

missense variants identified as highly deleterious by MutPred2 and among all loss 

of function variants that were classified as highly deleterious by MutPredLOF. The 

LD computations were executed using PLINK with specific parameters: 1) 𝑟2 LD 

window (--ld-window-r2) set to 0 to make sure that even the lowest 𝑟2 values will 

be reported, 2) LD window in kilobases (kb) (--ld-window-kb) set to 1000000, and 

3) an LD window (--ld-window) set to 1000000. Regarding the last 2 parameters, 

by default in Plink, every pair of variants with at least (10-1) variants between them, 

or more than 1000 kilobases apart is ignored, therefore the window was increased 

to include all the pairwise comparisons. Initially, pairwise LD was computed for all 

individuals in the dataset and subsequently, pairwise LD was computed separately 

for the individuals belonging to the three breeds of interest (Holstein, Hereford, and 

Brahman). The results were visualized through LD decay plots generated separately 

for the variants of each chromosome. Furthermore, an integrated LD decay plot was 

constructed by combining the data from all chromosomes.  

 

In addition, to assess LD between highly deleterious variants and surrounding 

variants, r2 was calculated between missense variants with high MutPred2 scores 

and all variants in the surrounding area. Similarly, r2 was computed between loss 

of function variants with high MutPredLOF score and their surrounding variants. 

For this purpose, an LD window of 100 kb was used. Individual LD decay plots 

were created for each variant, depicting the LD patterns in the specific areas. 

Moreover, a collective LD decay plot was constructed using the average r2 values. 

The 100 kb distance was divided into 20 bins, each with a size of 5 kb. Within each 

bin, the average LD between a variant with a high MutPred score and its 

surrounding variants was computed and presented in the plot. For instance, for a 

variant with a high MutPred2 score, all variants within a distance <5 kilobases with 

a known r2 were identified and included in the first bin. The average LD was then 

computed for these variants and illustrated in the plot. This process was repeated 
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for subsequent bins, each representing a specific distance range (e.g. 5-10 kb, 10-

15kb etc.). The same approach was applied to the surrounding variants of loss-of-

function variants with a high MutPredLOF score. 

2.7 Evaluation of MutPred2 using predicted deleterious 

variants from the OMIA database 

 

Numerous variants predicted as deleterious have been associated with specific 

genetic defects. Online Mendelian Inheritance in Animals (OMIA) is a 

comprehensive, annotated catalogue of inherited disorders and other traits in 

animals, including associated genes and variants in 498 animal species (Nicholas et 

al., 1995). OMIA provides an extensive resource of phenotypic information on 

heritable animal traits and genes, establishing strong comparative connections 

between traits and genes.  

 

Within OMIA, a table provides details on 272 likely causal variants in cattle, 

including information such as gene, breed, type of variant and position. To assess 

MutPred2’s performance on variants previously predicted as deleterious and 

associated with specific genetic diseases, a similar analysis to the one performed 

with missense variants from the 1000 Bull Genome dataset was conducted, this time 

using variants from the OMIA database. Specifically, only missense variants were 

retained to maintain consistency with the prior MutPred2 analysis. Non-deleterious 

variants were excluded, along with variants on sex chromosomes and those based 

on a different reference genome than the one used in our analysis. A total of 80 

OMIA missense variants were included in this analysis. Initially, the MutPred2 

output was examined to determine whether prediction scores were assigned to the 

OMIA missense variants, by cross-referencing the gene and position of these 

variants in the MutPred2 output file. For the remaining variants that were absent 

from the MutPred2 output, indicating they likely were not present in the 1000 Bull 

Genome dataset and thus lacked a prediction score from MutPred2, an input file 

was generated. Subsequently, MutPred2 analysis was conducted for these variants. 
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Finally, the prediction scores provided by MutPred2 for all the OMIA deleterious 

missense variants were assessed in order to determine the effectiveness of 

MutPred2 in identifying deleterious variants and to evaluate the reliability of the 

generated scores. 

 

 

Table 1. Variant Counts by Type and Score Category   

 

Variant 

Type 

Number 

of variants 

MutPred2 score 
 

 MutPredLOF score  

Low Moderate  High Low  Moderate High 

Missense 436,944 436,224 374 346 - - - 

Loss of 

function 

43,001 - - - 37,058 5,652 291 

TSS 1,106,377 - -  - - - 

Enhancer 36,899 - -  - - - 
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3.1 Identification of deleterious variants  

 

Following the analysis of MutPred2 on missense variants, among the total 436,944 

missense variants, 436,224 were assigned scores below 0.50, indicating non-

deleterious variants, 374 obtained scores between 0.50-0.80, suggesting mild 

deleteriousness, and 346 received scores above 0.8, representing highly deleterious 

variants (Table 1). In the case of MutPredLOF applied to potentially loss-of-

function variants, out of the total 43,001 potential loss-of-function variants, 37,058 

received scores below 0.40, indicating non-deleterious variants, 5,652 obtained 

scores between 0.40-0.50, indicating mild deleteriousness, and 291 obtained scores 

above 0.50, representing highly deleterious variants (Table 1). In the case of 

missense variants, mildly and highly deleterious variants constitute 0.08% of the 

total variants each. On the other hand, in loss-of-function variants, mildly and 

highly deleterious variants represent 13% and 0.67% respectively. This implies that 

there is a higher proportion of highly deleterious variants in the loss-of-function 

category. 

