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Different means of yield forecasting have been investigated in many publications, although very few with 

a focus on pre-season forecasting. Climate change and the increasing risk of extreme weather events is a threat 

to food production, and early yield predictions could therefore be beneficial for farmer’s planning and 

management as a way towards more resilient food production. This thesis aims to explore if yield forecasting 

of malting barley in Southern Sweden can be done using climate markers of weather occurring during the 60 

days before the beginning of the cropping season. Data from field trials, conducted between 1999 and 2018 and 

acquired from NTFS and SLU Fältforsk, were used as experimental data to calibrate and evaluate the CERES-

Barley crop model. Three cultivars were used: Astoria, Irina and Propino. The model input additionally 

consisted of weather data from AgERA5 and soil profiles from ISRIC that were connected to the field trial 

sites. The climate markers and the simulated mean yields were tested with a linear mixed model analysis and a 

Pearson chi-square test in RStudio. The crop model was successfully calibrated, with Astoria being the best 

cultivar to mirror observed yields from different years and locations in Sweden. The results indicated, however, 

that none of the analysed climate markers during the 60 days prior to the beginning of the cropping season was 

able to explain malting barley yields, highlighting the difficulty in making early yield forecasts. One hypothesis 

for this lack of explanatory power from the climate markers on the yield of spring malting barley is that the 

effect of precipitation in the 60 days before the beginning of the cropping season is buffered by winter and 

early spring, when soils are usually at or close to field capacity.  
 

Keywords: Yield forecasting, extreme weather, pre-season forecasting, climate markers, climate predictors, 
climate patterns, model calibration, DSSAT, crop model 
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With climate change the demand of resilient food production is ever present. The uncertain 
future agriculture is facing as a consequence of climate change calls for new management tools 
to make food production more resilient (FAO 2015).   

While yield is often directly related to, or explained by the weather during the cropping 
season, less is known about possible pre-season weather impacts on yield (Bellouini et al., 
2020). As of today, there are various tools used to make forecasts of yield and quality 
forecasting such as remote sensing, statistics, crop models, satellites, seasonal patterns, and 
machine learning (Basso et al., 2013; Yaramasu et al., 2020; Qian et al., 2009; Ali et al., 2022; 
FAO 2015; Bannayan et al., 2003; Pettersson 2007). Many of these tools are, however, still not 
applicable, or very well adapted to make pre-season forecasts. The existing tools are also often 
heavily time consuming and as of now the geographical scope of forecasts is limited and not 
equally explored across the planet (Schauberger et al., 2020. For agriculture to better adapt to 
changing cropping conditions and the risks of extreme weather, pre-season forecasting could 
be a powerful tool. By knowing pre-season conditions, especially how extreme weather may 
interfere with yield, there is room for farmers to plan the cropping season (e.g. cultivar, fertilizer 
and sowing). This thesis will investigate how crop models and data of pre-season extreme 
weather events in Sweden might help to forecast yield levels of spring sown malting barley.  

1.1. Objectives 

The aim of this thesis is to investigate the possibility to forecast yield levels of malting barley 
and if yield is dependent on or affected by pre-crop season climate markers. This will be 
accomplished by using data from field trial experiments conducted in Southern Sweden of 
malting barley to calibrate the cropping model DSSAT CERES-Barley and run simulations 
using gridded weather data with characterization of extreme weather events. The two specific 
objectives for this thesis are: 

o to calibrate the CERES-Barley model based upon data from field trial experiments. 
o to analyse the correlation of yearly weather markers against simulated yields from the 

calibrated model to determine if pre-season climatic factors have the power to explain 
yield. 

1. Introduction 
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1.2. Background 

1.2.1. Malting barley production in Sweden 

Barley (Hordeum vulgare) is one of the oldest cultivated and remains to this day an important 
crop in Sweden. Today barley is grown for both animal feed and malting, making it 
economically important (Fogelfors 2016). In Sweden, malting barley is commonly grown as a 
spring crop. On a global scale, barley is the fourth most cultivated cereal, with Europe being 
the main producer of more than 60% of the total global production (FAOSTAT, 2023). In 
Sweden, two-row barley is the dominating variety for malting purposes and the production is 
mainly located in the southern parts of the country (Fogelfors, 2016).  

For farmers, the key when producing malting barley is to obtain the right level of grain 
protein, between 9.5 and 11%. The protein level is very much dependent on abiotic factors such 
as temperature, day length, radiation, and nutrient availability at certain times of the plant’s 
development (Pettersson, 2007). Location and development rate has also proved to be important 
contributors to the final beer quality (Johansson, 2011).  

1.2.2. Climate change and extreme weather  

Climate can be defined as the mean weather of the previous 30 years. Weather is described 
as variations of atmospheric conditions such as precipitation and temperature (Bolin Centre for 
Climate Research, 2019; SMHI, n.d.).  

Farmers across Europe faced great yield losses during the 2018 cropping season due to 
extensive drought (Beillouin et al., 2020; Grusson et al., 2021). Extreme weather events such 
as drought and heavy rains have occurred in history but not to the same extent as the more 
recent ones. The term extreme weather events implies that a value of temperature, wind, or 
precipitation is either above or below a given threshold (IPCC 2021). The threshold that defines 
the dimension of extreme events are, however, not unified. Grusson and Barron (2021) found 
similar results when comparing different reanalysis products. In their results they could see that 
there was a large variability in how the different reanalysis products had quantified extreme 
weather events. According to a report from IPCC (2021), extreme weather events are expected 
to occur more often and appear more extreme. Looking into the conditions of Swedish 
agriculture, future predictions tell of increasing precipitation mainly during winter and spring 
and with increasing risk of droughts and intensive rainfalls during summer (SMHI, n.d.; 
Naturvårdsverket, n.d.) As Swedish agriculture is mainly rainfed, extreme weather trends may 
have a significant impact on crop production (Grusson et al., 2021). de Toro et al. (2015) 
investigated how the yield of the most common crops in different regions in Sweden from the 
year 1964 to 2014 have been affected by extreme weather. They found that precipitation events 
occur more often and that this may cause problems of logistics and timing during harvest. 
Similarly, to previously stated predictions, they could also observe a shift towards higher mean 
temperatures in Sweden.   

What climate change ultimately means, in the perspective of plant biology, is a change in 
the environment and living conditions for crops and their interactions with other living beings 
(Bhadra et al., 2021). Changes in amounts, timing, and durations of parameters such as 
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precipitation, solar radiation and temperature all impact the life cycle of plants. An example of 
this was presented in a recent paper by Kaseva et al. (2023). By comparing yield levels in 
Nordic barley cultivars against agrometeorological factors over a 40-year time period they 
found that the cultivars had become more vulnerable against irregular weather patterns. Direct 
impacts of extreme weather may cause physical damage to crops, delayed time for planting and 
harvest, temperature, and water stresses. Time and duration of extreme weather events are the 
basis that determine the scope of yield loss. Malmquist and Barron (2022) mapped definitions 
of extreme weather in the Nordic countries and found that, even though there is a lot of research 
in the field, there were so far no unified definitions of extreme weather events. 

1.2.3. Extreme weather effects on barley phenology and yield 
When discussing climate change, it is important to understand how phenology and growth 

are impacted by extreme weather. Under optimal conditions, both growth and development are 
decided by thermal time or heat sum. The heat sum of a given day is the mean temperature of 
that day, calculated using its minimum and maximum measured temperatures (Rawson & 
Macpherson Gómez 2000). In order for a plant to pass onto its next development stage, it needs 
to accumulate a certain thermal time, i.e., a running total of the mean temperature each day (Fig 
1). The thermal time (Ritchie et al., 1998) can be defined as:  

 
tb =∑ (𝑛𝑛

𝑖𝑖 =1 Ta – Tb)  (1) 
Ta = average daily air temperature 
Tb = temperature where plant development stops  
n = number of days  
 

 

Figure 1. The temperature sum needed for a plant to go into its’ next development stage, measured in degree days 
(°Cd). Figure made by HM Rawson (Rawson & Macpherson Gómez 2000). 



