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Monitoring of forest restoration efforts is essential to ensure healthy, self-sustaining tropical 
rainforests. Passive acoustic monitoring is used to monitor vocal activity of birds, which play a key 
role in forest ecosystems as seed dispersers. Communication between birds seems most profitable 
during a peak of bird singing in the morning, known as the dawn chorus. Anthropogenic disturbances 
leading to increased light levels affect the timing of this chorus in individual species. This research 
sheds a light on the effect of forest restoration on the dawn chorus using automatic detection methods 
to identify bird sounds from acoustic data. Machine learning methods like clustering and pattern 
matching were used alongside a manual analysis to describe the dawn chorus in protected forests as 
well as restoration sites around Ranomafana National Park, Madagascar.  

Restoration sites were found to have lower species richness and increased interference from 
insect sounds. No difference was found between timing of the dawn chorus in both forest habitats. 
This can possibly be assigned to changes in community composition and decreased detectability of 
species in insect-dominated landscapes. Future research could further disentangle these effects, by 
filtering of acoustic data, development of workflow pathways and the use of stronger machine 
learning methods that allow for more reliable species-specific detection. In the current state of 
automatic acoustic methods, close cooperation with local experts is recommended to achieve 
effective monitoring in tropical rainforests.  

Keywords:  Acoustic monitoring, forest restoration, dawn chorus, avian singing, bird 
monitoring, automatic recognition 
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1.1 Problem statement 
In our effort to mitigate the effects of climate change, the International Panel of 
Climate Change (2022) underlines the importance of conservation and restoration 
of forests. Not only do they play a crucial role in removing carbon dioxide from our 
atmosphere, but they also provide essential ecosystem services for the 880 million 
people living in and around forests that depend on them for their livelihood (FAO, 
2020). Especially the poorest populations rely on forest resources such as firewood 
(K. A. Brown et al., 2013), and its conversion to agricultural land (Klanderud et al., 
2010), drives intense deforestation and dramatic loss of biodiversity. This leads to 
loss of species-specific functional traits and ecosystem services, generating less 
resilient environments that leave its population even more vulnerable to further 
environmental change (K. A. Brown et al., 2013).  

With its large tropical rainforests, Madagascar is one of the richest countries in 
terms of biodiversity, with about 90% of all animal and plant species being endemic 
to the country (Hobbs & Dolan, 2008). At the same time its human population ranks 
amongst the poorest in the world (Belghith et al., 2016), with over 90% living on 
less than $2 a day (UNIDO, 2021). The dependence of these people on forest 
resources and land for agriculture (K. A. Brown et al., 2013), has led to alarming 
deforestation rates (Klanderud et al., 2010) threatening the endemic biodiversity, 
and the livelihood of the Madagascar human population. Forest restoration 
practices are implemented (Klanderud et al., 2010), but adequate monitoring of the 
diversity of species in the forest environment is needed to assess their success in 
terms of recovery of functional traits and ecosystem services (Le et al., 2012).  

Bird species provide important functions in the restoration of disturbed forests, 
such as the dispersion of seeds and pollination, thereby promoting the growth of 
vegetation and enhancing the forests carbon storing capacity (Pejchar et al., 2008). 
Traditional bird monitoring methods rely on manual observations often depending 
on volunteers and funding (Stowell et al., 2019). Additionally, forests are not easily 
accessible and in the face of extreme poverty, conservation is often not a priority 
(Razafindravony et al., 2023). This makes such knowledge, funding and manpower 
scarce resources. 

1. Introduction 
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Remote acoustic monitoring devices can be part of the solution for low-cost bird 
monitoring by providing 24-hour data in remote areas, providing comparative 
information about the vocal behaviour of bird species in forests with different levels 
of disturbance (Stowell et al., 2019; Toenies & Rich, 2021). For effective acoustic 
monitoring, it is important to know more about variation in, and drivers of, bird 
vocal activity. 

1.2 Bird vocal activity 
Birds, and species of the songbird family Passeriformes in particular, are dependent 
on vocal communications for their survival and reproduction (Chen et al., 2015; 
Huang et al., 2022). They use singing to attract partners, to defend territory, to 
communicate about potential predators, and for many other functions (Cuthill & 
Macdonald, 1990; Slagsvold, 1996). This singing turns out to be especially 
advantageous in the morning (Huang et al., 2022; Puswal et al., 2021), resulting in 
a peak of bird singing known as the dawn chorus. To detect calls from their own 
species in noisy environments, like a tropical rainforest dawn chorus, species 
differentiate using distinct melodies, pitch and through temporal separation (Francis 
et al., 2009; Kempenaers et al., 2010; Luther, 2009; Slabbekoorn & Peet, 2003). 
Species with higher ability to distinguish themselves from other species 
consequently have more effective communication, positively affecting their fitness 
and survival rates (Francis et al., 2009; Slabbekoorn & den Boer-Visser, 2006). 
Temporal separation of the acoustic spectrum has led to a predictable sequence at 
which different species start singing (Kempenaers et al., 2010; Thomas et al., 2002), 
but the exact timing can be influenced by different climatic variables such as 
ambient temperature, cloud cover and ambient light (Bruni et al., 2014; Da Silva et 
al., 2014; Hutchinson, 2002; Puswal et al., 2021). 

1.3 Ambient light levels 
As mature tropical rainforests are biodiverse systems with a high vegetation density 
consisting of many different layers, the microclimatic conditions within it are 
highly variable. The upper layer can receive up to 100 times as much light as the 
lowest layer, the forest floor (M. L. Berg et al., 2005; Engelbrecht & Herz, 2001; 
and see D. W. Lee, 1987). Recently reforested tropical rainforest is often 
characterized by a single layer of seedlings or saplings, so although its composition 
is highly variable depending on its restoration phase and initial position, its 
vegetation density is much lower than mature forest (Le et al., 2012). This 
dramatically increases the penetration of light all the way down to the ground layer, 
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potentially affecting the vocal behaviour of bird species living in these disturbed 
forests. 

