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Abstract

Different means of yield forecasting have been investigated in many publications, although very few with
a focus on pre-season forecasting. Climate change and the increasing risk of extreme weather events is a threat
to food production, and early yield predictions could therefore be beneficial for farmer’s planning and
management as a way towards more resilient food production. This thesis aims to explore if yield forecasting
of malting barley in Southern Sweden can be done using climate markers of weather occurring during the 60
days before the beginning of the cropping season. Data from field trials, conducted between 1999 and 2018 and
acquired from NTFS and SLU Filtforsk, were used as experimental data to calibrate and evaluate the CERES-
Barley crop model. Three cultivars were used: Astoria, Irina and Propino. The model input additionally
consisted of weather data from AgERAS and soil profiles from ISRIC that were connected to the field trial
sites. The climate markers and the simulated mean yields were tested with a linear mixed model analysis and a
Pearson chi-square test in RStudio. The crop model was successfully calibrated, with Astoria being the best
cultivar to mirror observed yields from different years and locations in Sweden. The results indicated, however,
that none of the analysed climate markers during the 60 days prior to the beginning of the cropping season was
able to explain malting barley yields, highlighting the difficulty in making early yield forecasts. One hypothesis
for this lack of explanatory power from the climate markers on the yield of spring malting barley is that the
effect of precipitation in the 60 days before the beginning of the cropping season is buffered by winter and

early spring, when soils are usually at or close to field capacity.

Keywords: Yield forecasting, extreme weather, pre-season forecasting, climate markers, climate predictors,

climate patterns, model calibration, DSSAT, crop model
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1. Introduction

With climate change the demand of resilient food production is ever present. The uncertain
future agriculture is facing as a consequence of climate change calls for new management tools
to make food production more resilient (FAO 2015).

While yield is often directly related to, or explained by the weather during the cropping
season, less is known about possible pre-season weather impacts on yield (Bellouini et al.,
2020). As of today, there are various tools used to make forecasts of yield and quality
forecasting such as remote sensing, statistics, crop models, satellites, seasonal patterns, and
machine learning (Basso et al., 2013; Yaramasu et al., 2020; Qian et al., 2009; Ali et al., 2022;
FAO 2015; Bannayan et al., 2003; Pettersson 2007). Many of these tools are, however, still not
applicable, or very well adapted to make pre-season forecasts. The existing tools are also often
heavily time consuming and as of now the geographical scope of forecasts is limited and not
equally explored across the planet (Schauberger et al., 2020. For agriculture to better adapt to
changing cropping conditions and the risks of extreme weather, pre-season forecasting could
be a powerful tool. By knowing pre-season conditions, especially how extreme weather may
interfere with yield, there is room for farmers to plan the cropping season (e.g. cultivar, fertilizer
and sowing). This thesis will investigate how crop models and data of pre-season extreme
weather events in Sweden might help to forecast yield levels of spring sown malting barley.

1.1. Obijectives

The aim of this thesis is to investigate the possibility to forecast yield levels of malting barley
and if yield is dependent on or affected by pre-crop season climate markers. This will be
accomplished by using data from field trial experiments conducted in Southern Sweden of
malting barley to calibrate the cropping model DSSAT CERES-Barley and run simulations
using gridded weather data with characterization of extreme weather events. The two specific
objectives for this thesis are:

o to calibrate the CERES-Barley model based upon data from field trial experiments.

o to analyse the correlation of yearly weather markers against simulated yields from the
calibrated model to determine if pre-season climatic factors have the power to explain
yield.
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1.2. Background

1.2.1. Malting barley production in Sweden

Barley (Hordeum vulgare) is one of the oldest cultivated and remains to this day an important
crop in Sweden. Today barley is grown for both animal feed and malting, making it
economically important (Fogelfors 2016). In Sweden, malting barley is commonly grown as a
spring crop. On a global scale, barley is the fourth most cultivated cereal, with Europe being
the main producer of more than 60% of the total global production (FAOSTAT, 2023). In
Sweden, two-row barley is the dominating variety for malting purposes and the production is
mainly located in the southern parts of the country (Fogelfors, 2016).

For farmers, the key when producing malting barley is to obtain the right level of grain
protein, between 9.5 and 11%. The protein level is very much dependent on abiotic factors such
as temperature, day length, radiation, and nutrient availability at certain times of the plant’s
development (Pettersson, 2007). Location and development rate has also proved to be important
contributors to the final beer quality (Johansson, 2011).

1.2.2. Climate change and extreme weather

Climate can be defined as the mean weather of the previous 30 years. Weather is described
as variations of atmospheric conditions such as precipitation and temperature (Bolin Centre for
Climate Research, 2019; SMHI, n.d.).

Farmers across Europe faced great yield losses during the 2018 cropping season due to
extensive drought (Beillouin et al., 2020; Grusson et al., 2021). Extreme weather events such
as drought and heavy rains have occurred in history but not to the same extent as the more
recent ones. The term extreme weather events implies that a value of temperature, wind, or
precipitation is either above or below a given threshold (IPCC 2021). The threshold that defines
the dimension of extreme events are, however, not unified. Grusson and Barron (2021) found
similar results when comparing different reanalysis products. In their results they could see that
there was a large variability in how the different reanalysis products had quantified extreme
weather events. According to a report from IPCC (2021), extreme weather events are expected
to occur more often and appear more extreme. Looking into the conditions of Swedish
agriculture, future predictions tell of increasing precipitation mainly during winter and spring
and with increasing risk of droughts and intensive rainfalls during summer (SMHI, n.d.;
Naturvardsverket, n.d.) As Swedish agriculture is mainly rainfed, extreme weather trends may
have a significant impact on crop production (Grusson et al., 2021). de Toro et al. (2015)
investigated how the yield of the most common crops in different regions in Sweden from the
year 1964 to 2014 have been affected by extreme weather. They found that precipitation events
occur more often and that this may cause problems of logistics and timing during harvest.
Similarly, to previously stated predictions, they could also observe a shift towards higher mean
temperatures in Sweden.

What climate change ultimately means, in the perspective of plant biology, is a change in
the environment and living conditions for crops and their interactions with other living beings
(Bhadra et al., 2021). Changes in amounts, timing, and durations of parameters such as
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precipitation, solar radiation and temperature all impact the life cycle of plants. An example of
this was presented in a recent paper by Kaseva et al. (2023). By comparing yield levels in
Nordic barley cultivars against agrometeorological factors over a 40-year time period they
found that the cultivars had become more vulnerable against irregular weather patterns. Direct
impacts of extreme weather may cause physical damage to crops, delayed time for planting and
harvest, temperature, and water stresses. Time and duration of extreme weather events are the
basis that determine the scope of yield loss. Malmquist and Barron (2022) mapped definitions
of extreme weather in the Nordic countries and found that, even though there is a lot of research
in the field, there were so far no unified definitions of extreme weather events.

1.2.3. Extreme weather effects on barley phenology and yield

When discussing climate change, it is important to understand how phenology and growth
are impacted by extreme weather. Under optimal conditions, both growth and development are
decided by thermal time or heat sum. The heat sum of a given day is the mean temperature of
that day, calculated using its minimum and maximum measured temperatures (Rawson &
Macpherson Goémez 2000). In order for a plant to pass onto its next development stage, it needs
to accumulate a certain thermal time, i.e., a running total of the mean temperature each day (Fig
1). The thermal time (Ritchie et al., 1998) can be defined as:

th =Xi'=1(Ta—To) 6]
Ta = average daily air temperature
Ty = temperature where plant development stops
n = number of days

Minimum heat sums for developmental phases

760°Cd ~ 500°Cd
70, |
350 'y’
150 4 'y [
200  41380°Cd, |
60 N/ NN |
iy ‘ ‘1’
e >
28 89 8T 2252 £
5 32 EL B 2 58 3
o5 S EX 2 & O% S
'”ECS Lo £ &

Figure 1. The temperature sum needed for a plant to go into its’ next development stage, measured in degree days
(°Cd). Figure made by HM Rawson (Rawson & Macpherson Gomez 2000).
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Anthesis and kernel filling are critical stages regarding the quality formation of malting
barley. Both extreme cold and high temperatures can negatively affect the number of flowers,
which in turn determines the final kernel yield. During the initial growth phases of the plant,
increasing temperatures induce a heightened rate of thermal accumulation within the crop,
consequently leading to a shortened developmental duration (Petterson 2007). Subsequently,
during later development stages, increased temperatures may induce physiological stress,
leading to a reduced duration for grain filling. This, in turn, results in decreased starch content
within the stem and an increase of grain protein levels, occasionally reaching unfavourable
concentrations. (Schelling et al., 2002; Pettersson 2007; Al-Ajlouni 2016; Hakala et al., 2016;
Saiyed et al., 2009). Frost damage can cause cell damage and may inhibit photosynthesis. In
the earlier development stages the severity is not as large as when frost occurs in anthesis or
heading (Frederiks et al., 2015; Martino et al., 2019). Another consequence relating to frost
damage is that the grains might not be able to germinate which is crucial for the malting process.