13 
 

 
Anthesis and kernel filling are critical stages regarding the quality formation of malting 

barley. Both extreme cold and high temperatures can negatively affect the number of flowers, 
which in turn determines the final kernel yield. During the initial growth phases of the plant, 
increasing temperatures induce a heightened rate of thermal accumulation within the crop, 
consequently leading to a shortened developmental duration (Petterson 2007). Subsequently, 
during later development stages, increased temperatures may induce physiological stress, 
leading to a reduced duration for grain filling. This, in turn, results in decreased starch content 
within the stem and an increase of grain protein levels, occasionally reaching unfavourable 
concentrations. (Schelling et al., 2002; Pettersson 2007; Al-Ajlouni 2016; Hakala et al., 2016; 
Saiyed et al., 2009).  Frost damage can cause cell damage and may inhibit photosynthesis. In 
the earlier development stages the severity is not as large as when frost occurs in anthesis or 
heading (Frederiks et al., 2015; Martino et al., 2019). Another consequence relating to frost 
damage is that the grains might not be able to germinate which is crucial for the malting process. 

Water stress occurs when the water potential falls below the threshold required for plant 
absorption (Havrlentova et al., 2021). Regarding germination, moisture is a catalyst for the 
germination of most of the cultivated species ( Havrlentova et al., 2021; Kar 2011). Inadequate 
water availability after germination can lead to an uneven crop stand and reduced seedling 
survival. In response to water scarcity, the plant’s short-term reaction mechanism is to close 
stomata to reduce evapotranspiration, leading to a decrease in the rate of photosynthesis 
(Havrlentova et al., 2021; Kar, 2011). Another effect following water deficiency is a reduced 
flower initiation and abortion, resulting in fewer grains per straw; when occurring during the 
grain filling phase, it can reduce the grain weight. During the grain filing stage, water deficiency 
may also lower the level of protein in the grains (Havrlentova et al., 2021). Conversely, stress 
may also be caused by an abundance of water (Zhou et al., 2020).  

Soil saturation by waterlogging and flooding also impacts yield as the plant’s root 
development is restricted due to insufficient oxygen, limiting respiration, resulting in anoxia 
and the production of reactive oxygen spices (Herzog et.al, 2016; Arslan Ashraf, 2012). These 
responses hinder overall plant growth, with the duration and timing of extreme weather events 
playing a crucial role in determining the ultimate impact on crop yield (Tian et al., 2021). 

1.2.4 Yield forecasting with crop models 

There are different approaches to make yield forecasts, such as remote sensing, machine 
learning and crop models. Crop models have the ability to concretize an already complex and 
dynamic system and have therefore been considered helpful tools in understanding, creating 
and making predictions in complex systems such as agriculture (Wallach et al., 2014). One 
main disadvantage of crop models is their inability to account for biotic stresses such as pests 
and weeds (Roberts et al., 2017; Lobell & Asseng, 2017). It is however important to note that 
a crop model is not able to fully predict the outcome of a cropping season, its power lies within 
its capability to make likelihood predictions based previous data of i.e., weather, agronomic 
management, and yield levels. To better list functions of cropping models, some differences, 
and similarities between process-based and statistical models are summarised in Table 1.  
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One example of a process-based crop model is the DSSAT (Decision support system for 
agrotechnology transfer) CERES-Barley crop model, which uses seven growth stages: 
germination, emergence, maximum primordia, end ear growth, beginning of grain fill, maturity, 
and harvest (Hoogenboom et al., 2022). To calculate plant growth CERES-Barely uses growing 
degree days (0ºC as base temperature) and photoperiod. A development stage is reached as a 
certain temperature has been accumulated. The CERES-Barley crop model makes daily 
calculations of plant growth and phenology based the model inputs. In similarity to other crop 
models the basic input data consist of: 

o Local daily weather data of the cropping season 
o Soil profiles  
o Crop management information of the experiment (Hoogenbom et al., 2023) 

Table 1. Comparison of general similarities and differences between process-based and statistical crop models. 
Adapted from Schibalski (2017) and Adams et al. (2013).  

 Process-based Statistical   

Relationship type Causal, dynamic Correlative, static  

Relative 
comprehensiveness 

More comprehensive but not very general 
results 

Less comprehensive but more general 
results 

 

Incorporation of 
mechanism Explicit Implicit  

Primary source of error Unknown parameters and processes Extrapolation due limited data availability  

Parameters Have ecological explanation Have no ecological explanation  

Model uncertainty Higher Lower  

Data requirements Higher and more specific Lower, can be more general  

Spatial scale for calibration Low Low to larger  

Spatial scaling of 
prediction Smaller to Larger Best at scale of calibration  
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2.1. Study region 
Southern Sweden extends over the 55-59th latitude and the 13-18th longitude and has a varied 
annual mean temperature circling 4°C and 7°C (Fig 2) (SMHI, 2023). Annual accumulated 
precipitation ranges between 400 to 1000 mm. The regional mean temperature during the 
summer period is around 18°C. In general, most precipitation is distributed during summer and 
autumn.   

 

Figure 2. Maps adapted from SMHI presenting the mean annual amount of precipitation (left) and temperatures (right) of the 
years 1991 and 2020 in Sweden (2023).  

2.2. Data 

2.2.1. Field experiment data  

In order to properly run a crop model, observations from field data are required for 
calibration, validation and further impact assessment studies. Data from field experiments on 
spring grown malting barley conducted between 1999 and 2018 in Götaland and Svealand, the 
southern part of Sweden, were used to calibrate and validate the model (locations of the field 
experiments are shown in Fig 3). The data consisted of 84 field experiments each containing 

2. Methods 



16 
 

733 experiments and three malting barley cultivars: Astoria (253 experiments), Irina (279 
experiments) and Propino (201 experiments). Experimental data for the years 2013 to 2018 
were acquired from the Nordic Field Trial System (NFTS, 2022). Data on the earlier 
experiments were obtained from SLU Fältforsk (SLU Fältforsk, n.d.). The collected 
information included yield levels, management, fertilizer rates and harvest date.   

 

Figure 3. Overview map displaying the 84 trial site’s locations in the regions of Götaland and Svealand used in the project as 
the main source of data. Map created in QGIS (2022), map layers obtained from Översiktskartan ©Lantmäteriet (2023). 

 
 To increase the number of experimental data (field observations) and improve the model 

performance, experiments with some missing information were also included. Since the missing 
information from the experiments were of dates and/or coordinates, these could still be 
incorporated without significantly affecting the outcome of the model calibration. The missing 
dates for sowing and fertilizer application were interpolated based on experiments from the 
same area.  

Experimental sites lacking coordinates were randomly assigned coordinates within the 
corresponding municipal boundaries using data and maps from Lantmäteriet (2023). This 
allocation was executed using QGIS Geographic Information System (2022) version 3.24.0.  

2.2.2. Soil and weather data   
Soil profiles in a gridded format were obtained from ISRIC version 2.6 (IRI, 2015). The 

obtained soil profile data used in the DSSAT v 4.8 (Decision support system for agrotechnology 
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transfer) CERES-Barley model contains information on horizon depths, soil grain properties, 
pH, organic carbon, saturation of aluminium and bulk density (Hoogenboom et al., 2003).  
Weather data were procured from AgERA5, from Copernicus Climate data store (Copernicus 
Climate Change Service, 2019). The AgERA5 is a gridded long term reanalysis product 
featuring daily climate data of sun radiation, minimum and maximum temperatures between 
the years 1979 and 2018The AgERA5 was chosen based on the results from a review by 
Grusson and Barron (2022) where it was identified as the best performing (smallest deviation 
from a baseline of observed data) reanalysis product that is still producing data.  
Since the simulation was to cover 40 years, the use of gridded data would ensure the absence 
of non-continuous data, which is a particularly common problem when covering broader 
geographical areas. The gridded weather and soil data were associated to each of the 54 
experimental sites using QGIS to prepare a complete dataset needed to operate the crop model. 

2.3. Crop modelling 
To investigate the possibility to forecast yield with the help of climate markers, the CERES-
Barley cropping model was used. The general method for calibrating and operating the CERES-
Barley cropping model in this project is briefly explained by the schematic below (Figure 4). 
First the CERES-Barely model was calibrated using the observed data of three malting barley 
cultivars from the field trial experiments and the gridded weather data (using data described in 
Section 2.2). After the calibration was deemed successful, it was run to simulate yields between 
the years 1979 and 2018. Following the simulations, the obtained results were correlated in 
relation to various climate markers, with the objective of identifying those that could forecast 
yields. 
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Figure 4. The summarised workflow of the modelling of CERES-Barley (above). Starting with calibrating and 
validating the model using field experiment data as input (Step 1), followed by conducting yield simulations (Step 
2), the definition and calculation of climate markers (Step 3) and finally the correlation of yields with climate 
markers. (Step 4). The CERES-Barely crop model functions and workflow relating to the methodology of this 
project are explained in segments in the figure below. (Rozenbeek 2023).  