 

3.2 Minor Allele Frequency (MAF) distributions 

 

Results 
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3.2.1 MAF distributions of missense and potential loss-of-

function variants compared to synonymous  

 

The analysis of MAF for missense and potential loss-of-function variants showed 

that, compared to synonymous variants, they were enriched for low frequencies. 

Figure 1 shows the distribution of Minor Allele Frequency (MAF) for four variant 

types: synonymous, missense, frameshift, and stop-gain variants. There was a 

common trend across all variant types, with a higher proportion of variants 

observed at lower frequencies, particularly with MAF close to 0. These patterns 

were consistently observed across all breeds. Notably, synonymous variants 

showed a slightly different distribution pattern with a more even distribution across 

the entire allele frequency spectrum. Moreover, in Brahman, there was a unique 

pattern observed for missense, stop-gained, and frameshift variants, with the 

highest proportion of deleterious variants observed at allele frequencies close to 

0.05. This was in contrast to the other two breeds, where the highest proportion was 

observed at MAF close to 0. 

 

 

 

Figure 1. MAF distribution for different functional classes of variants (missense, synonymous, stop-

gained and frameshift) across the 3 breeds (Brahman, Hereford, and Holstein). 
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3.2.2 MAF distribution of missense variants based on their 

MutPred2 score 

 

The analysis of MAF for missense variants of different MutPred2 scores showed 

an enrichment of mildly and highly deleterious variants at lower frequencies. 

Figure 2 shows the allele frequency distribution of missense variants according to 

their assigned MutPred2 scores. In Hereford and Brahman, there was an absence of 

highly deleterious variants with frequencies above 0.4. In Holstein, no mildly 

deleterious variants were observed at frequencies exceeding 0.3. While the allele 

frequency distribution followed a similar pattern across all three breeds, different 

variants were identified at high frequencies in different breeds. Table 2 shows the 

allele frequencies of the highly deleterious missense variants, with the highest allele 

frequencies across the 3 breeds. It was observed that certain variants were present 

at high frequencies only in Brahman (L94R and V26A) and at frequency of 0 in 

other breeds, some variants had high frequencies in Holstein and Hereford and 

frequency close to 0 in Brahman (R46G), and other variants had high frequencies 

across all breeds (Table 2).  
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Figure 2 MAF distribution of missense variants across different classes of MutPred2 scores for the 

3 breeds (Brahman, Hereford, and Holstein). 

 

Table 2 Highest allele frequencies of highly deleterious missense variants across the 3 breeds. 

Ensembl Transcript ID Gene Name Amino-acid 

Substitution 

MutPred2 

score 

Hereford 

MAF 

Holstein  

MAF 

Brahman 

MAF 

ENSBTAT00000051986 RPS15A L94R 0.977 0 0 0.3143 

ENSBTAT00000045443 DYNLL1 A11D 0.953 0.1739 0.4692 0.2568 

ENSBTAT00000045443 DYNLL1 M13I 0.946 0.3913 0.3733 0.2297 

ENSBTAT00000087168 RPL39 R46G 0.936 0.3696 0.3475 0.02941 

ENSBTAT00000056532 H2AC25 S2P 0.904 0.2391 0.2568 0.2297 

ENSBTAT00000056472 CBX1 V26A 0.868 0 0 0.2407 

ENSBTAT00000031096 CHIC2 N82I 0.842 0.225 0.1884 0.3889 

 

 

3.2.3 MAF distribution of potentially loss-of-function variants 

based on their MutPredLOF score  

 

The analysis of MAF for potentially loss-of-function variants of different 

MutPredLOF scores showed an enrichment of mildly and highly deleterious 

variants at lower frequencies. Figure 3 shows the allele frequency distribution of 

loss-of-function variants according to their assigned MutPredLOF scores. In 

Hereford and Holstein, there was an absence of highly deleterious variants at higher 

frequencies, with the highest observed frequency being approximately 0.2 in 

Holstein and 0.15 in Hereford. In contrast, in Brahman highly deleterious variants 

were observed even at frequencies near 0.3 and 0.35. While the allele frequency 

distribution of loss-of-function variants followed a similar pattern across all three 

breeds, different variants were identified at high frequencies in different breeds, 

similarly to missense variants. Table 3 shows the allele frequencies of the highly 

deleterious loss-of-function variants, with the highest allele frequencies across the 

3 breeds. It was observed that high frequency variants in one breed had frequencies 

of 0 or close to 0 in the other breeds (Table 3). 
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Figure 3 MAF distribution of highly deleterious loss-of-function variants across different classes of 

MutPredLOF scores for the 3 breeds (Brahman, Hereford, and Holstein). 