Water stress occurs when the water potential falls below the threshold required for plant
absorption (Havrlentova et al., 2021). Regarding germination, moisture is a catalyst for the
germination of most of the cultivated species ( Havrlentova et al., 2021; Kar 2011). Inadequate
water availability after germination can lead to an uneven crop stand and reduced seedling
survival. In response to water scarcity, the plant’s short-term reaction mechanism is to close
stomata to reduce evapotranspiration, leading to a decrease in the rate of photosynthesis
(Havrlentova et al., 2021; Kar, 2011). Another effect following water deficiency is a reduced
flower initiation and abortion, resulting in fewer grains per straw; when occurring during the
grain filling phase, it can reduce the grain weight. During the grain filing stage, water deficiency
may also lower the level of protein in the grains (Havrlentova et al., 2021). Conversely, stress
may also be caused by an abundance of water (Zhou et al., 2020).

Soil saturation by waterlogging and flooding also impacts yield as the plant’s root
development is restricted due to insufficient oxygen, limiting respiration, resulting in anoxia
and the production of reactive oxygen spices (Herzog et.al, 2016; Arslan Ashraf, 2012). These
responses hinder overall plant growth, with the duration and timing of extreme weather events
playing a crucial role in determining the ultimate impact on crop yield (Tian et al., 2021).

1.2.4 Yield forecasting with crop models

There are different approaches to make yield forecasts, such as remote sensing, machine
learning and crop models. Crop models have the ability to concretize an already complex and
dynamic system and have therefore been considered helpful tools in understanding, creating
and making predictions in complex systems such as agriculture (Wallach et al., 2014). One
main disadvantage of crop models is their inability to account for biotic stresses such as pests
and weeds (Roberts et al., 2017; Lobell & Asseng, 2017). It is however important to note that
a crop model is not able to fully predict the outcome of a cropping season, its power lies within
its capability to make likelihood predictions based previous data of i.e., weather, agronomic
management, and yield levels. To better list functions of cropping models, some differences,
and similarities between process-based and statistical models are summarised in Table 1.
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One example of a process-based crop model is the DSSAT (Decision support system for
agrotechnology transfer) CERES-Barley crop model, which uses seven growth stages:
germination, emergence, maximum primordia, end ear growth, beginning of grain fill, maturity,
and harvest (Hoogenboom et al., 2022). To calculate plant growth CERES-Barely uses growing
degree days (0°C as base temperature) and photoperiod. A development stage is reached as a
certain temperature has been accumulated. The CERES-Barley crop model makes daily
calculations of plant growth and phenology based the model inputs. In similarity to other crop
models the basic input data consist of:

o Local daily weather data of the cropping season
o Soil profiles
o Crop management information of the experiment (Hoogenbom et al., 2023)

Table 1. Comparison of general similarities and differences between process-based and statistical crop models.
Adapted from Schibalski (2017) and Adams et al. (2013).

Process-based Statistical
Relationship type Causal, dynamic Correlative, static
Relative More comprehensive but not very general Less comprehensive but more general
comprehensiveness results results
incorporation of Explicit Implicit
Primary source of error Unknown parameters and processes Extrapolation due limited data availability
Parameters Have ecological explanation Have no ecological explanation
Model uncertainty Higher Lower
Data requirements Higher and more specific Lower, can be more general
Spatial scale for calibration Low Low to larger
Spatial scaling of Smaller to Larger Best at scale of calibration

prediction
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2. Methods

2.1. Study region

Southern Sweden extends over the 55-59™ latitude and the 13-18" longitude and has a varied
annual mean temperature circling 4°C and 7°C (Fig 2) (SMHI, 2023). Annual accumulated
precipitation ranges between 400 to 1000 mm. The regional mean temperature during the
summer period is around 18°C. In general, most precipitation is distributed during summer and
autumn.

mm
1400
* 1200
1000
800
600
400
200

Figure 2. Maps adapted from SMHI presenting the mean annual amount of precipitation (left) and temperatures (right) of the
years 1991 and 2020 in Sweden (2023).

2.2. Data

2.2.1. Field experiment data

In order to properly run a crop model, observations from field data are required for
calibration, validation and further impact assessment studies. Data from field experiments on
spring grown malting barley conducted between 1999 and 2018 in Gétaland and Svealand, the
southern part of Sweden, were used to calibrate and validate the model (locations of the field
experiments are shown in Fig 3). The data consisted of 84 field experiments each containing
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733 experiments and three malting barley cultivars: Astoria (253 experiments), Irina (279
experiments) and Propino (201 experiments). Experimental data for the years 2013 to 2018
were acquired from the Nordic Field Trial System (NFTS, 2022). Data on the earlier
experiments were obtained from SLU Filtforsk (SLU Faltforsk, n.d.). The collected
information included yield levels, management, fertilizer rates and harvest date.

® Tnal sites

50 100 150 200 km
I .

Figure 3. Overview map displaying the 84 trial site’s locations in the regions of Gétaland and Svealand used in the project as
the main source of data. Map created in QGIS (2022), map layers obtained from Oversiktskartan ©Lantmditeriet (2023).

To increase the number of experimental data (field observations) and improve the model
performance, experiments with some missing information were also included. Since the missing
information from the experiments were of dates and/or coordinates, these could still be
incorporated without significantly affecting the outcome of the model calibration. The missing
dates for sowing and fertilizer application were interpolated based on experiments from the
same area.

Experimental sites lacking coordinates were randomly assigned coordinates within the
corresponding municipal boundaries using data and maps from Lantmaiteriet (2023). This
allocation was executed using QGIS Geographic Information System (2022) version 3.24.0.

2.2.2. Soil and weather data

Soil profiles in a gridded format were obtained from ISRIC version 2.6 (IRL, 2015). The
obtained soil profile data used in the DSSAT v 4.8 (Decision support system for agrotechnology
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transfer) CERES-Barley model contains information on horizon depths, soil grain properties,
pH, organic carbon, saturation of aluminium and bulk density (Hoogenboom et al., 2003).

Weather data were procured from AgERAS, from Copernicus Climate data store (Copernicus
Climate Change Service, 2019). The AgERAS is a gridded long term reanalysis product
featuring daily climate data of sun radiation, minimum and maximum temperatures between
the years 1979 and 2018The AgERAS was chosen based on the results from a review by
Grusson and Barron (2022) where it was identified as the best performing (smallest deviation
from a baseline of observed data) reanalysis product that is still producing data.

Since the simulation was to cover 40 years, the use of gridded data would ensure the absence
of non-continuous data, which is a particularly common problem when covering broader
geographical areas. The gridded weather and soil data were associated to each of the 54
experimental sites using QGIS to prepare a complete dataset needed to operate the crop model.

2.3. Crop modelling

To investigate the possibility to forecast yield with the help of climate markers, the CERES-
Barley cropping model was used. The general method for calibrating and operating the CERES-
Barley cropping model in this project is briefly explained by the schematic below (Figure 4).
First the CERES-Barely model was calibrated using the observed data of three malting barley
cultivars from the field trial experiments and the gridded weather data (using data described in
Section 2.2). After the calibration was deemed successful, it was run to simulate yields between
the years 1979 and 2018. Following the simulations, the obtained results were correlated in
relation to various climate markers, with the objective of identifying those that could forecast
yields.
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Figure 4. The summarised workflow of the modelling of CERES-Barley (above). Starting with calibrating and
validating the model using field experiment data as input (Step 1), followed by conducting yield simulations (Step
2), the definition and calculation of climate markers (Step 3) and finally the correlation of yields with climate
markers. (Step 4). The CERES-Barely crop model functions and workflow relating to the methodology of this
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project are explained in segments in the figure below. (Rozenbeek 2023).

2.3.1. Model input data

The model input data consisted of soil profiles, weather data and management data all
described in section 2.2. The management input data mimicked the information from the 733

field experiments to fullest extent possible and contained the following:

@)
©)
@)
@)

18

Sowing date

Date of harvest
Grain yield (kg/ha)

Dates of fertilizer application



o Rates of nitrogen fertiliser
o
It was arbitrarily decided to make the following assumptions about agronomic management
and base temperature consistent across all experiments:
o Row spacing: 12 cm
Plant density 90 / m?
Broadcast incorporated fertilizer
Ammonium nitrate fertilizer as N source
Base temperature of 0°C

o O O O

This unification was decided to make the calibration and the simulations easy to conduct and
analyse, and made regardless of if there was specific information on e.g. type of fertilizer for
certain field experiments.

2.3.2. Crop model calibration and evaluation

The aim of calibrating a model is to adjust coefficients the describe the model’s behaviour
according to real observations (Wallach et.al, 2021). In this project specifically genetic
coefficients describing the variables determining yield and maturity day of the three cultivars
Astoria, Irina and Propino were calibrated and validated against observed data from field
experiments.

