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Polydactyly is a vertebrate developmental condition characterized by the presence of supernumerary 
digits. Its manifestation and severity can vary, ranging from cosmetic to debilitating, and it is 
commonly inherited in a dominant manner. The present study investigates a family of miniature 
Shetland ponies exhibiting a rare case of polydactyly, which appears to be inherited recessively and 
is accompanied by limb deformities. To shed light on the genetic basis of this observed phenotype, 
bioinformatic analyses were conducted on the whole genome sequences of five family members 
(consisting of one stallion, two mares, and two foals), along with several samples from healthy 
controls. The aim was to compare and contrast their genomes, in order to identify the mutation 
responsible for this change in development. Although these analyses succeeded in narrowing down 
the potential variations from millions to thousands, the limited number of samples proved inadequate 
to definitively pinpoint the precise genetic change underlying this distinct form of polydactyly. 
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The vertebrate limb is a versatile adaptation, enabling animals to complete all 
manner of tasks, from locomotion and survival, to tool usage and social interaction. 
It is also an object of interest of developmental biology, due in part to the observable 
homology between the limbs of different vertebrates (Coates 1994). Understanding 
the evolutionary history that connects the fins of a fish to the opposable thumbs of 
a primate can shed light on the existence of the entire terrestrial tetrapod group. 

The word chiral is used to describe molecules that have no axis of symmetry, 
meaning their mirror image cannot be superimposed on themselves no matter the 
combination of rotations and translations. It derives its meaning from the Greek 
word for hand, which is one of the most commonly encountered chiral objects. To 
properly describe the hand, or any vertebrate limb in general, all the axes have 
specific names, which describe them in relation to the body. The direction that goes 
from the trunk to the fingers is called the proximal to distal axis; the direction from 
the thumb to the ring finger is called anterior to posterior axis; and finally the 
direction from the back of the hand to the palm is called the dorsal to ventral axis. 

The bones of vertebrate limb can be used as a guide to distinguish the three 
morphologically distinct regions, following the proximal to distal axis. The 
humerus represents the stylopod, the ulna and radius represent the zeugopod, and 
the autopod contains all bones normally associated with the hand. This is useful 
when talking about different species, as the wing of a chicken, for example, has 
only three fingers, a human hand has five, while the horse only has a single digit. 
However, all three species have an stylopod, zeugopod and an autopod from a 
developmental point of view 

The determination of tissues along an axis is strongly associated with the 
homeobox (hox) genes (Gehring 1993). This is true for the whole embryo, as well 
as the limb in particular, only this time the rule of collinearity (the correlation of 
hox genes position along the chromosome to tissue order along the axis) operates 
on the proximal to distal axis (Duboule 1998). Any loss of function of limb-
associated hox genes results in severe limb deformities (Small & Potter 1993). The 
buds that would grow to form the limbs bulge off the main body, forming due to 
cell migration from the lateral plate mesoderm and increased proliferation. This is 
followed by formation of the bones, cartilage, muscles, as well as nerve and blood 
vessel infiltration. 

1. Introduction 
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Even at the limb bud stages, all the axes are already established. This is 
determined by three distinct regions of significance, the first being a ridge of 
epithelium at the most distal part of the bud. This structure, called the apical 
ectodermal ridge (AER), delineates the dorsal and ventral sides of the bud. The 
clump of cells growing beneath AER is called the progress zone (PZ), and the third 
and final region is known as the zone of polarizing activity (ZPA), located on the 
posterior-proximal side of the bud. While it doesn’t have a distinct physical 
appearance, experiments with chicken embryos, in which the ZPA is grafted to the 
anterior-proximal side of the bud, resulted in a mirror-image limb morphology 
(Summerbell 1979). Conversely, removing the AER would stop the bud 
development at whatever stage the manipulation was performed. And replacing the 
tissue of the PZ of a forelimb with a hind limb would result in a leg growing where 
an arm would be (Muneoka & Bryant 1984). These are just some examples of what 
the different zones of the limb bud do and their interactions. 

Limb bud formation is determined by the interplay of several known 
morphogens. Initiation of bud formation is influenced by the expression of the Tbx5 
(forelimb) and Tbx4 (hind limb) transcription factors, with some species variation 
(Takeuchi et al. 1999). No matter precisely which gene is the initiator, it all leads 
to the expression of fibroblast growth factor 10 (FGF10) in PZ, which is the main 
cell fate contributing factor. AER affects the limb bud development in the proximal-
distal axis through FGF8 signalling (Mahmood et al. 1995). Removal of the AER 
stops limb development as mentioned previously, but supplementing FGF8 is 
enough to restore normal function. The anterior-posterior axis development is 
determined through a sonic hedgehog (Shh) gradient originating from the ZPA, and 
Wnt and BMP determine the dorsal-ventral polarity. 

In the limb bud, Shh is solely expressed in the ZPA, and its gradient determines 
the anterior-posterior axis development (McGlinn & Tabin 2006). Mutations in Shh 
regulatory elements have been found in several species, and they result in mirror-
image duplication of the digits, similar to the grafting experiments done with 
chicken embryos (Lettice et al. 2003). An increase in the expected digit number for 
a species is called polydactyly, and in the case of the horse that can present a major 
challenge, since the entire upper limb makes contact with the ground through that 
single digit, so structural changes can affect the gait or balance of the animal, or 
even make it impossible to walk in severe occurrences. 

This work examines the occurrence of a unique type of polydactyly in a small 
family of miniature Shetland ponies. The breed is related to the Shetland pony and 
is distinguished by the height measured at the withers, which shouldn’t exceed 87 
cm. The group that is the object of this thesis consists of 5 individuals. The family 
tree of these horses is represented in Figure 1. 

• One healthy stallion, named SU1, that has previously had 26 healthy 
offspring before producing a foal with polydactyly. 
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• One healthy mare, named MS2, that has had 2 healthy offspring before 
giving birth to a foal with polydactyly.  

• One healthy mare, named MK1, daughter of SU1 and a mare for which 
no genetic information or pedigree was provided. 

• One foal with polydactyly, named FO1, son of SU1 and MS2 
• One foal with polydactyly, named FO2, result of inbreeding between 

MK1 and SU1 

Figure 1. Family tree of studied horses 

Diagram representing the familial relationships between the 5 studied horses. Dam A has no 
provided genetic data and is thus not part of the study. The sire is entered as sample SU1, Dam B is 
MS2, Dam C is MK1, Foal 1 is FO1 and Foal 2 is FO2 when referred further into the text. 