 

 

 

Table 3 Highest allele frequencies of highly deleterious loss-of-function variants across the 3 

breeds. The dashes (-) represent deletions. 

Ensembl Transcript ID Gene Name allele CSD 

position 

MutPredLOF 

score 

Hereford 

MAF 

Holstein 

MAF 

Brahman 

MAF 

ENSBTAT00000086078 NEB - 8372-8375 0.50191 0 0 0.3571 

ENSBTAT00000086078 NEB CAAA 8379-8380 0.50187 0 0 0.3676 

ENSBTAT00000077684 FBN1 TC 1152-1153 0.53885 0.1739 0.02672 0.08824 

ENSBTAT00000003173 MKI67 AA 7773-7774 0.50771 0 0 0.2778 

ENSBTAT00000003173 MKI67 T 7771-7773 0.50815 0 0 0.2778 

ENSBTAT00000083797 MUC2 - 6587-6644 0.51017 0.02174 0.1761 0.05172 

ENSBTAT00000083797 MUC2 - 6647-6651 0.50784 0.04348 0.1889 0.05357 
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3.2.4 MAF distributions of Transcription Start Site (TSS) and 

enhancer variants  

 

The analysis of MAF showed an enrichment in rare TSS and enhancer variants. 

Figure 4 shows the distribution of TSS, enhancer and intergenic variants, with 

intergenic variants serving as the reference. The highest proportion of TSS and 

enhancer variants was concentrated around frequencies near 0 and 0.05 across all 

three breeds, decreasing as we moved to higher frequencies.  

 

 

 

 

Figure 4 MAF distribution of TSS, enhancer, and intergenic variants across the 3 breeds (Brahman, 

Hereford, and Holstein). 

 

 

 

 



30 

 

 

3.3 Mutation load  

 

To examine the load of highly deleterious mutations, the count of high MutPred2 

score (346 in total) and high MutPredLOF score (291 in total) variants was assessed 

for individuals within the Holstein, Hereford, and Brahman breeds. Analysis of the 

mutation load at each genomic position revealed the absence of homozygous 

animals for these deleterious variants; all animals carrying such variants were found 

to be heterozygous. Subsequently, the total deleterious mutation load was computed 

for each individual separately for highly deleterious missense and highly 

deleterious loss of function variants. Figure 5 shows the distribution of deleterious 

mutation loads across all animals from the three breeds of interest, indicating the 

count of animals for each mutation count. The results showed that for Brahman, all 

animals had 3-17 missense mutations and 0-7 loss-of-function mutations; Hereford 

animals had 3-11 missense and 0-3 loss-of-function; and for Holstein animals, all 

had 2-12 missense and 0-5 loss-of-function mutations, except for one individual 

with 15 loss of function variants. The results suggested a higher per-individual load 

in missense mutations compared to loss-of-function.  

 

Regarding the missense mutation load, in Brahman 13.5% of the animals had 3-5 

deleterious mutations, 73% had 6-10, and 13.5% of the animals had 11-17 

deleterious mutations. In Hereford 26% of the animals had 3-5 deleterious 

mutations, 69.5% had 6-10, and 4.5% of the animals had 11 deleterious mutations. 

In Holstein, 30% of the animals had 2-5 deleterious mutations, 65% had 6-10, and 

5% had 11-12 deleterious mutations.  

 

Regarding the deleterious mutation load for loss-of-function variants in Brahman, 

2 animals (approximately 5% of animals) had 0 mutations. This percentage was 

significantly higher for Hereford and Holstein, with 65% of Hereford and 48% of 

Holstein animals having 0 mutations. In Brahman, 92% of animals had 1-5 

mutations, and one animal had 7 mutations. In Hereford 35% of the animals had 1-

3 mutations, with 3 being the highest number of individual mutations recorded. In 

Holstein 51.3% of all animals had 1-5 mutations and one animal had 15 mutations.  
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Figure 5 Distribution of highly deleterious mutation loads for missense (left side-yellow) and loss-

of-function (right side-blue) for the 3 breeds of interest (Brahman, Hereford, and Holstein). 
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3.4 Linkage Disequilibrium (LD) 

 

3.4.1 Pairwise LD between highly deleterious variants  

 

To examine pairwise LD between the highly deleterious variants, 𝑟2 was estimated 

and the LD decay was visualized in a plot.  Figure 6 shows the decay in pairwise 

LD among all highly deleterious missense variants (top) and among all highly 

deleterious loss of function variants (bottom). This plot was generated using the 𝑟2 

values calculated from the genotypes of the entire dataset (all 1,039 animals in the 

dataset). The results indicated that as the distance between variants increased, the 

LD decreased, and variants with high LD were mostly in proximity to each other. 