Earlier studies into anthropogenic light pollution show that increased ambient 
light levels lead to earlier singing times (Kempenaers et al., 2010). However, the 
size of this effect is not similar across all species, and it depends strongly on their 
sensitivity to light (Thomas et al., 2002), with more sensitive species singing earlier 
relative to their normal starting time. Thomas et al. (2002) found that this sensitivity 
is related to eye size, suggesting evolutionary adaptation to the species’ foraging 
height, corresponding with light availability. In forests, canopy species are adapted 
to high light conditions with smaller eyes and lower sensitivity, while ground 
species adapted to low light conditions have larger eyes and higher sensitivity 
(Ausprey et al., 2021). Species inhabiting different foraging layers are, therefore, 
expected to exhibit different responses to light levels and to drivers that affect light 
levels in forests, such as deforestation or reforestation. 

Another species characteristic that influences the response to changing light 
levels in forests is related to the generalist-specialist concept, as described by 
Devictor et al. (2008). Generalist species can survive in many different habitats, 
while specialists are adapted to a particular type of habitat. Generalists are thought 
to be more plastic in their behaviour, adapting on non-evolutionary timescales. 
Anthropogenic changes inducing higher light levels are therefore expected to have 
larger fitness consequences for specialists, who will have a lower ability to adapt 
their behaviour. Generalists species, on the other hand, will likely adapt their 
behaviour and singing time to be more synchronous with the surrounding 
ecosystem.  

1.4 Research gap  
The response of tropical songbirds timing to light pollution and habitat disturbance 
has been studied before. However, we do not yet know to what extent reforestation 
affects the timing of singing. In Madagascar in particular, assessments of the effects 
of reforestation on animal activity is important to support and maintain its 
vulnerable endemic biodiversity. In the long-term process of reforestation, bird 
community compositions are likely to shift as more and more of the original forest 
layers return (Devictor et al., 2008; Le et al., 2012). The different responses 
amongst generalist and specialists are especially important in conservation, as 
specialist species are known to be under the greatest threat of habitat conversion 
(Devictor et al., 2008). More knowledge on the timing of singing activity as a 
response to reforestation leads to more accurate estimation of sampling strategies 
and therefore to more effective monitoring and conservation. This will eventually 
contribute to improved reforestation results and a better livelihood for the 
community living in Madagascar’s rainforests. 
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1.5 Research objectives 
This research has focused on forest restoration sites around Ranomafana National 
Park (RNP) in Madagascar and aimed to determine differences in the timing of 
vocal activity at dawn amongst bird species in and around RNP and between mature 
forest protected by the National Park (NP) and forest restoration sites (RS). I have 
used acoustic data from these forest treatment habitats to test how the start time of 
the dawn chorus differs between these habitats. The research focusses on three 
objectives. 

I set out to evaluate whether the timing of dawn singing is different in restoration 
sites compared to mature forest, for different tropical bird species and whether this 
response can be related to species-specific traits (objective 1). 

I have analysed this using acoustic software developed to identify and classify 
different sounds. This method is still quite new and under development, so I 
expected that methodological challenges would arise during the process. I 
considered it valuable to support the development of these methods. Therefore, I 
also aimed to identify these methodological challenges and determine which factors 
could influence the identification of bird sounds in audio recordings from tropical 
rainforests (objective 2). Two of the factors I suspected would impact the 
identification result are ambient sound levels and overall species abundance and 
diversity. These factors are therefore also considered in the analysis. 

Given the large insecurity of identification results, I formulated a third objective 
in case species-specific identification proved to be infeasible. This was to examine 
whether bird communities, irrespective of species, in restoration areas exhibit an 
earlier dawn chorus compared to those in mature forests (objective 3).  

Figure 1: Souimanga Sunbird, Cinnyris Sovimanga, one of Ranomafana 
National Park's most common bird species. Jean-Sébastien Guénette / 
Macaulay Library at the Cornell Lab (ML119864591) 
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2.1 Dawn chorus  
Singing is used by bird species as an important part of communication to defend 
their territory, attract mates and to communicate about foraging locations, possible 
predators and mate localization (Chen et al., 2015; Huang et al., 2022). Many 
species show a diurnal singing pattern, characterized by two peaks in singing 
activity near both sunrise and sunset. The first peak, known as the dawn chorus, is 
often the most pronounced, and three non-mutually exclusive hypotheses are often 
discussed to explain its occurrence (K. S. Berg et al., 2006). The acoustic 
transmission hypothesis postulates that singing is most effective at the coolest time 
of the day because sound travels further at lower temperatures (K. S. Berg et al., 
2006; T. J. Brown & Handford, 2003). The efficient foraging hypothesis explains 
how the low morning light availability prohibits the possibility of many day-time 
activities like foraging, making mornings a more profitable time to spend their 
energy on singing (Chen et al., 2015; Hutchinson, 2002; Kacelnik, 1979). Lastly, 
the energy stochasticity hypothesis relies on the notion that birds store high reserves 
in the evening to prepare for unpredictable nightly conditions, and use singing at 
dawn to get rid of excess reserves (Hutchinson, 2002; Reid, 1987; Thomas, 1999). 

All though all three of these mechanisms are likely to influence the general onset 
of dawn chorus in singing birds, individual differences remain between species (K. 
S. Berg et al., 2006; Kempenaers et al., 2010). One explanation for these differences 
among species is the threshold hypothesis, which states that birds start singing at 
dawn after a certain threshold level of light is reached (Da Silva et al., 2014). This 
threshold level differs per species and is dependent on the light sensitivity of their 
visual system, leading to species-specific timing of dawn song, as empirically 
shown by Kempenaers et al. (2010) and Da Silva et al. (2014). 

2.2 Adaptations to light intensity 
In altered light conditions, such as through anthropogenic light pollution, the 
species with high sensitivity respond with earlier singing as soon as the artificial 

2. Theory  
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light level rises above their threshold (Da Silva et al., 2014, 2014; Miller, 2006). 
This threshold is often not reached in species with lower light sensitivity, causing 
the timing of their first song to be unaffected by the increased light conditions 
(Kempenaers et al., 2010).  

In tropical rainforests, these variations in light conditions are naturally present 
throughout different layers of vegetation. Greater canopy density alters the solar 
radiation reaching the understory, as it blocks direct sunlight, thereby altering the 
light spectral composition and intensity (D. W. Lee, 1987). Average light 
conditions in understory of dense tropical forests are often below 1% of the light 
reaching the canopy (Engelbrecht & Herz, 2001). However, great variation (70%) 
is found in different understory light conditions in distinct types of tropical forests. 
Figure 2 illustrates this dense tropical rainforest in Ranomafana National Park. 