Polydactyly in horses is still not fully understood on the genetic level. In humans, 
the body of research is much larger, and even there the genetic pathway is not 
completely elucidated. More than 10 loci and 6 genes are involved in non-
syndromic polydactyly, and even more genes can be considered when including 
developmental defects that have polydactyly as just one of their symptoms (Umair 
et al. 2018). 

To better understand the genetic causes behind this particular form of 
polydactyly in the studied family, sequencing data from publicly available 
repositories was chosen to compare and contrast with. Where possible, only 
sequencing data from miniature Shetland ponies was selected to minimise the risk 
for creating false positives due to breed-specific loci. However, sometimes regular 
Shetland ponies were included in the selection due to the low volume of available 
sequences. 
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The first dataset was selected from a paper studying skeletal atavism in Shetland 
ponies (Rafati et al. 2016), because it used a large and diverse pool of manually 
chosen individuals, which provides an excellent genetic background for all future 
comparisons.  Another dataset was obtained from a paper exploring the quantitative 
trait loci behind height in Shetland ponies (Frischknecht et al. 2015), the major 
factor that distinguishes “regular” from miniature. This dataset was selected for its 
excellent sequence quality and coverage, and because it uses miniature Shetland 
ponies as sequencing targets, despite the low count of samples studied. The last 
dataset was from a study that identifies a potential causative mutation resulting in 
dwarfism in miniature Shetland ponies (Metzger et al. 2017). While that individual 
was afflicted, its phenotype did not include any polydactyly-like symptoms, so for 
the purposes of this work it was considered healthy. 
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2.1 Sequence data acquisition  
The thesis project was exclusively in the area of computational biology, so no 
handling of animals or any biological samples was done. All sequencing data used 
was either obtained from public databases or provided in digital form. 

2.2 Data collection table 
Some of the sequences in this table are not yet publicly available. 

Table 1. List of sequencing data accessions used for this project.   

Sample Original Name Accession 

CG1 CG_1 SAMN04538183 
CG2 CG_2 SAMN04538182 
CG3 CG_3 SAMN04538181 
CG4 CG_4 SAMN04538180 
CG5 CG_5 SAMN04538179 
CG6 CG_6 SAMN04538178 
GP1 CG_7-tag12_CTTGTA SAMN04538177 
GP2 CG_7 SAMN04538176 
NG1 NGSHORSE028 SAMN05440129 
SP1 SPH041 SAMEA3367609 
SP2 SPH020 SAMEA3367610 
SU1 Sire Own sample 
MK1 Dam C Own sample 
MS2 Dam B Own sample 
FO1 Foal 1 Own sample 
FO2 Foal 2 Own sample 

2. Methods and Materials 
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2.3 Whole-Genome Sequencing 
The data for this work was obtained from several sources and was generated 

using short read whole genome sequencing (WGS) methods. This was taken into 
consideration when choosing an appropriate software for data analysis. Due to the 
diversity of sources, there was no single platform that was used across all samples, 
with examples including Illumina Next-Seq 500, Illumina HiSeq 2000, and others. 

2.4 Computational devices used 
The computations were enabled by resources provided by the National 

Academic Infrastructure for Supercomputing in Sweden (NAISS), partially funded 
by the Swedish Research Council through grant agreement no. 2022-06725. 

Some of the lighter data analysis steps were performed on my personal 
computer. 

A work computer was provided for the purposes of writing the thesis and 
accessing the supercomputing cluster (UPPMAX) while on university grounds. 

2.5 Software and languages used 
Languages used to perform the computational analysis of the data include bash, 

Perl, Java, Python, C#, R. 
Software used in addition to the ones outlined in the next section include the 

Microsoft Office suite, RStudio 2023.03.0, PyCharm 2022.2.1 (Community 
Edition) and Visual Studio Code 1.78.2. 

2.6 Data analysis 
A detailed breakdown of the scripts and commands used to obtain the results 

presented in this work is provided in Appendix 1. The brief summary of the 
workflow is illustrated on Figure 2. The intent is to process the raw sequences by 
removing low-quality reads, then aligning the output against the horse reference 
genome, and converting the output to a format that can be processed by an 
established data analysis pipeline. The results from that pipeline show which 
samples contain mutations in comparison to the reference, and by using statistical 
methods, information can be obtained that can lead to pinpointing the molecular 
origin of the phenotype being investigated. 
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Figure 2. Workflow chart 

Workflow chart depicting the key moments of the variant calling workflow. Data is being 
downloaded from public repositories or provided on a local machine in the FASTA format. After 
quality control and aligning to the reference genome, the data is output as a binary file (BAM) to 
speed up downstream analysis. Steps are taken to prepare this binary file in a way that is consistent 
with the Genomic Analysis Toolkit pipeline of the Broad Institute. The result of that pipeline is a text 
file (VCF) that contains all genomic loci with differences, compared to the reference genome 
provided (EquCab 3.0 at the time of writing). These files are then used in various ways, such as 
obtaining fixation statistic information or cross-referencing regions of interest within the genome. 
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3.1 Data pool 

In total, the genomes of 16 different individuals were analysed. Where applicable, 
several low-coverage sequencing runs from the same biological sample were 
combined into one to increase the depth of coverage for further downstream 
analysis. For example, the miniature Shetland pony family data was supplied in the 
form of 3 separate runs, so it required a merging step as described in the Methods 
section. Other samples (like NG1, Table 2) were done in a single run and were 
directly processed further. 
 

Table 2. Sample sequencing run counts 

Sample name Run counts 

CG1 4 
CG2 4 
CG3 4 
CG4 4 
CG5 4 
CG6 4 
GP1 4 
GP2 4 
NG1 1 
SP1 1 
SP2 1 
SU1 3 
MK1 3 
MS2 3 
FO1 3 
FO2 3 

3. Results 
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3.2 Statistics and quality control of sequencing 

Similar steps were performed for all sequencing runs. with this section mostly 
focusing on the miniature Shetland pony family data. While there are some slight 
deviations between samples and runs, there were no significant differences between 
runs from the viewpoint of sequencing quality. Therefore, these results can be 
considered representative for the overall quality of all samples, unless stated 
otherwise. 

Table 3. MultiQC statistics of studied samples 

Sample %Dups %GC Read Length M. pairs 

SU1 7.6 42 124 37.4 
MK1 8.1 42 124 36.7 
MS2 15.7 45 124 48.7 
FO1 7.7 44 124 38.3 
FO2 8.1 42 124 40.0 

Sequencing quality across the whole read was very high for all samples, with 
average of 10% of reads failing the quality control checks, and ranging from 0% 
for some samples to 20% for sample NG1, but that one uses a different sequencing 
technology (NextSeq 500), has longer reads (150bp), and more than 3 times as 
much in quantity (145M). 

