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Assessing the Eco-efficiency of Swedish Crop Farms and the 
Role of Subsidies: A Directional Distance Function Approach 



 

The agriculture sector’s contribution to global greenhouse gas (GHG) emissions and its increasing 

vulnerability to the effects of climate change warrants assessments considering not only on-farm 

productivity but also the industry’s environmental sustainability. Utilizing the concept of eco-

efficiency, this study analyzes the environmental performance of Swedish crop farms by 

incorporating farm-level GHG emissions as an undesirable output in the production function. Eco-

efficiency is the term used to describe production with efficient use of resources while reducing 

environmental damage. Using panel data from the Swedish Farm Accountancy Data Network 

(FADN) spanning from 2009 to 2020, GHG emissions at the farm level are quantified. Contrasting 

usual non-parametric eco-efficiency methods, a parametric estimation of an output-oriented 

directional distance function (DDF) is employed via a stochastic frontier analysis (SFA) to ascertain 

farmers’ potential to simultaneously enhance farm net-value added (FNVA) while decreasing GHG 

emissions. Further analysis is conducted to investigate any potential effects of the common 

agricultural policy (CAP) subsidies on eco-efficiency levels. Results reveal that Swedish crop 

farmers emit an average of 295 tonnes of CO2 equivalent, predominantly from nitrous oxide (N2O) 

due to fertilizer use. These farmers are highly eco-efficient at an average level of 0.90, suggesting 

that they can concurrently increase FNVA and decrease emissions by 10%. Investigating the factors 

affecting eco-inefficiency, it is found that crop and environmental subsidies significantly lead to 

reduced efficiency. Meanwhile, results suggest that the implementation of the 2013 CAP reform, 

and increased crop diversification foster more eco-efficient practices. From these findings, 

implications, and conclusions are drawn, which offer valuable insights for policymakers. 

Keywords: Swedish agriculture, environmental efficiency, output distance function, CAP reform, 

relative shadow price, inefficiency 
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It has been a worldwide issue that agriculture is far from being environmentally 

sustainable. While the green revolution has boosted agricultural productivity and 

ensured food security in Europe, its effects have backfired, triggering severe 

climatic changes. Agriculture is a significant contributor to greenhouse gas (GHG) 

emissions, yet vulnerable to the effects of climate change, which poses risks to 

economic losses and ecological well-being. Given that the projected global food 

demand requires a 60% increase by 2050 (Alexandratos & Bruinsma, 2012), 

continuing the “business-as-usual” form of intensification will accelerate the 

negative environmental impacts (Food and Agricultural Organization (FAO), 

2018). This further hinders achieving the 2030 sustainable development goals 

(SDG), particularly SDG 12 on responsible consumption and production, as well as 

SDG 13 on climate action. With this, there is a need to evaluate farm environmental 

performance, prompting farmers to reduce their farm emissions while increasing or 

maintaining their productivity. 

 

In the European Union, the agricultural sector is responsible for 10% of total GHG 

emissions (European Commission (EC), 2017). This is associated mainly with two 

types of GHG, namely: methane (CH4) and nitrous oxide (N2O), which constitute 

more than 80% of total agricultural GHG emissions (European Environment 

Agency (EEA), 2022). Crop production mainly contributes to N2O emissions from 

agricultural soils due to the application of mineral and/or nitrogen fertilizers. While 

livestock production, manure management, and rice cultivation mostly contribute 

to CH4 emissions.  

 

To address these negative environmental impacts of agriculture, the European 

Commission aims for sustainable intensification through the common agricultural 

policy (CAP). As part of the European Green Deal, the EU pledges to reduce 

emissions by at least 55% by 2030 and be a climate-neutral economy by 2050, to 

which all member states should contribute (EEA, 2022). This framework aims for 

a sustainable food system where farmers can satisfy food demand while protecting 

the climate (EC, 2017). 

 

In Sweden, the agriculture sector contributes 15% of the country’s total GHG 

emissions emitting 6.9 metric tonnes of CO2 equivalent in 2020, as reported in the 

1. Introduction 
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National Inventory Report (Swedish Environmental Protection Agency, 2022). A 

significant proportion is from N2O (52%) and CH4 (46%), and a few CO2 from crop 

production and animal husbandry. The report also stated that almost half of the total 

emissions in the sector (47.3%) come from agricultural soils. These are mainly 

derived from nitrogen application through the use of synthetic fertilizers, crop 

residues, and animal manure. These emission levels are lower compared to the 1990 

levels by 10%; however, the levels started to increase in recent years. In 2020, 

emissions increased by 1.6% (around 100 kiloton of CO2 equivalent (ktCO2e)) due 

to increased sales of inorganic N-fertilizers leading to an increase in utilization 

(Swedish Environmental Protection Agency, 2022). Projections from the Swedish 

Board of Agriculture (2021) even indicated an 18% surge in sales of mineral 

fertilizer compared to previous years. Comparing utilization levels between 2019 

and 2016, the usage of both nitrogen and phosphorus increased by 10% (Statistical 

Database of Sweden (SCB), 2020). 

 

Sweden has taken several initiatives to curb GHG emissions and reduce fossil fuel 

use in the agriculture sector. With the reformed CAP in 2013 and through its second 

pillar for rural development, farmers can receive support for climate change 

mitigation and adaptation measures based on specific requirements (Government 

Offices of Sweden: Ministry of the Environment and Energy, 2017). The measures 

in Sweden’s new rural development program for 2014-2020 include several facets, 

including grants for young farmers, capacity building, ecological farming, 

environment, climate actions, among others. These are all aimed at improved 

energy efficiency, more efficient nitrogen use, prevention of nitrogen leakage, 

improved manure management, and higher environmental performance. 

 

Given these initiatives, Sweden is an interesting focus since the country also targets 

to have net-zero GHG emissions by 2045 (Government Offices of Sweden: 

Ministry of the Environment, 2020). With this, investigating the adverse 

environmental impacts (i.e., GHG emissions) of agricultural production resulting 

from the use of inorganic fertilizers and fossil fuel use, is crucial in assessing the 

current state of environmental performance in Swedish agriculture. To measure 

environmental performance, the concept of eco-efficiency is used. The term eco-

efficiency first emerged in 1993, describing the creation of goods and services with 

efficient use of resources while reducing environmental pressures (Schmidheiny, 

1992). OECD (1998) defines it as “the efficiency with which ecological resources 

are used to meet human needs.” With this, the concept considers the economic and 

environmental impacts of agricultural production. It is commonly defined as the 

ratio between the desirable (i.e., economic revenues) and the undesirable (i.e., 

environmental damages from GHG emissions, soil degradation, and others) 

outputs. Although eco-efficiency does not guarantee sustainability because high 
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eco-efficiency scores can be affiliated with potentially high environmental pressure, 

nevertheless, it is considered the most cost-effective approach to reducing 

environmental damage, allowing ease in implementing efficiency-enhancing policy 

instruments (Kuosmanen & Kortelainen, 2005). 

 

While eco-efficiency studies involving Sweden exist, there is little to no focus on 

the crop sector. Studies mainly target the Swedish dairy sector (Honkasalo et al., 

2005; Martinsson & Hansson, 2021), beef sector (Hessle et al., 2017), services 

sector (Pardo Martínez, 2013),  pulp and paper industry (Helminen, 2000), and a 

country-to-country comparison of eco-efficiencies for the whole agricultural sector 

(Camarero et al., 2013; Pishgar-Komleh et al., 2021; van Grinsven et al., 2019). 

Most studies involving the crop sector analyze the sector’s technical efficiency or 

total factor productivity (Heshmati & Kumbhakar, 1997; Koiry & Huang, 2023; 

Zhu & Lansink, 2010); however, these studies did not take into account the 

undesirable outputs of the production, e.g., GHG emissions. The role of subsidies 

in efficiency analysis is widely studied, but the results are ambiguous (Zhu & 

Lansink, 2010); where some authors found a positive effect on efficiency 

(Gadanakis et al., 2015), while others found a negative/insignificant effect (Latruffe 

et al., 2017; Cillero et al., 2021), hence the relationship between agricultural 

subsidies and eco-efficiency should be further analyzed. 

 

Moreover, eco-efficiency studies mostly incorporate a non-parametric approach in 

determining the eco-efficiency scores through a data envelopment analysis (DEA) 

such as Bonfiglio et al. (2017) and Picazo-Tadeo et al. (2011), among others. 