2.3 Species-specific variations in dawn singing 
Bird species are found in all different layers of tropical forests, with all these 
different light conditions, thereby leading to the prediction that they have evolved 
different sensitivity to light. By studying dawn chorus in a neo-tropical forest, Berg 
et al. (K. S. Berg et al., 2006), found that time of first song is related to specific 
species characteristics related to ambient light level and visual sensitivity. For 
passerine birds included in the study, timing of bird singing is earlier in species with 
bigger eye size. They also found that timing of singing is earlier in species with a 
higher foraging height. This supports the efficient foraging hypothesis, as the higher 
light availability in the higher foraging heights leads to earlier foraging possibilities 
and therefore to earlier singing, as explained by Thomas et al. (2002). These 

Figure 2: Tropical rainforest of Ranomafana National Park, with dense vegetation existing of many 
layers, blocking direct sunlight to the lowest levels. Sipa, 2013. 
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findings suggest an evolutionary adaptation towards increased visual sensitivity to 
lower light conditions (McNeil et al., 2005).  

Interestingly, the opposite results have been found by Chen et al. (2015), who 
found that in East-Asian tropical montane forest, lower-layer species initiated 
singing earlier than upper-layer species. They suggest, however, that this 
relationship is highly dependent on the habitat type, and this pattern is more likely 
to occur in forests lacking sufficient canopy height. Visual ability is therefore likely 
a more dominant factor in a study area like theirs, with less-structured vegetation 
and low canopy (10-12m), while foraging height is found to be most dominant in 
forests with tall trees (25m or more) and distinctive inter-layer vegetation that leads 
to significant variations in light availability (K. S. Berg et al., 2006; T. J. Brown & 
Handford, 2003).  

2.4 Light levels change in forests 
Habitat disturbance such as land conversion affects the microclimatic variables in 
tropical forests (Ausprey et al., 2021). While in undisturbed forests the changes 
from canopy to the floor are gradual due to the many vegetation layers, disturbed 
forests have a more simplified structure due to lower plant diversity. This causes 
abrupt changes in microclimatic conditions like light levels and temperature 
(Fontúrbel et al., 2021). Species adapted to dark environments (such as forest 
floors), do not respond well to these changes, showing lower abundances in more 
open areas (Ausprey et al., 2021). The fast dynamics of habitat conversion do not 
allow species to adapt evolutionary, thereby favouring species that have a high 
adaptability to more diverse environments, known as generalists (Devictor et al., 
2008). While other environmental variables like temperature and food availability 
also affect the song rate, song length and the abundance of certain species (see e.g. 
K. S. Berg et al., 2006; Huang et al., 2022; Johnson & Rashotte, 2002), the timing 
is most strongly affected by a change in light levels.  
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3.1 Research area 

Ranomafana National Park (RNP) is a montane rainforest in Eastern Madagascar, 
with elevations ranging from 400-1417 m altitude, spanning an area of 416 square 
kilometres (WildMadagascar, n.d.). The park is home to 115 bird species, of which 
30 endemics to the area (Hobbs & Dolan, 2008). The park is one of the field sites 
of the program Rewilding Madagascar, a multi-year research program, run by SLU 
with Dr. Sheila Holmes as program leader, looking into the role of seed dispersal 
for reforestation success. RNP hosts a research station, and it is used in this program 
to test monitoring techniques, such as camera traps and acoustic devices. Because 

3. Methods 

Ranomafana 

National Park 

Recorder locations 
• National park 
• Restoration site 

Figure 3: Map of Ranomafana National Park, Madagascar. Pointers represent the recorder 
deployment points within the park (blue) and at the restoration sites (red). Adapted from 
Razafindravony et al. (2023). 
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this research program focusses on reforestation success, it evaluates forests with 
various stages of reforestation as well as mature forests within RNP, providing an 
excellent opportunity to examine the effect of restoration on bird behaviour.  

3.2 Data 
The continuous acoustic data of the Rewilding Madagascar project has been 
collected using AudioMoth acoustic recording devices (Hill et al., 2018; Open 
Acoustic Devices, n.d.) at different restoration sites (RS) outside the national park 
(n=4) and multiple locations within RNP (NP) as control treatment (n=5) (see 
Figure 3 and Appendix 3). Each acoustic device performed 24-hour recordings on 
five consecutive days with a time schedule of 1 min on and 1 min off to save 
memory and battery life. The recorders were deployed in the field between February 
22nd and May 3rd 2022 (unpublished data, Andriamavosoloarisoa, 2023). For this 
research, I used recordings from 5 A.M. to 6 A.M., which includes the onset of 
nautical twilight up until or just before sunrise for all recorded sites and dates. 
Mornings with excessive rain were excluded from the dataset because bird calls 
could not be identified. This led me to discard three mornings, two of which were 
the only ones of one of the NP sites (AND13#1), so that site was removed from the 
dataset. Thereby the final dataset came down to four sites for both treatments, both 
with thirteen mornings to analyse, resulting in a total length of 2 * 13 * 30 recorded 
minutes = 13 h.  

The data was obtained from the ‘Rewilding Madagascar’ project through the 
RFCx-ARBIMON platform (Aide et al., 2013), an online audio processing software 
further referred to as Arbimon.  

3.3 Species identification 

3.3.1 Species selection 
My analysis started with the first objective of this research, to find a species-specific 
response in singing times to the different forest habitats. For this, I identified species 
that were present in the recorded data and showed different characteristics with 
regards to foraging height and level of specialisation.  

Mahefa Andriamavosoloarisoa, PhD researcher in the Rewilding Madagascar 
project responsible for collecting the data, provided a list of thirteen most-occurring 
species in the area based on his local experience and his preliminary assessment of 
the dataset (M. Andriamavosoloarisoa, personal communication, April 28th 2023). 
I also extracted a list of Ranomafana’s most common species and their 
characteristics and observation counts within the area of Ranomafana from the 
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eBird Database (Sullivan et al., 2009). The complete list of species that I used in 
my analysis consisted of the thirteen from Andriamavosoloarisoa and thirteen more 
of the remaining species with the highest observations from eBird. The full list of 
analysed species can be found in Appendix 1. 