Each of the cultivar’s parameter were then calibrated using 1500 iterations in the Generalized
Likelihood Uncertainty Analysis, GLUESelect (Hogenboom et al., 2021). GLUE is a Bayesian
approach that takes standard information and experimental data for the coefficient estimation.
GLUE Select randomizes all possible values within a predetermined range for the cultivar
coefficients. The range of values for each parameter is limited by observed data from different
field trial experiments. Within the CERES-Barley model both cultivar coefficients and ecotype
coefficients were used to calibrate the cultivars. The cultivar coefficients are calibrated based
on specific traits of growth and development, while the ecotype coefficients consist of
traits/parameters that are more constant for the specific crop and for it is grown (Hoogenboom
et al., 2003). The ecotype for a cultivar was chosen based on how well it performed together
with the cultivar coefficients during the calibration. The cultivar coefficients (Hoogenboom
et.al 2023; Singh et al., 1998) that were calibrated are defined as follows:

o PID Change of growth development rate due to photoperiod response (% reduction in
rate/10 h drop in photoperiod)

o P5 Duration of grain filling phase, number of days >1°C that are needed [degree
days]

o @Gl Kernel number per unit canopy weight at anthesis [Kernel number/g]

o G2 Standard kernel size under optimum conditions [mg]

o G3 Standard, non-stressed mature dry tiller weight (including grain) [g]

o PHINT Number of days that are required for a leaf tip to appear [degree days]
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Initially, only phenology-related cultivar coefficients (P1D, P5 and PHINT) were calibrated
using 1500 runs. After satisfactory matching of the observed values for maturity, phenology-
related coefficients where fixed and another round of 1500 simulations only for production-
related parameters (G1, G2 and G3) was run. The split calibration approach, as suggested by
Wallach et al. (2019), ensures that the growth parameters are adjusted according to the
phenology parameters. The values of the coefficients in both the cultivar and ecotype files were
further manually refined within certain ranges that were measured in the field experiments and
additionally generated with GLUESelect. This ensured that there would be no occurrences of
impossible combinations of parameter values. Additionally, adjustments were made to the field
capacity parameters for select soil profiles. During the calibration of a cultivar, if there were
any values exceeding the quantile ranges of the observed values for yield and maturity day were
systematically removed to enhance the model performance.

The calibration was deemed complete when the model could mimic both yield and maturity
day with an acceptable mean average error with the relative root mean square error, RRMSE.
The RRMSE is a relative measurement and thus useful when working with different units, in
this case both days and weight. For this work, it the RRMSE was interpreted as optimal if <10%,
good if <20% while fair <30% and poor if >30% (Pachepsky & Rawls 2004). In this work, a
calibration was considered valid only if the RRMSE of the validation for maturity date and
yield levels was <30%.

2.3.3 Run of simulations

For each calibrated cultivar a simulation in CERES-Barley crop model was run with the
gridded weather data for the years between 1979 and 2018 and the 54 sites. The simulation also
included four fertilizer treatments, creating 8640 virtual experiments per cultivar. Each site and
year had a sowing date corresponding to the start of the cropping season. The start of the
cropping season was defined as the last day of the first period of five consecutive days with an
average daily temperature above 5 °C that occurred after March 1st (FORMAS, 2020-2023).
Four rates of nitrogen fertilizer: 0, 75, 100 and 125 kg nitrogen/ha were used as treatments for
the cultivars on each sowing date, previously calculated in the FORMAS project (2020-2023).
In total 54 sites, based on the trial locations from SLU Féltforsk and the same ones used in the
model calibration, were used in the simulation. For the purpose of data management, the 54
sites were further divided into four distinct production regions, designated by the Swedish
Board of Agriculture (Jordbruksverket, n.d.) (Fig 5). The region division facilitated the
potential for making regional comparisons of historical observed yield data across various
cropping seasons.
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1 Gctalands slattbygder

2 Gotalands mellanbygder

3 Eotalands norra sl3ttbygder

4 Svealands slattbygder

5 Eotalands skogsbyader

& Mellersta Sveriges skogsbygder

Figure 5. Production regions of southern Sweden. Region 1-4 covers the area in which the field trial experiments were
conducted. Adapted from Jordbruksverket (n.d.)

2.4. Climate markers

The dataset of climate markers that was used in the analysis was provided by the project
Extreme weather and crop yield in Sweden (FORMAS 2020-2023). The dataset consisted of
defined values of different climate marker variables 60 days before the start of the cropping
season. The variables were defined for the same 54 sites that were used in the crop simulation.
For each site, the gridded weather dataset was established, comprising 17 distinct climate
variables spanning every year from 1979 to 2018. Calculations made to define the climate
markers are presented in Appendix 1. The variables were also classified in two ways and later
used as separate datasets in the analysis: one with numerical variables and one with variable
categorised as extreme low, very low, low, regular, high, very high and extremely high.
Categorised values were defined within the interval presented below:

o Extremely high > 99" percentile
Very high >90™ <99" percentile
High >75" <90™ percentile
Regular > 25" <75 percentile
Low <25" >10™ percentile
Very low <10™ >1% percentile

o O O O O O

Extreme low <1* percentile
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The pre-season climate markers with their highest and lowest value are presented and
described in Table 3.

Table 2. The climate marker variables (considered in the period of 60 days prior to the start of the cropping season) used for
the statistical analysis and their definition including the highest and lowest value of each variable. The start of the cropping
season changes depends on the year and location, and is defined as the last day of the first period of five consecutive days with

an average daily air temperature above 5 °C that occurs after March 1*.

Cllmate marker Variable explanation Variable Lowest value  Highest value

variable nr.

Nb_ColdSpell Number of Cold Spells, 6 days of temperatures Varl 0 5
below the 10" percentile of minimum daily
temperatures (number).

Nb_DailyExtr PcP Number of daily extreme precipitation above the Var2 0 5
99th percentile of the 40 years distributions of
daily precipitation (number).

Nb_days_ColdSpell Number of days included in Nb_ColdSpell Var3 0 29
(number).

Nb_days_ColdWet Number of days included in Nb_WetDays and Var4 0 8
Nb_ColdSpell (number).

Nb_days DrySpells 5d Number of 5 days or more with precipitation Var5 0 56
<Imm (number).

Nb_days WarmDry Number of days included in dry spell, at least 5 Var6 0 16
days <lmm precipitation and Nb_WarmSpell
(number).

Nb_days_ WarmSpell Number of days included in warm spells Var7 0 18
(number).

Nb_days WetSpells 5d Number of days with precipitation >=1mm Var8 0 31
included in wet spells of 5 days or more (number).

Nb_DrySpell_5d Number of dry spells of 5 days or more with Var9 0 6
<lmm precipitation (number).

Nb_frost Number of late frost days with minimum  Varl0 0 60
temperature below 0°C (number).

Nb_WarmSpell Number of 6 days of temperatures above the 90t Varl1 0 4
percentile of maximum daily temperatures
(number).

Nb_WetDays Number of wet days with a precipitation >=Imm  Varl2 4 41
(number).

Nb_WetSpell_5d Number of wet spells of 5 days or more during the ~ Varl3 0 4
first 60 days of the cropping season (number).

Ratio DailyExtr PcP Ratio of precipitation falling during extreme  Varl4 0 0.67
events, Daily precipitation above the 99th
percentile of the 40 years distributions of daily
precipitation (number).

Tmp_average Average temperature during the first 60 days of  Varl5 -3.38 5.59
the cropping season (C°).

Vol _Average Wetday Average precipitation volume per wet days  Varl6 1.82 8.903
(>1mm) (mm per day).

Vol ToTal PcP Total Precipitation volume during the first 60 days ~ Varl7 19.6 257

of the cropping season (mm).

2.5. Correlation analysis

The statistical analysis aimed to assess the relationship between climate marker variables (as
presented in Table 3) and the mean simulated yield (fertilized with 100 kg N/ha) using a chi-
square test and a mixed linear model (LMM) analysis. All statistical analyses were conducted
using RStudio version 4.2.2, and with expert guidance from a statistician affiliated with the
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Statistics@SLU service at the Swedish University of Agricultural Sciences was sought. A
visual summary of the statistical analysis is presented below in Figure 6.

Pearson Chi-square analysis Linear mixed model analysis
Z-transformation
Categorization VIF-test
single climate + Yield Single climate +  Vvield
marker 1 marker 1

Interacting climate

Correlation test markers Correlation test

Figure 6. Flow chart of the statistical analysis procedures with climate markers against yield. The chart presents
the procedures of the chi-square test (left) and the linear mixed model (right).

Initially, a pairwise correlation with a Pearson chi-square test was conducted on yield for
every gridded weather data point and year for each climate marker categorical variable, as
suggested by Khamis (2008). The simulated yield data for each site were also categorized into
four levels, based on quartiles of site-specific yields: the 1st quartile represented low yields, the
2nd quartile represented low to high yields, the 3rd quartile represented high to low yields, and
the 4th quartile represented high yields. An example of how the dataset for one site is presented
in Appendix 2. The simulated yield of every site (Figure 3) was also categorised in four levels,
according to the quartiles of the yield for each site. Low yields were represented the 1% quartiles,
a lowhigh yields represented the 2™ quartile, highlow yields represented the 3™ quartile and

high yields represented the 4™ quartile.
The second analysis was the linear mixed model test. The analysis was run with a dataset of

Z-transformed predictor variables and yield levels. Z-transforming data transform the values
into dimensionless values that are comparable. The linear mixed model approach is suitable for
normally distributed datasets where there might be an independence among variables (Brady et
al., 2022). This approach was selected because it can account for both fixed and random effects,
which is not feasible with the chi-square analysis. Sites (same as the experimental sites) served
as random effects while the climate markers were clustered variables and functioned as fixed
effects in the LMM. This was decided as the goal was to specifically investigate effects from
the climate markers on yield, and the while the sife was not the primal object. The choice of a
LMM was made as it has been used in previous attempts to make yield forecasts (Verma et al.,
2015; Mathieu and Aires 2018).

Before running the LMM the climate markers were filtered to ensure that predictor variables
were independent and not correlated with each other. This was made with the variance inflation
factor (VIF) using a step wise approach (Schierhorn et al., 2021). Variables with a VIF >10
were iteratively removed until all remaining variables had a VIF <10. For the analysis two
models were fitted and correlated against yield; one model with the single climate marker
variables and the second one was fitted with both single and pairwise interacting variables. This
method aimed to determine whether there could be a distinct impact on yield from individual
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climate markers, as well as from combinations of these markers The script for the LMM in
RStudio is showcased below in Figure 7.