Meanwhile, this study uses a parametric approach, the stochastic frontier analysis 

(SFA), and a directional distance function (DDF) approach to determine eco-

efficiency. The DDF, unlike other eco-efficiency analyses, allows to determine the 

expansion and contraction of desirable and undesirable outputs and the extent to 

which a farm can increase its value-adding while contracting GHG emissions (Färe 

& Grosskopf, 2000; Picazo-Tadeo et al., 2012). Other eco-efficiency analyses 

mostly reported (1) the level at which value added can be increased while 

maintaining environmental pressures exerted or (2) the level at which 

environmental pressures can be reduced while maintaining value added. 

 

This study fills these research gaps by determining the eco-efficiency of the 

Swedish crop sector, taking into account GHG emissions at the farm level. 

Specifically, it addresses the following research questions: How much GHG 

emissions are emitted at the farm level in Sweden? To what extent can Swedish 

crop farmers simultaneously increase their agricultural value added and decrease 

GHG emissions? Do CAP environmental subsidies play a significant role in their 

eco-efficiency level? What other factors affect farmers’ eco-efficiency?  
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This study is a new significant contribution to the eco-efficiency literature by 

focusing on the Swedish crop sector. In addition, this is a contribution to the 

emerging literature on computing GHG emissions at the micro-level, specifically 

per crop farm, utilizing the new methods proposed by Coderoni & Espoti (2018) 

that are also employed by Baldoni et al. (2018) and Coderoni & Vanino (2022). 

Through this, the study provides valuable insights into the environmental 

performance of individual crop farms in Sweden. Furthermore, this research 

contributes to the ongoing debate on the role of subsidies, primarily environmental 

payments, on eco-efficiency from the perspective of crop farmers in Sweden. 

Examining the relationship between eco-efficiency and subsidies sheds light on the 

effectiveness of these policy instruments in promoting sustainable agricultural 

practices. The findings of this research can be used as recommendations or a basis 

for policymakers in designing cost-effective programs to increase the eco-

efficiency of farms. Ultimately, this contributes to the broader challenge of making 

agricultural crop production environmentally sustainable. 
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In light of climate change, policymakers worldwide are encouraged to shift towards 

sustainable intensification where agricultural production is economically 

productive and environmentally sustainable (Food and Agriculture Organization 

(FAO), 2011). This gives rise to the growing literature on evaluating the 

environmental sustainability of farms. Several indicators emerged to evaluate a 

farm’s sustainability. For instance, Barnes & Thomson (2014) proposed 13 

indicators encompassing ecosystem, economic and social aspects; however, a 

consensus has yet to be met (Picazo-Tadeo et al., 2011). 

 

One of the emerging sustainability indicators is the concept of economic-ecological 

efficiency, commonly known as eco-efficiency. Popularized by the World Business 

Council for Sustainable Development (WBCSD) (2000), it refers to economic 

activity with fewer resources utilized and the least possible environmental impact. 

There has been an increasing interest in eco-efficiency as an effective index to 

measure sustainability in agricultural production at a macroeconomic- (national), 

regional-, and microeconomic-level (Zhang et al., 2008). The most commonly used 

methods to measure eco-efficiency are the ratio approach, the material flow 

analysis, and the frontier approach (Yang & Zhang, 2018). The ratio approach 

captures the relationship between economic value added and environmental 

pressures as numerator and denominator, respectively. The material flow analysis 

is mainly measured in life-cycle analysis (LCA), such as used in the eco-efficiency 

studies of Sanyé-Mengual et al. (2018) and Zhen et al. (2020); however, only a few 

are doing this because of the huge amount of data required to undertake the analysis. 

With the frontier approach, either a non-parametric approach through data 

envelopment analysis (DEA) operationalized by Kuosmanen & Kortelainen (2005); 

or a parametric approach through the stochastic frontier analysis (SFA) is used 

(Lansink & Wall, 2014). 

 

Reviewing the literature, most eco-efficiency studies relating to the agriculture 

sector in the European Union applied a non-parametric approach, DEA (Beltrán-

Esteve et al., 2012; Bonfiglio et al., 2017; Coluccia et al., 2020; Gadanakis et al., 

2015; Stępień et al., 2021) or incorporating it with LCA (Beltrán-Esteve et al., 2017; 

Grassauer et al., 2021). DEA is popularly used because no assumptions are imposed 

2. Review of Related Literature 
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on the functional form linking outputs and inputs, which is its major advantage 

(Charnes et al., 1978; Zhou et al., 2008). Further, a small sample size is enough to 

run the analysis, for instance, Grassauer et al. (2021) assessing only 47 farms. A 

two-stage DEA, wherein a bootstrapped left-truncated regression follows the first 

stage, is usually done with these mentioned studies to determine how inefficiencies 

in production are affected by other variables. Sometimes, DEA is merged with 

impact assessment methods like propensity score matching (PSM) and difference-

in-difference (DID) methods to determine the impact of factors affecting 

inefficiencies (Ait Sidhoum et al., 2022). However, only a few studies in the EU, 

such as Stetter & Sauer (2022), are opting for the parametric approach, SFA, in eco-

efficiency analysis. Although a huge sample size is required with parametrization, 

it has the advantage of accounting for stochastic noise (i.e., unexplained variability 

in the data), the effects of random shocks, outliers, and measurement errors, thereby 

overcoming the limitations of the DEA (Stetter & Sauer, 2022). Another advantage 

is that the factors explaining inefficiencies can also be assessed using a one-stage 

approach.  

 

In addition, there is sparse literature analyzing the eco-efficiency of Swedish 

agriculture at the micro-level. For instance, Martinsson & Hansson (2021) did an 

eco-efficiency analysis focusing on the Swedish dairy sector. However, few to zero 

eco-efficiency studies are done in the crop sector, despite vast literature assessing 

its technical efficiency (Koiry & Huang, 2023; Zhu & Lansink, 2010). Technical 

efficiency only measures the ratio of desirable outputs to production inputs, while 

eco-efficiency relates the ratio of desirable outputs to the environmental pressures 

caused by production.  

 

Given the definition of eco-efficiency analysis, these previously mentioned studies 

incorporated different measures of environmental pressures (considered bad 

outputs) of agricultural production into their frontier models. Since these studies 

involved European Agriculture, their data source is the Farm Accountancy Data 

Network (FADN), the most comprehensive farm micro-data available in each 

European member state. Given the limits of the dataset due to aggregation, 

measuring environmental pressure is a challenge. Some of these studies collected 

simultaneous primary data or used other secondary sources or proxies with 

available variables in the dataset. Martinsson & Hansson (2021), involving the 

Swedish dairy sector in their analysis, used expenditures on fuels, heating, and 

fertilizer expressed in national currency to proxy farm-level GHG emissions. 

Similarly, Stępień et al. (2021) used the same monetary variables in assessing 

Polish small-scale farms, as well as Ait Sidhoum et al. (2022) in their cross-country 

comparison of eco-efficiencies involving German, French, Italian, and Dutch 

farms. Using the same data source, FADN, this thesis addressed these limitations 
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by calculating GHG emissions at the farm level, adopting the novel approach 

proposed by Coderoni & Espoti (2018). Their approach is an adaptation of the 

methodology of the UN’s Intergovernmental Panel on Climate Change (IPCC) 

(2008). 

 

Moreover, these mentioned studies follow Kuosmanen & Kortelainen (2005), 

wherein they only assess how much environmental pressures (undesirable outputs) 

can be reduced while maintaining value-added (desirable outputs) in agricultural 

production or how the level of environmental pressures are maintained while 

increasing value-added. This study applies a directional distance function (DDF) 

approach wherein the extent to which value-added can be increased while 

simultaneously contracting environmental pressures is assessed. Similar studies 

involving DDF are Beltrán-Esteve et al. (2014) and Picazo-Tadeo et al. (2012) 

when they assessed olive farms in Spain, and Falavigna et al. (2013) analyzing 

agricultural systems in Italian regions. However, these studies employed the most 

commonly used non-parametric approach, DEA. Only a few studies used DDF to 

assess eco-efficiency through a parametric method, SFA. For instance, Huang et al. 

(2023) analyzed agriculture in the Middle East or North African region, and Huang 

& Bruemmer (2017) evaluated livestock production in Qinghai-Tibetan Plateau, 

China.  