3.3.2 Arbimon software 
I chose the Arbimon software to process and analyse the audio data for its three key 
features: sharing data, visualizing data, and its incorporation of machine learning 
models. Firstly, the fact that Arbimon runs online allows data (once uploaded) to 
be accessible for collaborators all over the world, allowing validation of results and 
facilitating the data to be used in more distinct research projects. Secondly, 
Arbimon’s immediate conversion of audio files into visual representations that can 
be filtered by frequency and time makes a scan of the recording faster and more 
efficient. Lastly, Arbimon’s built-in machine learning methods makes them 
accessible for researchers across all fields of expertise.  

3.3.3 Machine learning methods 
Audio processing relies on the use of spectrograms. Spectrograms are a visual 
representation of sound with time on the x-axis, frequency on the y-axis and the 
amplitude of the signal is illustrated by the darkness of the pixels. An example of a 
bird call represented by a spectrogram is seen in Figure 4. By converting sound to 
a visual spectrogram, it can be analysed by machine learning methods such as audio 
event-detection (AED), clustering and pattern matching (PM). I will expand upon 
these methods below. 
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Figure 4: Spectrogram of the song of bird species Cinnyris sovimanga. eBird, 2023. 
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Audio event-detection and clustering  
AED detects sound events in audio files based on threshold values it receives as an 
input, such as minimum amplitude, duration or bandwidth. A frequency range can 
also be specified. It can be used to filter the amount of data to search through during 
identification. An example of resulting detections is shown in Figure 5. When 
combined with a clustering analysis, the detected audio events can be categorized, 
after which they can be identified to species using visual inspection and audio 
playback (Rainforest Connection, 2022a). This clustering analysis will group the 
found audio events according to how similar the pixels of the spectrograms are. 
This will thus create groups of audio events that have similar features.  

This feature can be used to search for examples of desired calls, without the need 
for existing examples and could therefore be used to start the analysis. I used these 
examples of calls in the PM analysis to efficiently detect more examples of the pre-
determined sounds. I stored the best sound patterns of each selected sound as a 
template within Arbimon, and because Arbimon requires them to be assigned to a 
species, I assigned them to ‘unknown species’ codes (sp1, sp2, etc.) that are 
available within the software. 

I ran multiple AED’s with different parameter-settings (Min. frequency 0-1.6 
kHz, Max. frequency 8-10 kHz, Min. amplitude 0.5-1 (in number of standard 
deviations from the mean of the spectrogram), Min. duration 0.2 s, Min. bandwidth 
0.5-1 kHz), resulting in different amounts of detected sound events and clusters. 
This method was only used as an exploratory way to start to understand patterns in 
the data and to find examples of clear bird calls. Following this approach, I stored 
only those call templates that were clearly distinctive of a bird species and of which 

Fr
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y 

Time 

Audio event detection (AED) 

Figure 5: Example of audio event detection on a spectrogram. Blue boxes are sound events 
detected by the algorithm.  
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I found multiple others, in order to improve the chance of success of their PM 
analysis.  

Pattern matching 
Pattern matching is a semi-automatic sound classification algorithm implemented 
in the Arbimon software for which an example, or template, of a sound 
(spectrogram) is compared to other spectrograms within the recording (Rainforest 
Connection, 2022b). This process returns correlation scores per match that 
describes the similarity of pixels within the spectrograms. All matches with a 
correlation score above a given value are then presented to the user. It is semi-
automatic because the resulting matches can then be manually evaluated both by 
visual comparison and auditory playback. This is visualized in Figure 6. In 
conclusion, PM is useful if you have a known call and you want to find more 
instances of that call within your dataset. 

The templates that I used were from three different sources. I started with the 
three unidentified species from the above-explained AED/c analysis. Then, I added 
those templates from species on my list, which were already identified in other 
public Arbimon projects and were therefore publicly available. Finally, I created 
templates myself from the first thirteen species of my species lists. This was done 
with the help of recordings from the Macaulay Library at the Cornell Lab of 
Ornithology, as explained in the following section.  
Creating the templates 
For each species on the list, I requested a few (two to four) recordings from the 
Macaulay Library in which a clear, distinctive call or song could be heard, 

Pattern matching 

Template 

Matches 

Figure 6: An illustration of how pattern matching works. The desired vocalization is given as a 
template spectrogram. The algorithm then returns instances where the recordings resemble this 
template. Manual validation is then required to mark true matches as present (blue tick) and false 
matches as absent (yellow cross). 
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preferably recorded in Madagascar, because location-specific templates are found 
to improve selection results (LeBien et al., 2020). See Appendix 2 for a full list of 
recordings used. I imported these recordings into a public Arbimon project called 
‘Madagascar Bird Templates’. I used Arbimon’s software to cut out call templates 
from these recordings that could be used to identify these calls in other recordings. 
Per species I selected three different templates with different calls or different 
qualities. For example, some calls were repeated with a couple of seconds in 
between them, in which case I selected one template with the single call and one 
template with three or four times that same call to provide more context. All of 
these templates were added to the Rewilding Madagascar Project. 

Consequently, I performed PM analyses on each of these templates (with 
parameters: min. correlation score = 0.2; max. nr. of matches per recording = 2; 
max. nr. of matches per site = no limit). Then I verified the results visually by 
comparing spectrograms, and audibly through playback (see Figure 9 in the results 
for clarification). When the number of matches was lower than 20, I lowered the 
correlation threshold from 0.20 to 0.15 to increase the chance of true matches. 
When more than 600 matches were found, only the 600 with the highest score were 
validated and others were automatically discarded. 

These machine learning methods did not provide observations of all the species 
of interest, and a visual scan through the data revealed that many bird calls were 
missed using this method. The evaluation of this method, as described in objective 
two, will be performed in more detail in the results and discussion section. To 
accurately define dawn singing behaviour, the focus was therefore switched to 
objective three, in which the dawn singing behaviour of the complete bird 
community was assessed.   

3.4 Manual detection of bird sounds 
A manual analysis was required to capture the complete behavioural pattern of bird 
vocalizations in the dawn choruses of the test sites. This analysis was performed in 
Raven Lite (K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab 
of Ornithology, 2023). 
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3.4.1 Raven Lite Software 

 
I chose Raven Lite for the manual assessment because it has a couple of advantages 
over Arbimon for the task of manually scanning and annotating large datasets (see 
Markolf et al., 2022). Namely, it allows you to treat consecutive recordings as one 
to scan through it more efficiently, it allows you to adjust the brightness and contrast 
to adapt to various levels of ambient sounds, and it provides intuitive annotation 
methods.  