2.3.1. Model input data 
The model input data consisted of soil profiles, weather data and management data all 

described in section 2.2. The management input data mimicked the information from the 733 
field experiments to fullest extent possible and contained the following: 

o Sowing date 
o Dates of fertilizer application 
o Date of harvest 
o Grain yield (kg/ha) 
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o Rates of nitrogen fertiliser  
o  

It was arbitrarily decided to make the following assumptions about agronomic management 
and base temperature consistent across all experiments:  

o Row spacing: 12 cm 
o Plant density 90 / m2 
o Broadcast incorporated fertilizer  
o Ammonium nitrate fertilizer as N source  
o Base temperature of 0°C 

 
This unification was decided to make the calibration and the simulations easy to conduct and 

analyse, and made regardless of if there was specific information on e.g. type of fertilizer for 
certain field experiments. 

2.3.2. Crop model calibration and evaluation 
The aim of calibrating a model is to adjust coefficients the describe the model’s behaviour 

according to real observations (Wallach et.al, 2021). In this project specifically genetic 
coefficients describing the variables determining yield and maturity day of the three cultivars 
Astoria, Irina and Propino were calibrated and validated against observed data from field 
experiments.  

Each of the cultivar’s parameter were then calibrated using 1500 iterations in the Generalized 
Likelihood Uncertainty Analysis, GLUESelect (Hogenboom et al., 2021). GLUE is a Bayesian 
approach that takes standard information and experimental data for the coefficient estimation. 
GLUE Select randomizes all possible values within a predetermined range for the cultivar 
coefficients. The range of values for each parameter is limited by observed data from different 
field trial experiments. Within the CERES-Barley model both cultivar coefficients and ecotype 
coefficients were used to calibrate the cultivars. The cultivar coefficients are calibrated based 
on specific traits of growth and development, while the ecotype coefficients consist of 
traits/parameters that are more constant for the specific crop and for it is grown (Hoogenboom 
et al., 2003). The ecotype for a cultivar was chosen based on how well it performed together 
with the cultivar coefficients during the calibration. The cultivar coefficients (Hoogenboom 
et.al 2023; Singh et al., 1998) that were calibrated are defined as follows:  

 
o P1D Change of growth development rate due to photoperiod response (% reduction in 

rate/10 h drop in photoperiod) 
o P5 Duration of grain filling phase, number of days >1°C that are needed [degree 

days] 
o G1 Kernel number per unit canopy weight at anthesis [Kernel number/g] 
o G2 Standard kernel size under optimum conditions [mg] 
o G3 Standard, non-stressed mature dry tiller weight (including grain) [g] 
o PHINT Number of days that are required for a leaf tip to appear [degree days]  
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Initially, only phenology-related cultivar coefficients (P1D, P5 and PHINT) were calibrated 
using 1500 runs. After satisfactory matching of the observed values for maturity, phenology-
related coefficients where fixed and another round of 1500 simulations only for production-
related parameters (G1, G2 and G3) was run. The split calibration approach, as suggested by 
Wallach et al. (2019), ensures that the growth parameters are adjusted according to the 
phenology parameters. The values of the coefficients in both the cultivar and ecotype files were 
further manually refined within certain ranges that were measured in the field experiments and 
additionally generated with GLUESelect. This ensured that there would be no occurrences of 
impossible combinations of parameter values. Additionally, adjustments were made to the field 
capacity parameters for select soil profiles. During the calibration of a cultivar, if there were 
any values exceeding the quantile ranges of the observed values for yield and maturity day were 
systematically removed to enhance the model performance.  

The calibration was deemed complete when the model could mimic both yield and maturity 
day with an acceptable mean average error with the relative root mean square error, RRMSE. 
The RRMSE is a relative measurement and thus useful when working with different units, in 
this case both days and weight. For this work, it the RRMSE was interpreted as optimal if ≤10%, 
good if ≤20% while fair ≤30% and poor if >30% (Pachepsky & Rawls 2004). In this work, a 
calibration was considered valid only if the RRMSE of the validation for maturity date and 
yield levels was ≤30%.  

2.3.3 Run of simulations  
For each calibrated cultivar a simulation in CERES-Barley crop model was run with the 

gridded weather data for the years between 1979 and 2018 and the 54 sites. The simulation also 
included four fertilizer treatments, creating 8640 virtual experiments per cultivar. Each site and 
year had a sowing date corresponding to the start of the cropping season. The start of the 
cropping season was defined as the last day of the first period of five consecutive days with an 
average daily temperature above 5 °C that occurred after March 1st (FORMAS, 2020-2023). 
Four rates of nitrogen fertilizer: 0, 75, 100 and 125 kg nitrogen/ha were used as treatments for 
the cultivars on each sowing date, previously calculated in the FORMAS project (2020-2023). 
In total 54 sites, based on the trial locations from SLU Fältforsk and the same ones used in the 
model calibration, were used in the simulation. For the purpose of data management, the 54 
sites were further divided into four distinct production regions, designated by the Swedish 
Board of Agriculture (Jordbruksverket, n.d.) (Fig 5). The region division facilitated the 
potential for making regional comparisons of historical observed yield data across various 
cropping seasons.  
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Figure 5. Production regions of southern Sweden. Region 1-4 covers the area in which the field trial experiments were 
conducted. Adapted from Jordbruksverket (n.d.) 

2.4. Climate markers  

The dataset of climate markers that was used in the analysis was provided by the project 
Extreme weather and crop yield in Sweden (FORMAS 2020-2023). The dataset consisted of 
defined values of different climate marker variables 60 days before the start of the cropping 
season. The variables were defined for the same 54 sites that were used in the crop simulation.  
For each site, the gridded weather dataset was established, comprising 17 distinct climate 
variables spanning every year from 1979 to 2018. Calculations made to define the climate 
markers are presented in Appendix 1.  The variables were also classified in two ways and later 
used as separate datasets in the analysis: one with numerical variables and one with variable 
categorised as extreme low, very low, low, regular, high, very high and extremely high.  
Categorised values were defined within the interval presented below:  

o Extremely high > 99th percentile 
o Very high >90th ≤99th percentile 
o High >75th ≤90th percentile 
o Regular > 25th ≤75th percentile 
o Low ≤25th >10th percentile  
o Very low ≤10th >1st percentile  
o Extreme low ≤1st percentile 
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The pre-season climate markers with their highest and lowest value are presented and 
described in Table 3.  

Table 2. The climate marker variables (considered in the period of 60 days prior to the start of the cropping season) used for 
the statistical analysis and their definition including the highest and lowest value of each variable. The start of the cropping 
season changes depends on the year and location, and is defined as the last day of the first period of five consecutive days with 
an average daily air temperature above 5 °C that occurs after March 1st. 

Climate marker 
variable Variable explanation Variable 

nr. Lowest value Highest value 

Nb_ColdSpell Number of Cold Spells, 6 days of temperatures 
below the 10th percentile of minimum daily 
temperatures (number). 

Var1 0 5 

Nb_DailyExtr_PcP Number of daily extreme precipitation above the 
99th percentile of the 40 years distributions of 
daily precipitation (number). 

Var2 0 5 

Nb_days_ColdSpell Number of days included in Nb_ColdSpell 
(number). 

Var3 0 29 

Nb_days_ColdWet Number of days included in Nb_WetDays and 
Nb_ColdSpell (number). 

Var4 0 8 

Nb_days_DrySpells_5d Number of 5 days or more with precipitation 
<1mm (number). 

Var5 0 56 

Nb_days_WarmDry Number of days included in dry spell, at least 5 
days <1mm precipitation and Nb_WarmSpell 
(number). 

Var6 0 16 

Nb_days_WarmSpell Number of days included in warm spells 
(number). 

Var7 0 18 

Nb_days_WetSpells_5d Number of days with precipitation >=1mm 
included in wet spells of 5 days or more (number). 

Var8 0 31 

Nb_DrySpell_5d Number of dry spells of 5 days or more with 
<1mm precipitation (number). 

Var9 0 6 

Nb_frost Number of late frost days with minimum 
temperature below 0°C (number). 

Var10 0 60 

Nb_WarmSpell Number of 6 days of temperatures above the 90th 
percentile of maximum daily temperatures 
(number). 

Var11 0 4 

Nb_WetDays Number of wet days with a precipitation >=1mm 
(number). 

Var12 4 41 

Nb_WetSpell_5d Number of wet spells of 5 days or more during the 
first 60 days of the cropping season (number). 

Var13 0 4 

Ratio_DailyExtr_PcP Ratio of precipitation falling during extreme 
events, Daily precipitation above the 99th 
percentile of the 40 years distributions of daily 
precipitation (number). 