Figure 3.Per base sequence quality score. 

 

The X axis represents the base position of the read, and the Y axis represents the PHRED33 score 
assigned to that base. PHRED score is a measure of the confidence of the base call and is in base 
10 logarithmic scale. 10-point increase in the score corresponds to a 10-fold increase in confidence. 
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MultiQC produced a warning when assessing the per sequence GC content of the 
samples. However, despite the unusual distribution, this trait is consistent across all 
horse genomes analysed, from several different laboratories and sequencing 
technologies. Online forums and verbal communication with experts in the field 
also confirm this oddity of the horse genome, so the GC content distribution will 
not be taken into consideration further. 

Figure 4. Per sequence GC content. 

  

The X axis represents relative GC content as percentage, the Y axis represents how many of the 
reads fall into each category as percentage. The graph includes all 5 of the individuals being 
analysed. The green line is sample MS2, marked green because it seems to fall just barely into 
FastQC’s quality tresholds. 

Based on the quality thresholds set in the tool trimmomatic, some reads were 
disqualified. This resulted in sequences being sorted into four distinct categories – 
forward paired, reverse paired, forward unpaired and reverse unpaired. All reads 
initially are paired, but if one of the sequences fails the quality control checks, it is 
assigned to an unpaired bin. The overall drop rate varied by sample and sequencing 
run, but the average of 100 bins (50 sequencing runs times forward and reverse 
reads) is 8.85% with a standard deviation of 5.63%. 

3.3 Statistics and quality control of mapping 
Mapping was performed only on the paired reads from each run, which while 
reducing the overall number of sequences available, increases the confidence in 
their alignment later on. The mapper tool of choice was bowtie2, due to my 
familiarity with it and its good performance when aligning Illumina DNA 
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sequencing outputs (Canzar & Salzberg 2017). When working in paired-end mode, 
bowtie2 categorises reads into several groups based on their alignment. Results 
were similar for all sequencing runs analysed, and Table 4 shows some of the 
statistics for my samples. 

Table 4. Alignment statistics.  

Sample Reads, 10e6 Concordant % Unique Hit % Overall Alignment % 

SU1 32.0 95.66 70.70 99.70 
MK1 31.7 96.05 70.65 99.70 
MS2 46.9 97.78 70.85 99.79 
FO1 32.6 85.58 62.98 88.30 
FO2 34.6 96.66 71.07 99.60 

Reads are represented in millions, rounded to the first decimal. Concordant reads are reads that 
mapped as expected by bowtie2’s parameters, for example if the two mates of a pair map 1000 bases 
apart when the insert is supposed to be 125, then the reads mapped discordantly. Unique hits are 
the percentage of reads that mapped concordantly and only once. Overall alignment is the 
percentage of reads that mapped in any capacity, regardless of mates or concordance. 

After the clean-up of mapping results (like duplicate marking, sorting, quality 
recalibration), a useful metric is to check the overall coverage of the genome. This 
can give insight into the mapping distribution, any potential sequencing errors or 
large-scale chromosomal changes, such as deletions, duplications, changes in 
ploidy. Since the data is a lot and hard to represent visually in its entirety, only 
sample plots will be shown here, with notable exceptions pointed out when 
necessary. 

Table 5. Average coverage per sample. 

Sample Chr01 Chr16 ChrX Sex 

SU1 11.44 11.54 6.15 M 
MK1 10.95 11.08 11.16 F 
MS2 13.18 13.84 11.64 F 
FO1 10.32 10.45 5.56 M 
FO2 12.29 12.38 6.62 M 
GP1 14.15 14.31 7.81 M 
GP2 23.47 23.74 12.88 M 
NG1 9.1 9.29 8.8 F 
SP1 19.57 19.66 20.64 F 
SP2 17.7 17.89 18.81 F 
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Average coverage in reads per locus shown for 3 chromosomes and 10 samples. The chromosomes 
are chosen to represent a size distribution. The X chromosome was selected to help determine the 
sex of samples for which that information was missing. 

As seen in Table 5, coverage is consistent between chromosomes of a sample, with 
a notable exception of chromosome X, which is showing around half the average 
coverage for males, as expected. Chromosome 1 was chosen as a representative 
since it’s the biggest, and chromosome 16 was chosen as the midpoint. 

3.4 Low-coverage region in chromosome 5 hints at 
potential large deletion 

While examining the coverage data, a standout feature was discovered in 
affected individuals a 0.5MB region of almost zero coverage spanning the same 
location in one of the chromosomes. This observation is depicted in more detail on 
Figure 5. 

Figure 5. Average coverage for chromosome N 

Average coverage for chromosome 5 for two controls – CG1 (pool of male Shetland ponies), SP1 
(female Shetland pony), and the two affected horses FO1 (individual with polydactyly), FO2 
(individual with polydactyly). Plot A shows average normalized coverage across the whole 
chromosome N. Image is used as illustration to show that coverage profile looks similar across 
individuals. An interesting region is marked in red and zoomed in further. Plot B shows only the 
region of interest that shows almost 0 coverage in the affected individuals and normal coverage in 
the control samples. The region is located in coordinates N:75500001-75900001. 

This region contains 28 genes that all belong to the olfactory receptor family, as 
well as a few olfactory pseudogenes. Interestingly the region is downstream of a 
gene that is involved with a developmental syndromic disease that features 
polydactyly as one of its symptoms in humans. The gene is around 1MB away from 



22 
 

the low-coverage region discussed here. No other large regions that show unusual 
coverage patterns were found. Upon further investigation of more control 
sequences, this deletion is present in all samples of the breed miniature Shetland 
pony (regardless of phenotype status), and none of the regular Shetland pony 
individuals, which diminishes the possibility of the mutation being the causative 
change for the investigated phenotype. 

3.5 Run of homozygosity analysis 
Because of the unique biological circumstances of sample FO2 (product of 

inbreeding of 2 suspected carriers), a run of homozygosity plot could potentially be 
used to identify the region of interest, since it comes once from the P generation 
and once from the F1 generation, so the F2 generation must carry the same 
“physical” piece of DNA, along with its markers. The results of that analysis are 
shown on Figure 4. 

Figure 6. ROH plot for chromosome 7. 