The decay in LD appeared to be relatively rapid, especially for the loss of function 

variants. Notably, some variants maintained high LD even at considerable 

distances. Figure 7 and Figure 8 illustrate the decay in pairwise LD among highly 

deleterious missense and loss-of-function variants focusing specifically on the three 

breeds of interest Hereford, Holstein, and Brahman. Similar to the overall dataset 

trend, LD decay was observed to be rapid for all three breeds. 
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Figure 6 Pairwise LD decay plot for highly deleterious missense (top) and loss-of-function (bottom) 

variants using the whole dataset. 
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Figure 7 Pairwise LD decay plot for highly missense variants in Brahman, Hereford, and Holstein 

cattle. 
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Figure 8 Pairwise LD decay plot for highly Loss-of-function variants in Brahman, Hereford, and 

Holstein cattle. 
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3.4.2 LD between highly deleterious variants and variants in 

their surrounding area  

 

LD analysis between highly deleterious variants and their surrounding area showed 

that LD decayed rapidly around highly deleterious variants (Appendix 1). Figure 9 

shows the average LD between each highly deleterious variant and the variants in 

its surrounding area, divided into different bins based on the distance from the 

highly deleterious variant. Separate plots were generated for missense (top) and loss 

of function (bottom) variants. Each point in the plot represented the average LD 

between a highly deleterious variant and the surrounding variants within the same 

distance bin. The results revealed consistently low average LD, even in small 

distances, with 𝑟2 below 0.25 for missense and below 0.3 for loss of function 

variants. To compare LD patterns around deleterious variants and around random 

variants, the average LD decay of variants in enhancer regions is shown as reference 

in Figure 10. Notably, LD around enhancer variants was higher compared to LD 

around deleterious missense and loss-of-function variants, with 𝑟2 reaching values 

even close to 1.  
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Figure 9 LD decay plot showing the average LD between each highly deleterious variant and the 

variants in their surrounding area, divided into two different bins based on the distance from the 

highly deleterious variant: missense (top) and loss-of-function (bottom) variants using the whole 

dataset. The red point represents the average value for the respective distance bin.  
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Figure 10 LD decay plot showing the average LD between each variant in enhancer regions and 

the variants in their surrounding area, divided into different bins based on the distance. The red 

point represents the average value for the respective distance bin. 

 

3.5 Evaluation of MutPred2 based on scores assigned 

to deleterious variants in the OMIA database 

 

Initially, the MutPred2 output was examined to determine whether prediction 

scores were assigned to the OMIA missense variants. Among the 80 OMIA 

deleterious missense variants, 30 had already been predicted and assigned a score 

by MutPred2. For the remaining 50 variants that were not present in the MutPred2 

output and lacked prediction scores, MutPred2 analysis was conducted to evaluate 

the prediction scores for these variants. 7 variants could not be predicted due to an 

error in MutPred2, indicating the presence of a different wild-type amino acid in 

the mutation. The results for the variants that received a score revealed remarkably 

low prediction scores, all falling below 0.1. 
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In this study, I utilized MutPred2 and MutPredLOF to predict highly deleterious 

missense and loss of function variants, respectively. I estimated the individual load 

of highly deleterious variants (missense and loss-of-function), the allele frequency 

spectrum of functional and possibly deleterious variants of different kinds 

(missense, synonymous, potentially loss of function, potentially gene-regulatory) 

in different cattle breeds, and investigated the pairwise LD between highly 

deleterious variants, and LD between highly deleterious variants and their 

surrounding area. Lastly, I evaluated the performance of MutPred2 by conducting 

analysis on missense variants predicted as deleterious and present in the OMIA 

database. The impact of purifying selection and the possible effects of balancing 

selection on the load and frequency of deleterious and gene-regulatory variants, the 

differences between breeds, the low LD patterns between and around deleterious 

variants in relation to recombination and selection, and the parameters affecting 

MutPred2’s performance are discussed in detail below.  

 

4.1 The effect of purifying selection on the load and 

frequency of deleterious variants  

 

The unique allele frequency spectrum of the deleterious mutations compared to 

non-deleterious and synonymous, as well as the low deleterious mutation load 

indicate that deleterious variants are subject to purifying selection. When 

comparing the allele frequency spectrum of synonymous, potentially loss-of-

function (frameshift and stop-gain), and missense variants, the results showed an 

excess of rare missense and potentially loss of function variants compared to 

Discussion 
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synonymous. Moreover, the allele frequency distribution of missense variants 

indicated an enrichment of mildly and highly deleterious variants at lower 

frequencies. In contrast, the non-deleterious variants followed a similar distribution 

of allele frequencies as synonymous variants. In the context of population genetic 

theory, the amount of deleterious alleles originating from mutation is expected to 

be equal to the amount of deleterious alleles eliminated by selection, leading to a 

mutation - selection balance (Charlesworth & Willis, 2009b). This balance ensures 

that harmful alleles are kept at a low frequency in the population, due to the 

elimination through purifying selection (Old, 1993), suggesting that the large 

majority of these missense variants are evolutionary tolerated (Derks et al., 2018). 

Similar patterns of allele frequency distributions have been reported in studies on 

chicken (Derks et al., 2018) and maize (Mezmouk & Ross-Ibarra, 2014). 