For each recorded morning, I visualized all 30 recorded minutes as one l, and I 
adjusted the visible frequency range to 0-10 kHz, the typical frequency range of 
bird sounds (Slabbekoorn & den Boer-Visser, 2006). Thereafter, I adjusted the 
brightness and contrast to values between 55 and 68 % by choosing those values in 
which bird calls had a good contrast with the ambient sounds, which differed per 
recording. Within this view I scrolled through each recorded morning and selected 
and marked spectrograms that were bird vocalizations. I did this both by 
recognizing spectrograms and by listening to the call to be sure that I was not 

Figure 7: Example of a selection result for site AND06#21, day 2. All recordings have been 
placed after each other and can be processed as one recording. 
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selecting sounds from other animals. The most challenging part was to distinguish 
bird sounds from insect sounds. I was able to identify insect sounds because of the 
continuous and repetitive nature, mostly spanning complete recorded minutes and 
often even more than one.  

3.4.2 Call type annotation 
A species might have two or more calls that sound different and also look different 
on the spectrogram, two different call types. However, since I did not have the 
expertise to assign calls to specific species, I was also unable to identify when two 
calls types were from the same species. Instead of counting the number of species, 
I therefore counted the number of different call types that were observed within 
each minute. Instead of defining the number of species (the species richness), I thus 
defined the number of different calls (the call richness) per minute.  

By defining the call richness per minute, I could use this to evaluate the pattern 
of activity over the morning. The start of the dawn chorus is usually determined by 
the first call of the morning when looking at specific dawn-singing species (see e.g. 
Thomas et al., 2002), but here I examined the full spectrum of bird calls irrespective 
of species and species characteristics. It was therefore possible that I also detected 
a rare call of a nocturnal species. To increase robustness of the result, I therefore 
defined the start of the dawn chorus by the first time that the call richness was higher 
than 0 for at least three consecutive minutes (see Figure 8). To account for 
differences in sunrise times, I converted the recorded times of the found species 
calls to time relative to sunrise, according to the Astronomical Applications website 
of the US Naval Observatory (as in K. S. Berg et al., 2006). This procedure resulted 
in an annotated spectrogram like the one shown in Figure 8. 

Other variables that were determined per morning were the ambient sound level 
and the maximum call richness. The ambient sound level is given in Raven Lite as 
the average power density. The unit they use is in decibel full-scale per Hertz (dB 
* FS / Hz), where the full scale is defined by zero as the highest sound amplitude 
that can be recorded with the recording system. The maximum call richness was 
defined as the highest call richness value detected in the morning. 
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3.5 Statistical analysis 
The measured response variables were the maximum call richness, the start time of 
the dawn chorus and the ambient sound level. These variables are used to compare 
the two forest treatment groups NP and RS. I used R software for the statistical 
analyses (R Core Team, 2023). The distance between pairs of recorders was large 
enough to avoid the same individuals being recorded at multiple sites. Therefore, 
the observations among sites can be seen as independent observations. However, 
recordings from different days at the same site cannot. Hence, I used a linear mixed 
model to test if the response variables were different among treatments, while 
including a random intercept per site to correct for multiple measurements. 
  

Figure 8: Example of how the start time of the dawn chorus is determined. The first time after 
which call richness > 0 for three or more consecutive minutes. 
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4.1 Audio event detection and clustering 
The range of detected audio events was 800 to 1600 per site (10-20 per minute), 
with clusters ranging from 20 to 100 events. From these, I selected three calls to 
create a template from, because they were clear bird vocalizations, they were 
repeated throughout multiple recordings and they were distinctive enough to be 
used in a pattern matching analysis. 

4.2 Pattern Matching 
The results from the pattern matching analyses varied strongly depending on how 
the call sounded and how the spectrogram looked. The amount of (unvalidated) 
matches found per template ranged between 4 (Coua Caerulea t1) and 973 (for 
Dicrurus fortificatus t1). After validation, calls of only one species (Copsychus 
albospecularis) were eventually found with certainty in six different sites. Other 
species were found in four (Cinnyris sovimanga), three (Terpsiphone mutata), or 
two different sites (Cuculus rochii, Neomixis tenella and Nesillas typica), but these 
could not be verified.  

Of the unknown species templates, four unknown species calls were found in 
two other sites than where the templates were originally found, and one was found 
back in one other site. 

Two examples of pattern matching results are presented here to exemplify the 
range of different outcomes. Figure 9 shows pattern matching results after 
validation of an unknown species ‘sp13’, whose template was taken from one of 
the recordings in the dataset. Twenty-seven matches were found that had sufficient 
correlation with the example template. Of them, fifteen were then classified as true 
matches, or present, by verifying them audibly and visibly. Figure 10 shows the 
result of known species Cinnyris sovimanga, whose template was imported from a 
Macaulay Library recording. In this case 103 matches were found, of which only 
one was validated as present. Finding one, zero, or very little true matches was 
exemplary for patterns used from imported templates. 

4. Results 
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Figure 10: Pattern Matching result for a template of Cinnyris sovimanga that was obtained from a Macaulay Library recording. 
In this case, one of the 103 matches was validated as present (blue tick), the other 102 as not present (yellow cross). 

Figure 9: Pattern Matching result for a template of unknown species ‘sp13’ that was selected from an event detection analysis. In 
this successful case, 15 of 27 matches were validated as present (blue tick), the other 12 as not present (yellow cross).  
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4.3 Manual analysis 
During the analysis it proved much more difficult to identify bird sounds in some 
of the restoration sites because of the high level of insect noise that was present. 
This noise often completely blocked out other sound in the frequency range of 3 to 
5 kHz and sometimes also 6 to 9 kHz. 

4.3.1 Activity pattern 
The call richness was visualised in activity patterns across time for each recorded 
morning, as seen in Figure 11 (NP) and Figure 12 (RS). 