 

Given the literature above, this paper is a new contribution to the emerging 

literature on assessing eco-efficiency using DDF through a parametric approach 

and the sparse literature on assessing eco-efficiency in Swedish agriculture, 

particularly the crop sector. Determining the underlying factors affecting eco-

inefficiency, and highlighting the roles of agricultural policies, are useful as a basis 

for policy-making in Sweden which could benefit the crop sector and the country 

as a whole in assessing the crop sector’s performance in reaching the net-zero 

emissions target by 2045. 
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3.1 Theoretical framework and model 

In measuring the farm’s eco-efficiency, a multi-input multi-output directional 

distance function (DDF) was specified. In addition to the desirable output (also 

called good output) in farm production, farm-level GHG emissions were 

incorporated as the undesirable output (also called bad output). Two axioms, 

namely null-jointness and weak disposability, are required in modeling a 

production where undesirable outputs are produced (Färe et al., 2005). On the one 

hand, null jointness means that no good outputs can be produced without producing 

undesirable outputs at the same time. Similarly, in farm production, crop yields are 

the desired outputs by the farmer where revenues and profits are obtained; however, 

undesirable outputs in the form of GHG emissions are also released during 

production because of chemical fertilizers and pesticides. Weak disposability, on 

the other hand, entails a simultaneous reduction in good and undesirable output. 

This means that a cost is incurred when reducing undesirable outputs. Likewise, in 

the reduction of farm GHG emissions, inputs such as chemical fertilizers should be 

reduced, which could lead to lower crop yields, thereby lowering revenues. 

Satisfying these two axioms, modeling farm GHG emissions as undesirable output 

in crop production is relevant. 

 

The directional distance function (DDF) is an approach that has the ability to 

provide a complete representation of a pressure-generating technology that allows 

for simultaneously expanding desirable outputs while contracting undesirable 

outputs (Färe & Grosskopf, 2000). It has been popularly used in incorporating 

undesirable outputs of production. Studies encompass different sectors such as 

manufacturing and industrial activities (Long et al., 2017; Ramli et al., 2013; 

Stergiou & Kounetas, 2021), environmental assessment of watersheds (Bostian & 

Herlihy, 2014; Macpherson et al., 2010) or agricultural production (Beltrán-Esteve 

et al., 2017; Falavigna et al., 2013). In modeling agricultural production, different 

measurements of undesirable outputs are utilized. For instance, Huang & 

Bruemmer (2017) account the grazing pressure in livestock production, Huang et 

al. (2023) integrate GHG emissions in agricultural production in the Middle East 

3. Methodology 
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and North African region, and Picazo-Tadeo et al. (2012) incorporate several facets 

like erosion, pollution and biodiversity loss in crop production. 

 

In this study, an output-oriented DDF is specified using the model developed by 

Chambers (2002), Chambers et al. (1998), Färe & Grosskopf (2000), and Färe et al. 

(2005). This type of DDF allows for jointly estimating the increase in good outputs 

while simultaneously decreasing undesirable outputs, leaving all other inputs 

unaffected.   

 

In this model, the desirable output is denoted as 𝑦, the undesirable output as 𝑏, and 

the vector of inputs as 𝑥. With the production relationship of inputs and outputs, 

the pressure-generating technology set, 𝑃, represents the feasible combination of 

desirable and undesirable outputs (𝑦, 𝑏) that can be produced with the given input 

vector 𝑥. Assuming a farm improving its production along the directional vector 

𝑔 = (𝑔𝑦, −𝑔𝑏), where 𝜗𝑔𝑦 is added to desirable output 𝑦, and 𝜗𝑔𝑏 is subtracted to 

undesirable output 𝑏, mathematically, the DDF is shown as: 

 

𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏;  𝑔𝑦, −𝑔𝑏) = sup{𝜗 ∶  (𝑦 + 𝜗𝑔𝑦, 𝑏 − 𝜗𝑔𝑏)  ∈ 𝑃}             [Eq. 1] 

 

Given translation property, this can be derived as: 

 

𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏;  𝑔𝑦, −𝑔𝑏)  −  𝜗 = 𝐷𝑜

⃗⃗ ⃗⃗  (𝑥, 𝑦 + 𝜗𝑔𝑦 , 𝑏 − 𝜗𝑔𝑦; 𝑔𝑦, −𝑔𝑏)             [Eq. 2] 

 

A parametric estimation using a stochastic frontier analysis was done in this study 

using the methodology of Kumbahakar & Lovell (2000). Assuming 

𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏;  𝑔𝑦, −𝑔𝑏) is zero (0), and adding 𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖 to Eq. 2, then the model 

specification is written as: 

 

− 𝜗𝑖 = 𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦 + 𝜗𝑔𝑦 , 𝑏 − 𝜗𝑔𝑦; 𝑔𝑦, −𝑔𝑏) + 𝑣𝑖 − 𝑢𝑖             [Eq. 3] 

  

The study assumed directional vector 𝑔 = (𝑔𝑦, −𝑔𝑏) = (1,−1)  with four (4) 

inputs 𝑥 and two (2) outputs, namely 𝑦 for good output (measured in farm net value 

added (FNVA) and 𝑏 for undesirable output (measured in farm GHG emission). 

With this, the quadratic directional output distance function is denoted as: 

 

−𝑏𝑖 = 𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦 + 𝑏, 0) + 𝑣𝑖 − 𝑢𝑖

= ∑ 𝑎𝑘𝑥𝑘 + 𝛽1𝑦
∗ +

1

2
∑ 𝑎𝑘𝑘(𝑥𝑘)

2 + 
1

2
𝛽11(𝑦

∗)2

4

𝑘=1

4

𝑘=1

+ 
1

2
 ∑ ∑ 𝑎𝑘𝑙𝑥𝑘𝑥𝑙

4

𝑘=1

+ ∑ 𝛾𝑘1𝑥𝑘𝑦
∗

4

𝑘=1

 + 𝑣𝑖 − 𝑢𝑖

4

𝑘=1

             [Eq. 4] 
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where 𝑦𝑖
∗ = 𝑦𝑖 + 𝑏𝑖  and  𝑋   is a vector of inputs where 𝑥1  is hectares of land 

utilized, 𝑥2 is labor in annual working units (AWU), 𝑥3 is input costs, and 𝑥4 is the 

fixed cost of production. The components of the error term are 𝑣𝑖  which is the 

random error capturing all variables that cannot be controlled by the farmer, and 𝑢𝑖 

capturing inefficiencies in the production. 

 

The eco-inefficiency model (also called the environmentally adjusted technical 

inefficiency model)  can be denoted as: 

 

𝑢𝑖 = 𝜏0 + ∑ 𝜏𝑚

8

𝑚=1

∗ 𝑍𝑚𝑖 

 

where Z corresponds to the explanatory variables that are related to eco-inefficiency 

effects on the farm. In this study, a one-step approach is done using directional 

stochastic frontier analysis to determine the variables significantly causing eco-

inefficiencies. 

 

Furthermore, relative shadow prices are determined since agricultural emissions are 

non-market goods i.e., they are not directly tradable in the market. This also helps 

to further asses the relationship between the farm net value added (FNVA) and 

corresponding farm GHG emissions, and their trade-offs. Shadow prices also reflect 

the cost of abating farm GHG emissions in production. Following the methods of 

Färe & Primont (1996)  and Shepard (1970) the relative shadow price are derived 

using Eq. 6: 

 

 

𝑅𝑦𝑏 =
𝑟𝑦

∗

𝑟𝑏
∗ = 

𝛿𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏; 1, −1) 𝛿𝑦⁄

𝛿𝐷𝑜(𝑥, 𝑦, 𝑏; 1, −1) 𝛿𝑏⁄
 

 

where 𝑟𝑦
∗  and 𝑟𝑏

∗ are the shadow price for desirable and undesirable outputs, 

respectively. 

3.2 Data and Descriptive Statistics 

 

This study used data from the Swedish Farm Accountancy Data Network (FADN). 

The FADN is a source of harmonized micro-economic data in the European Union. 

The sample in FADN is considered representative of the “commercial” agricultural 

holdings in the EU. FADN is important to the EU because it is vital for assessing 

            [Eq. 5] 

            
 

            [Eq. 6] 

            
 



20 

 

agricultural policies in the Common Agricultural Policy (CAP). The Swedish Board 

of Agriculture collects the FADN data in Sweden. 