The graph shows relative homozygosity for a floating region of around 5000 SNP window with a 
half-size step across chromosome 7 of FO1 (red, not a product of inbreeding) and FO2 (green, 
inbred offspring). Big regions of the genome are completely homozygous for all called SNPs across 
all chromosomes (data not shown). Chromosome 7 was chosen at random. 
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3.6 Variant filtration of initial data 
After alignment, variant calling and initial filtration, a total of 9 213 679 SNPs were 
called across 10 samples. Figure 5 shows some stats about the distribution of depth 
and frequency of alleles across the samples. 501 461 SNPs were removed when 
filtering for the standard minor allele frequency of 0.05. 

Figure 7.SNP distribution statistics 

The distribution of allele frequencies and depth of coverage per SNP across samples are shown. On 
Plot A the allele frequency distribution has some “gaps” at regular intervals, but those are most 
likely caused by the binning process. The gaps have fewer alleles so they don’t display properly at 
this scale (millions versus tens of thousands for some bins). On Plot B the SNPs per depth follow a 
normal distribution, as expected. Values that contributed less than 0.1% of the total SNPs were cut 
off for clarity. The peak at 500+ depth is due to the inclusion of the mitochondrial genome in the 
initial SNP analysis. 

Since the analysis focuses on a small group of related individuals, the rules of 
inheritance can be used to further filter SNPs to only those that are biologically 
relevant. Since this type of polydactyly is severe, and pedigree analysis shows that 
all parents previously produced multiple healthy offspring, the causative mutation 
must be inherited recessively. Together with the family relationships of the 5 
samples, the following SNP constraints can be placed: 

• The allele must not be homozygous reference 
• The allele must be homozygous in both foals 
• Parents must be heterozygous for the same allele at that locus. 
• The allele must not be present in a homozygous state in any of the control 

samples. 

Additionally, a constraint that the coverage at that locus must be at least 8x for each 
included sample was placed to ensure that low coverage and random sequencing 
errors do not interfere with the selection process. The results of these constraints 
reduced the overall SNPs from more than 9 million to 20 268. Of those 20 255 were 
SNPs already added to the Ensembl database and 13 that were new to this sample 
set. SNPs that follow these criteria span 1794 genes which produce 5916 transcripts. 

The categories these variants fall into are shown on Figure 8. 
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Figure 8. Distribution of SNP effects 

This figure generated by Ensembl’s Variant Effect Predictor tool shows all consequences that SNPs 
in the filtered list could have. This does not represent a guarantee that all these effects are occurring 
in the genome, since this needs to be manually confirmed by looking at the sequence of the regions 
of interest, but is a narrowed down list that can serve as a starting point for deeper investigation. 
Plot A shows the distribution of SNP consequences, with most variants landing in intergenic or 
intronic regions, as expected. Plot B shows the distribution of SNPs within known protein coding 
regions and their predicted effects. 

Out of all these variants, the 13 novel SNPs land in 9 genes, 4 of which are protein 
coding. However, all of the SNPs are in intronic regions, and none of the genes are 
directly involved in development of the skeleton or the limbs. Using this list of 1794 
potential candidate genes, further refinements can be made. For example, genes can 
be filtered by their Gene Ontology annotation, such as limb development or DNA 
binding activity. Results of this initial filtering are shown in table 7 on the next 
page. Regions may also be selected by correlating them with signals from other 
statistical methods, such as calculating the fixation index (Fst) between the two 
experimental “populations”, namely individuals in the family (that share the mutant 
allele) and control groups (presumed to not be allele carriers). The results of that 
analysis will be shown in the next section. 

 

Table 6. Genes per Gene Ontology label 

Gene Ontology Label Count 
Bone Development (GO:0060348) 17 
Nuclear Receptor Activity (GO:0004879) 7 
Nuclear Receptor Binding (GO:0016922) 6 
DNA Binding (GO:0003677) 107 
Transcription Factor Binding (GO:0008134) 31 
Limb Development (GO:0060173) 11 
Limb Morphogenesis (GO:0035108) 9 
DNA Binding TF Activity (GO:0003700) 64 
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To confirm that these results are not caused by an unaccounted methodical bias, 
5 samples of randomly selected SNP sets were analysed through Ensembl’s Variant 
Effect Predictor tool, then genes were filtered for the same Gene Ontology labels. 
The results are shown on Figure 9. 

Figure 9. Distribution of SNP effects. Comparison of the set of genes left after imposing biological 
constraints on the SNP data versus 5 random sets of SNPs. Random SNP sets include a lot more 
genes, but the fraction of genes related to skeletal development is lower. 

A random set of similar number of SNPs (around 20 000 in this case) are 
distributed among much greater number of genes, which results in a lot more genes 
with the desired Gene Ontology labels being included. However, when comparing 
the fraction of genes for each set, the one with imposed biological constraints about 
the inheritance pattern of the SNPs gives a significantly enriched fraction of genes 
related to skeletal development and transcription regulation (p value < 0.0001). 
  



26 
 

3.7 Fst analysis of genome-wide SNP data 
Calculating the fixation index for the whole genome was done using vcftools and 
the results were plotted in R using qqman in linear mode (Turner 2018). The 
recommended window size was 100 000 bp, with a step of half that size, 50 000. 
The 10 samples were split into two populations of 5, one which includes all horses 
of the affected family, and another group that only contains phenotypically healthy 
individuals (assumed to not be carriers). Figure 10 shows the results of the analysis. 

Figure 9. Fst analysis of SNP data. The Manhattan plot of Fst values for each window across all 32 
chromosomes of the horse genome. The MT and Y scaffolds are not included in this plot. Genome-
wide threshold of 0.5 (red horizontal line) was considered as marking a region significant. The Y 
axis represents the Fst index, where 0 is complete Hardy-Weinberg equilibrium, while 1 is complete 
fixation for different alleles between the two populations. 

The calculated Fst value for the whole genome was 0.068922. This is very low and 
implies there is no difference between the populations (Charlesworth 1998), but 
this result is to be expected, since the two “populations” being compared are 
comprised of very few individuals from closely related breeds. Still, it is a check 
on the overall validity of the analysis, as high value of the F statistic would imply 
there might be something wrong with the dataset or the data processing. For 
example, the difference between the three lineages of ancient domestic horses 
(Alaskan, Iberian and Eurasian) is as low as 0.1 in some cases (Cieslak et al. 2010). 
High signals are observed on several chromosomes, with the only statistically 
significant peak seen on chromosome 7. All bins that overlap significant signals 
were then converted to a list of chromosome coordinates and those were used as an 
additional filter to cross-reference genes marked by the Variant Effect Predictor 
tool. There were only 8 regions that passed all the required thresholds stated 
previously, and they contain 19 genes. Highest Fst value for these regions was 0.65, 
and lowest was 0.50 (the cutoff). 
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Short read sequencing and its analysis produces enormous amounts of data, as 
evidenced by the almost 2000 GB of intermediary data produced during the 
analysis. Some of it could be optimised, and some of it can be offloaded to 
temporary storage, but the reality is that it is a very computationally demanding 
process. The 50 analysed sequencing runs were all of very good quality, which 
made the downstream data processing easier, since a majority of the reads could be 
preserved and thus obtain higher confidence when drawing conclusions from the 
data. Anecdotally, the newer the deposition date was, the better the overall quality 
of the sequences, but this could be due to many reasons, including newer library 
preparation chemistry, improved machines or even higher proficiency of the 
researchers who prepare the DNA for sequencing. 