Var14 0 0.67 

Tmp_average Average temperature during the first 60 days of 
the cropping season (Cº). 

Var15 -3.38 5.59 

Vol_Average_Wetday Average precipitation volume per wet days 
(>1mm) (mm per day). 

Var16 1.82 8.903 

Vol_ToTal_PcP Total Precipitation volume during the first 60 days 
of the cropping season (mm). 

Var17 19.6 257 

 

2.5. Correlation analysis  

The statistical analysis aimed to assess the relationship between climate marker variables (as 
presented in Table 3) and the mean simulated yield (fertilized with 100 kg N/ha) using a chi-
square test and a mixed linear model (LMM) analysis. All statistical analyses were conducted 
using RStudio version 4.2.2, and with expert guidance from a statistician affiliated with the 
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Statistics@SLU service at the Swedish University of Agricultural Sciences was sought. A 
visual summary of the statistical analysis is presented below in Figure 6. 

 

 

Figure 6. Flow chart of the statistical analysis procedures with climate markers against yield. The chart presents 
the procedures of the chi-square test (left) and the linear mixed model (right). 

Initially, a pairwise correlation with a Pearson chi-square test was conducted on yield for 
every gridded weather data point and year for each climate marker categorical variable, as 
suggested by Khamis (2008). The simulated yield data for each site were also categorized into 
four levels, based on quartiles of site-specific yields: the 1st quartile represented low yields, the 
2nd quartile represented low to high yields, the 3rd quartile represented high to low yields, and 
the 4th quartile represented high yields. An example of how the dataset for one site is presented 
in Appendix 2. The simulated yield of every site (Figure 3) was also categorised in four levels, 
according to the quartiles of the yield for each site. Low yields were represented the 1st quartiles, 
a lowhigh yields represented the 2nd quartile, highlow yields represented the 3rd quartile and 
high yields represented the 4th quartile.   

The second analysis was the linear mixed model test. The analysis was run with a dataset of 
Z-transformed predictor variables and yield levels. Z-transforming data transform the values 
into dimensionless values that are comparable. The linear mixed model approach is suitable for 
normally distributed datasets where there might be an independence among variables (Brady et 
al., 2022). This approach was selected because it can account for both fixed and random effects, 
which is not feasible with the chi-square analysis.  Sites (same as the experimental sites) served 
as random effects while the climate markers were clustered variables and functioned as fixed 
effects in the LMM. This was decided as the goal was to specifically investigate effects from 
the climate markers on yield, and the while the site was not the primal object. The choice of a 
LMM was made as it has been used in previous attempts to make yield forecasts (Verma et al., 
2015; Mathieu and Aires 2018).  

Before running the LMM the climate markers were filtered to ensure that predictor variables 
were independent and not correlated with each other. This was made with the variance inflation 
factor (VIF) using a step wise approach (Schierhorn et al., 2021). Variables with a VIF >10 
were iteratively removed until all remaining variables had a VIF <10. For the analysis two 
models were fitted and correlated against yield; one model with the single climate marker 
variables and the second one was fitted with both single and pairwise interacting variables. This 
method aimed to determine whether there could be a distinct impact on yield from individual 
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climate markers, as well as from combinations of these markers The script for the LMM in 
RStudio is showcased below in Figure 7.  

 

 

 

Figure 7. Script with description of the steps that was used in R.studio version  4.2.2. to conduct the Linear mixed 
model analysis, correlating Yield (Yield_kg_ha) with climate markers (Var1 etc.) (defined in Table 2).  
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3.1. DSSAT Crop model calibration and validation 

The parameters of the calibrated cultivars used for the simulation are presented below in 
Table 4.  

Table 3. The coefficients of each cultivar (Astoria, Irina and Propino) that were calibrated in the GLUESelect tool and used in 
the cultivar file for the simulation in the DSSAT CERES-Barley cropping model. 

 
* P1D = Photoperiod response (% reduction in rate/10 h drop in phenology phase)), P5 = Grain filling phase duration (degrees day), G1 

= Kernel number per unit canopy weight at anthesis (#/g), G2 = Standard kernel weight under optimum conditions (mg), G3 = Standard, non-
stressed mature tiller weight (including grain) (dry weight, grams), PHINT = Interval between successive leaf tip appearance in degrees day. 
Ecotype refers to a list of 19 traits/parameters that vary less often between similar cultivars, such as thermal time to emergence and first leaf 
stages. 

 

The model calibration and validation showed closer alignment for Maturity day compared 
to Yield between simulated and observed values (Table 5). Specifically, for the 'Astoria' 
cultivar, no significant differences were observed post-validation, maintaining consistent R2-
value (0.86) and root mean square error RRMSE value (0.07). Overall, differences in the 
model's Maturity day variable calibration among cultivars were generally minimal. 'Astoria' 
exhibited the most linear variables, with R2 (0.86) and RRMSE (0.1). Notably, the calibration 
for Propino regarding yield reduced the mean average error, MAE, by 43%. 

Table 4. Results from the model calibration and evaluation of DSSAT Ceres Barley of the cultivars Astoria, Irina and Propino 
which included the variables Yield (Yield kg/ha) and Day of maturity (Mat. day). The table presents the number of observed 
and simulated experiments (Nb.exp), the root mean square error (RRMSE), mean absolute error (MEA) and R-square values 
of the variables. The RRMSE is considered “optimal" if <10%, “good” if <20% “fair” if <30%, “poor” if >30% (Pachepsky 
& Rawls 2004).  

3. Results  

  Calibration Validation 

 Variables Nb.exp RRMSE 
(%) MAE R2 Nb.exp RRMSE 

(%) MAE R2 

As
to

ria
 Mat. day 252 7 7.44 0.86 235 7 7.4 0.86 

Yield kg/ha 252 20 706 0.09 229 10 403 0.59 

Ir
in

a 

Mat. day 279 6 5.75 0.64 277 6 5.76 0.64 
Yield kg/ha 279 24 1065 0.59 273 22 1004 0.64 

Pr
op

in
o Mat. day 201 5 5.44 0.57 171 6 5.8 0.55 

Yield kg/ha 201 28 1215 0.19 171 15 698 0.51 
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3.2. Crop model simulation and assessment  

The model’s performance of simulating yield in each production region compared to the 
actual statistical data of observed yield from farmers is visualized in Figure 8a-d. Overall the 
simulated yield levels are below the observed yield levels. An important difference to mention 
is that the simulated yields have an adjusted moisture level of 0%, while the observed yields 
had an unspecified moisture level circling 14%. The reported yields differ from the simulated 
yields in such way that there is no knowledge of which cultivars, rates and types of fertilizer 
and management that has been used in the cultivation. These fields have also been exposed to 
biotic stresses such as pest and diseases that the crop model, in comparison, is unable to account 
for. It is important to take this into account as the model input is, in contrast, based on a few 
chosen locations and data from the field trial experiments where the management was very well 
documented In addition, the number of simulated fields are different in each region, for 
example, there was only one simulated field representing Region 2. The simulated yield levels 
in Region 2 are below 1000 kg/ha for the year 1979 and 2018 and do not mirror the reported 
yields. The diagrams in Figure 8a-d visualizes the model’s capability to follow the main pattern 
of the reported yields, especially major yield drops and a tendency to underestimate yield. For 
the reasons above it is not possible it intended to make comparisons between simulated and 
reported yields, these graphs cannot therefore alone determine how well the model performed. 

 
 

Figure 8 a-d. Regional average yield [kg/ha] simulated by the CERES-Barley crop model (green) and the average observed 
yield [kg/ha] from farmers (grey) to the Swedish Board of Agriculture (Jordbruksverkets statistikdatabas) in the production 
areas 1-4 in Sweden between 1979 and 2018 (Fig 4). The simulated yields include all three calibrated cultivars, fertilizer rate 
is 100 kg N/ha. Simulated yields had an adjusted level of 0% moisture; observed yields were adjusted according the moisture 
level reported in the source; if not indicated, the moisture level of 14% was assumed. 
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The simulated yield in each cultivar from the 54 sites, virtually fertilized with 
100 kg N/ha, within each region is presented in a boxplot diagram (Figure 9). 
Region 2 exhibits an even yield distribution across the years and cultivars, and it is 
notable that the region only includes one experimental site. Among the regions, the 
different cultivars display a similar distribution. Propino had a higher yield median 
and a broader yield range in all the regions. The average yields of the cultivar were 
3185 kg/ha for Astoria, 3396 kg/ha for Irina and 4577 kg/ha for Propino.  