 

This study only focused on the TF8 classification “Field crops”. This is the group 

that specializes in growing cereals, oilseeds, protein crops, mixed cropping, or 

general field cropping. Data cleaning was undertaken and an unbalanced panel with 

a total of 2197 observations from 2009-2020 was utilized in the analysis. Data 

across all variables used in this study that are measured in euros are deflated using 

a harmonized consumer price index (HCPI) with 2015 as the reference year 

obtained from the Statistical Database of Sweden (SCB, 2022). An HCPI is used 

because this makes the deflation comparable with other countries in the EU which 

is useful for further extensions or comparisons of this study. In the parametric 

estimation of eco-efficiency through the stochastic frontier analysis (SFA), all 

variables (i.e., input and output except dummy variables) are normalized by 

dividing them by their sample means to address measurement unit differences and 

mitigate magnitude bias. The data analysis done in this study is undertaken using 

Stata software. The summary statistics of the variables used in this study is 

presented in Table 1. 

 

3.2.1 Output Variables 

 

There are two output variables incorporated in the model, the good output 𝑦, and 

the undesirable output 𝑏. The good output is the farm net value added (FNVA) 

measured in euros from the FADN. This is measured by the gross farm income 

minus depreciation. In the calculation of gross farm income, the total farm output 

(i.e. including taxes and subsidies) is also deducted from the cost of intermediate 

inputs. This captures the net profit from the farm’s output. The average FNVA of 

crop farmers is 76.44 thousand euros (Table 1). However, some farms are 

experiencing losses as indicated by negative FNVA values. These are those farms 

that have higher expenditures for intermediate inputs than farm revenues earned. 

The maximum FNVA obtained is more than 3 million euros.  

 

Meanwhile, the undesirable output in this study is farm-level GHG emissions 

measured in tonnes of CO2 equivalent (tCO2e). A series of calculations detailed in 

the Section 3.4 were performed to obtain these values. To highlight, calculations 

reveal that Swedish crop farms emit an average of 295 tonnes of CO2 equivalent 

(tCO2e), with emissions ranging from a minimum of 5 tCO2e to a maximum of 

around 4000 tCO2e (Table 1). Comparing the trends of both output variables, GHG 

emissions peaked in 2015 and tend to decrease over time; meanwhile, the FNVA 

shows an erratic trend but generally increasing over time (Figure 1). 
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Table 1. Descriptive statistics of variables (n = 2197) 

Variable Symbol Unit Mean / % 
Std. 

Dev. 
Min. Max. 

Input variables       

Land  x1 ha 156.66 202.34 9.20 2671.90 

Labor x2 AWU 1.52 3.18 0.06 76.51 

Variable Inputs x3 
thou 

euros 
251.57 523.66 10.17 8917.19 

Total Assets excl. 

land 
x4 

thou 

euros 
549.76 721.71 11.94 6575.17 

Output variables       

Farm Net Value 

Added  
y1 

thou 

euros 
76.44 193.92 -296.71 3555.83 

Total GHG 

emissions 
y2 tCO2e 295.47 423.82 5.97 4243.02 

Inefficiency 

variables 
      

Crop subsidies  z1 
thou 

euros 
0.33 2.20 0.00 56.43 

Environmental 

payments  
z2 

thou 

euros 
3.87 18.54 0.00 498.97 

Crop 

diversification 

index (lagged) 

z3  0.47 0.17 0.00 0.96 

2013 CAP reform 

implementation 

(dummy) 

z4      

2009-2014  % 51.84    

2015-2020   % 48.16       
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Figure 1. Trend of FNVA and farm GHG emissions 

3.2.2 Input Variables 

 

Furthermore, four inputs were included in the production function. These are (1) 

land (x1) (measured in hectares), which refers to the utilized agricultural area 

(UAA) for the crop production either owned, rented, or in share-cropping, (2) labor 

(x2) (measured in annual working units (AWU or full-time person equivalent)) 

which comprises family labor (unpaid) and hired labor, (3) variable inputs (x3)  

(measured in thousand euros) which include all intermediate inputs like overheads 

and crop-specific input costs such as seeds, seedlings, fertilizers, other crop 

protection products, etc., and (4) total assets (x4) (measured in thousand euros) 

which include the value of farm buildings, machinery, equipment, etc. but 

excluding land to avoid double-counting x1.  

 

Table 1 indicates that, on average, crop farmers in Sweden utilize 156.66 hectares 

of agricultural land and employ labor equivalent to 1.52 annual work units (AWU), 

wherein an AWU corresponds to the number of full-time employees based on time 

involvement. They spend an average of 251 thousand euros for intermediate inputs 
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encompassing costs for seeds, fertilizers, pesticides, overheads, and other variable 

inputs. Additionally, they own farm assets (i.e., farm machinery, farmhouses, 

storage, among others) worth 549 thousand euros on average. Among the farms 

included in the study, the smallest area utilized for agriculture is 9.20 hectares, has 

employed less than 1 AWU for labor, spends 10 thousand euros for intermediate 

inputs, and possesses assets worth 11.94 thousand euros. Meanwhile, the largest 

farm utilizes more than 2000 hectares of agricultural land, employs 76.51 AWU, 

spends more than 8 million euros for intermediate inputs, and owns assets worth 6 

million euros. 

3.2.3 Inefficiency Variables 

 

Four variables were included in the model to determine the factors explaining the 

production’s eco-inefficiencies. Two types of specific subsidies (measured in 

thousand euros) were included to disentangle the different effects of various 

subsidies, as Latruffe et al. (2017) recommended when they opted to aggregate all 

subsidies into one variable. As previously mentioned, this thesis adds to the existing 

literature regarding the ambiguous influence of subsidies on farm efficiency 

(Gadanakis et al., 2015). First is (1) total crop subsidies (z1), a coupled support that 

includes compensatory/area payments to producers of cereals, oilseeds, and protein 

(COP) crops and payments for energy crops; set-aside premiums mostly received 

by COP producers to set aside part of their land for other non-food crops; other 

farm subsidies for the field, permanent and horticultural crops; and other coupled 

support. Second is (2) environmental payments (z2), which are payments that are 

supposed to encourage farmers to incorporate agri-environment-climate measures 

in their production, payments for organic farmers, or payments for having lands that 

are part of Natura 2000 or the Water Framework Directive. This variable is of 

particular interest given that these subsidies in the CAP are purposely geared 

towards making agriculture more environmentally friendly in the EU. Table 1 

shows that not all crop farms receive crop subsidies and agri-environmental 

payments. On average, they receive less than a thousand euros per year on crop 

subsidies, with a maximum of 56 thousand euros. Moreover, crop farmers receive 

relatively higher environmental payments averaging 3.87 thousand euros; the 

largest premium received is 498 thousand euros. 

 

Further, a dummy variable for 2015 to 2020 was included to capture the changes 

from the 2013 CAP reform. Despite the reform transition in 2014, the dummy 

started in 2015 to mark its full implementation (z4). This CAP reform, also called 

“CAP greening”, particularly aims to promote farm practices that will benefit the 

climate and environment wherein more stringent requirements are put in place than 

in the prior cross-compliance requirements. The reform focuses on receiving Pillar 
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1 direct payments where applying “greening” measures are prerequisite for the 

premiums received. 

 

Fourth is the inclusion of a lagged crop diversification index (CDI) (z3) in the 

model. A diversified crop production is said to contribute to food security and 

supports a wide range of ecosystem functions contributing to climate change 

adaptation and mitigation (Nilsson et al., 2022). This is interesting to assess since 

the crop diversity of Swedish crop farms has a declining trend implying more 

specialization in the sector (Nilsson et al., 2022; Schaak et al., 2023). In this study, 

the CDI is measured through the Herfindahl index (HI) as developed by Hirschman 

(1964), which is mostly used in the literature (Dessie et al., 2019; Fiszbein, 2022; 

Rahman, 2009). This index measures the extent of crop diversification of farms 

where a value of 0 means monoculture or perfect specialization while a value of 1 

means that the crop farm tends to become more diversified. Mathematically, this is 

measured through the following series of computations:  

 

Pc = 
Ac

∑ Ac
n
c=1

 

 

where 𝑃𝑐  is the proportion of the 𝑐 th crop cultivated under area 𝐴𝑐  measured in 

hectares, and the denominator ∑ 𝐴𝑐
𝑛
𝑐=1  is the total utilized agricultural area (in ha). 

 

Herfindhal index (HI) =  ∑Pc
2

n

c=1

 

 

Crop diversification index (CDI) = 1 − HI 

 

The average crop diversification index is 0.47, implying that many farms specialize 

(Table 1). An index of 0 is found, suggesting that some crop farms have 

monoculture production, while the largest index of 0.96 implies that some farms 

have highly diversified production. 