 

 

Figure 11: Richness of bird vocalizations per minute during the start of dawn chorus for National 
Parks. The measured window (blue area) displays the activity pattern per recorded day, per site. 
Sampling frequency of measurements is 30 per hour. Time = 0 corresponds to sunrise. 
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4.4 Dawn chorus characteristics 
The maximum call richness was higher in the national parks, with numbers reaching 
up to 15 in the national parks, and only 5 in the restoration sites (estimated 
difference: -3.92, 95% CI: -6.04 to -1.81, p=0.001, Figure 13A). No difference 
could be found between the two treatments for the start time of dawn chorus 
(estimated difference: 4.53 min., 95% CI: -6.26 to 15.32, p=0.394, Figure 13B). 
The ambient sound level was higher in the restoration sites than in the national parks 
(estimated difference: 7.51, 95% CI: 3.55 to 11.47, p=0.001, Figure 13C).  
  

Figure 12: Richness of bird vocalizations per minute during the start of dawn chorus for 
restoration sites. The measured window (blue area) displays the activity pattern per 
recorded day, per site. Sampling frequency of measurements is 30 per hour 
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Figure 13: Linear mixed model results comparing treatments for A) max. call richness per minute, B) 
start time of the dawn chorus and C) ambient sound level of the recordings. Black bars represent model 
estimates with upper and lower limits of the 95% confidence interval. 
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In this research, I have aimed to define the effect of forest restoration on the start 
time of the dawn chorus in tropical forests in Madagascar. To analyse this effect, I 
used audio recordings from test sites that were located both in mature forests of 
Ranomafana National Park and surrounding areas with forest restoration. I will first 
discuss the results and their implications, and will later describe the challenges that 
need to be taken into account for acoustic monitoring in tropical forest ecosystems.  

5.1 Summary of results 
The analysis was first focussed on species-specific identification through the use of 
machine learning methods (objective 1). The automatic pattern matching and 
cluster analysis method was not accurate enough to facilitate species recognition.  

The challenges faced in this analysis (objective 2) were mostly connected to high 
variability in interfering insect sound sources, and the current reliability of 
recognition software on validation by local expert knowledge.  

By focussing the objective to differentiating all bird calls from the surrounding 
soundscape I could detect the communal dawn chorus (objective 3). I found that 
there was no difference between the start time of the dawn chorus in mature forests 
and forest restoration areas (Figure 13B). I also found that restoration areas showed 
a lower maximum call richness and a higher ambient sound level (resp. Figure 13 
A and C).  

5.2 Reduced species richness in restoration areas 
The call richness during the dawn chorus was higher in mature forests, as also 
illustrated by Figure 11 and Figure 12. The results therefore show a higher species 
richness in the national parks than in the restoration sites, which adds supporting 
evidence to the knowledge that protected forests have higher species richness than 
anthropogenically disturbed forests (Barlow et al., 2016; IPCC, 2022).  

The call richness was used as a proxy for species richness, and I will expand 
upon some of the considerations of this. As explained, two different calls may 
correspond to the same species, as they use different vocalizations to communicate 

5. Discussion 
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different messages (Clay et al., 2012). To compare species richness by call richness, 
two things have to be assumed. First, the detected species in both forest treatments 
use an equal number of different vocalizations. This is accounted for in this study 
by selection of study sites close enough to exhibit comparable bird communities. 
Second, all species should have equal chances of detection. All detection methods 
(e.g. camera traps, point counts) have a sampling bias towards species with specific 
habitats, behaviour or body size (Fontúrbel et al., 2020; Manu & Cresswell, 2007). 
Acoustic monitoring is found to be comparable to point counts in detection of call 
activity and is therefore considered a suitable alternative (Digby et al., 2013). In 
order to improve the accuracy of this prediction, local expert knowledge is needed. 
This entails excellent knowledge of bird vocalizations of species local to the study 
area. This knowledge is scarce, and it is precisely where and why automatic 
detection algorithms can aid research in this field. 

5.3 Dawn chorus timing not affected 
The hypothesis that the dawn chorus in restoration sites would start earlier because 
of increased light levels, cannot be supported by this study. It should first be 
excluded that the differences between light availability were too small in this study. 
Although I did not perform a formal analysis on the vegetation at both treatment 
sites, the researchers collecting the data have confirmed that vegetation structure in 
the restoration sites is indeed much less diverse, leading to much higher light levels. 
This lack of difference in timing can therefore not be ascribed to the lack of 
differences in light levels.  

Even though studies on individual bird species found that species started singing 
earlier when exposed to higher light-levels (see Kempenaers et al., 2010), opposing 
results have also been found when studying the chorus of the complete bird 
community. Lee et al. (2017) found that environments with increased light counter-
intuitively exhibited even later dawn choruses. They argue that other aspects, such 
as the adaptation of species communities to these environments, possibly play a 
role in this. Species with lower sensitivity could then be expected to inhabit the 
areas with higher light availability, as shown earlier by Kempenaers et al. (2010).  

Caterall et al. (2012), show that species composition takes considerable time to 
recover towards a rainforest-like bird community. They estimate that most forest 
bird communities will need more than 150 years to recover, even if rainforest-
requirements like closed canopy-cover, high stem-density and ground litter layer 
are met within 10 years. In the studied restoration sites, none of these parameters 
are met. It is therefore possible that the bird community that now inhabits the 
restoration sites consists of more species with low sensitivity. This would then lead 
to later dawn singing than expected from the environmental conditions. 
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5.4 Interference from insects in restoration sites 

Another explanation for why this study was not able to detect differences in timing 
of the dawn chorus could have been because detectability of birds was decreased in 
restoration areas. It was found that insect sounds are predominant in most 
restoration sites, as also illustrated by the increased ambient sound level. Their 
dominance in the soundscape often masks large parts of the frequency range that 
are used by birds in their vocalizations, impeding their detection (see Figure 14).  

In bioacoustics, environmental noise is a frequently encountered problem (see 
Aide et al., 2017; Burivalova et al., 2022). Studies have focussed on de-noising 
recordings by filtering out rain and wind (Juodakis & Marsland, 2022). Brown et 
al. (2019) have even developed a method to not only detect cicadas in acoustic 
recordings, but to also filter them from the data. However, these studies have only 
been able to achieve effective filtering through band pass filtering, where the 
frequency band used by insects is detected and deleted, thereby also removing the 
masked bird vocalizations. More studies into insect filtering are therefore required 
to more effectively detect birds from acoustic landscapes dominated by insects.  