One curious deviation that was observed was the skewed shape of the GC 
content distribution. Although the GC distribution varies across species, this 
deviation from the expected normal distribution shape was consistent across all 
samples tested, regardless of library preparation method, sequencing device or 
research institution that prepared the sample. While conferring with a colleague that 
works in a different breed of horses, they observed the same distribution, so it is 
not even breed-specific, but rather an oddity of the horse genome itself. 

Mapping with bowtie2 produced very good results, with nearly 70% of the read 
pairs mapped uniquely, and overall alignment rate of 99% or higher. Several 
regions of the genome showed pairs mapping thousands of times, even after 
duplicate removal, but after manual checking several of those areas, they contained 
ribosomal genes. This explains the unique behaviour as ribosomal genes are present 
in high copy numbers (Dawid et al. 1978), and this interferes with the alignment 
process. 

Another overall challenge was representing the data in a way that shows as much 
as possible while maintaining readability. Fortunately, this study tries to find 
differences between samples, rather than represent all of them, so a choice was 
made to show data that is indicative of the findings, and point out exceptions to the 
norm when present. 

As the analysis progressed, several sanity checks of the data were performed 
along the way, for questions for which the answer was known. If the analysis would 
show a different outcome than base reality, then steps could be taken to rectify the 

4. Discussion 
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error, since this would have further downstream applications. One such example 
was already demonstrated previously when analysing the super-high coverage 
hotspots in the genome. This could have been an interesting signal, or a mistake in 
duplicate removal process. Finding out a plausible biological reason eliminates 
those concerns. Another analysis was estimating the sex of the samples based on 
average coverage. If everything went as expected, the average coverage across the 
X chromosome should be half that of the coverage for the rest of the chromosomes. 
Such was the case for all male samples, and none of the female samples, with slight 
deviations due to imperfect sequencing and alignment. 

This sanity checks on coverage and alignment allowed me to be more confident 
when noticing the low-coverage area of chromosome 5. This could have been a 
sequencing or alignment error, but since these were made very unlikely based on 
the state of the rest of the samples, this appears to be a large-scale chromosomal 
alteration. However, this region only contains olfactory genes and related 
pseudogenes, so it is unlikely to be contributing to skeletal development. 

Due to the unique nature of the sampled individuals – closely related family with 
a case of inbreeding – an opportunity presented itself to use homozygosity as a 
genomic region filter. Since the information provided by the owner state that all 
parents (P) had multiple healthy offspring before these two cases, the inheritance 
pattern of this mutation must be recessive. Additionally, due to the case of 
inbreeding there is information about both first generation (F1) and second 
generation (F2) offspring. The sample marked as FO2 is coming from the individual 
who’s the product of inbreeding, and both parents (a P generation and a F1 
generation horse) are phenotypically healthy. This means that the chromosomal 
region responsible for this mutation should be in a highly homozygous state, since 
it essentially comes twice from the same individual (SU1), once directly in a 
gamete, and once from a gamete of MK1. However, this did not produce the desired 
outcome, since the inbreeding event was very recent, and large regions of the 
genome were in a homozygous state. If this mutation was desirable and not 
deleterious, several outcrossing events and a few generations further would have 
normalized the heterozygosity across the rest of the genomic regions, making this 
a viable strategy to identify the associated trait locus. 

The initial analysis produced more than 9 million SNPs across more than a 
million sites. Even eliminating sites with minor allele frequency of 0.05 or lower, 
that is still a considerable number. Fortunately, due to the known pedigree of this 
population, the rules of genetics and inheritance can be used to narrow down the 
number of SNPs to be investigated considerably. A single nucleotide polymorphism 
may not be the cause for a particular phenotype, but since the mechanisms of 
meiotic crossing over rearrange the genome in chunks, the closer a SNP is to the 
actual genetic cause, the more likely it is to segregate together. Additionally, since 
FO2 is born from inbreeding, the same chunk of DNA, together with its 
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polymorphism pattern, must be present on both copies of the respective 
chromosome. One of those copies must come from the parent, MK1, and the other 
from the father, SU1. And since both of them do not exhibit the studied phenotype, 
they must both be heterozygous at this particular locus. Lastly, if the locus in FO2 
is homozygous reference, that site is also excluded. Coverage is also taken into 
consideration, since low coverage increases the chance that this variant could be 
the result of a technical error and not a true mutation. 

Taking all of this into consideration reduces the number of sites to be considered 
dramatically, down to a bit over 20 000. Most of them were already existing in the 
Ensembl database, but 13 were novel to this sample set, making them prime 
candidates for investigation. The genes where these SNPs are found are 9 in total, 
of which 5 produce long non-coding RNAs with unknown functions. 

The rest of the SNPs encompass almost 1800 genes, which can be further 
selected based on associated function using the Gene Ontology labels, as outlined 
in Table 6. This has some interesting candidates, which can be further checked, but 
so far these filters have been logic-based and while certainly helpful, are not backed 
up by statistics. The genome-wide Fst analysis of SNP data is the most powerful 
filtering tool that can be applied to this dataset. Establishing the fixation index for 
the whole “population” with vcftools gives a very low score of around 0.07, which 
is to be expected given that these are a small group of horses of the same breed. 
Much more informative is the plot of per-site Fst, shown on Figure 10. 

Cross-referencing the list of genes that obey the inheritance rules (homozygous 
in offspring, heterozygous in parents, not homozygous reference or similar to the 
controls) with the regions that show a strong signal in the Fst analysis results in 0 
genes being left. This could be due to several reasons. The SNPs may be less 
strongly associated with the mutation than assumed, so further analysis that looks 
at haplotypes could reveal a better association between phenotype and genotype. 
Fst analysis can also be inconclusive, since the sample size is really small. Most 
studies that performed Fst or GWAS had at minimum 10 times the number of 
samples. The fact that the sample size might be insufficient can also be found in the 
raw Fst data. The values should range from 0 (no difference) to 1 (completely fixed 
for different alleles), and negative values indicate a statistical fluke. More than 15% 
of all entries in the input data were negative, while the consensus is that this should 
rarely happen if ever. 