 

Figure 9. The simulated yields (kg/ha) of each cultivar; Astoria (grey), Irina (light green) and 
Propino (dark green) from the 54 fields in the production regions 1-4. Each field was fertilized with 
100 kg N/ha. The box presents a distribution of yield values within the 2nd and 3rd quartile, separated 
by the median line. The whiskers and dots represent the distribution of yield values within the 1st 
and 4th quartiles. The dots indicate outlier values.   

3.3. Climate marker correlation analysis 

A few p-values within a significance level of 0,05% were found in the chi-square 
correlation analysis of climate markers and simulated yield levels (Table 6). The 
variable representing the climate markers Var6 (Number of days included in dry 
spell and warm spell) and Var11 (Number of days included in a warm spell) each 
had a significant interaction to six out of 54 sites. The other climate markers only 
explained yield levels to fewer sites. Years as a variable had a significant correlation 
to four of the sites. This result does not tell to what extent a variable impacts yield. 
It is also important to note that for only a few sites could a certain variable be used 
as an explanatory variable for yield. All results from the chi-square analysis are 
collected in Appendix 3.  
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Table 5. The significant p-values resulting from the chi-square analysis, testing the explanatory power of 
climate markers and yield on a specific site. Level of significance p<0.005. 18 sites (0023- , 1281-, 1641-, and 
2012ERA5) presented a significant correlation to the following variables: Years, Var2, Var3, Var6, Var7, Var9, 
Var11, Var12, Var16 (Table 2).  

 
 

The climate marker variables with VIF-values below 10 that were used in the 
linear mixed model analysis are showcased in Figure 10. There were no significant 
correlations between the VIF-sorted climate markers and the simulated yield levels 
when using a mixed linear model (Appendix 4). The highest correlation value 
(0.176) was found in an interaction of Var3 (Number of days included in Cold 
Spells) and Var5 (Number of days included in dry spells of 5 days or more). The 
interaction between Var5 and 14 (Average temperature and Number of dry days) 
exhibited the lowest association, with a coefficient of 0.001.  

 

Figure 10. The analysed climate markers that were filtered with the VIF-function. Variables with VIF-value 
>10 were removed to avoid multicollinearity. Variables on the x-axis are: Number of daily extreme precipitation (Var2), 
Number of days included in Cold Spells (Var3), Number of days included in dry spells of 5 days or more (Var5), Number of 
days included in dry spell and warm spell (Var6), Number of days included in warm spells (Var7), Number of days included 
in wet spells of 5 days or more (Var8), Number of dry spells of 5 days or more (Var9),  Number of late frost days OR Number 
of early frost days? (Var10), Number of warm Spells (Var11), Number of wet days (>1mm) (Var12), Ratio of precipitation 
falling during extreme event (Var14), Average temperature (Var15), Average precipitation volume per wet days (>1mm) 
(Var16), Total Precipitation volume (Var17).  
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4.1. Model calibration and validation 

The barley cultivars Astoria, Irina and Propino were estimated in the DSSAT 
CERES-Barely cropping model. After the model validation it was possible to 
observe that the model was able to mimic observed phenological maturity and 
yields. At regional level, the simulated values could also follow annual observation 
trends from statistical data (Figure 8a-d). 

The variable Day of maturity was more similar to the observations than the yield 
variable (Table 4). This might be because there were fewer and more similar dates 
from the field trials, often linked to nearby weather stations and soil profiles. 
Focusing on the yield variable, the R2

 and MAE was different between the cultivars. 
It was unsurprising that the MAE was large due to the larger geographical scope 
containing different distinct growing condition that were included into the crop 
model. Other papers that calibrated and used the CERES-Barley crop model had in 
comparison better linearity between the observed and simulated values than this 
project (Al-Bakri et al., 2021; Rötter et al., 2021).  

Even if the RRMSE was deemed good for both Astoria and Propino, the later 
cultivar had notably higher yields (Table 5, Figure 6 and 7). This may be explained 
by the cultivar coefficients: Propino has a large P5, G1, G2, and G3 in comparison 
to Astoria. This means that the cultivar had a longer grain filling period, both bigger 
and more kernels and a higher grain filling rate. Astoria, in comparison, had a much 
greater photoperiod response (40) in comparison to both Propino (17,99) and 
Astoria (0,2). This essentially means that Astoria was simulated with a lower rate 
of development during days with more than 10 hours of sunlight. During the 
summer period in Sweden the daylength is longer than the night-time, which means 
that the other cultivars were not as inhibited by the longer days as Astoria.  

Compared to the reported yields from Swedish farmers, Astoria was the most 
similar cultivar (Figure 8). A reason as to why there were such a high difference in 
yield between the cultivars could be that some coefficients were exaggerated in the 
calibration, while others underestimated. Another point, which was highlighted by 
Beven and Freer (2001) is that the model performance could have showed similar, 

4. Discussion 
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or the same output with another combination of parameter values. This could 
explain why some of the parameter values were different between cultivars,  

It is not surprising that the MAE was large since variation is expected due to the 
geographical distribution with different growing conditions that were included into 
the crop model and based on the field trial locations.  

In general, the simulated mean yields were lower than the ones reported to the 
Swedish board of Agriculture (Figure 8a-d). As mentioned, the adjusted water 
content may be one reason explaining the lower yields. The model’s trend to 
underestimate yield levels aligns with a publication from Rötter et al. (2021) where 
the majority of the compared crop models all displayed an underestimation of yield. 
The comparison made in this project, however, only functions as a visualisation of 
how well the model may follow general trends of yield levels over the year. It 
cannot explain the CERES-Barley model’s capacity and capability to calculate 
yield levels. 

The question remains if the calibration could have increased the similarities 
between observed and simulated data if more information was used in the model 
input, with for example more detailed phenological observations and biomass data 
collected during the cropping season. One of the reasons to reduce the input was to 
make the modelling more user friendly with the consideration that a lot of data 
might increase possible errors within the data set and later in the simulation. 
Perhaps the calibration could have been better if only trials that included all data 
would have been used, in this case a few missing information were included. In that 
case the selection of data points would have been reduced. Although looking into 
the results from the statistical analysis it is not clear if a more thorough calibration 
would have given other results seeing as the correlations were so low for almost all 
extreme weather variables (Table 4), especially considering the large geographical 
distribution of the experiments, which might include aspects that could not be 
captured by the model.    

4.2. Climate marker analysis  

The chi-square analysis resulted in a few significant interactions between climate 
markers and yield levels in malting barley in 19 of 54 weather stations connected 
to experiment sites (Table 6). Due to the low number of interactions, it was 
challenging to find a pattern that could be used to explain a relationship between 
pre-season climate markers and yield levels of malting barley. It would also not be 
enough to support any kind of pre-cropping season decisions, such as planting 
density, amount of fertilizer to be applied, choice or cultivars, etc. It can however 
be noted that two of the climate markers did have significant correlations to the 
yield in six weather stations. These were related to warm spells and a combination 
of warm and dry spells. However, this does not explain what effect, positive or 
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negative, these climate markers had on yield levels specifically. As a chi-square test 
will not be able to test combined effects of climate markers the linear mixed model 
approach was used. The results from linear mixed model analysis could not present 
any significant correlation between climate markers and yield levels.  

While neither the linear mixed model nor the chi-square analysis showed any 
significant interactions or patterns between climate markers and yield, climate 
markers could still be useful for making pre-season predictions of yield. This was 
also discussed by Lalić et al. (2014), who conducted a similar experiment with 
climate marker predictors, although to make within season yield forecasts. They 
considered if an insignificant result could still hold importance which is hidden or 
difficult to explain.  

A reason why there weren’t any significant correlations when using the linear 
mixed model might be because of the physical conditions during spring. Soils in 
Sweden are very often already saturated before the sowing of a spring crop, either 
from melted snow coverage or the low temperatures keeping the soils moist during 
the winter season. This means that precipitation at this stage does not have an 
impact on the final yield, a point that Lalic et al. (2014) also made. It is therefore 
plausible that climate markers connected to precipitation might not be good 
explanatory variables for yield predictions in Sweden, at least for spring sown 
crops. In Table 7, possible explanations are briefly presented as to why the variables 
didn’t exhibit any significant correlations.  

Table 6. Brief explanation of how the variables are associated with the Swedish conditions for spring 
cultivation and how they may or may not have clear impact on yield. 