 

The same trends were observed in loss of function variants with mildly and highly 

deleterious variants being enriched at lower frequencies, indicating that they are 

also subject to purifying selection. Frameshift and stop gain variants can be highly 

disruptive, as they can lead to the formation of a substantially different protein 

either by altering the coding frame or introducing a premature stop codon. 

However, some of these variants were classified as non-deleterious and may 

actually be tolerated. For instance, frameshift variants located at the N-terminal of 

the protein may still allow a functional protein to be created through an alternate 

start codon, effectively rescuing a substantial portion of the protein (Ng et al., 

2008). Similarly, frameshift or stop-gained variants at the C-terminal end may be 

tolerated, given that they often result in the production of an almost complete 

protein. Therefore, the position of these variants in the amino-acid sequence is 

significant, as their impact on the protein is likely influenced by this position (Derks 

et al., 2018). Lastly, the mutation load analysis showed a lower load of deleterious 

loss of function variants compared to deleterious missense variants, despite the loss-

of-function category having a higher proportion of highly deleterious variants 

compared to missense. This suggests that missense variants might be more 

tolerable, whereas loss-of-function variants could potentially be more harmful and, 

consequently, more susceptible to elimination through selection. 
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4.2 The effect of purifying selection on the frequency of 

TSS and enhancer variants  

 

The distribution of allele frequencies in TSS and enhancer variants reveals that the 

non-coding genome also undergoes purifying selection. It was observed that 

variants in TSS and enhancers were enriched for low frequencies compared to 

intergenic variants. Genetic variants that do not directly modify protein sequences 

exhibit diverse functions, taking part in various gene regulation processes from 

transcription to post-translation (Makrythanasis & Antonarakis, 2013). However, 

the characterization of regulatory variants as deleterious is challenging due to the 

fact that most of the algorithms widely used to assess the impact of mutations are 

designed to estimate changes in protein structure or sequence conservation (Kaplun 

et al., 2016). This limitation may result in overlooking a substantial number of 

potentially deleterious or functionally relevant variants (Derks et al., 2018). 

Ongoing methods such as whole-genome association tests, linkage analysis, and 

quantitative trait locus mapping aim to detect causal regulatory variants (M. J. Li et 

al., 2014). Moreover, comparative genomics could be a significant approach by 

quantifying the evolutionary conservation of regulatory elements across different 

species. If divergent species show high conservation of their regulatory elements, 

it suggests that these elements are more likely to be functional, affecting the 

transcription of specific genes. Andrews et al., 2023 reported that variants in 

conserved regions among mammals tend to explain a larger proportion of 

heritability of human traits and that disease and trait associated variants are most 

enriched in highly conserved cis-regulatory elements. However, given the 

limitations of these methods, there is a need for alternative approaches to assess the 

potential impact of the non-coding genetic variations. 
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4.3 Balancing selection as a potential mechanism for 

the higher frequencies of a limited number of 

deleterious variants  

 

Despite the generally low mutation load and allele frequencies of most deleterious 

variants, some of these variants were present at relatively high frequencies. This 

can be attributed to genetic drift. However, another possible explanation involves 

antagonistic pleiotropy, in which harmful alleles simultaneously impact multiple 

traits. These alleles may have beneficial effects on one trait and detrimental effects 

on another trait (Hedrick, 1999) and therefore they are under balancing selection. 

Heterozygous advantage or overdominance is a mechanism of antagonistic 

pleiotropy that leads to a balance between purifying selection against mutant 

homozygotes, and positive artificial selection on heterozygotes (Hedrick, 2015). 

These pleiotropic variants can remain at moderate to high frequency offering 

advantages for favorable traits in heterozygotes, while proving harmful in 

homozygotes, leading to lethality and reduced fitness. The mutation load analysis 

in this study indicated that all animals carrying deleterious variants were 

heterozygous, providing a potential explanation for this phenomenon. Besides 

heterozygote advantage, variants may undergo balancing selection when they 

impact multiple traits (allelic pleiotropy) that are (negatively) correlated. The 

linkage of deleterious variants to genes subject to balancing selection may also 

result in the excessive presence of deleterious variants in specific regions. One 

example of such linkage is the antagonistic relationship between fertility and milk 

production. While a quantitative trait locus (QTL) for fertility with effects in milk 

production is under balancing selection in nature, the transition to directional 

selection for milk production has resulted in lower fertility in cows (Kadri et al., 

2014) 
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4.4 Differences in mutation load and allele frequencies 

among breeds 

 

While the allele frequency distribution followed a similar pattern across all three 

breeds, different variants within different genes were identified at high frequencies 

in different breeds. However, the number of genes that deviated between breeds 

was very small, thus there were no obvious functional connections among genes 

within the same breed. If there had been more genes that were systematically 

different between breeds, Gene Set Enrichment Analysis could have been applied 

in order to determine whether particular functions of genes were more common in 

one breed compared to the others. These variations observed among breeds, 

particularly between taurine and indicine breeds, may be explained by the 

differences in the effective population sizes of their ancestral population before 

domestication (Gibbs et al., 2009), and in the magnitude of the bottleneck occurred 

during the domestication and breed formation (Frantz et al., 2020b), as well as 

differences in selection pressure and selection strategies associated with their 

production purposes.  