Another possibility is that the mutation is due to a large structural change, such 
as deletion, duplication, inversion or translocation. Such differences are hard to 
detect with traditional SNP analysis. Even though the deletion in chromosome 5 
showed up on the Fst plot, that was more of a coincidence, since choosing different 
parameters erases that signal in some of the analyses I did. It is possible to detect 
chromosomal structural changes with GATK, but these are a very broad category, 
and the pipeline that is made to process them is outside of the scope of the time 
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allocated for this work. Despite that, structural variation is an interesting possibility 
to explore, since some of the control samples used in this thesis were taken from a 
work that discovered exactly such an underlying mutation cause. 

Searching for the causative mutation for any phenotype will always be like 
looking for a needle in a haystack. If we expand the metaphor, statistics is then like 
using a magnet to aid the search, a very powerful, albeit not omnipotent tool. 
Unfortunately, it is entirely possible that due to the low number of samples that 
magnet is not particularly strong, making the search for the causative mutation for 
this rare type of polydactyly a yet unresolved task. 
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Polydactyly (from Greek, meaning many fingers) is a condition in which an 
organism has more fingers than typical. For humans that would be six or more, 
while horses normally have only one finger. For most cases of this condition, the 
inheritance is dominant, meaning that a parent would pass this trait to all of its 
offspring. However, in the unique case present in this study, the mutation is 
inherited recessively, meaning both parents had to have been carriers, in order for 
the offspring to be affected. 

Organisms of the same species share an overwhelming similarity in their DNA. 
For example, people can look very different from each other, but on the sequence 
level that’s caused by less than 0.1% difference. In the case of domesticated 
animals, like horses, those genetic differences are even smaller, due to selective 
breeding. Even then, when a small percentage is multiplied by the billions of DNA 
letters in a genome, the number becomes unmanageable for anyone to analyse by 
hand. 

By employing supercomputers and advanced algorithms, many genomes from 
many individuals can be compared DNA base by base. The data can then be 
analysed statistically, so that random mutations can be averaged out. This leaves 
only spots in the genome that are significantly different between groups of 
individuals – for example horses with polydactyly compared to those without. That 
way the potential list of causes is reduced to a comprehensible level, hopefully 
leading to discovering what DNA mutation causes this unique change in the limb 
of the miniature Shetland pony horses being studied. 
 

6. Popular science summary 
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This section outlines in detail the workflow and the commands used to obtain the 
data presented in this work. 

6.1 Data analysis steps and workflow: Part One 
The following paragraph and all sub-paragraphs will outline the workflow I 
followed to arrive at my current results. For all intents and purposes this is not a 
ready to be executed pipeline script, but with some minor adjustments of variables 
and parameters it could be used as such. 

6.1.1 Load software packages used in the workflow 
Below is a list of CLI packages used during the workflow. The version of each 

package is also specified, when possible, although in theory newer versions of the 
tools should produce the same outcome. UPPMAX uses lmod to dynamically load 
different packages and adjust the $PATH, so the first step is to specify what is going 
to be used. 

### load modules 

module load bioinfo-tools 

module load sratools/3.0.0 

module load trimmomatic/0.39 

module load FastQC/0.11.9 

module load MultiQC/1.12 

module load samtools/1.17 

vcftools/0.1.16 

bcftools/1.17 

Appendix 1 
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module load bowtie2/2.4.5 

module load picard/2.27.5 

module load GATK/4.3.0.0 

6.1.2 Download sequences to local storage 
Sequence files that were provided by the thesis supervisor for the purposes of the 
thesis work were already present in the local storage of the project. Addidional 
sequences need to be downloaded from a dedicated server, such as NCBI’s 
Sequence Read Archive. 

Sample names may contain multiple SRA entries, and all of those need to be 
downloaded (and later on combined) to create a complete WGS. 

### download SRA entry to current directory. 

srr=ERR868004 

fasterq-dump -x -e 10 --split-files --skip-technical -t . -O . $srr 

This code will use 10 threads to download the sequencing run onto the local storage 
in the form of $srr.1.fastq and $srr.2.fastq FASTQ files, in the case of a paired-end 
sequencing run. 

6.1.3 Trimming of low-quality reads 
Illumina sequencing creates millions or even billions of short reads, and no matter 
how good the library preparation or the sequencing process is, some reads will be 
faulty, which can compromise the downstream analysis. This step aims to remove 
reads that don’t follow generally accepted quality standards. 

### trim low quality sequences 

r1=$srr_1.fastq 

r2=$srr_2.fastq 

trimmomatic PE -phred33 -threads 10 $r1 $r2 
-trimlog ./$srr.log -baseout $srr.fq.gz  
ILLUMINACLIP:$TRIMMOMATIC_ROOT/adapters/TruSeq3-PE.fa:2:30:10 
SLIDINGWINDOW:5:20 MINLEN:80 

rm $r1 $r2 

This code will use 10 threads to trim PHRED33-based FASTQ file, using supplied 
known sequences of Illumina adapters, stopping when the quality in a sliding 
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window of 5 nt drops below 20, and discarding all reads that are shorter than 80bp, 
regardless of quality. It will output 4 files containing reads from 4 different 
categories – forward paired, reverse paired, forward unpaired and reverse unpaired. 
Despite reads always coming in pairs, quality control may delete one member of 
the pair, in which the read is sorted into the unpaired file. Those will be discarded 
for consequtive analyses. 

6.1.4 Manual quality control 
Reads sorted into the 4 files from the previous step can be checked for various 
parameters before proceeding with the downstream analysis. 

FastQC is a useful tool that calculates various statistics for the sequencing run 
and outputs them in a handy visual reqpesentation in the form of a webpage. 

MultiQC aggregates several quality-control files from tools like FastQC and 
gives a broader overview of the whole batch of samples. 

### Quality control of reads 

for file in *.fq.gz; do 

  fastqc $file 

done 

multiqc . 

This code block will fun FastQC for each of the files generated in the previous step 
and output a report for each. MultiQC will aggregate all these reports into one final 
file, ready for downloading and viewing. 

6.1.5 Downloading the reference genome 
My thesis work is seeking to find the location of a marker that strongly associates 
with the observed mutant phenotype in a family of horses, so the required reference 
genome is that of the horse, Equus cabalus. The version as of the time of writing of 
this work is EquCab3.0 (GCA_002863925.1). 