#HHE 1 i Check for multicollinearity using VIF
# create a linear regression model
fit <- Im(yield_kg_ha ~ ., data = crop_data)

#Define multiple 1inear regression model
mode12 <- Im(Yield_kg_ha~
vVarl +
varl7,
data = crop_data)

#Calculate the VIF to check for multicollinearity in each predictor variable in the model
vif(model2)

#Stepwise regression, remove with iteration fist variables with VIF-value higher >10
#Output VIF-model:> vif(model)

### 2 LMM model ###
# Create new columns to descirbe pairwise interaction between predictor variables

{
crop_datas$var2_var3 «<- crop_datasvar2 * crop_datasvar3

crop_data$varl6_varl7 <- crop_data$varlé * crop_dataivarl?

}
# Clustered model with each predictor alone and with an parirwise interaction
predictors <- crop_data[, c("Cent_yield","Year","var2", ... "varlé_varl7")]

Figure 7. Script with description of the steps that was used in R.studio version 4.2.2. to conduct the Linear mixed
model analysis, correlating Yield (Yield kg ha) with climate markers (Varl etc.) (defined in Table 2).
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3. Results

3.1. DSSAT Crop model calibration and validation

The parameters of the calibrated cultivars used for the simulation are presented below in
Table 4.

Table 3. The coefficients of each cultivar (Astoria, Irina and Propino) that were calibrated in the GLUESelect tool and used in
the cultivar file for the simulation in the DSSAT CERES-Barley cropping model.

Cultivar P1D P5 Gl G2 G3 PHINT Ecotype
Astoria 40 500 18 50 5 60 US0001
Irina 0.2 646.1 35.25 59 5.548 60 SY0002
Propino 17.99 614.8 39.99 61.8 6.136 60 SY0003

*PID = Photoperiod response (% reduction in rate/10 h drop in phenology phase)), P5 = Grain filling phase duration (degrees day), G1
= Kernel number per unit canopy weight at anthesis (#/g), G2 = Standard kernel weight under optimum conditions (mg), G3 = Standard, non-
stressed mature tiller weight (including grain) (dry weight, grams), PHINT = Interval between successive leaf tip appearance in degrees day.
Ecotype refers to a list of 19 traits/parameters that vary less often between similar cultivars, such as thermal time to emergence and first leaf
stages.

The model calibration and validation showed closer alignment for Maturity day compared
to Yield between simulated and observed values (Table 5). Specifically, for the 'Astoria’
cultivar, no significant differences were observed post-validation, maintaining consistent R*-
value (0.86) and root mean square error RRMSE value (0.07). Overall, differences in the
model's Maturity day variable calibration among cultivars were generally minimal. 'Astoria’
exhibited the most linear variables, with R2 (0.86) and RRMSE (0.1). Notably, the calibration
for Propino regarding yield reduced the mean average error, MAE, by 43%.

Table 4. Results from the model calibration and evaluation of DSSAT Ceres Barley of the cultivars Astoria, Irina and Propino
which included the variables Yield (Yield kg/ha) and Day of maturity (Mat. day). The table presents the number of observed
and simulated experiments (Nb.exp), the root mean square error (RRMSE), mean absolute error (MEA) and R-square values
of the variables. The RRMSE is considered “optimal" if <10%, “good” if <20% “fair” if <30%, “poor” if >30% (Pachepsky
& Rawls 2004).

Calibration Validation

Variables Nb.exp RIE!I)\/T)[ )S E MAE R? Nb.exp RIE!I)Z[ )S E MAE R?
§ Mat. day 252 7 7.44 0.86 235 7 7.4 0.86
“E Yield kg/ha 252 20 706 0.09 229 10 403 0.59
. Mat. day 279 6 5.75 0.64 277 6 5.76 0.64
S Yield kg/ha 279 24 1065 0.59 273 22 1004 0.64
% Mat. day 201 5 5.44 0.57 171 6 5.8 0.55
g Yield kg/ha 201 28 1215 0.19 171 15 698 0.51
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3.2. Crop model simulation and assessment

The model’s performance of simulating yield in each production region compared to the
actual statistical data of observed yield from farmers is visualized in Figure 8a-d. Overall the
simulated yield levels are below the observed yield levels. An important difference to mention
is that the simulated yields have an adjusted moisture level of 0%, while the observed yields
had an unspecified moisture level circling 14%. The reported yields differ from the simulated
yields in such way that there is no knowledge of which cultivars, rates and types of fertilizer
and management that has been used in the cultivation. These fields have also been exposed to
biotic stresses such as pest and diseases that the crop model, in comparison, is unable to account
for. It is important to take this into account as the model input is, in contrast, based on a few
chosen locations and data from the field trial experiments where the management was very well
documented In addition, the number of simulated fields are different in each region, for
example, there was only one simulated field representing Region 2. The simulated yield levels
in Region 2 are below 1000 kg/ha for the year 1979 and 2018 and do not mirror the reported
yields. The diagrams in Figure 8a-d visualizes the model’s capability to follow the main pattern
of the reported yields, especially major yield drops and a tendency to underestimate yield. For
the reasons above it is not possible it intended to make comparisons between simulated and
reported yields, these graphs cannot therefore alone determine how well the model performed.

Figure 8a. Region 1 Figure 8b. Region 2
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Figure 8 a-d. Regional average yield [kg/ha] simulated by the CERES-Barley crop model (green) and the average observed
yield [kg/ha] from farmers (grey) to the Swedish Board of Agriculture (Jordbruksverkets statistikdatabas) in the production
areas 1-4 in Sweden between 1979 and 2018 (Fig 4). The simulated yields include all three calibrated cultivars, fertilizer rate
is 100 kg N/ha. Simulated yields had an adjusted level of 0% moisture; observed yields were adjusted according the moisture
level reported in the source; if not indicated, the moisture level of 14% was assumed.
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The simulated yield in each cultivar from the 54 sites, virtually fertilized with
100 kg N/ha, within each region is presented in a boxplot diagram (Figure 9).
Region 2 exhibits an even yield distribution across the years and cultivars, and it is
notable that the region only includes one experimental site. Among the regions, the
different cultivars display a similar distribution. Propino had a higher yield median
and a broader yield range in all the regions. The average yields of the cultivar were
3185 kg/ha for Astoria, 3396 kg/ha for Irina and 4577 kg/ha for Propino.

Yield distribution

8000 s

6000 ‘ ‘

Cultivar

‘ Astoria
‘ Propino
EI Irina

a'ha]

£.4000

Yield]

2000

Region

Figure 9. The simulated yields (kg/ha) of each cultivar; Astoria (grey), Irina (light green) and
Propino (dark green) from the 54 fields in the production regions 1-4. Each field was fertilized with
100 kg N/ha. The box presents a distribution of yield values within the 2" and 3" quartile, separated
by the median line. The whiskers and dots represent the distribution of yield values within the 1*'
and 4" quartiles. The dots indicate outlier values.

3.3. Climate marker correlation analysis

A few p-values within a significance level of 0,05% were found in the chi-square
correlation analysis of climate markers and simulated yield levels (Table 6). The
variable representing the climate markers Var6 (Number of days included in dry
spell and warm spell) and Varll (Number of days included in a warm spell) each
had a significant interaction to six out of 54 sites. The other climate markers only
explained yield levels to fewer sites. Years as a variable had a significant correlation
to four of the sites. This result does not tell to what extent a variable impacts yield.
It is also important to note that for only a few sites could a certain variable be used
as an explanatory variable for yield. All results from the chi-square analysis are
collected in Appendix 3.
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Table 5. The significant p-values resulting from the chi-square analysis, testing the explanatory power of
climate markers and yield on a specific site. Level of significance p<0.005. 18 sites (0023-, 1281-, 1641-, and
2012ERAS) presented a significant correlation to the following variables: Years, Var2, Var3, Var6, Var7, Var9,
Varll, Varl2, Varl6 (Table 2).

Site Years Var 2 Var 3 Var 6 Var 7 Var 8 Var 9 Var 11 Var12  Var 16
2039 0.022
0007 0.025 0.004
0053 1,74E-03 0.01%
1261 0.038
0273 1.75E-02 3.26E-03
1201  2.32E-02 §.32E-03
0006 0.008 0.032
0068 0.019 3.17E-02
1280 0.038 0.023
1228 0.045
1231 0.029
1230 0.007 0.029 0.045
1260 0.049 0.024 0.041 0.005
0004 2.93E-02 0.049
1930 0.009
1148 0.002 0.024
2021 397E02 0.038 4.99E-02
1207 0.014

The climate marker variables with VIF-values below 10 that were used in the
linear mixed model analysis are showcased in Figure 10. There were no significant
correlations between the VIF-sorted climate markers and the simulated yield levels
when using a mixed linear model (Appendix 4). The highest correlation value
(0.176) was found in an interaction of Var3 (Number of days included in Cold
Spells) and Var5 (Number of days included in dry spells of 5 days or more). The
interaction between Var5 and 14 (4Average temperature and Number of dry days)
exhibited the lowest association, with a coefficient of 0.001.