 

Differences in mutation load were evident among breeds, with Brahman exhibiting 

an overall higher mutation. Specifically for missense variants in Brahman, 13.5% 

of individuals had more than 10 mutations, a higher percentage compared to 4.5% 

and 5% in Hereford and Holstein, respectively. Regarding loss of function variants 

in Brahman, 5% of the individuals had 0 mutations, whereas the percentage was 

significantly higher for Hereford and Holstein (65% and 48% respectively). 

Brahman is a mixture of different breeds, including Guzerat, Nellore, Gir, Indu-

Brazil, and other Zebu breeds (Sanders, 1980), indicating the substantial genetic 

diversity present in this breed. Moreover, it has larger effective population size, 

compared to Holstein and Hereford. These factors may have contributed to 

Brahman’s tolerance to deleterious mutations, resulting in a higher mutation load. 

In contrast, a similar study on deleterious single nucleotide variants (SNVs) 

utilizing groups of breeds showed that, on average, taurine cattle breeds had a 

higher mutation load than indicine breeds (Subramanian, 2021). However, this 
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study used numerous breeds within each category (taurine and indicine) and the 

diversity ratio (ω) between nonsynonymous and synonymous SNVs as a measure 

of deleterious mutational load, rather than the count of deleterious mutations per 

breed. In our study, we focused on one breed for indicine and two breeds for taurine 

cattle, and the sizes of each breed varied, potentially not fully capturing the entire 

variation. Further research involving a more extensive range of breeds within each 

category will provide more insights into the mutation load in cattle.  

 

4.5 Low LD between deleterious variants and between 

deleterious variants and their surrounding area  

 

The analysis of pairwise LD between deleterious missense and between deleterious 

loss-of-function variants revealed low LD that decays rapidly. The power of LD 

depends on the allele frequencies, therefore the low frequencies of deleterious 

variants led to a low LD between them. Garcia & Lohmueller, 2021 reported in a 

human study that LD of nonsynonymous variants was lower compared to 

synonymous suggesting that nonsynonymous variants tend to appear on different 

haplotypes. Linkage disequilibrium indicates how selection at one locus impacts 

other loci. Moreover, when two variants are on the same haplotype they interfere 

with each other (Hill & Robertson, 1966) in order to become fixed, a mechanism 

known as Hill-Robertson interference. As a result, selection at one locus may 

reduce or increase the chance of fixation at a second locus. Genetic recombination 

plays a significant role in reducing interference by enabling selected sites to 

segregate independently, creating new haplotypes, and thereby slowing down the 

accumulation of rare harmful variants (Keightley & Otto, 2006). As a result, newly 

emerging deleterious mutations in regions with higher recombination rates will be 

more efficiently purged by natural selection (Hussin et al., 2015).  

 

Another way that purifying selection can affect LD patterns between deleterious 

variants is negative synergistic epistasis. Negative synergistic epistasis occurs when 



45 

 

 

each additional deleterious mutation reduces fitness by a greater amount than the 

reduction in fitness caused by each mutation independently (Lewontin, 1964). This 

results in negative selection eliminating haplotypes containing multiple deleterious 

alleles. The remaining deleterious alleles are more likely to segregate on different 

haplotypes compared to neutral mutations, resulting in negative LD (Sohail et al., 

2017). Sohail et al. (2017) investigated the patterns of signed LD among rare loss 

of function mutations in humans and fruit flies. The study revealed that LOF 

variants had significantly lower LD compared to synonymous sites, suggesting that 

these mutations not only undergo purifying selection, but also non-independently 

affect fitness, indicating negative synergistic epistasis.  

 

 

The analysis of LD between deleterious variants and surrounding variants revealed 

a rapid LD decay around deleterious variants. LD is limited by the allele frequencies 

of the participating variants. This pattern is evident in the average LD decay 

distributions around rare deleterious variants, in contrast to enhancer variants found 

at various frequencies, indicating that the LD around deleterious variants is 

significantly lower than that around enhancer variants. The rapid LD decay around 

deleterious variants suggests that the effectiveness of tagging deleterious variants 

with SNP chips may be limited, as fewer nearby SNPs may effectively capture 

information from these variants. Consequently, estimating the effect of these 

deleterious variants on health-related traits and selecting against these variants 

using genomic predictions may be challenging, as their presence cannot be easily 

predicted based on the genotyping of nearby SNPs. Gaining insights into how 

recombination, selection and mutation interact to distribute deleterious mutations 

across the genome, as well as the differences in the history and size of different 

populations will enhance our understanding of mutations that contribute to disease 

(Hussin et al., 2015). 
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4.6 Performance of MutPred2 

 

For the identification of deleterious missense variants, the standalone version of 

MutPred2 was utilized and accessed through the server. The allele frequency 

analysis and the enrichment of rare deleterious variants verified the effectiveness 

of MutPred2 in identifying strongly deleterious variants. However, when assessing 

variants known to be deleterious in the OMIA database, the prediction scores were 

consistently very low, all below 0.1. This indicates that MutPred2 may fail to detect 

certain deleterious variants.  