3.3 Empirical Model Specification 

Given the theoretical framework and variables discussed in the previous sections, 

this study follows the quadratic form of an output-oriented directional distance 

function (Equation 4) to specify the stochastic production frontier. Empirically, the 

model is: 

 

 

 

            [Eq. 7] 

            
 

            [Eq. 8] 

            
 

            [Eq. 9] 
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−ϑ = β0  + β1land + β2labor + β3var. inputs + β4assets 

+  β50.5 ∙ (land)2 + β60.5 ∙ (labor)2 + β70.5 ∙ (var. inputs)2 

+ β80.5 ∙ (assets)2  + β9land ∙  labor + β10 land ∙ var. inputs 

+β11 land ∙ assets + β12labor ∙ var. inputs + β13labor ∙ assets 

+ β14var. inputs ∙  assets + β15emission. y∗ 

+  β160.5(emission. y∗)2 +  β17land ∙ emission. y∗ 

+β18labor ∙ emission. y∗ + β19var. inputs ∙ emission. y∗ 

+ β20assets ∙ emission. y∗ − ηexp(τ0 + τ1crop. subsidies 

+ τ2envi. payments + τ3CAPdummy + τ4CDI ) + vi  

 

where the dependent variable, ϑ , is the undesirable output, GHG emissions 

measured in tCO2e; 𝛽0 , 𝛽𝑖 , 𝜏0 , and 𝜏𝑚  are the parameters estimated; 

emission.𝑦𝑖
∗ = 𝐹𝑁𝑉𝐴𝑖 + 𝐺𝐻𝐺𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖 ; and 𝑣𝑖  is the random error term. It is 

important to note that there is no dominant output in a DDF; hence the undesirable 

output is used as the dependent variable in this study. Since the dependent variable 

is negative, the signs of the detailed estimates, except for the inefficiency model, 

are reversed for straightforward interpretation (in Table 4). 

3.4. Computation of farm-level GHG Emissions 

 

In the computation of farm-level GHG emissions, the methodology proposed by 

Coderoni & Esposti (2018)  was followed which is also applied by recent studies 

(Baldoni et al., 2018; Coderoni & Vanino, 2022; and Stetter & Sauer, 2022). The 

methodology adopted a process-based approach in their computation which means 

that GHG emissions are based on each farm’s production processes, rather than per 

product or on consumer behavior. This method is an adaptation of the method used 

by the UN’s Intergovernmental Panel on Climate Change (IPCC) (2008) in 

computing GHG emissions per country, but computing it at the farm level instead. 

In Coderoni’s & Esposti’s (2018) conceptual framework, the computation of GHG 

emissions assumes a linear relationship between the emission factor (EF) and farm 

activity data. With this, this method can be easily applied to other EU member states 

using the emission factors from their country (Coderoni & Vanino (2022)).  

 

Firstly, data on implied emission factors (EF) in Sweden were obtained from the 

GHG Inventory database of the United Nations Framework Convention on Climate 

Change (UNFCC) (2022), while the farm activity data were obtained from the 

FADN dataset. The activity data corresponds to the sources of emission of the 

production system. Given the data availability of the FADN, only two sources of 

GHG emissions were computed for the field crops sector. These are emissions from 

energy use and agricultural soils (i.e. from the nitrogen content in fertilizers and 

            [Eq. 10] 
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crop residues utilization) (Table 2). Appendices 1 and 2 show the emission factors 

for Sweden, obtained from the UNFCC database from 2009-2020. 

Table 2. Emission source and corresponding activity data in the FADN 

GHG Emission source FADN Activity Data 

N2O Agricultural Soils – Direct emission  

 Use of synthetic fertilizers N fertilizers (N quantities/fertilizer 

expenditure) 

 Crop residues UAA / yield of crops 

   

 Agricultural Soils – indirect emission  

 Atmospheric deposition N fertilizers (N quantities/fertilizer 

expenditure) 

 Leaching and runoff N fertilizers (N quantities/fertilizer 

expenditure) 

   

CO2 Energy Energy expenditure 

 

 

In its general form, the equation used in determining farm-level emissions (𝐸𝑖) for 

the ith farm and lth emission source is: 

Ei = ∑EFl

L

l=1

 ×  ADi,l 

 

where 𝐸𝐹 is the emission factor, and 𝐴𝐷 is the activity data in the FADN data set. 

3.4.1. Emissions from Agricultural Soils 

 

The emissions from agricultural soils identified in this study are anthropogenic 

nitrous oxide (N2O) emissions. When there is an increase in the available nitrogen 

(N) in the soil, the level of nitrous oxide naturally produced in soils also increases 

because of the faster rates of nitrification and denitrification process, which further 

causes a higher production of N2O (Hergoualc’h et al., 2019). Two pathways are 

assessed separately in this study, direct and indirect emissions. For this section, the 

refined 2019 IPCC guidelines by Hergoualc’h et al. (2019) were followed. First, 

N2O-N emissions are computed and then converted to N2O emissions. 

Mathematically,  

 

N2O =  N2O − N ∙
44

28
 

 

            [Eq. 11] 

            
 

            [Eq. 12] 
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Direct N2O emissions  

 

Direct emissions pertain to the added or released nitrogen (N) into the soils. As 

mentioned, when there is an increase in the naturally available N in soils, from 

various sources, a higher production of N2O occurs. The sources of added N 

included in the exhaustive calculation of N2O emissions by Hergoualc’h et al. 

(2019) are from the direct application of synthetic fertilizer, organic fertilizer, urine 

and dung, crop residues, from N mineralization from land use change, or in 

management of organic soils. However, only two sources are computed in this study 

because of the lack of data available in the FADN. These are the use of synthetic N 

fertilizers and N in crop residues. 

 

The total annual direct N2O-N emission in inputs, 𝑁2𝑂 − 𝑁𝑑𝑖𝑟𝑒𝑐𝑡 (measured in kg 

N2O-N per year), comprises N in fertilizers and N in crop residues. This was 

computed using Eq. 13 with the necessary emission factor in Appendix 1. 

 

N2O − Ndirect =  (FSN + FCR) × EF1             [Eq. 13] 

 

where 𝐹𝑆𝑁 is the amount of N in fertilizer applied to soils (in kg N per year) and 

𝐹𝐶𝑅 is the total amount of N in crop residues (in kg N per year). Data on the quantity 

of N in fertilizer applied is available in the FADN, but only from 2016 to 2020. 

This data was not compulsory to be reported in the prior years. In estimating the 

data gap of 𝐹𝑆𝑁 for 2009 to 2015, the ratio of the quantity of N to the fertilizer 

expenditure was computed for the years 2016 to 2020, which resulted in 1.47 

kilograms, on average. This value is then multiplied by the corresponding fertilizer 

expenditures for the year 2009 to 2016. This method of estimation was also done 

by Coderoni & Vanino (2022) who were using the Italian FADN to fill data gaps. 

 

Moreover, the 𝐹𝐶𝑅 (measured in kg N per year) constitutes the above-ground and 

below-ground crop residues. However, only the below-ground crop residues were 

estimated because of the lack of available data for the actual amount of above-

ground crop residues applied. To proxy the amount of N for the above-ground crop 

residues and simplicity, the estimated N in below-ground crop residues was 

doubled. This was done after recommendations from experts. Eq. 14-16 adapted 

from Hergoualc’h et al. (2019) are used to compute for 𝐹𝐶𝑅. 

 

FCR = [BGR(T) ∙  NBG(T)]  ∙  2           [Eq. 14]  

BGR(T) =  Crop(T) ∙  RS(T) ∙  Area(T) ∙  FracRenew(T)          [Eq. 15] 

Crop(T) = Yield Fresh(T) ∙  DRY           [Eq. 16] 
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where: 

 

BGR(T)   = total below-ground crop residue for crop T (kg dry matter (d.m.) per 

year) 

NBG(T)   = N content of below-ground crop residues (kg N per d.m. per year) 

(default values in Appendix 3) 

Crop(T)  = harvested yield of crop T (kg d.m. per year) 

RS(T)   = ratio of below-ground root biomass to above-ground biomass (kg 

d.m. per ha per year) (Appendix 3) 

Area(T) = area of harvested crop T (ha per year) 

FracRenew(T) = fraction of area under crop T renewed annually where  

annual crops = 1, while crops renewed for more than X years is equal 

to 1/X. 

Yield Fresh(T) = harvested fresh yield for crop T (kg per ha per year) 

DRY  = dry matter fraction of harvested crop T (kg d.m.) (Appendix 3) 

 

Indirect N2O Emissions 

 

For indirect N2O emissions, two (2) pathways are involved. One path is when N 

volatilizes as ammonia (NH3) and oxidizes as nitric oxide (NOx), and the 

atmospheric deposition of these gases and their products goes to the surface of water 

bodies or lakes. Another path is when some excess N in or on the soil leaches and 

runs off from land and flows through pipe drains, ditches, rivers, water bodies, or 

groundwater under the land where N is applied (Hergoualc’h et al., 2019).   