The research method should therefore be adjusted to be workable in restoration 
areas with high insect populations. It should not be ruled out that in those research 
sites, audio recorders might not be the best monitoring tool for bird species 
evaluations. Other remote monitoring tools, like camera traps, should also be 
considered.  
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Figure 14: Spectrograms of a restoration site (above) with many insect sounds and of a national park 
(below) with bird vocalizations. These species groups often interfere, where the louder, continuous 
sound of insects often masks the sound of birds. 
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5.5 Recommendations on the use of machine learning 
methods 

Automatic acoustic detection is under continuous development. This was illustrated 
in this research by its reduced effectiveness in noisy environments and by minor 
but time-consuming issues like data-corruption. I hope to aid future research into 
detection of birds in tropical rainforests, by addressing strengths and limitations of 
the used analyses. 

5.5.1 Cluster analysis 
The main difficulty in the clustering analysis, was choosing the right parameters for 
both the audio event detection and the clustering itself. Because there is a high 
diversity in the soundscape of the data (with diverse ambient sound levels), the 
optimal parameters may not be equal for every recorded day because of the high 
variability in environmental parameters. The resulting clusters were not necessarily 
homogeneous, with different call types appearing in the same cluster, and, 
conversely, similar calls ending up in different clusters. The few calls that could be 
distinguished led to what I defined before as ‘unknown species’.  

Therefore, clustering analysis cannot be used to identify occurrences of species 
without additional knowledge of bird vocalizations; information often only 
accessible through local experts. In this study, I tried to surpass this by taking 
existing recordings from common species in the research area and use them in a 
pattern matching analysis.  

5.5.2 Pattern matching analysis 
In the pattern matching method I tried identifying the twenty-six most common 
species by importing their templates from the Macaulay Library. LeBien et al. 
(2020) have shown before that using a local context greatly improves selection 
results. Therefore, all of the recordings I used were from Madagascar, and even 
from the Ranomafana region if they were available for the given species. However, 
imported templates from outside the dataset still did not work as well as templates 
that were created within the same dataset (see Figure 9 and Figure 10). The context 
therefore was thus still not close enough to the recordings, and surrounding factors 
like weather conditions, time of year, or simply individual variations were too high 
to find successful matches.  

Another factor that could possibly improve selection results is the selection of 
suitable templates. Bird vocalizations encountered during the selection varied in 
terms of pitch, rhythm, tone and repetition (The Cornell Lab, 2009). Especially if 
calls were repeated, it made it difficult to determine the right number of repetitions 
to choose for the template. Templates of short calls were often not suitable, but 
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adding more repetitions also increased the disturbance by surrounding sounds, 
thereby decreasing suitability again. Other questions are how to deal with individual 
variations in song pattern, or what the minimum length of a template should be. An 
analysis into the characteristics of template suitability would greatly enhance 
workflow in pattern matching and increase its overall efficiency. 

5.5.3 Alternative analyses 
Automated bird species identification from audio recordings is a challenging 
problem, and stronger methods are probably needed than pattern matching and 
clustering analysis. Such stronger methods, like neural network applications have 
been developed for the general public to use in the Northern Hemisphere (see 
application apps Merlin (Chu, 2012) or BirdNet (Kahl et al., 2021)). Unfortunately, 
the identification of birds from tropical areas is not that far developed. Templates 
of tropical species are not yet available in different environmental contexts to make 
species identification robust. However, recent studies show potential of animal 
sound detection networks requiring only a few examples, referred to as few-shot 
learning (Nolasco et al., 2023). In this study pattern matching, or template 
matching, was evaluated with an F-score of 12.35%, while state of the art neural 
network solutions were able to get an F-score of 61.83% with just 5 templates. The 
potential of these developments is promising, and more research can reveal its 
potential for a variety of environmental contexts and species groups. 

At this stage of the developments, however, it is still essential for species 
identification to work in close cooperation with an expert knowledgeable of local 
species and their sounds. I was able to conduct this study in cooperation with an 
expert in the field, PhD candidate Mahefa Andriamavosoloarisoa, who collected all 
the data and provided me with knowledge about common species in the area. 
However, this type of research requires the experts to be out in the field for long 
stretches of time, in remote areas with limited access to internet, making 
cooperation difficult and slow. This highlights the need for development of stand-
alone detection algorithms, to reduce dependence on local expertise.  

 

5.6 Future of rainforest restoration monitoring 
Although my results shed a light on the diversity of the acoustic landscape among 
forest treatments, the multitude of interactions between insects, birds and 
restoration status are still unclear. For example, it is suspected that the interference 
of sounds can have potential fitness consequences for birds (e.g. decreased 
communication, higher risk of predation (J. Lee et al., 2017), increased food 
availability, etc.), and it is unclear how insect communities respond to restoration 
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(e.g. species richness, volume of sound, etc. (Schmidt & Balakrishnan, 2015)) and 
what the underlying mechanisms are (e.g. microclimatic variations). These 
interactions could be further studied through enhanced insect filtering mechanisms, 
but species-specific recognition is also required for more detailed response patterns. 

Simultaneously, this research clearly shows the challenges faced in bird call 
recognition from acoustic data in the tropical rainforests of Madagascar. Although 
automatic detection methods are being developed and made available to the public, 
they still come with many limitations and the handbooks to use them have yet to be 
developed. The rapid advances and possibilities of machine learning methods being 
used in other areas of the world do give hope that these will also become available 
for those areas in the world where they are needed most urgently. Development of 
reliable machine learning algorithms for species recognition will decrease our 
dependence on the knowledge of local experts. With a continuation of data 
collection and annotation through strong cooperation with local experts, these 
methods can be extended towards more and more similar habitats. This will 
eventually lead to a better understanding of rainforest restoration and behavioural 
response of those species vital to re-establish healthy, self-sustaining forests.  
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The restoration of forest plays a large role in our efforts to mitigate climate change, 
but they are also crucial for the 880 million people who depend on forests for their 
livelihood. Restoration of tropical rainforests is urgent in a country like 
Madagascar, in which many species are endemic. Birds play a large role in the 
restoration of forests because of the key role they play in seed dispersal. In order to 
monitor and evaluate the restoration of forests, monitoring of birds is therefore 
crucial. Acoustic monitoring devices can used as a low-cost solution.  

Mature tropical rainforests provide a typical habitat of dense vegetation and low 
light conditions to which birds have adapted their behaviour. Restoration areas, 
however, are much less dense in vegetation and are characterised by much higher 
light levels. Typically, birds show a peak of singing behaviour in the morning, 
triggered by the onset of day. This is known as the dawn chorus. A change in light 
levels is expected to influence the timing of singing in bird species depending on 
their sensitivity to light. The relative disturbance of singing times can possibly 
influence fitness of individual species. 