First step is to download the genome on the local storage, which can be done 
with the bash utility of wget: 

### download the genome 

wget ftp.linktogenome.fa.gz 

Note that this is not the actual real link to the genome, as links are very long and 
are subject to change, so in the interest of formatting it was omitted. 
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6.1.6 Preparing the reference genome for sequence alignment 
After the genome has been downloaded to local storage, the file needs to be 
converted to be more easily accessible during the sequence alignment step. 
Bowtie2, the tool that will be used for alignment can also do the reference indexing. 
This step needs to be performed only once per species analyzed. 

### reference building 

bowtie2-build 
--threads 10 -o 3 
EquCab3.0.dna.toplevel.fa.gz 
reference/ref 

6.1.7 Sequence alignment to reference genome 
Now that the reference index has been created, the millions of quality-controlled 
reads can be mapped to the horse genome. Bowtie2 is among the many similar tools 
that can do that, but this is the one I chose based on the characteristics of the 
sequencing run and the performance of the alignment implementation. 

### bowtie2 sequence alignment 

t1=$srr_1P.fq.gz 

t2=$srr_2P.fq.gz 

ref=./reference/ref 

bowtie2 -p 10 --very-sensitive-local -x $ref -1 $t1 -2 $t2 | 
samtools view -@ 10 -bS -o $srr.bam 

rm $t1 $t2 

This code will use 10 threads to attempt local alignment of the reads using the 
provided reference genome, the two reads files (forwards and reverse paired). Since 
the tool outputs a text file in the SAM format, which is very large and inefficient, 
the output is directly converted to BAM format. All further downstream analyses 
will use BAM files. 

6.1.8 Preparation of alignment for downstream analysis 
The pipeline of choice GATK has several requirements for the format of files that 
go into it. This step will sort the individual reads according to their alignment 
coordinates, will add a read group tag to distinguish samples that come from the 
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same individual, but were ran on different lanes or chips, and will remove reads 
that are deemed technical replicates, so that they don’t skew further analyses. 

samtools sort $srr.bam -o $srr.sorted.bam 

java -jar $PICARD_ROOT/picard.jar AddOrReplaceReadGroups -I $srr.sorted.bam -O 
$srr.sorted.rg.bam $rg 

java -jar $PICARD_ROOT/picard.jar MarkDuplicates -REMOVE_DUPLICATES true -I 
$srr.sorted.rg.bam -O $srr.dedup.bam -M $srr.metrics.txt 

samtools index $srr.dedup.bam 

This code stores the read group text into a variable $rg, since it has several fields. 
In addition, this enables a different read group to be automatically assigned to each 
sequencing run by modifying the variable’s contents accordingly. 

6.1.9 Optional preparation of multi-part samples 
This step is optional and needs to be performed only for some reads. If a sequencing 
of a single sample has been performed on multiple lanes of an Illumina flow cell, 
those samples need to be merged into a single file, since they represent information 
from the same individual, and treating them as independent data points would affect 
analyses and the conclusions that are drawn from them. 

find -type f -name $srr.dedup.bam > $srr.txt 

samtools merge -@10 -c -p -o $srr.merged.bam -b $srr.txt 

rm $srr.txt 

samtools sort -@10 $srr.merged.bam -o $srr.sorted.bam 

samtools index -@10 $srr.sorted.bam -o $srr.sorted.bam.bai 

This code first uses a bash command to create a list of all BAM files that have the 
same accession number, then passes that list to samtools to be used as input when 
merging. After that, sorting and merging is performed and the output files are ready 
to be fed into the GATK pipeline, which will be discussed in the next paragraph. 
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6.2 Data analysis steps and workflow: Part Two 
The second part of the data analysis involves mainly tools from the GATK pipeline. 
This part will describe the file preparation, file analysis, variant calling procedure 
and final variant filtration criteria before a file containing DNA polymorphisms is 
obtained. 

6.2.1 Sequencing coverage metrics 
Before proceeding, average coverage depth needs to be calculated as a general 
quality control. Variant calling relies on the fact that if many reads show a different 
DNA sequence than what is in the reference genome, there is a high confidence that 
this is not a sequencing error but a real mutation. So having too low coverage 
(usually under 10x across the chromosome/genome) places doubt on the obtained 
SNP detection. 

gatk DepthOfCoverage -R $gen -O ./coverage -I $srr.sorted.bam --intervals 1 

This code uses the horse genome ($gen) as reference and calculates per-locus 
coverage for the given interval (in this case chromosome 1) and the given sample 
($srr.sorted.bam). It can also calculate coverage for many or all chromosomes, and 
multiple samples at the same time. Since the process is single-threaded and takes a 
long time, a possible acceleration would be to calculate the depth of coverage per 
chromosome simultaneously, which would require 32 separate scripts to be ran in 
parallel. 

6.2.2 Indexing of reference files 
GATK recommends performing base quality score recalibration of the BAM files 
in order to trim low quality base scores (resulting from technical biases during 
sequencing). This is necessary so that the confidence that a base is correctly 
identified is paramount to deciding if a SNP should be called further downstream. 

Since working with text files is slow, GATK first needs to index both the 
reference genome of the horse, as well as the VCF file containing all known variants 
in the horse genome. Both of these files can be obtained from Ensembl or NCBI, 
and I chose to obtain them from Ensembl (this matters because chromosomes have 
different naming conventions across the two databases). 

gatk IndexFeatureFile -I $vcf 

samtools faidx $dna 

java -jar $PICARD_ROOT/picard.jar CreateSequenceDictionary -R $dna 
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This code first indexes the file containing the known horse variants ($vcf variable). 
It then uses samtools to index the reference genome ($dna variable), and finally 
creates a sequence dictionary of the genome using picard. 

6.2.3 Base Quality Score Recalibration 
The next step is the base quality score recalibration of the pre-processed BAM file, 
which will yield an analysis-ready alignment. Variant calling or other analyses can 
be performed on the final output. 

gatk BaseRecalibrator -I $srr.sorted.bam -R $gen -O $srr.recalibration.table --known-sites $vcf 

gatk ApplyBQSR -I $srr.sorted.bam -R $gen --bqsr-recal-file $srr.recalibration.table -O 
$srr.bqsr.bam 

This code first uses the BaseRecalibrator tool to create the recalibration table, and 
then applies it on the next step. The final output ($srr.bqsr.bam) is the file that can 
be kept in local storage for future analyses or various quality controls, or if the 
storage is limited, can also be deleted after gVCF files are obtained. 