VIF-Values

] ]

Var2 Var3 Vard Va6 Var7 Var9 Varl0 Vart1 Vart2 Var14 Varl5 Varl6 Varl7

Varables

Figure 10. The analysed climate markers that were filtered with the VIF-function. Variables with VIF-value
> [0 were removed to avoid multicollinearity. Variables on the x-axis are: Number of daily extreme precipitation (Var2),
Number of days included in Cold Spells (Var3), Number of days included in dry spells of 5 days or more (Var5), Number of
days included in dry spell and warm spell (Var6), Number of days included in warm spells (Var7), Number of days included
in wet spells of 5 days or more (Var8), Number of dry spells of 5 days or more (Var9), Number of late frost days OR Number
of early frost days? (Var10), Number of warm Spells (Varl1), Number of wet days (>1mm) (Var12), Ratio of precipitation
falling during extreme event (Varl4), Average temperature (Varl5), Average precipitation volume per wet days (>1mm)
(Varl6), Total Precipitation volume (Varl7).
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4. Discussion

4.1. Model calibration and validation

The barley cultivars Astoria, Irina and Propino were estimated in the DSSAT
CERES-Barely cropping model. After the model validation it was possible to
observe that the model was able to mimic observed phenological maturity and
yields. At regional level, the simulated values could also follow annual observation
trends from statistical data (Figure 8a-d).

The variable Day of maturity was more similar to the observations than the yield
variable (Table 4). This might be because there were fewer and more similar dates
from the field trials, often linked to nearby weather stations and soil profiles.
Focusing on the yield variable, the R and MAE was different between the cultivars.
It was unsurprising that the MAE was large due to the larger geographical scope
containing different distinct growing condition that were included into the crop
model. Other papers that calibrated and used the CERES-Barley crop model had in
comparison better linearity between the observed and simulated values than this
project (Al-Bakri et al., 2021; Rétter et al., 2021).

Even if the RRMSE was deemed good for both Astoria and Propino, the later
cultivar had notably higher yields (Table 5, Figure 6 and 7). This may be explained
by the cultivar coefficients: Propino has a large P5, G1, G2, and G3 in comparison
to Astoria. This means that the cultivar had a longer grain filling period, both bigger
and more kernels and a higher grain filling rate. Astoria, in comparison, had a much
greater photoperiod response (40) in comparison to both Propino (17,99) and
Astoria (0,2). This essentially means that Astoria was simulated with a lower rate
of development during days with more than 10 hours of sunlight. During the
summer period in Sweden the daylength is longer than the night-time, which means
that the other cultivars were not as inhibited by the longer days as Astoria.

Compared to the reported yields from Swedish farmers, Astoria was the most
similar cultivar (Figure 8). A reason as to why there were such a high difference in
yield between the cultivars could be that some coefficients were exaggerated in the
calibration, while others underestimated. Another point, which was highlighted by
Beven and Freer (2001) is that the model performance could have showed similar,
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or the same output with another combination of parameter values. This could
explain why some of the parameter values were different between cultivars,

It is not surprising that the MAE was large since variation is expected due to the
geographical distribution with different growing conditions that were included into
the crop model and based on the field trial locations.

In general, the simulated mean yields were lower than the ones reported to the
Swedish board of Agriculture (Figure 8a-d). As mentioned, the adjusted water
content may be one reason explaining the lower yields. The model’s trend to
underestimate yield levels aligns with a publication from Rétter et al. (2021) where
the majority of the compared crop models all displayed an underestimation of yield.
The comparison made in this project, however, only functions as a visualisation of
how well the model may follow general trends of yield levels over the year. It
cannot explain the CERES-Barley model’s capacity and capability to calculate
yield levels.

The question remains if the calibration could have increased the similarities
between observed and simulated data if more information was used in the model
input, with for example more detailed phenological observations and biomass data
collected during the cropping season. One of the reasons to reduce the input was to
make the modelling more user friendly with the consideration that a lot of data
might increase possible errors within the data set and later in the simulation.
Perhaps the calibration could have been better if only trials that included all data
would have been used, in this case a few missing information were included. In that
case the selection of data points would have been reduced. Although looking into
the results from the statistical analysis it is not clear if a more thorough calibration
would have given other results seeing as the correlations were so low for almost all
extreme weather variables (Table 4), especially considering the large geographical
distribution of the experiments, which might include aspects that could not be
captured by the model.

4.2. Climate marker analysis

The chi-square analysis resulted in a few significant interactions between climate
markers and yield levels in malting barley in 19 of 54 weather stations connected
to experiment sites (Table 6). Due to the low number of interactions, it was
challenging to find a pattern that could be used to explain a relationship between
pre-season climate markers and yield levels of malting barley. It would also not be
enough to support any kind of pre-cropping season decisions, such as planting
density, amount of fertilizer to be applied, choice or cultivars, etc. It can however
be noted that two of the climate markers did have significant correlations to the
yield in six weather stations. These were related to warm spells and a combination
of warm and dry spells. However, this does not explain what effect, positive or
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negative, these climate markers had on yield levels specifically. As a chi-square test
will not be able to test combined effects of climate markers the linear mixed model
approach was used. The results from linear mixed model analysis could not present
any significant correlation between climate markers and yield levels.

While neither the linear mixed model nor the chi-square analysis showed any
significant interactions or patterns between climate markers and yield, climate
markers could still be useful for making pre-season predictions of yield. This was
also discussed by Lali¢ et al. (2014), who conducted a similar experiment with
climate marker predictors, although to make within season yield forecasts. They
considered if an insignificant result could still hold importance which is hidden or
difficult to explain.

A reason why there weren’t any significant correlations when using the linear
mixed model might be because of the physical conditions during spring. Soils in
Sweden are very often already saturated before the sowing of a spring crop, either
from melted snow coverage or the low temperatures keeping the soils moist during
the winter season. This means that precipitation at this stage does not have an
impact on the final yield, a point that Lalic et al. (2014) also made. It is therefore
plausible that climate markers connected to precipitation might not be good
explanatory variables for yield predictions in Sweden, at least for spring sown
crops. In Table 7, possible explanations are briefly presented as to why the variables
didn’t exhibit any significant correlations.

Table 6. Brief explanation of how the variables are associated with the Swedish conditions for spring
cultivation and how they may or may not have clear impact on yield.

Climate marker variable Explanation

Nb_ColdSpell Might delay sowing, cooler conditions during planting
Nb_DailyExtr PcP Soil already saturated might delay sowing
Nb_days_ColdSpell No real connection to before sowing

Nb_days_ColdWet No particular effect, might affect sowing
Nb_days_DrySpells_5d Earlier sowing, limited water resources in early growth stages
Nb_days WarmDry Earlier sowing, limited water resources in early growth stages
Nb_days_ WarmSpell Earlier sowing, limited water resources in early growth stages
Nb_days_ WetSpells 5d No particular effect as the soil is probably already saturated
Nb_DrySpell_5d Limited water resources in early growth stages

Nb_frost Delayed sowing, shorter growth period,

Nb_WarmSpell Possibility of earlier sowing

Nb_WetDays No particular effect as the soil is probably already saturated
Nb_WetSpell 5d No particular effect as the soil is probably already saturated
Ratio_DailyExtr PcP Does not really affect unless it is close to sowing
Tmp_average Earlier sowing if high mean daily temperatures

Vol Average Wetday No particular effect

Vol ToTal PcP Affects sowing day with a possible delay if too much precipitation
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It could be argued that the most evident effect on yield comes from weather
patterns affecting physical soil conditions (notably high moisture or low
temperatures) and therefore delaying the day of sowing. A similar result was also
found in a study that investigated Finnish cultivar responses to weather fluctuations
(Hakala et al., 2012). They could observe that cold spells taking place before
planting resulted in later sowing which had an overall negative impact on the yield.
Eckersten et al. (2010) tried to make pre-season and within season yield predictions
of winter wheat for Sweden but found that it was difficult and argued that climate-
related yield predictions are complex.

Other publications have generally focused the bigger picture of precipitation
and temperature impacts instead of using more defined climatic markers. An
example comes from a paper from Trnka et al. (2016) where they not only found
that the growing conditions in Europe has changed since the beginning of the last
century, but also that there has been change in which climate predictors have the
most impact on yield. Similarly, to this project, they also used several climate
markers in their weather/yield correlation. The same experiment also found that
large amounts of precipitation before sowing had a negative effect on yield of
almost all the 21 cultivars tested. One additional interesting finding was that yield
predictors (climate markers) had changed during the tested period. The authors
concluded that this indicated a change in crop growing conditions as they could also
see that the impact of certain weather patterns had recently increased between 1991-
2012. Another example of earlier attempts at yield forecasting of common crops,
made with hindcasting, is made in a study by lizumi et al. (2018). They found that
pre-season forecasting of yield variability could be done successfully with a multi-
model approach as a continuation of an earlier publication (lizumi et al., 2013).
Their previous publication from 2013 similarly shows how the yield predictions of
wheat follows a similar pattern (Fig 11) to the simulation of the observed yields.
This aligns with what this thesis’ simulation also achieved (Figure 8 a-d). Although
both Izumi’s et al.’s (2013 & 2018) reports focus on global and national scale to
make forecasts, it can be interpreted that for example temperature would have a
great impact. This would perhaps not be generally true as temperature probably has
a bigger impact in more arid parts of the world than in for example Sweden.
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Figure 11. Pre-season forecasted (green), within season forecasted (orange) and observed (black)
wheat yield variability from year 1985 to 2005 in USA, France and Canada. From lizumi et al.,
2013.