 

In the computation of N2O emissions from atmospheric deposition from the 

volatilization of N ( 𝑁2𝑂 − 𝑁𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 measured in kg of N2O-N per year), one 

source of indirect emissions was identified, i.e., the N in fertilizers applied. This 

was computed using Eq. 17. 

 

N2O − Ndeposition =  (FSN ∙  FracGASF) ∙  EF2            [Eq. 17] 

 

where 𝐹𝑟𝑎𝑐𝐺𝐴𝑆𝐹 is the fraction of N in fertilizer that volatilizes as NH3 and NOx 

(default values in Appendix 4), and 𝐸𝐹2 is the emission factor from atmospheric 

deposition (Appendix 1). 

 

For the indirect N2O emissions from leaching and runoff ( 𝑁2𝑂 − 𝑁𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔  

measured in kg N2O-N per year), the emission sources identified were the N in 

fertilizer utilization and crop residues. Mathematically, Eq. 18 was utilized. 
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N2O − Nleaching =  ((FSN + FCR) ∙  FracLEACH) ∙  EF3           [Eq. 18] 

 

where 𝐹𝑟𝑎𝑐𝐿𝐸𝐴𝐶𝐻 is the fraction of N input to managed soils that is lost through 

leaching and runoff (Appendix 4), and 𝐸𝐹3 is the emission factor from N leaching 

and runoff (Appendix 1). 

3.4.2. Emissions from Energy Use 

 

Regarding energy use, Sweden had a decreasing trend in using fossil fuels but rising 

use of biofuel from 1970 to 2019 (Swedish Energy Agency, 2021). However, the 

agriculture sector is still utilizing petroleum products mainly for farm machinery 

and equipment. According to the report of the Swedish Board of Agriculture (2021), 

only around one-third of the share of energy use are biofuels; the rest are fossil fuels 

in 2019. With this, the study assumed that the energy expenditure of farms was 

from the use of fossil fuels. In addition, a few non-CO2 GHGs are also emitted, 

such as CH4 and N2O (Amous, 2019), which are also considered in our 

computation.  

 

In computing CO2, CH4, and N2O emissions, Eq. 11 was used. In the UNFCC 

database, different emission factors are available depending on the classification of 

fuel, i.e., biomass, gaseous fuels, liquid fuels, and other fossil fuels, and the type of 

gas. This EF gives the amount of emission per gigajoules. However, the activity 

data available in the FADN does not have segregated classifications of utilized fuel 

to fulfill calculations. Instead, it aggregates all energy expenditures, measured in 

euros, encompassing motor fuels and lubricants, electricity, and heating fuels. With 

this, energy expenditures were converted to gigajoules through the use of average 

natural gas prices (measured in euro/gigajoule) in Sweden from 2009 to 2020. This 

was further converted to terajoules. Since there is no disaggregated fuel 

classification in energy expenditure, the average EF across all fuel classifications 

was computed (shown in Appendix 2) and multiplied by the converted energy 

expenditure data.  

3.4.3. Total Farm GHG Emissions 

 

To sum up, the various types of GHGs emitted from the identified sources, CH4 and 

N2O emissions, were converted to tonnes of CO2 equivalent (tCO2e) based on their 

global warming potential (GWP). The GWP of CH4 and N2O at 25 and 298, 

respectively, were used in the computation (Forster et al., 2007).  

 

Disentangling the different sources of emission, Table 3 shows that direct N2O 

emission from nitrogen in fertilizers used is the most significant source (with a 
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mean of 129 tCO2e). However, its indirect emissions are found to be minimal. This 

finding aligns with the report of the Swedish Environmental Protection Agency 

(2022) that the utilization of mineral fertilizer has increased in Sweden in recent 

years due to increased sales. Another significant contributor to farm-level GHGs is 

carbon dioxide (CO2) emissions from energy use (mean of 84 tCO2e). This is due 

to the fact that farm machinery in Europe, especially in Sweden, predominantly 

relies on fossil fuel use because of technology design (Paris et al., 2022). 

Table 3. Descriptive statistics of total farm GHG emissions (in tonne CO2 equivalent) (n=2197) 

Variable Symbol Mean Std. Dev. Min. Max. 

Total GHG Emissions y2 295.4741 423.8168 5.9722 4.24E+03 

Energy      

CO2 emission  84.0357 127.3318 0.6613 1.84E+03 

CH4 emission  0.2374 0.3550 0.0016 5.4308 

N2O emission  0.7376 1.1128 0.0058 16.2963 

Fertilizer      

Direct N2O emission  129.6081 243.1479 0.0047 3.10E+03 

Indirect N2O emission:       

Atmospheric Deposition  2.5922 4.8630 0.0001 61.9867 

Leaching / Runoff  25.3558 40.8592 0.0625 439.5222 

Crop Residues      

Direct N2O emission   52.9074 94.6394 0.3231 1.29E+03 
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4. Results and Discussion 

4.4. Parametric estimation of the DDF, elasticities, and 

relative shadow price 

In the parametric estimation of the directional distance function (DDF), different 

models were compared through a likelihood ratio test (LR test) to determine the 

model with the best fit. Appendix 5 presents four models with distinct specifications 

and their respective log-likelihood values and degrees of freedom (df). Initially, a 

basic model (M1) with only output and input variables was evaluated to determine 

if there was a need to include inefficiency variables. M1 shows a  𝜎𝑢 of 0.7013, 

which is significant at 1% level (Appendix 6), implying that certain farm-specific 

characteristics significantly influence the dependent variable; hence, adding 

inefficiency terms to the model is justified and necessary. 

   

From the LR test results in Appendix 5, Model M4 exhibited the highest log-

likelihood value of -1005.05 and a df of 347, among other models, suggesting that 

including inefficiency variables substantially improved the model specification. 

With this, M4 is selected as the final model, and the results are presented in Table 

4. 

 

As described in the methodology, all variables are normalized with their means 

before doing the one-step estimation of the DDF and the eco-inefficiency model. 

Results indicate mostly significant coefficients among variables (Table 4). Of 

particular importance are variables 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛. 𝑦∗ and 0.5 ∙ (𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛. 𝑦∗)2, with 

corresponding parameter estimates of 𝛽15  and 𝛽16  in the model specification. It 

demonstrates positive coefficients of 0.345 and 0.021, which are significant at 1% 

level. These findings imply that GHG emissions are indeed an undesirable output 

and pose a significant problem that should not be ignored in the Swedish crop 

sector. While Sweden has commendable performance in reducing GHGs over time 

(Figure 1), the recent increase in GHG emissions from 2018 should serve as a 

caution to take action. 
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Table 4. Parametric estimation of the directional distance function 

Variables Coef. Std. Err. 

Stochastic frontier normal/half-normal model   

Dependent variable: 𝜗   

   

land  0.248* 0.129 

labor  0.107* 0.062 

var. inputs  0.486*** 0.104 

assets (excl. land)  0.163*** 0.062 

0.5•land2 -0.240*** 0.062 

0.5•labor2  0.013 0.012 

0.5•var.inputs2 -0.281*** 0.033 

0.5•assets2 -0.133*** 0.022 

land•labor -0.205*** 0.025 

land•var.inputs -0.054** 0.026 

land•assets  0.032 0.025 

labor•var.inputs  0.114*** 0.017 

labor•assets -0.180*** 0.023 

var.inputs•assets  0.311*** 0.026 

emission.y*  0.345*** 0.021 

0.5•(emission.y*)2   0.021*** 0.006 

land• emission.y*  0.065*** 0.012 

labor• emission.y* -0.033*** 0.009 

var.inputs• emission.y* -0.007 0.013 

assets• emission.y* -0.049*** 0.007 

Usigma   

Crop subsidies  0.013* 0.008 

Environmental Payments  0.159*** 0.016 

CAP 2013 reform implementation -7.224*** 1.698 

Crop  diversification index -1.209*** 0.365 

Constant -1.754*** 0.392 

Vsigma   

constant -1.996*** 0.035 

E(sigma_u)  2.3619  

sigma_v  0.3686*** 0.007 
   

Log likelihood = -1005.0513 

Number of observations 2121 

Prob > chi2   = 0.0000 

Wald chi2(20)  3832.63 

*Significant at 10% level (P < 0.10), **Significant at 5% level (P < 0.05), ***Significant at 1% level (P < 0.01) 



33 

 

In line with classical economic theory, the model also exhibits consistent results 

with regard to inputs. Specifically, all four inputs, land, labor, variable inputs, and 

assets (denoting capital), show the expected positive signs, indicating that an 

increase in these factors will enhance the production potential significantly 

(p<0.01). To highlight, variable inputs are the most important variable that 

contributes largely to improving the production potential and closing the frontier 

distance. It has the highest significant coefficient of 0.486, suggesting that variable 

inputs offer the highest level of flexibility for farmers to adapt when production 

conditions change. 