6.2.4 Genomic Variant Calling 
The next step will produce a gVCF file, which contains records for every base in 
the genome, even if no polymorphisms are present. The file is large and contains a 
lot of extra information, but is a necessary step before obtaining a final variant call 
file which can be datamined. 

gatk HaplotypeCaller -ERC GVCF -R $gen -I $srr.bqsr.bam -O $srr.raw.variants.vcf 

This code takes the base quality score recalibrated BAM file obtained in the 
previous steps and outputs a genomic VCF file to be used further downstream. The 
process is long and slow, but needs to be performed only once. The output file can 
be kept in local storage so that when further samples are added and processed, it 
can be used for joint genotyping again. 

6.2.5 Merge gVCF files for joint genotyping 
At this point each sequencing run has been reduced to a file containing all detected 
variants. Each file contains one sample. Merging them will allow inferences to be 
drawn for the whole sample set, as well as simplifies the process if more samples 
need to be added at a later point in time. The new gVCF file can simply be merged 
into the existing sample group, and then variant calling needs to be performed again 
on the new output file. 

find . -type f -name \*.raw.g.vcf | sort -n > $name.gvcf.list 
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gatk CombineGVCFs --java-options "-Xmx10g" -R \$gen --variant $name.gvcf.list -O 
combined.$name.g.vcf.gz 

6.2.6 Cohort genotyping and variant calling 
The final step is to perform joint genotyping on the set of samples, resulting in a 
VCF file that contains unfiltered variants (SNP and indel), as well as a lot of 
additional information such as quality, depth, allele frequencies, genotype 
likelihood and so on. These are crucial when filtering variants later on and 
datamining. 

gatk GenotypeGVCFs -R $gen -V combined.$name.g.vcf.gz 
-O cohort.$name.vcf.gz 

The code takes as input the horse reference genome ($gen) and the combined gVCF 
file and outputs a VCF file that can be filtered based on certain criteria or used as 
is for data analysis. 

6.2.7 Separate SNPs and InDels 
While indels are just as important as SNPs when it comes to biological 
consequences, some tools struggle when analysing them, so for the purposes of 
downstream statistics, SNPs and InDels will be split and filtered separately, then 
only SNPs will be used to calculate genome association. However InDels will be 
considered when elucidating biological consequences in potential regions of 
interest. 

java -jar $PICARD_ROOT/picard.jar SplitVcfs -I cohort.$name.vcf.gz 
-SNP_OUTPUT $name.snp.vcf.gz 
-INDEL_OUTPUT $name.indel.vcf.gz 
--STRICT false 

6.2.8 SNP variant filtration 
Part of the SNP filtration code has been adapted from 
(https://raw.githubusercontent.com/kpatel427/YouTubeTutorials/main/variant_filt
ering_annotation.sh). 

gatk VariantFiltration \ 

 -R $gen \ 

 -V $name.snp.vcf.gz \ 

 -O $name.filtered.snps.vcf \ 
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 -filter-name "QD_filter" -filter "QD < 2.0" \ 

 -filter-name "FS_filter" -filter "FS > 60.0" \ 

 -filter-name "MQ_filter" -filter "MQ < 40.0" \ 

 -filter-name "SOR_filter" -filter "SOR > 4.0" \ 

 -filter-name "MQRankSum_filter" -filter "MQRankSum < -12.5" \ 

 -filter-name "ReadPosRankSum_filter" -filter "ReadPosRankSum < -8.0" \ 

 -genotype-filter-expression "DP < 10" \ 

 -genotype-filter-name "DP_filter" \ 

 -genotype-filter-expression "GQ < 10" \ 

 -genotype-filter-name "GQ_filter" 

gatk SelectVariants \ 

 --exclude-filtered \ 

 -V $name.filtered.snps.vcf \ 

 -O $name.qc.snps.vcf 

6.2.9 InDel variant filtration 
Part of the InDel filtration code has been adapted from 
(https://raw.githubusercontent.com/kpatel427/YouTubeTutorials/main/variant_filt
ering_annotation.sh). 

gatk VariantFiltration \ 

 -R $gen \ 

 -V $name.indel.vcf.gz \ 

 -O $name.filtered.indel.vcf \ 

 -filter-name "QD_filter" -filter "QD < 2.0" \ 

 -filter-name "FS_filter" -filter "FS > 200.0" \ 

 -filter-name "SOR_filter" -filter "SOR > 10.0" \ 

 -genotype-filter-expression "DP < 10" \ 
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 -genotype-filter-name "DP_filter" \ 

 -genotype-filter-expression "GQ < 10" \ 

 -genotype-filter-name "GQ_filter" 

gatk SelectVariants \ 

 --exclude-filtered \ 

 -V $name.filtered.indel.vcf \ 

 -O $name.qc.indel.vcf 

6.3 Data mining and data visualization 

6.3.1 Variant selection 
Only certain variants make biological sense to be chosen for further analysis. This 
initial filtration was done using a simple Python script that compares if the variants 
follow certain criteria and deletes the line in the VCF file if they don’t. 

6.3.2 Homozygosity plots 
The homozygosity of genomic regions was calculated using the tool bcftools, and 
then converted into a plot using matplotlib in Python. 

bcftools roh -I -s sample_name -o roh_data.txt sample_name.vcf 

6.3.3 Variant Effect Prediction 
Even with several rounds of filtration there are tens of thousands of SNPs left to 
consider. Potential SNPs with high impact can further be selected using Ensembl’s 
Variant Effect Predictor tool. This can then be converted into a list of candidate 
genes and loci to examine further downstream. 

6.3.4 Fst Analysis 
The fixation index statistic is an important metric when considering association of 
traits with a genomic location. The tool vcftools can be used to calculate Fst index 
over a specified region and output it to a text file that can be visualised. Higher 
values imply a difference in that particular region between compared populations. 

vcftools --vcf input.vcf --weir-fst-pop samples.txt --weir-fst-pop controls.txt 
--fst-window-size 100000 --fst-window-step 50000 --out results.fst  
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6.3.5 Depth of coverage plots 
Depth of coverage is a useful metric to get an overview of the average outcome of 
the sequencing run alignment to the reference genome. Using the output of the 
GATK tool DepthOfCoverage (outlined in 2.7.1), which outputs depth of coverage 
for each position in a given interval, a simple Python script was made that calculates 
the floating average in a 1000bp interval, normalizes it against the calculated by 
GATK average coverage, then plots it on a per-chromosome basis. 

6.3.6 Selecting genes of interest 
Genes of interest can be selected with another Ensembl tool, BioMart. This allows 
genes to be filtered based on a variety of criteria, so that they can be narrowed down 
to a subset that is most likely of interest to the current research. 

6.3.7 Diagram drawing 
Some graphs and diagrams have been generated using the online tool draw.io found 
at https://app.diagrams.net/. 
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