Even as there were no evident correlations between climate markers and yield
for malting barley in Sweden, it is still important to note that it was possible to
calibrate a crop model to mimic within season impacts and that the calibration could
be considered successful. The model itself has the ability to account for pre-season
impacts of the crop by running a water balance and also routines related to nitrogen
dynamics, but its sensitivity to climate markers was not tested in detail. For this
reason, data on climate markers might have the potential to help make pre-season
or early predictions, which would be helpful to farmers planning and management.
As other publications presented, it is a difficult and complex task to make pre-
season forecasts of yield, although there is still a demand for making early forecasts.

Since this project included a large amount of data from field trial experiments,
another approach could have been to use a statistical model instead of a process-
based crop model. As this model focused on understanding yield and climate
correlations, a simpler model such as a statistical model might have been sufficient
for this purpose (Basso et al., 2013). When using the process-based crop model
CERES-Barley, the main advantage was that it could make more complex
calculations based on the ecology of a barley plant (Table 1). Initially this work
aimed to also include barley grain protein levels, a variable that the model has a
routine for and could potentially be accounted for. This was, however, not
accomplished in this project because of early evidence that the model still was not
able to properly simulate this parameter. The choice of a process-based model was
also grounded in the quantity of data. One other benefit with process-based models
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is that they can be used to make extrapolations (Zhan et al., 2012). That would mean
that the experiments simulated in a model could be applied to other regions than the
ones tested, for example by only adding data on a few site-specific parameters such
as weather and soil profiles. This is a limitation with the statistical model as the
data is purely based on the data for a certain region.

For future research within this topic, it might be interesting to combine pre-
season and within-season predictions. There might be other outcomes by changing
the geographical scope. This approach would on one hand potentially include more
data which could be useful, especially more phenological and biomass partitioning
data. On one hand, increasing the geographical scope might make it less applicable
or precise for field-level decision support. With an increasing dataset and scope
there might be results that are hard to explain or understand when using a larger
scale. Data on a smaller scale on the other hand is only useful in a limited area. A
further development of this work could be to include other crops in the simulation
and analysis, for example winter crops, or to analyse climate markers that occur in
a closer time span seeing as the winter season in Sweden has a probable buffer
function.
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5. Conclusions

This thesis attempted to assess possibilities of using pre-season climate
conditions together with a crop model in explaining yield levels of spring sown
malting barley in southern Sweden.

The process-based crop model CERES-Barley was successfully calibrated for
three malting barley cultivars. The explanatory power of climate markers was tested
with a Pearson chi-square test and linear mixed model. A few significant
interactions between climate markers and the simulated yield could be found in the
chi-square analysis, but it lacked an overall pattern of significance to produce useful
outcomes for decision support at field level. The linear mixed model was unable to
find variable explaining yield levels. It may suggest that there are nonlinear effects
or that other factors may have higher explanatory power than the tested climate
markers.

One of the reasons behind the lack of sensitivity to climate markers could be due
to soil buffering conditions in Swedish soils regarding water storage during winter
and early spring. The findings of this work, however, cannot be taken as conclusive
in stating that climatic conditions 60 days before the start of the cropping season do
not have any forecasting explanatory power to yields in Swedish conditions. In
order to increase the knowledge in the area, a more detailed pedological and
climatic database needs to be available, as well as detailed information on crop
phenology, yield, agronomic management and biotic stresses.
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Popular science summary

For as long as we have cultivated the soil, we have been reliant on weather
conditions. During the last decades, we have experienced extreme weather events,
more frequently than before. This has of course impacted the global production of
food. Being aware of climatic conditions in one’s area may lay the ground for
choices in agricultural management such as which crops and cultivars to grow.
However, we cannot yet use weather events prior the cropping season’s start to truly
know the yield levels of our crops. The possibility to make pre-season yield
forecasts could prove to be useful in not only the planning but also the optimization
of agricultural management.

The aim for this master project was to investigate correlations between pre-
season climate indicators and yield levels of spring sown malting barley in southern
Sweden. Climate indicators were used as a way to define certain extreme weather
events that can occur during a cropping season and be damaging for the crop and
its final yield. The parameters of the crop model CERES-Barley developed by
DSSAT (Hoogenboom et al., 2023) were adjusted so that the simulated yield would
match the data from field trial experiments over the region between the years 1999
and 2018. Data from field experiments, gridded weather data and soil profiles were
used to calibrate a crop model that could simulate yield during 40 cropping seasons
(from 1979 to 2018). The climate indicators were then used together with the
simulated yields to see if they had connection or impact on the yield levels.

The results showed no significant correlations that could explain yield levels
based on pre-season weather conditions. It might be the case that the statistical
model that was used to make the analysis could not take other playing factors into
account. One factor that could explain this is actually the weather itself. In Sweden
the winter and autumn accumulates a lot of water in the soil through rainfall, and
since the temperature is low during this season water does not evaporate, therefore
water remains in the soil. This means that the soil, during the spring and before
sowing, is already full of water, which generally provides good conditions for the
crop establishment. Good soil conditions for sowing may explain a hidden effect
from the other climate markers. There is more to discover within this field as both
weather patterns and crop models are complex.
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Appendix 1

Examples from the script used in R.studio to calculate the start of the cropping
season and to define climate markers (Formas 2020-2023).

for (f in 1:length(fileNames)){

File=fileNames[f]
load(paste0("./DataEachCell/" , File))

##rename Tav in TavTrue and

###create new array for Tav from Tmin and Tmax (for climate model data which not include Tav)
names (Cel1Data) [names (CellData) == "Tav"] <- "TavTrue"
Cellpata$Tav=(CellDataiTmax+CellData$Tmin)/2

###prepare the list to received the data for each ¢S
Prev60days_cCSdata=1ist()
CSDates=data.frame(Year=numeric(), DateStart=as.Date(character()),DateEnd=as.Date(character()),Comment=character())

#loops to prepare the dataframe
for (y in 1979:2019) {

##isolate year
yeardata=CellData[ !year(CellData$Dates) =y , ]

##find beginning of the cropping period = 5 continuous days with Tav>=5 degree Min date 1st March

##1ist of days with Tav>= 5 and removing the 3 first which can't be the 4th day with Tav>=5
DateLimitStart=which(month(yeardataiDates)==3 & day(yeardata$Dates)==1)
DayUp5=which(yeardata$Tav>=5)

DayUp5=DayUp5[ | DayUp5<DateLimitStart]

##testing each of the DayUp5 to find the first one with 4 previous days also Tav»>=5
for (j in(payup5)){

if(yeardatalTav[j-1]>=5 & yeardata$Tav[j-2]>=5 & yeardata$Tav[j-3]>=5 & yeardata$Tav[j-4]>=5){
DateStartCs=yeardata$Dates[]
break }

}
rm(j, DayUp5S, DateLimitStart)

##cut the dataset to keep only the 60days before the cropping season

IndexStartCs=match(as.Date(DateStartCs), CellDpata$Dates)#find index of starting cropping season in the entire dataset
IndexPrev60=IndexStartCs-60

Prev60days_CSdatayearly=CellData[IndexPrev60: (IndexStartCs-1),]

rm(IndexStartCs, IndexPrev60)

##adding the 60 prev days to the overall Tlist
Prev60days_CSdatal[paste0("'Cs",y)]]=Prev60days_CSdatayearly

# creating a dataframe with overall PcP data from all cropping seasons to evaluate later the limit for the daily extremes
Prev60days_CSdata_PcP_Array-numeric()
for (y in 1979:2019) {

Data=Prev60days_CSdatal[paste0("Cs",y)]]

Prevb0days_CSdata_PcP_Array=c(Prev60days_CSdata_PcP_Array,Data$PcP)

Prev60days_CSdata_Tmin_Array=numeric()

for (y in 1979:2019) {
Data=Prev60days_CSdata[[paste0("Cs",y)]]
Preve0days_CSdata_Tmin_Array=c(Prev60days_CSdata_Tmin_Array,DatafTmin)

Prevb0days_CSdata_Tmax_Array=numeric()

for (y in 1979:2019) {
Data=Prev60days_CSdata[ [paste0("cs",y) 1]
Prev60days_CSdata_Tmax_Array=c(Prev60days_CSdata_Tmax_Array,DatafTmax)

45



Calculating parameters Values

## create a data Frame to stock up the different parameters values
Tb160daysvalue=data. frame(years=(1979:2019),

# Total Precipitation (mm)
vol_ToTal_PcP=replicate(41l, NaN),

# Average temperature (?C)
Tmp_average-replicate(41, NaN),

# Number of frost days
Nb_frost=replicate(41, NaN),

## filling up the data frame with values
#loops for each year

Line_y=0
for (y in 1979:2019) {
Line_y=Line_y+1
Data-Prev60days_cCSdata[ [paste0("Cs",y)]1]

# Total Precipitation (mm)
Th160daysvalueSvol_ToTal_PcP[Line_y]l=sum(Data3PcP)

# Average temperature (?C)
Th160daysvalueSTmp_average[Line_yl=mean(Data$Tav)

# Number of frost days
DayFrost=which(Data$Tmin<0)
Th160daysvalueSNb_frost[Line_yl=length(DayFrost)
rm(DayFrost)

##spells
#dataset with (pcp==1mm) = 1 and dry days by 0
Datalmm=DataiPcP
Datalmm [Datalmm >=1] <- 1 #so l=Wet Days
Datalmm [Datalmm < 1] <- 0 #so 0=Dry Days