Climate marker variable Explanation 
Nb_ColdSpell Might delay sowing, cooler conditions during planting 
Nb_DailyExtr_PcP Soil already saturated might delay sowing 
Nb_days_ColdSpell No real connection to before sowing 
Nb_days_ColdWet No particular effect, might affect sowing 
Nb_days_DrySpells_5d Earlier sowing, limited water resources in early growth stages  
Nb_days_WarmDry Earlier sowing, limited water resources in early growth stages  
Nb_days_WarmSpell Earlier sowing, limited water resources in early growth stages  
Nb_days_WetSpells_5d No particular effect as the soil is probably already saturated  
Nb_DrySpell_5d Limited water resources in early growth stages  
Nb_frost Delayed sowing, shorter growth period,  
Nb_WarmSpell Possibility of earlier sowing 
Nb_WetDays No particular effect as the soil is probably already saturated  
Nb_WetSpell_5d No particular effect as the soil is probably already saturated 
Ratio_DailyExtr_PcP Does not really affect unless it is close to sowing 
Tmp_average Earlier sowing if high mean daily temperatures 
Vol_Average_Wetday No particular effect 
Vol_ToTal_PcP Affects sowing day with a possible delay if too much precipitation 
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It could be argued that the most evident effect on yield comes from weather 
patterns affecting physical soil conditions (notably high moisture or low 
temperatures) and therefore delaying the day of sowing. A similar result was also 
found in a study that investigated Finnish cultivar responses to weather fluctuations 
(Hakala et al., 2012). They could observe that cold spells taking place before 
planting resulted in later sowing which had an overall negative impact on the yield. 
Eckersten et al. (2010) tried to make pre-season and within season yield predictions 
of winter wheat for Sweden but found that it was difficult and argued that climate-
related yield predictions are complex.  

 Other publications have generally focused the bigger picture of precipitation 
and temperature impacts instead of using more defined climatic markers. An 
example comes from a paper from Trnka et al. (2016) where they not only found 
that the growing conditions in Europe has changed since the beginning of the last 
century, but also that there has been change in which climate predictors have the 
most impact on yield. Similarly, to this project, they also used several climate 
markers in their weather/yield correlation. The same experiment also found that 
large amounts of precipitation before sowing had a negative effect on yield of 
almost all the 21 cultivars tested. One additional interesting finding was that yield 
predictors (climate markers) had changed during the tested period. The authors 
concluded that this indicated a change in crop growing conditions as they could also 
see that the impact of certain weather patterns had recently increased between 1991-
2012. Another example of earlier attempts at yield forecasting of common crops, 
made with hindcasting, is made in a study by Iizumi et al. (2018). They found that 
pre-season forecasting of yield variability could be done successfully with a multi-
model approach as a continuation of an earlier publication (Iizumi et al., 2013). 
Their previous publication from 2013 similarly shows how the yield predictions of 
wheat follows a similar pattern (Fig 11) to the simulation of the observed yields. 
This aligns with what this thesis’ simulation also achieved (Figure 8 a-d). Although 
both Izumi’s et al.’s (2013 & 2018) reports focus on global and national scale to 
make forecasts, it can be interpreted that for example temperature would have a 
great impact. This would perhaps not be generally true as temperature probably has 
a bigger impact in more arid parts of the world than in for example Sweden.  
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Figure 11. Pre-season forecasted (green), within season forecasted (orange) and observed (black) 
wheat yield variability from year 1985 to 2005 in USA, France and Canada. From Iizumi et al., 
2013.  

Even as there were no evident correlations between climate markers and yield 
for malting barley in Sweden, it is still important to note that it was possible to 
calibrate a crop model to mimic within season impacts and that the calibration could 
be considered successful. The model itself has the ability to account for pre-season 
impacts of the crop by running a water balance and also routines related to nitrogen 
dynamics, but its sensitivity to climate markers was not tested in detail. For this 
reason, data on climate markers might have the potential to help make pre-season 
or early predictions, which would be helpful to farmers planning and management. 
As other publications presented, it is a difficult and complex task to make pre-
season forecasts of yield, although there is still a demand for making early forecasts.  

Since this project included a large amount of data from field trial experiments, 
another approach could have been to use a statistical model instead of a process-
based crop model. As this model focused on understanding yield and climate 
correlations, a simpler model such as a statistical model might have been sufficient 
for this purpose (Basso et al., 2013). When using the process-based crop model 
CERES-Barley, the main advantage was that it could make more complex 
calculations based on the ecology of a barley plant (Table 1). Initially this work 
aimed to also include barley grain protein levels, a variable that the model has a 
routine for and could potentially be accounted for. This was, however, not 
accomplished in this project because of early evidence that the model still was not 
able to properly simulate this parameter. The choice of a process-based model was 
also grounded in the quantity of data. One other benefit with process-based models 
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is that they can be used to make extrapolations (Zhan et al., 2012). That would mean 
that the experiments simulated in a model could be applied to other regions than the 
ones tested, for example by only adding data on a few site-specific parameters such 
as weather and soil profiles. This is a limitation with the statistical model as the 
data is purely based on the data for a certain region. 

For future research within this topic, it might be interesting to combine pre-
season and within-season predictions. There might be other outcomes by changing 
the geographical scope. This approach would on one hand potentially include more 
data which could be useful, especially more phenological and biomass partitioning 
data. On one hand, increasing the geographical scope might make it less applicable 
or precise for field-level decision support. With an increasing dataset and scope 
there might be results that are hard to explain or understand when using a larger 
scale. Data on a smaller scale on the other hand is only useful in a limited area. A 
further development of this work could be to include other crops in the simulation 
and analysis, for example winter crops, or to analyse climate markers that occur in 
a closer time span seeing as the winter season in Sweden has a probable buffer 
function.  
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This thesis attempted to assess possibilities of using pre-season climate 
conditions together with a crop model in explaining yield levels of spring sown 
malting barley in southern Sweden. 

 The process-based crop model CERES-Barley was successfully calibrated for 
three malting barley cultivars. The explanatory power of climate markers was tested 
with a Pearson chi-square test and linear mixed model. A few significant 
interactions between climate markers and the simulated yield could be found in the 
chi-square analysis, but it lacked an overall pattern of significance to produce useful 
outcomes for decision support at field level. The linear mixed model was unable to 
find variable explaining yield levels. It may suggest that there are nonlinear effects 
or that other factors may have higher explanatory power than the tested climate 
markers.   

One of the reasons behind the lack of sensitivity to climate markers could be due 
to soil buffering conditions in Swedish soils regarding water storage during winter 
and early spring. The findings of this work, however, cannot be taken as conclusive 
in stating that climatic conditions 60 days before the start of the cropping season do 
not have any forecasting explanatory power to yields in Swedish conditions. In 
order to increase the knowledge in the area, a more detailed pedological and 
climatic database needs to be available, as well as detailed information on crop 
phenology, yield, agronomic management and biotic stresses. 

 
 

5. Conclusions 
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For as long as we have cultivated the soil, we have been reliant on weather 
conditions. During the last decades, we have experienced extreme weather events, 
more frequently than before. This has of course impacted the global production of 
food. Being aware of climatic conditions in one’s area may lay the ground for 
choices in agricultural management such as which crops and cultivars to grow. 
However, we cannot yet use weather events prior the cropping season’s start to truly 
know the yield levels of our crops. The possibility to make pre-season yield 
forecasts could prove to be useful in not only the planning but also the optimization 
of agricultural management.  

The aim for this master project was to investigate correlations between pre-
season climate indicators and yield levels of spring sown malting barley in southern 
Sweden. Climate indicators were used as a way to define certain extreme weather 
events that can occur during a cropping season and be damaging for the crop and 
its final yield.  The parameters of the crop model CERES-Barley developed by 
DSSAT (Hoogenboom et al., 2023) were adjusted so that the simulated yield would 
match the data from field trial experiments over the region between the years 1999 
and 2018. Data from field experiments, gridded weather data and soil profiles were 
used to calibrate a crop model that could simulate yield during 40 cropping seasons 
(from 1979 to 2018). The climate indicators were then used together with the 
simulated yields to see if they had connection or impact on the yield levels.  

The results showed no significant correlations that could explain yield levels 
based on pre-season weather conditions. It might be the case that the statistical 
model that was used to make the analysis could not take other playing factors into 
account. One factor that could explain this is actually the weather itself. In Sweden 
the winter and autumn accumulates a lot of water in the soil through rainfall, and 
since the temperature is low during this season water does not evaporate, therefore 
water remains in the soil. This means that the soil, during the spring and before 
sowing, is already full of water, which generally provides good conditions for the 
crop establishment. Good soil conditions for sowing may explain a hidden effect 
from the other climate markers. There is more to discover within this field as both 
weather patterns and crop models are complex. 
 