 

Moreover, the estimates of the DDF were used to calculate the elasticity of distance 

with respect to outputs. A t-test followed to determine whether these elasticities are 

statistically different from 0. This comprehensive analysis aimed to understand the 

importance of the two outputs defined in this study in the context of production. 

Results adhered to the monotonicity condition for outputs, such that the good output 

is negative, i.e.,  𝜕 (𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏; 1, −1))/ 𝜕𝑦 ≤ 0 , and undesirable output is 

positive, i.e., 𝜕 (𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏; 1, −1))/ 𝜕𝑏 ≥ 0 , which are both significant at 1% 

level (Table 5). The elasticity of distance to the frontier with respect to the good 

output, denoted as 𝜀𝑦 , is -0.3423, and with respect to the undesirable output, 

denoted as 𝜀𝑏, is 0.6577. These findings imply that if the good output (FNVA) is 

increased by 1%, the distance to the frontier will be reduced by 0.342%, leading to 

better overall performance. Conversely, a 1% increase in undesirable output (farm-

level GHG emissions) expands the distance by 0.658%, indicating poorer 

performance. This suggests that if crop farmers prioritize increasing FNVA while 

simultaneously reducing the use of mineral fertilizers and fossil fuel, which in turn 

lowers the level of farm GHG emissions, higher productivity can be achieved with 

lesser environmental damage, promoting sustainability.  

Table 5. Elasticities of distance with respect to outputs (n=2197) 

Variable Mean SD Min. Max. 

Output elasticities     

𝜀𝑦 -0.3423*** 0.0819 -1.408 0.8379 

𝜀𝑏  0.6577*** 0.0819 -0.408 1.8379 

In testing whether the means are significantly different from 0, 

*Significant at 10% level (P < 0.10), **Significant at 5% level (P < 0.05), ***Significant at 1% level (P < 0.01) 

 

Furthermore, elasticity estimates in Table 5 were utilized to derive the relative 

shadow price of GHG emissions to the FNVA to understand the relationship 

between the two output variables. Shadow prices are usually negative indicating 

that the output is indeed undesirable (Färe et al., 1993); hence, it is converted to 

absolute values. Our finding reveals a relative shadow price of 1.94 at the sample 

mean (Table 6). This result imply that the cost of emitting one unit of GHG at the 
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farm exceeds the net value-added of producing one unit of crop. Consequently, 

reducing a tonne of CO2 equivalent GHG emissions from crop production in 

Sweden incurs substantial marginal abatement costs.  

Table 6. Relative shadow price (n=2197) 

Variable Mean Std. Dev. Min. Max. 

Relative shadow price (−𝑝 (
𝜀𝑏

𝜀𝑦
)) 

 
1.942446 5.979363 -251.4883 79.6969 

4.5. Eco-efficiency estimation and inefficiency model 

 

After estimating the directional distance function and the inefficiency model, the 

eco-inefficiency scores were predicted and shown in Table 7. The result reveals that 

the average eco-efficiency score of crop farms is notably high at 0.90, signifying a 

10% inefficiency of farms that can potentially be improved. Keeping their current 

input levels unchanged, Swedish crop farms can simultaneously increase their farm 

net value added by 10% and decrease farm GHG emissions at the same rate. 

Looking at the distribution of farms within different eco-efficiency ranges (Table 7 

and Figure 2), the majority of farms (approximately 90% of them) have eco-

efficiency of more than 0.80. Half of the sample (50.34%) have an eco-efficiency 

of more than 90% with a mean of 0.99, implying that most of the crop farms are 

producing with minimal environmental damage and only require relatively lesser 

effort to reach the production frontier. Around 39% fall within the range of 0.80 to 

less than 0.90 with a mean eco-efficiency of 0.84. 

 

However, focusing on farms (approximately 10% of the sample) falling into the 

lower eco-efficiency ranges (less than 0.80) is also essential. Among this subset, 

8.83% of the farmers fall between 0.70 and 0.80, with a mean of 0.76. Meanwhile, 

farmers with the lowest mean eco-efficiency score of 0.50 (2% of the sample) have 

substantial potential to increase both FNVA and reduce GHG emissions by 50% 

while using the same current level of inputs. In line with this, addressing the 

environmental performance of these specific farms through targeted policy 

instruments is crucial. 

 

When comparing the eco-efficiency scores across the three regions in Sweden 

(Table 8), (1) southern and central plains, (2) southern and central forest and valley, 

and (3) northern, it shows that the regions only exhibit minimal differences in their 

eco-efficiency levels (i.e., means of 0.90, 0.91 and 0.92, respectively).  
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Table 7. Summary of eco-efficiency (n=2197) 

Variable n % Mean 

EE < 0.70 38 1.73 0.50 

0.70 ≤ EE < 0.80 194 8.83 0.77 

0.80 ≤ EE < 0.90 859 39.10 0.84 

EE > 0.90 1106 50.34 0.99 

Total 2,197 100.00 0.90 

 
Figure 2. Frequency of crop farms in different eco-efficiency ranges 

Table 8. Eco-efficiency scores by region 

Region       n (%) Mean 

Southern and Central Plains 1841 (83.8) 0.90 

Southern and Central Forest & Valley 223 (10.15) 0.91 

Northern 133 (6.05) 0.92 

 

 

Regarding the inefficiency component of the model, the determination of the final 

variables followed the general-to-specific modeling method of Hendry (1980). This 

method, which is also implemented in eco-efficiency studies of Huang et al. (2023) 

and Huang & Bruemmer (2017), selects only the variables that improved the 

likelihood ratio test. The results are presented in Table 4 under Usigma. In the 

interpretation, the dependent variable is inefficiency, so a negative coefficient 

contributes positively to eco-efficiency. Conversely, a positive coefficient indicates 

a contribution to inefficiency.  

 

Surprisingly, results reveal that the variables of particular interest, crop subsidies 

and agri-environmental payments, resulted in positive coefficients of 0.013 and 

0.159, which are statistically significant at 10% and 1% level, respectively. This 

result means that these variables have a positive relationship with inefficiency, 

meaning they contribute negatively to being eco-efficient. Moreover,  the dummy 
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variable capturing the CAP reform in 2013 and the level of crop diversification 

generate negative coefficients of -7.224 and -1.209 that are both significant at 1% 

level, suggesting a negative relationship with inefficiency; hence these variables 

lead to increased farm eco-efficiency. 

4.3. Discussion on factors influencing inefficiency 

 

The findings from the inefficiency model identify crop subsidies and agri-

environmental payments as significant factors leading to reduced eco-efficiency. 

Increasing the crop subsidies received by farms does not result in an improvement 

in eco-efficiency; instead, it leads to increased inefficiency. This result is expected 

since the specific crop subsidy analyzed is a coupled subsidy, where farmers receive 

the premium as compensation for planting certain crops (e.g., COP or energy crops) 

and set aside land for non-food crops and other farm subsidies. This result supports 

previous findings linking subsidies to the decreased managerial effort of farmers 

(Latruffe et al., 2016; Cillero et al., 2021) and to changes in farmers’ risk attitudes 

potentially due to an income safety (Serra et al., 2008) leading to reduced farm 

efficiency (Minviel & Latruffe, 2017). 