#Dry Spells

Sequence=rle(Datalmm)

IndexToChange=which(Sequence$lengths<5)

Sequence$values[IndexToChange] <- NA#Keeping only sequence »>=5 days
Sequence$values[Sequence$values == 1] <- NA #Keeping only dry sequence
Dryspell=which(Sequencefvalues==0)

#Number of dry spells (5 days or more with precipitation <lmm)
Th160daysvalueinb_Dryspell_5d[Line_yl=Tength (Dryspell)

#Total number of days included in dry spells
Th160daysvalueiNb_days_DrySpells_5d[Line_y]l= sum(Sequence$lengths [DrySpell])

rm(Sequence,IndexToChange,Dryspell)
##spells Temperature and precipitation together

# Number of days included in WARM and DRY spell simultaneously
#Dataset with (pcp>=1mm) = 0 and dry days by 1
Datalmm=Data$PcP

Datalmm [Datalmm »=1] <- 2 # temp values for wet Days

Datalmm [Datalmm < 1] <- 1 #so 1=Dry Days

Datalmm [Datalmm == 2] <- 0 #so O=Wet Days

## fi1ling up the data frame with classifications
#loops for each year

index=0
for (y in 1979:2019) {
index=index+1

# Total Precipitation (mm)
Percentile=quantile(Th160daysvalue$vol_ToTal_PcP, probs = c(0,0.01, 0.1, 0.25, 0.5, 0.75, 0.90, 0.99, 1))

yearvalue=Th160daysvalue$vol_ToTal_PcP[index]

if (yearvalue>=Percentile[8]) {Tbl60daysClass$vol_ToTal_PcP[index]="ExtremHigh"}

if (yearvalue<=Percentile[2]){Th160daysClassivol_ToTal_PcP[index]="ExtremLow"}

if (yearvalue>=Percentile[7] && yearvalue<Percentile[8]){Th160daysClass%vol_ToTal_PcP[index]="veryHigh"}
if (yearvalue>Percentile[2] && yearvalue<=Percentile[3]){Th160daysClassSvol_ToTal_PcP[index]="veryLow"}
if (yearvalue->=Percentile[6] && yearvalue<Percentile[7]){Th160daysClass$vol_ToTal_PcP[index]="Hight"}

if (yearvalue-Percentile[3] && yearvalue<=Percentile[4]){Th160daysClass$vol_ToTal_PcP[index]="Low "}

if (yearvalue>=Percentile[4] && yearvalue<=Percentile[6]){Thl60daysClass$vol_ToTal_PcP[index]="regular"}

rm(yearvalue,Percentile)
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Appendix 2

Table 7. Example of the table used for the chi-square analysis for the weather station 0004ERAS. The climate marker variables (1-17) values are each categorized in six levels: extreme

low, very low, low, regular, high, very high and extremely high. They were tested against year and yield. The yield levels were also categorized into four levels: L, LM, LH and H, based

on the quantile range of the simulated yield levels of the site 0004.

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Yield
1979 Hight regular regular regular Hight VeryLow regular regular regular regular regular regular regular VeryHigh regular regular regular L
1980 VeryLow Low VeryHigh VeryLow Low ExtremHigh ExtremHigh regular regular regular regular regular regular regular regular Hight regular LM
1981 VeryHigh regular regular VeryHigh Hight regular Low regular regular ExtremHigh VeryHigh regular regular regular regular regular regular LH
1982 regular regular regular regular regular VeryHigh Hight regular regular regular regular ExtremHigh ExtremHigh regular regular ExtremHigh regular LH
1983 regular regular regular regular regular VeryLow regular regular regular regular regular regular regular VeryHigh regular regular regular H
1984 VeryLow VeryLow VeryHigh VeryLow regular regular VeryHigh regular regular regular regular regular regular regular regular regular regular M
1985 Hight Hight regular VeryHigh regular VeryLow VeryLow regular VeryHigh regular regular VeryHigh VeryHigh regular regular regular regular LM
1986 regular regular regular regular regular regular regular regular regular regular regular regular regular regular regular regular regular M
1987 regular regular regular regular regular regular regular regular regular regular VeryHigh ExtremHigh VeryHigh regular VeryHigh VeryHigh regular H
1988 Hight regular regular ExtremHigh regular VeryLow VeryLow ExtremHigh VeryHigh regular regular regular regular regular regular regular regular L
1989 regular VeryHigh ExtremLow regular regular regular regular regular regular regular regular regular regular regular regular regular regular L
1990 Hight ExtremHigh VeryLow Hight regular regular Low regular regular regular regular ExtremHigh VeryHigh regular regular VeryHigh regular L
1991 Low Low regular regular Low VeryHigh regular regular regular regular regular regular regular regular Hight regular VeryHigh H
1992 Low regular regular Low Hight VeryHigh Hight regular regular regular Hight regular regular regular regular regular regular L
1993 Low regular regular regular Low ExtremHigh Hight regular Hight regular VeryHigh regular regular VeryHigh regular regular regular L
1998 regular regular regular Hight regular ExtremLow ExtremLow regular VeryHigh regular regular regular regular regular regular regular regular H
1999 regular regular regular regular regular regular regular regular regular regular Hight regular Hight regular regular VeryHigh regular H
2017 regular Hight regular regular Hight regular regular regular regular regular regular VeryHigh Hight regular regular regular regular H
2018 regular VeryLow VeryHigh regular regular regular regular regular regular regular regular regular regular regular regular regular regular L
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Appendix 3