 

Popular science summary 
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Appendix 1 

Examples from the script used in R.studio to calculate the start of the cropping 
season and to define climate markers (Formas 2020-2023).  
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Appendix 2 

Table 7. Example of the table used for the chi-square analysis for the weather station 0004ERA5. The climate marker variables (1-17) values are each categorized in six levels: extreme 
low, very low, low, regular, high, very high and extremely high. They were tested against year and yield. The yield levels were also categorized into four levels: L, LM, LH and H, based 
on the quantile range of the simulated yield levels of the site 0004. 

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Yield 

1979 Hight regular regular regular Hight VeryLow regular regular regular regular regular regular regular VeryHigh regular regular regular L 

1980 VeryLow Low VeryHigh VeryLow Low ExtremHigh ExtremHigh regular regular regular regular regular regular regular regular Hight regular LM 

1981 VeryHigh regular regular VeryHigh Hight regular Low regular regular ExtremHigh VeryHigh regular regular regular regular regular regular LH 

1982 regular regular regular regular regular VeryHigh Hight regular regular regular regular ExtremHigh ExtremHigh regular regular ExtremHigh regular LH 

1983 regular regular regular regular regular VeryLow regular regular regular regular regular regular regular VeryHigh regular regular regular H 

1984 VeryLow VeryLow VeryHigh VeryLow regular regular VeryHigh regular regular regular regular regular regular regular regular regular regular LM 

1985 Hight Hight regular VeryHigh regular VeryLow VeryLow regular VeryHigh regular regular VeryHigh VeryHigh regular regular regular regular LM 

1986 regular regular regular regular regular regular regular regular regular regular regular regular regular regular regular regular regular LM 

1987 regular regular regular regular regular regular regular regular regular regular VeryHigh ExtremHigh VeryHigh regular VeryHigh VeryHigh regular H 

1988 Hight regular regular ExtremHigh regular VeryLow VeryLow ExtremHigh VeryHigh regular regular regular regular regular regular regular regular L 

1989 regular VeryHigh ExtremLow regular regular regular regular regular regular regular regular regular regular regular regular regular regular L 

1990 Hight ExtremHigh VeryLow Hight regular regular Low regular regular regular regular ExtremHigh VeryHigh regular regular VeryHigh regular L 

1991 Low Low regular regular Low VeryHigh regular regular regular regular regular regular regular regular Hight regular VeryHigh H 

1992 Low regular regular Low Hight VeryHigh Hight regular regular regular Hight regular regular regular regular regular regular L 

1993 Low regular regular regular Low ExtremHigh Hight regular Hight regular VeryHigh regular regular VeryHigh regular regular regular L 

1998 regular regular regular Hight regular ExtremLow ExtremLow regular VeryHigh regular regular regular regular regular regular regular regular H 

1999 regular regular regular regular regular regular regular regular regular regular Hight regular Hight regular regular VeryHigh regular H 

- - - - - - - - - - - - - - - - - - - 

2017 regular Hight regular regular Hight regular regular regular regular regular regular VeryHigh Hight regular regular regular regular H 

2018 regular VeryLow VeryHigh regular regular regular regular regular regular regular regular regular regular regular regular regular regular L 
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Appendix 3 

Table 8. The results from the Pearson chi-square analysis with the weather stations and climate markers. Bolded values are significant p-values within a significance 
level of >0.05.  
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0004ERA5 0.609 0.227 0.913 0.253 0.029 0.657 0.832 0.652 0.529 0.627 0.208 0.166 0.412 0.562 0.562 0.369 0.049 0.664 

0006ERA5 0.538 0.397 0.061 0.801 0.970 0.132 0.032 0.145 0.148 0.465 0.181 0.083 0.788 0.921 0.366 0.008 0.837 0.314 

0007ERA5 0.106 0.552 0.209 0.257 0.499 0.411 0.947 0.553 0.142 0.481 0.025 0.660 0.957 0.329 0.213 0.004 0.264 0.089 

0023ERA5 0.235 0.704 0.060 0.420 0.475 0.363 0.123 0.705 0.152 0.635 0.886 0.837 0.299 0.800 0.874 0.178 0.653 0.888 

0024ERA5 0.660 0.792 0.647 0.510 0.701 0.401 0.137 0.536 0.896 0.666 0.828 0.003 0.539 0.805 0.502 0.263 0.555 0.621 

0039ERA5 0.708 0.232 0.359 0.440 0.108 0.620 0.784 0.208 0.539 0.133 0.388 0.778 0.200 0.733 0.167 0.214 0.406 0.428 

0041ERA5 0.962 0.294 0.949 0.886 0.134 1.000 0.470 0.467 0.267 0.660 0.665 0.557 0.410 0.625 0.522 0.287 0.528 0.390 

0052ERA5 0.505 0.502 0.219 0.085 0.262 0.842 0.851 0.312 0.723 0.302 0.815 0.969 0.870 0.625 0.294 0.428 0.753 0.075 

0053ERA5 1.74E-12 0.317 0.178 0.368 0.523 0.080 0.130 0.835 0.204 0.905 0.410 0.465 NA 0.019 0.841 0.935 0.893 0.101 

0067ERA5 0.758 0.671 0.431 0.425 0.103 0.733 0.095 0.686 0.648 0.012 0.167 0.273 0.205 0.839 0.896 0.175 0.075 0.529 

0068ERA5 0.536 0.606 0.126 0.949 0.032 0.857 0.139 0.019 0.972 0.847 0.681 0.093 0.106 0.098 0.306 0.334 0.208 0.457 

0093ERA5 0.483 0.397 0.450 0.949 0.403 0.837 0.182 0.979 0.861 0.296 0.465 0.488 0.588 0.625 0.366 0.175 0.757 0.555 

0094ERA5 1.000 0.506 0.306 0.817 0.113 0.847 0.306 0.522 0.555 0.747 0.723 0.684 0.526 0.912 0.879 0.625 0.098 0.157 

0114ERA5 0.352 0.322 0.060 0.312 0.898 0.597 0.182 0.629 0.861 0.241 0.954 0.175 0.857 0.295 0.366 0.438 0.671 0.555 

0201ERA5 0.103 0.611 0.248 0.077 0.096 0.867 0.185 0.139 0.615 0.524 0.489 0.725 0.666 0.236 0.456 0.453 0.973 0.183 

0273ERA5 0.017 0.695 0.107 0.050 0.003 0.053 0.596 0.369 0.751 0.854 0.478 0.731 0.806 0.274 0.456 0.188 1.000 0.183 

0812ERA5 0.740 0.656 0.303 0.556 0.667 0.784 0.368 0.661 0.359 0.829 1.000 0.748 0.758 0.527 1.000 0.753 0.058 0.183 

1146ERA5 0.130 0.638 0.449 0.316 0.936 0.133 0.020 0.879 0.065 0.514 0.145 0.297 0.324 0.645 0.738 0.360 0.077 0.053 

1148ERA5 0.132 0.884 0.431 0.557 0.549 0.159 0.024 0.728 0.723 0.660 0.666 0.466 0.445 0.912 0.600 0.776 0.022 1.000 

1150ERA5 0.387 0.636 0.370 0.070 0.732 0.197 0.798 0.462 0.432 0.592 0.983 0.971 0.399 0.589 0.564 0.195 0.818 0.497 
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1201ERA5 0.023 0.432 0.657 0.326 0.532 0.008 0.091 0.676 0.119 0.493 0.288 0.625 0.984 0.394 0.356 0.760 0.068 0.204 