 

MutPred2 utilizes precomputed databases containing multiple sequence alignments 

and conservation scores to compute conservation-based protein features. These data 

were precomputed for humans. However, when dealing with input substitutions 

from novel protein sequences where conservation-based features might not be 

available, MutPred2 offers an option to predict them from sequence information 

and PSI-BLAST position-specific scoring matrices. It was observed that models 

incorporating conservation features outperformed those lacking conservation 

features by two percentage points (Pejaver et al., 2020). Due to the long 

computation time and increased memory requirements of MutPred2, I decided to 

skip PSI-BLAST, which may have an impact on the reliability of the scores. To test 

this hypothesis, I conducted MutPred2 analysis again for several OMIA deleterious 

variants that previously received low MutPred2 scores, this time without skipping 

PSI-BLAST. The results showed that the scores were significantly higher, placing 

the majority of these variants within the deleterious score category (Appendix 2). 

For example, the D128G substitution associated with Leukocyte adhesion 

deficiency, type I in the ITGB2 gene, initially received a score of 0.056. This score 

was found to be 0.831 when PSI-BLAST was included in the analysis. This 

indicates that some cattle proteins not present in humans would benefit from the 

inclusion of PSI-BLAST. 

 

The development of software similar to MutPred2 specifically for cattle would 

require a large genomic database containing both pathogenic and putatively neutral 
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variants in cattle. For reference, more than 50,000 human pathogenic and 200,000 

neutral variants were utilized for the development of MutPred2 (Pejaver et al., 

2020). Generating a comparable dataset in cattle would take several years, making 

the development of a similar software challenging. MutPred2, particularly with the 

inclusion of PSI-BLAST was shown to be effective in predicting deleterious 

variants. Moreover, given that different variant types besides missense are 

potentially deleterious, it might be more practical to investigate existing human 

prediction software with proven effectiveness in cattle.   

 

4.7 Implications  

 

In this study, all deleterious missense, frameshift and stop-gain variants present in 

the 1000 Bull Genome dataset were identified. This effort aims to contribute to the 

creation of a comprehensive catalogue including all deleterious variants. Accurate 

detection of deleterious variants and the application of predictions for functional 

variants on a large scale offer the potential to integrate this information into 

genomic predictions. For this purpose, it is necessary to increase the number of 

sequenced animals, especially those diagnosed with genetic defects within each 

breed. This would enable us to capture a more significant proportion of deleterious 

variants and to detect rare or breed-specific variants. Subsequently, the identified 

deleterious variants could be utilized to develop SNP chips incorporating them. 

Moreover, it is essential to expand predictions to include a wider range of 

potentially deleterious variant types, such as inframe insertions and deletions. 

Similarly to MutPred2 and MutPredLOF, MutPredIndel has been developed for the 

identification of inframe insertions and deletions (Pagel et al., 2019).  

 

Further research should be focused on the detection of LD between deleterious 

variants and variants in the commercially used SNP panels. For instance, if we 

establish that deleterious variants are in high LD with SNPs on a standard SNP chip, 

selection against them is feasible. However, if LD between deleterious variants and 
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SNPs is low, using SNPs as markers for the deleterious variants may be less 

efficient. In this case, customized chips including deleterious variants, as mentioned 

previously, may prove to be a more effective alternative. This approach would 

enable the incorporation of rare deleterious variants into genomic predictions, 

enhancing the efficiency of genomic predictions in reducing the frequency of 

harmful variants within the population.   

 

In addition, the accurate identification of deleterious variants can be applied to 

develop screenings for potential genetic defects. Various stages of this study could 

integrate into pipelines designed for the prediction of causative variants associated 

with genetic defects. Screening entire populations may be beneficial when a 

reduction in fitness or lethality (e.g. infertility, embryonic lethality etc.) is observed 

within the same related population or family, which can be an indication of a genetic 

disease. In addition, if a specific genomic region or gene is associated with a 

particular trait or disorder, screening for deleterious variants within this candidate 

region or gene can assist in identifying potential causative variants.  

 

Moreover, in cases where a known causative variant is linked to a genetic disease 

and phenotypes are available, the information provided by MutPred2 and 

MutPredLOF regarding consequences in protein functions can provide insights on 

the pathogenicity of the disease. These consequences can reveal pathways or 

biological processes that may be affected, providing information about the potential 

impact of these variants on cellular functions. By integrating this information with 

clinical data and the results from laboratory examinations on patient samples, it is 

possible to confirm the connection between the predicted consequences and 

observed phenotypes in individuals affected by genetic diseases. Understanding the 

molecular mechanisms influencing certain genetic defects will assist the 

development of targeted therapies aimed at reducing the impact of deleterious 

variants on protein function, enhancing the efficacy of managing and treating the 

associated disease. 