This research aimed to identify differences in dawn singing time of individual 
species and the complete community, by comparing mature protected forests by 
forest restoration sites in and around Ranomafana National Park, Madagascar. The 
analysis was performed using novel automated machine learning methods, which 
are still under continuous development.  

The challenge of analysing acoustic data from rich tropical soundscapes was 
revealed here. Template matching and audio event detection did not provide 
species-specific identification without close collaboration of local experts. 
However, manual analysis of the data revealed that species richness was lower in 
restoration sites, but no difference in timing of the dawn chorus could be found. 
The restoration sites were also characterized by higher insect sound in the recorded 
data, increasing the challenge of identification of birds. Further research into the 
underlying mechanisms of insect abundance, its potential fitness consequences for 
birds and methodological advancements are needed to further distangle the effect 
of restoration on the dawn chorus. With more efforts and energy directed towards 
species-identification in tropical areas, for which the needs for effective monitoring 
are much more urgent, we can decrease our dependence on local knowledge and 
expand insights into the most effective ways to perform and monitor restoration.  
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Species list Ranomafana National Park. 

Table 1: Bird species occurring in and around Ranomafana National Park, according to *mad PhD-candidate Mahefa 
Andriamavosoloarisoa (2023) or ** eBird (2021). Observations, foraging height and main diet were also taken from 
eBird (2021). 

English name Latin name Observations Foraging height Main diet Source  

Malagasy Bulbul Hypsipetes 
madagascariensis 

589 Upper Fruits, insects * 

Souimanga Sunbird Cinnyris sovimanga 543 Upper Nectar * 

Madagascar Magpie-
Robin 

Copsychus albospecularis 500 Undergrowth Insects, fruit * 

Madagascar Wagtail Motacilla flaviventris 490 Undergrowth Invertebrates, insects * 

Malagasy Paradise-
Flycatcher 

Terpsiphone mutata 478 Middle Insects * 

Crested Drongo Dicrurus forficatus 460 Upper Invertebrates, fruits * 

Blue Coua Coua caerulea 427 Middle Insects, invertebrates, 
fruits 

* 

Malagasy Brush-Warbler Nesillas typica 396 Undergrowth Insects and spiders * 

Common Jery Neomixis tenella 297 Upper Insects * 

Lesser Vasa Parrot Coracopsis nigra 263 Upper Fruits * 

Malagasy Coucal Centropus toulou 247 Undergrowth Insects, invertebrates, 
small vertebrates 

* 

Forest Fody Foudia omissa 204 Upper Seeds, insects, nectar * 

Red Fody Foudia madagascariensis 179 Lower Seeds, insects, nectar * 

Malagasy White-eye Zosterops maderaspatanus 528 All Insects, seeds, fruit ** 

Pitta-like Ground-Roller Atelornis pittoides 450 Undergrowth Invertebrates, fruits ** 

Nelicourvi Weaver Ploceus nelicourvi 402 All Insects ** 

Velvet Asity Philepitta castanea 396 Undergrowth Fruits ** 

Madagascar Cuckoo Cuculus rochii 386 Middle Insects ** 

Common Newtonia Newtonian brunneicauda 383 Middle Insects ** 

Tylas Vanga Tylas eduardi 376 Middle Insects ** 

Red-tailed Vanga Calicalicus 
madagascariensis 

370 Upper Insects ** 

Mascarene Martin Phedina borbonica 362 Lower Insects ** 

Spectacled Tetraka Xanthomixis zosterops 355 Undergrowth Insects ** 

Madagascar 
Cuckooshrike 

Coracina cinerea 323 Upper Invertebrates ** 

Cuckoo-roller Leptosomus discolor 314 Middle Invertebrates, reptiles ** 
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Macaulay Library recordings. The following recordings were provided by the 
Macaulay Library of the Cornell Lab of Ornithology. 

Table 2: Recording numbers of recordings from the Macaulay Library of the Cornell Lab of Ornithology 
(2023) used in creating templates for the Pattern Matching analysis. 

ML 73397 ML 85852 ML 85867 ML 85872 ML 85888 ML 86416 

ML 87958 ML 87974 ML 91642 ML 92888 ML 92974 ML 92989 

ML 93111 ML 93555 ML 93609 ML 93632 ML 93824 ML 93844 

ML 93895 ML 94017 ML 95336 ML 95355 ML 95623 ML 95638 

ML 95784 ML 95821 ML 95832 ML 95839 ML 95842 ML 95851 

ML 95893 ML 95914 ML 95918 ML 95921 ML 95942 ML 95944 

ML 95951 ML 95969 ML 95982 ML 95995 ML 95998 ML 97427 

ML 97455 ML 97456 ML 97458 ML 97480 ML 97485 ML 97488 

ML 97489 ML 97500 ML 97501 ML 97521 ML 97537 ML 97564 

ML 97597 ML 97597 ML 97963 ML 97965 ML 98778 ML 100007 

ML 101983 ML 141911811 ML 503918061 ML 503918061 ML 504227001 ML 504227021 
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AudioMoth Deployment Sites. 

Table 3: Deployment sites of the AudioMoth recorders are used in this study. 

ID Site Treatment Latitude Longitude Altitude Height Direction Date deployed 

AND02#2 Andranofady NP 21.226223 47.395664 1143 7 10 22/03/2022 

AND06#21 Andranofady NP 21.214359 47.421957 1205 13.5 142 24/03/2022 

AND13#1 Andranofady NP 21.226253 47.433634 1078 14 70 30/03/2022 

RAN03#18 Ranomena NP 21.227459 47.475265 1082 15 11 28/04/2022 

RAN05#6 Ranomena NP 21.238254 47.46181 1057 15 30 29/04/2022 

ABV02#22 Ambatovory RS 21.283594 47.458088 803 2.8 252 01/03/2022 

AMB02#18 Ambodivoahangy RS 21.217104 47.547612 671 4 32 13/03/2022 

AMPB01#6 Ampitambe RS 21.261109 47.599323 569 2 0 09/03/2022 

TKL04#11 Tanambao 

Kelilalina 

RS 21.294172 47.551847 733 1.8 118 25/02/2022 
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