1207ERA5 0.915 0.312 0.254 0.751 0.717 0.251 0.274 0.909 0.608 0.796 0.752 0.737 0.014 0.261 0.347 0.287 0.548 1.000 

1209ERA5 0.849 0.388 0.203 0.193 0.572 0.319 0.763 0.884 0.608 0.573 0.442 0.988 0.225 0.942 0.747 0.098 0.804 0.795 

1228ERA5 0.371 0.150 0.607 0.566 0.149 0.420 0.319 0.399 0.188 0.029 0.776 0.442 0.045 0.534 0.981 0.426 0.350 0.519 

1230ERA5 0.152 0.748 0.584 0.912 0.764 0.767 0.491 0.733 0.303 0.792 0.632 0.733 0.183 0.318 0.872 0.975 0.007 0.661 

1231ERA5 0.433 0.384 0.922 0.587 0.811 0.536 0.138 0.662 0.918 0.183 0.815 0.870 0.488 0.029 1.000 0.331 0.487 0.598 

1260ERA5 0.071 0.562 0.372 0.531 0.542 0.230 0.982 0.474 0.533 0.126 0.303 0.463 0.005 0.041 0.473 0.049 0.024 0.661 

1261ERA5 0.093 0.483 0.887 0.777 0.819 0.475 0.918 0.553 0.071 0.590 0.808 0.438 0.059 0.038 0.759 0.731 0.139 0.183 

1265ERA5 0.310 0.455 0.676 0.202 0.209 0.807 0.321 0.543 0.795 0.709 0.190 0.084 0.062 0.329 0.795 0.291 0.308 0.661 

1280ERA5 0.117 0.723 0.113 0.602 0.902 0.408 0.263 0.502 0.063 0.351 0.815 0.514 0.023 0.038 0.529 0.950 0.896 0.489 

1281ERA5 0.432 0.807 0.523 0.446 0.886 0.510 0.165 0.879 0.828 0.684 0.985 0.714 0.476 0.472 0.871 0.802 0.628 0.661 

1282ERA5 0.696 0.814 0.983 0.943 0.943 0.688 0.317 0.966 0.681 0.884 0.835 0.203 0.183 0.974 0.446 0.557 0.209 0.207 

1284ERA5 0.242 0.933 0.281 0.439 0.340 0.851 0.549 0.538 0.346 0.602 0.290 0.625 0.570 0.591 0.628 0.702 0.983 0.487 

1641ERA5 0.117 0.909 0.130 0.104 0.742 0.857 0.844 0.985 0.142 0.093 0.954 0.731 0.317 0.514 0.055 0.955 1.000 0.183 

1709ERA5 0.095 0.575 0.857 0.419 0.493 0.839 0.466 0.302 0.533 0.090 0.072 0.048 0.795 0.852 0.188 0.483 0.985 0.183 

1866ERA5 0.111 0.479 0.974 0.928 0.804 0.279 0.078 0.558 0.434 0.145 0.666 0.644 0.283 0.375 0.476 0.438 0.091 0.183 

1930ERA5 0.954 0.617 0.858 0.660 0.862 0.919 0.359 0.379 0.728 0.605 0.972 0.089 0.508 0.167 0.127 0.751 0.009 0.715 

2012ERA5 0.144 0.216 0.635 0.644 0.487 0.993 1.000 0.834 0.163 0.673 0.575 0.454 0.141 0.828 0.673 0.142 0.130 0.539 

2021ERA5 0.040 0.665 0.867 0.503 0.450 0.050 0.606 0.452 0.934 0.330 0.167 0.548 0.934 0.038 0.222 0.441 0.255 1.000 

2024ERA5 0.654 0.725 0.382 0.445 0.660 0.386 0.885 0.514 0.660 0.441 0.539 0.739 0.957 0.847 0.312 0.648 0.821 NA 

2091ERA5 0.928 0.300 0.324 0.817 0.710 0.410 0.905 0.308 0.037 0.887 0.443 0.667 0.714 0.789 0.943 0.138 0.175 1.000 

2093ERA5 0.859 0.755 0.334 0.210 0.771 0.799 0.755 0.492 1.000 0.896 0.171 0.243 0.758 0.753 0.144 0.287 0.022 0.060 

2094ERA5 0.568 0.532 0.417 0.399 0.503 0.253 0.755 0.648 0.204 0.089 0.836 0.270 0.186 0.959 0.783 0.871 0.991 0.060 

2095ERA5 0.626 0.985 0.119 0.127 0.916 0.331 0.411 0.225 0.053 0.300 0.562 0.766 0.758 0.758 0.406 0.708 0.125 0.216 

2170ERA5 0.608 0.319 0.259 0.225 0.998 0.172 0.210 0.998 0.051 0.087 0.504 0.467 0.714 0.463 0.879 0.139 0.152 0.212 

2234ERA5 0.608 0.319 0.259 0.225 0.998 0.172 0.210 0.998 0.051 0.087 0.504 0.467 0.714 0.463 0.879 0.139 0.152 0.212 
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Table 9. Results from the linear mixed model correlation analysis with Z-transformed data set. No variables 
were significant to the simulated yield.  Significance is measured as -0,5>x>0,5. Variables explanation is found 
in Table 2. Level of significance p<0.005. 

Variable Correlation value Variable  Correlation value  

Yield_kg_ha 1.000 Var5_Var13 0.022 
Var2 -0.025 Var5_Var13 0.022 
Var3 0.051 Var5_Var14 0.052 
Var4 -0.152 Var5_Var15 -0.011 
Var6 0.115 Var5_Var16 0.025 
Var7 0.130 Var5_Var17 -0.061 
Var9 -0.056 Var7_Var9 -0.063 
Var10 0.044 Var7_Var10 -0.090 
Var11 0.049 Var7_Var11 -0.092 
Var13 0.138 Var7_Var12 0.083 
Var14 -0.021 Var7_Var13 0.096 
Var15 0.024 Var7_Var14 -0.073 
Var16 0.156 Var7_Var15 -0.006 
Var17 0.001 Var7_Var16 0.108 

Var2_Var3 0.103 Var7_Var17 -0.032 
Var2_Var4 -0.024 Var6_Var9 -0.051 
Var2_Var5 0.075 Var6_Var11 -0.110 
Var2_Var6 0.062 Var6_Var12 0.033 
Var2_Var7 0.062 Var6_Var10 -0.093 
Var2_Var9 0.046 Var6_Var13 0.044 

Var2_Var10 0.051 Var6_Var15 -0.041 
Var2_Var11 0.043 Var6_Var16 0.106 
Var2_Var12 -0.010 Var6_Var17 -0.015 
Var2_Var13 -0.006 Var9_Var10 0.034 
Var2_Var14 0.077 Var9_Var11 0.005 
Var2_Var15 0.041 Var9_Var12 -0.036 
Var2_Var16 0.021 Var9_Var13 -0.045 
Var2_Var17 0.054 Var9_Var14 -0.063 
Var3_Var4 0.018 Var9_Var15 -0.068 
Var3_Var5 -0.086 Var9_Var16 -0.036 
Var3_Var6 -0.071 Var9_Var17 -0.003 
Var3_Var7 -0.060 Var10_Var13 0.018 
Var3_Var9 -0.069 Var10_Var11 0.043 

Var3_Var10 -0.063 Var10_Var12 -0.010 
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Variable Correlation value Variable  Correlation value  

Var3_Var12 0.008 Var10_Var15 -0.021 
Var3_Var13 0.020 Var10_Var16 -0.001 
Var3_Var14 -0.096 Var10_Var17 -0.009 
Var3_Var15 -0.096 Var11_Var13 0.043 
Var3_Var16 0.004 Var11_Var12 -0.010 
Var3_Var17 -0.084 Var11_Var14 -0.041 
Var4_Var5 0.048 Var11_Var15 -0.021 
Var4_Var6 -0.023 Var11_Var16 -0.001 
Var4_Var7 -0.032 Var11_Var17 -0.009 
Var4_Var9 0.018 Var12_Var13 -0.010 

Var4_Var10 0.078 Var12_Var14 -0.041 
Var4_Var11 0.075 Var12_Var15 -0.021 
Var4_Var12 -0.097 Var12_Var16 -0.001 
Var4_Var13 -0.105 Var12_Var17 -0.009 
Var4_Var14 0.019 Var13_Var15 0.017 
Var4_Var15 -0.035 Var13_Var14 -0.010 
Var4_Var16 -0.093 Var13_Var16 0.079 
Var4_Var17 0.011 Var13_Var17 -0.036 
Var5_Var6 -0.046 Var14_Var15 -0.043 
Var5_Var7 -0.046 Var14_Var16 -0.058 
Var5_Var9 0.051 Var14_Var17 -0.036 

Var5_Var10 0.067 Var15_Var16 0.007 
Var5_Var11 0.093 Var15_Var17 -0.044 
Var5_Var12 0.043 Var16_Var17 -0.054 

*Number of daily extreme precipitation (Var2), Number of days included in Cold Spells (Var3), Number of days included 

in dry spells of 5 days or more (Var5), Number of days included in dry spell and warm spell (Var6), Number of days included 

in warm spells (Var7), Number of days included in wet spells of 5 days or more (Var8), Number of late frost days OR Number 

of early frost days? (Var10), Number of warm Spells (Var11), Ratio of precipitation falling during extreme event (Var14), 

Average temperature (Var15), Average precipitation volume per wet days (>1mm) (Var16), Total Precipitation volume 

(Var17) 
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