 . 
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This study aimed to estimate the load and allele frequency spectrum of functional 

and possibly deleterious variants in different cattle breeds, and investigate the LD 

between deleterious variants, and between deleterious variants and their 

surrounding areas. The low mutation load of deleterious variants and their 

enrichment at lower frequencies highlighted the significant role of purifying 

selection in eliminating deleterious variants from the population. Furthermore, it 

was shown that the non-coding genome also undergoes selection, yet further 

research should focus on the functional annotation of the gene regulatory variants. 

The LD analysis revealed that deleterious variants tend to occur on different 

haplotypes, suggesting that recombination prevents the accumulation of deleterious 

variants. Breed-specific differences in load and allele frequencies underscored the 

influence of effective population size, selection pressure, and breed-specific 

selection strategies.  

 

This study has the potential to contribute to a comprehensive catalogue of 

deleterious variants in cattle if it is expanded to include a wider range of variant 

types and a larger number of sequenced animals. The detection of deleterious 

variants will not only facilitate their integration into genomic predictions but also it 

will provide a better understanding of the mechanisms by which these mutations 

are contributing to diseases. As a result, the effectiveness of genomic selection 

against harmful mutations and the overall management and treatment of genetic 

defects will be enhanced. 

Conclusions  
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The DNA of all organisms undergoes changes, known as mutations, which can have 

negative consequences on health and production. Therefore, the aim of this project 

was to investigate the frequency of these harmful mutations in different cattle 

breeds, determine the number of harmful mutations that each individual carried, 

and examine whether these mutations are linked, i.e. whether they are located in 

adjacent positions on the DNA that are inherited together, as well as if these harmful 

mutations are linked and inherited together with non-detrimental mutations in the 

surrounding area of the DNA. Different software programs were used to identify 

harmful mutations, compute their frequencies, and assess their linkage. The results 

showed that the frequencies and the number of harmful mutations per individual 

were relatively low in all breeds, indicating the effectiveness of natural selection in 

removing these mutations from the population, as animals carrying such mutations 

have lower chances of survival and reproduction. However, different mutations 

were present in different breeds, highlighting their different evolution histories and 

production purposes (meat, milk etc). Due to the low frequencies of the harmful 

mutations, the linkage both between these mutations and with their surrounding 

ones were low, suggesting that these harmful mutations are located on separate 

DNA fragments inherited independently. If applied accurately on a large scale, this 

study has the potential to assist in DNA-based selection in order to reduce the 

frequency of harmful mutations from cattle populations and enhance the effective 

management of genetic diseases by identifying which variants are harmful, where 

they are located, and the mechanisms through which they contribute to genetic 

diseases.  
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LD decay plots between different deleterious variants and the variants in their 

surrounding area.  
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MutPred2 scores with and without the inclusion of PSI-BLAST for several OMIA 

deleterious variants.  

 

 

 

 

 

Appendix 2 

Ensembl Transcript ID Gene 

Name 

Substitution MutPred2 score 
 

Variant Phenotype 

Without  

PSI-BLAST 

With  

PSI-BLAST 

ENSBTAT00000008593 ATP2A1 G211V 0.045 0.934 Pseudomyotonia, 

congenital 

ENSBTAT00000084344 COL5A2 G789V 0.030 0.930 Ehlers-Danlos syndrome, 

classic type, 2 

ENSBTAT00000001290  IARS V79L 0.041 0.855 Perinatal weak calf 

syndrome 

ENSBTAT00000015674 MSTN L64P 0.048 0.777 Muscular hypertrophy 

(double muscling) 

ENSBTAT00000028571 EDN2 C50Y 0.057 0.800 Growth and respiratory 

lethal syndrome 

ENSBTAT00000024865  TBXT K66E 0.054 0.913 Vertebral and spinal 

dysplasia 

ENSBTAT00000043649 MYBPC1 L295R 0.060 0.833 Arthrogryposis, distal, 

type 1B 

ENSBTAT00000046583 SLC12A1 P372L 0.050 0.788 Hydrallantois 



62 

 

 

 

Approved students’ theses at SLU are published electronically. As a student, you 

have the copyright to your own work and need to approve the electronic publishing. 

If you check the box for YES, the full text (pdf file) and metadata will be visible 

and searchable online. If you check the box for NO, only the metadata and the 

abstract will be visible and searchable online. Nevertheless, when the document is 

uploaded it will still be archived as a digital file. If you are more than one author, 

the checked box will be applied to all authors. You will find a link to SLU’s 

publishing agreement here: 

 

• https://libanswers.slu.se/en/faq/228318.  

 

☒ YES, I/we hereby give permission to publish the present thesis in accordance 

with the SLU agreement regarding the transfer of the right to publish a work.  

 

☐ NO, I/we do not give permission to publish the present work. The work will still 

be archived, and its metadata and abstract will be visible and searchable. 

 

Publishing and archiving 

https://libanswers.slu.se/en/faq/228318