Table 8. The results from the Pearson chi-square analysis with the weather stations and climate markers. Bolded values are significant p-values within a significance
level of >0.05.
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wri P2 E 5 5 2 5 2R 5 20 2 3. 2 g2 2 2 2 3
0004ERAS 0.609  0.227 0913 0253 0.029 0.657 0.832 0.652 0.529 0.627 0208 0.166 0.412 0562 0.562 0369 0.049 0.664
0006ERAS 0.538  0.397 0.061 0.801 0970 0.132 0.032 0.145 0.148 0465 0.181 0.083 0.788 0921 0366 0.008 0.837 0.314
0007ERAS 0.106  0.552  0.209 0.257 0.499 0411 0947 0553 0.142 0481 0.025 0.660 0957 0329 0213 0.004 0.264 0.089
0023ERAS5 0.235  0.704 0.060 0420 0475 0363 0.123 0.705 0.152 0.635 0.886 0.837 0299 0800 0.874 0.178 0.653  0.888
0024ERAS 0.660  0.792  0.647 0.510 0.701  0.401 0.137 0536 0.896 0.666 0.828 0.003 0.539 0.805 0.502 0.263 0.555 0.621
0039ERAS 0.708  0.232 0.359 0440 0.108 0.620 0.784 0.208 0.539 0.133  0.388 0.778 0.200 0.733 0.167 0.214 0406 0.428
0041ERAS 0.962  0.294 0949 0.886 0.134  1.000 0.470 0.467 0.267 0.660 0.665 0.557 0.410 0.625 0.522 0.287 0.528  0.390
0052ERAS 0.505  0.502 0219 0.085 0262 0842 0851 0312 0723 0302 0.815 0969 0870 0.625 0294 0428 0.753  0.075
0053ERAS5  1.74E-12  0.317 0.178 0.368  0.523  0.080 0.130  0.835 0.204 0.905 0.410 0.465 NA  0.019 0.841 0935 0.893 0.101
0067ERAS 0.758  0.671 0431 0425 0.103 0.733  0.095 0.686 0.648 0.012 0.167 0.273 0205 0839 0.89 0.175 0.075  0.529
0068ERAS 0.536  0.606  0.126  0.949 0.032 0857 0.139 0.019 0972 0.847 0.681 0.093 0.106 0.098 0306 0334 0.208 0.457
0093ERAS 0483 0.397 0450 0949 0403 0837 0.182 0979 0.861 0296 0465 0488 0.588 0.625 0366 0.175 0.757  0.555
0094ERAS 1.000  0.506  0.306 0.817 0.113 0.847 0306 0522 0.555 0.747 0.723 0.684 0.526 0912 0.879 0.625 0.098  0.157
0114ERAS 0352 0.322  0.060 0312 0898 0597 0.182 0.629 0.861 0.241 0954 0.175 0.857 0295 0366 0438 0.671 0.555
0201ERAS 0.103  0.611 0248 0.077 0.096 0867 0.185 0.139 0.615 0.524 0489 0.725 0.666 0236 0456 0453 0973 0.183
0273ERAS 0.017  0.695 0.107 0.050 0.003 0.053 0596 0369 0.751 0.854 0478 0.731 0806 0274 0456 0.188 1.000 0.183
0812ERAS5 0.740  0.656  0.303  0.556 0.667 0.784 0368 0.661 0.359 0.829 1.000 0.748 0.758 0.527 1.000 0.753  0.058 0.183
1146ERAS 0.130  0.638 0.449 0316 0936 0.133  0.020 0.879 0.065 0.514 0.145 0297 0324 0645 0.738 0360 0.077 0.053
1148ERAS 0.132  0.884 0431 0.557 0549 0.159 0.024 0.728 0.723  0.660 0.666 0.466 0.445 0912 0.600 0.776  0.022  1.000
1150ERAS 0.387 0.636 0370 0.070 0.732 0.197 0.798 0.462 0432 0.592 0983 0971 0399 0589 0.564 0.195 0.818 0.497
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1201ERAS 0.023 0432 0.657 0.326 0.532 0.008 0.091 0676 0.119 0493 0.288 0.625 0.984 0394 0356 0.760 0.068 0.204
1207ERAS 0915 0312  0.254 0.751 0.717 0251 0274 0909 0.608 0.796 0.752 0.737 0.014 0261 0347 0287 0.548 1.000
1209ERAS 0.849  0.388 0.203 0.193 0.572 0319 0.763  0.884 0.608 0.573 0.442 0.988 0.225 0942 0.747 0.098 0804 0.795
1228ERAS 0.371  0.150  0.607 0.566  0.149 0420 0319 0399 0.188 0.029 0.776 0.442  0.045 0534 0981 0426 0350 0.519
1230ERAS 0.152  0.748 0.584 0912 0.764 0.767 0.491 0.733 0303  0.792  0.632 0.733  0.183 0318 0872 0975 0.007 0.661
1231ERAS 0.433 0384 0922 0.587 0.811 0536 0.138 0.662 0918 0.183 0.815 0.870 0.48% 0.029 1.000 0331 0487 0.598
1260ERAS 0.071  0.562  0.372  0.531 0.542 0230 0982 0474 0533 0.126  0.303 0.463 0.005 0.041 0473 0.049 0.024 0.661
1261ERAS 0.093 0483 0.887 0.777 0.819 0475 0918 0553 0.071 0.590 0.808 0438 0.059 0.038 0.759 0.731  0.139  0.183
1265ERAS 0310 0455 0.676  0.202 0.209 0.807 0321 0.543 0.795 0.709 0.190 0.084 0.062 0329 0.795 0291 0308 0.661
1280ERAS 0.117  0.723  0.113  0.602  0.902 0.408 0263 0.502 0.063 0.351 0.815 0.514 0.023 0.038 0.529 0950 0.896 0.489
1281ERAS 0432 0.807 0.523 0446 0.886 0.510 0.165 0879 0828 0.684 0.985 0.714 0476 0472 0871 0802 0.628  0.661
1282ERAS 0.696  0.814 0.983 0.943 0.943 0.688 0317 0966 0.681 0.884 0.835 0.203 0.183 0974 0446 0557 0.209 0.207
1284ERAS 0.242 0933 0.281 0439 0340 0851 0549 0538 0346 0.602 0.290 0.625 0.570 0.591 0.628 0.702  0.983  0.487
1641ERAS 0.117 0909 0.130 0.104 0.742 0.857 0844 0985 0.142 0.093 0954 0.731 0317 0514 0.055 0955 1.000 0.183
1709ERAS 0.095 0.575 0.857 0419 0493 0839 0466 0302 0533 0.090 0.072 0.048 0.795 0.852 0.188 0.483 0985 0.183
1866ERAS 0.111 0479 0974 0928 0.804 0279 0.078 0558 0434 0.145 0.666 0.644 0.283 0375 0476 0.438 0.091 0.183
1930ERAS 0954 0.617 0.858 0.660 0.862 0919 0359 0379 0.728 0.605 0.972 0.089 0.508 0.167 0.127 0.751  0.009 0.715
2012ERAS 0.144  0.216  0.635 0.644 0487 0993 1.000 0834 0.163 0.673 0.575 0.454 0.141 0828 0.673 0.142 0.130  0.539
2021ERAS5 0.040 0.665 0.867 0.503 0.450 0.050 0.606 0.452 0934 0.330 0.167 0.548 0.934 0.038 0.222 0.441 0.255 1.000
2024ERAS 0.654 0.725 0.382 0.445 0.660 0386 0.885 0.514 0.660 0.441 0.539 0.739 0.957 0.847 0312 0.648 0.821 NA
2091ERAS 0.928 0.300 0.324 0.817 0.710 0.410 0905 0308 0.037 0.887 0.443 0.667 0.714 0.789 0943 0.138 0.175  1.000
2093ERAS 0.859 0.755 0.334 0210 0.771 0.799 0.755 0.492 1.000 0.896 0.171 0.243 0.758 0.753  0.144 0287  0.022  0.060
2094ERAS 0.568 0.532 0417 0399 0503 0253 0.755 0.648 0.204 0.089 0.836 0.270 0.186 0.959 0.783  0.871  0.991  0.060
2095ERAS 0.626 0985 0.119 0.127 0916 0331 0411 0225 0.053 0300 0.562 0.766 0.758 0.758 0.406 0.708 0.125 0.216
2170ERAS 0.608 0319 0.259 0.225 0.998 0.172 0210 0998 0.051 0.087 0.504 0467 0.714 0463 0879 0.139 0.152 0.212
2234ERAS5 0.608 0.319 0.259 0.225 0.998 0.172 0210 0998 0.051 0.087 0.504 0.467 0.714 0463 0879 0.139 0.152 0.212
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Appendix 4

Table 9. Results from the linear mixed model correlation analysis with Z-transformed data set. No variables
were significant to the simulated yield. Significance is measured as -0,5>x>0,5. Variables explanation is found
in Table 2. Level of significance p<0.005.

Variable Correlation value Variable Correlation value
Yield kg ha 1.000 Var5 Varl3 0.022
Var2 -0.025 Var5 Varl3 0.022
Var3 0.051 Var5 Varl4 0.052
Var4 -0.152 Var5 Varl5 -0.011
Var6 0.115 Var5 Varl6 0.025
Var7 0.130 Var5 Varl7 -0.061
Var9 -0.056 Var7_Var9 -0.063
Varl0 0.044 Var7 Varl0 -0.090
Varll 0.049 Var7 Varll -0.092
Varl3 0.138 Var7 Varl2 0.083
Varl4 -0.021 Var7 Varl3 0.096
Varl5 0.024 Var7 Varl4 -0.073
Varl6 0.156 Var7 Varl5 -0.006
Varl7 0.001 Var7 Varl6 0.108
Var2 Var3 0.103 Var7 Varl7 -0.032
Var2 Var4 -0.024 Var6_Var9 -0.051
Var2 Var5 0.075 Var6 Varll -0.110
Var2 Var6 0.062 Var6 Varl2 0.033
Var2 Var7 0.062 Var6 Varl0 -0.093
Var2 Var9 0.046 Var6_Varl3 0.044
Var2 Varl0 0.051 Var6 Varl5 -0.041
Var2 Varll 0.043 Var6_Varl6 0.106
Var2 Varl2 -0.010 Var6 Varl7 -0.015
Var2 Varl3 -0.006 Var9 Varl0 0.034
Var2 Varl4 0.077 Var9 Varll 0.005
Var2 Varl5 0.041 Var9 Varl2 -0.036
Var2 Varl6 0.021 Var9 Varl3 -0.045
Var2 Varl7 0.054 Var9 Varl4 -0.063
Var3 Var4 0.018 Var9 Varl5 -0.068
Var3 Var5 -0.086 Var9 Varl6 -0.036
Var3 Var6 -0.071 Var9 Varl7 -0.003
Var3 Var7 -0.060 Varl0 Varl3 0.018
Var3 Var9 -0.069 Varl0 Varll 0.043
Var3 Varl0 -0.063 Varl0 Varl2 -0.010
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Variable Correlation value Variable Correlation value

Var3 Varl2 0.008 Varl0_Varl5 -0.021
Var3 Varl3 0.020 Varl0 Varl6 -0.001
Var3 Varl4 -0.096 Varl0_Varl7 -0.009

Var3 Varl5 -0.096 Varll Varl3 0.043
Var3 Varl6 0.004 Varll Varl2 -0.010
Var3 Varl7 -0.084 Varll Varl4 -0.041
Var4 Var5 0.048 Varll Varl5 -0.021
Var4 Var6 -0.023 Varll Varl6 -0.001
Var4 Var7 -0.032 Varll Varl7 -0.009
Var4 Var9 0.018 Varl2 Varl3 -0.010
Var4 Varl0 0.078 Varl2 Varl4 -0.041
Vard Varll 0.075 Varl2 Varl5 -0.021
Var4 Varl2 -0.097 Varl2 Varl6 -0.001
Var4 Varl3 -0.105 Varl2 Varl7 -0.009
Var4 Varl4 0.019 Varl3 Varl5 0.017
Var4 Varl5 -0.035 Varl3 Varl4 -0.010
Var4 Varl6 -0.093 Varl3 Varl6 0.079
Vard Varl7 0.011 Varl3 Varl7 -0.036
Var5 Var6 -0.046 Varl4 Varl5 -0.043
Var5 Var7 -0.046 Varl4 Varl6 -0.058
Var5 Var9 0.051 Varl4 Varl7 -0.036
Var5 Varl0 0.067 Varl5 Varl6 0.007
Var5 Varll 0.093 Varl5 Varl7 -0.044
Var5 Varl2 0.043 Varl6 Varl7 -0.054

*Number of daily extreme precipitation (Var2), Number of days included in Cold Spells (Var3), Number of days included
in dry spells of 5 days or more (Var5), Number of days included in dry spell and warm spell (Var6), Number of days included
in warm spells (Var7), Number of days included in wet spells of 5 days or more (Var8), Number of late frost days OR Number
of early frost days? (Varl0), Number of warm Spells (Varll), Ratio of precipitation falling during extreme event (Varl4),
Average temperature (Varl5), Average precipitation volume per wet days (>1mm) (Varl6), Total Precipitation volume

(Varl7)
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