 

Regarding agri-environmental payments in Sweden, premiums alone do not induce 

improvements in farm eco-efficiency performance. These payments support 

organic production, reduced nitrogen leaching, establishing buffer zones, 

implementing ley farming, and funding environmental investments to improve 

water and soil management.  This result contradicts the conclusions of Picazo-

Tadeo et al. (2011) when assessing Spanish farms and Bonfiglio et al. (2017) on 

Italian farms where they both found participation in agri-environmental schemes 

associated with higher eco-efficiency. However, our findings align with Cillero et 

al. (2021), who observed a negative relationship between environmental payments 

and farm efficiency, which could likely be due to the limited utilization of specific 

inputs when farmers receive this premium. By limiting certain inputs, it affects 

technical efficiency, thereby reducing eco-efficiency. However, the authors noted 

that the relationship is heterogenous and context-specific since they also found a 

positive relationship in other EU member states. Ait Sidhoum et al. (2022) even 

found insignificant association. Nevertheless, our finding coincides with studies 

criticizing the CAP’s voluntary agri-environmental schemes (AES) due to its cost-

ineffectiveness (i.e., it is expensive but has little to no impact) (European Court of 

Auditors (ECA), 2021; Pe’er et al., 2020) and poor policy design (Batáry et al., 

2015). 
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Despite the inverse relationship between specific subsidies and eco-efficiency,  the 

2013 CAP reform significantly increases eco-efficiency. The dummy variable 

captures the policy changes of the reform from its implementation in 2015, where 

the reform focused on the changes in decoupled payments, i.e., the single payment 

scheme (SPS) and single area payment scheme (SAPS), and most importantly, the 

“CAP greening” measures introduced with it. Our finding could plausibly be due 

to the reform’s more stringent conditions of CAP greening measures such that agri-

environmental practices (e.g., crop diversification, maintenance of permanent 

grassland and ecological focus area (EFA)) should be done alongside production, 

and this provides the basis for farmers receiving decoupled payments at a reduced 

rate or forfeit it all (Ciaian et al., 2018). The results of our inefficiency model have 

shown that the design of the reform is significantly effective in improving eco-

efficiency. 

 

From these results, a heterogenous effect of the CAP policy is found when specific 

subsidies (measured in monetary values) like crop subsidies and agri-environmental 

payments lead to inefficiency, while the dummy variable capturing reform changes 

reversed the results. Even though the CAP greening measures in decoupled 

payments and environmental subsidies require the implementation of specific agri-

environmental schemes in their farm, the former (as part of Pillar 1) is used as the 

basis for the amount received for basic payments, the SPS or SAPS; while the latter 

(as part of Pillar 2) is provided through voluntary contracting and received by 

farmers who chose to enroll. With this, introducing a substantial monetary 

consequence in receiving premiums creates a more demanding cross-compliance 

condition of the “greening” element, thus encouraging farmers to put more effort 

into increasing their farm eco-efficiency. Hence, as part of the CAP rural 

development program (Pillar 2), environmental payments should also impose 

stricter conditions or regulations accompanied by a monetary consequence. Other 

types of policy instruments could also be explored, such as results-based agri-

environmental payments, where premiums are also based on implementation 

outcomes rather than just on prescribed practices (OECD, 2022). Although out of 

the scope of the thesis, this could be a promising avenue for future research. 

 

Additionally, the study confirmed that past levels of crop farm diversity influence 

an improvement in current eco-efficiency performance. This result could plausibly 

be due to how high crop diversity mitigates environmental risks by improving 

nutrient cycling, thereby increasing soil fertility and diversity and water regulation 

(Tamburini et al., 2020), and also maximizes agriculture output by maximizing 

yields or minimizing production costs (Zeng et al., 2020). This finding also 

coincides with Nemecek et al. (2015), who found that diversification of intensive 

crop rotations in combination with nitrogen management improved the eco-
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efficiency of French cropping systems. Likewise, the same conclusions are drawn 

by Zeng et al. (2020), although they stated that regional differences could occur. 

Given Sweden’s decline in crop diversification (Nilsson et al., 2022), implementing 

stronger regulations and incentives is essential to encourage farmers to adopt 

diverse crop rotations. 
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5. Conclusions and Limitations 

This study delves into the concept of eco-efficiency (EE) by incorporating farm 

GHG emissions as undesirable output to analyze the environmental performance of 

Swedish crop farms. Specifically, this thesis aims to (1) determine farm-level GHG 

emissions, (2) assess the eco-efficiency of Swedish crop farms, and (3) investigate 

the factors influencing eco-efficiency levels, with a specific focus on the role of 

specific CAP subsidies.  

 

Using an unbalanced panel from the Swedish FADN spanning 11 years from 2009 

to 2020, this study contributes to the emerging literature in eco-efficiency 

estimation where a parametric estimation of the directional distance function (DDF) 

approach through a stochastic frontier analysis (SFA) was used. Through this, it 

allowed us to determine how much crop farms can increase their level of farm net 

value-added (desirable output) while decreasing their GHG emissions (undesirable 

output) simultaneously. This also contributes to the relatively novel literature on 

computing GHG emissions at the farm level using the innovative method proposed 

by Coderoni & Esposti (2018) while adhering to the IPCC guidelines, leveraging 

available data in the FADN. 

 

Findings reveal that Swedish crop farms are emitting an average of 295 tonnes of 

CO2 equivalent GHGs predominantly from nitrogen in fertilizer and energy use. 

Notably, Swedish crop farms are highly eco-efficient, with a mean of 0.90. The 

estimated eco-efficiency level suggests that crop farms can simultaneously increase 

farm net value added and reduce farm GHG emissions by 10%, while keeping 

current input levels. The distribution of eco-efficiency shows that high EE level is 

found for more than half of the farms, with only a few (10% of the farms) exhibiting 

lower EE levels. Moreover, our assessment highlighted that crop subsidies and 

environmental payments lead to reduced eco-efficiency. In contrast, the 2013 CAP 

reform implementation and higher levels of crop diversification contribute 

positively to eco-efficiency. 

 

These findings hold significant implications for policymakers and crop farmers in 

Sweden. To support the environmental performance of crop farms, policy 

interventions targeting the reduction of mineral fertilizer use and promoting the 

adoption of new farm technology reliant on bio-fuels or fossil-energy-free energy 

are recommended. Incentivizing crop diversification could be done to encourage 

diversification as it increases eco-efficiency. Understanding the nuanced 

relationship between eco-efficiency and the CAP, including a substantial monetary 
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consequence in receiving subsidies with stringent cross-compliance conditions, is 

essential to foster eco-efficient practices on crop farms. 

 

It is important to note that only specific subsidy variables (measured in monetary 

values and dummy variables) are included in this study. Additional research could 

be done to explore other types of subsidies (measured in different ways) to 

disentangle their effects and provide more robust insights. Additionally, extending 

the analysis for a longer period would allow a deeper understanding of the impacts 

of different reforms. Moreover, an eco-efficiency comparison between production 

types (i.e., conventional vs. organic) is an avenue for further research. Since the 

sample of organic farms in Sweden is small (around 7%), a larger sample is needed 

to yield more comparable and comprehensive insights. Sensitivity analysis could 

also be done by varying the implied emission factors (EF) in the computation of 

farm-level GHGs. 

 

Most importantly, this study faced limitations in calculating GHG emissions due to 

the data availability constraints in the FADN dataset. Data on nitrogen in fertilizer 

use was only available after 2015; energy expenditures were not disaggregated to 

fossil fuel or renewable energy, and no data available on the applied above-ground 

residues. With the importance of “greening” the common agricultural policy (CAP), 

it is recommended to add variables to capture the negative impacts of other 

practices, such as the use of pesticides, urine, and animal manure. An update on the 

measurement of certain variables in the FADN is also needed; for instance, green 

and fossil-fuel energy expenditures are disaggregated. A broader range of data and 

longer timeframes would allow for the assessment of farm environmental indicators 

more effectively. Improvements in the FADN are crucial for future research to 

produce more accurate results, which is essential in informing policy improvements 

and reforms. 

 

 

 

 

 

 



41 

 

I would like to acknowledge all the important people who made this journey a 

success. First and foremost is to my thesis supervisor, Dr. Vivian Wei Huang, for 

sharing her profound expertise, invaluable time and utmost patience in mentoring 

me through this thesis to its completion. I am also thankful to the Swedish Board 

of Agriculture for providing me with access to the Swedish FADN dataset. My 

heartfelt gratitude also to the Erasmus Mundus Association for the generous 

financial support through the EMJMD scholarship, and to the AFEPA program for 

granting me the opportunity to pursue my passion and receive mentorship in 

esteemed universities in Europe. Your support is integral to my career aspirations. 

I would also like to sincerely thank my family and fiancé for their love and 

unconditional support, and to my AFEPA program classmates for the sense of 

friendship making my AFEPA journey not only enriching but also enjoyable. 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 



42 

 

Appendix Table 1. Default emission factors (EF) for emissions from agricultural soils in Sweden 

Sources 
2009-2020 

kg N2O-N/kg N 

Direct Emission  

N Fertilizers (EF1) 0.01 

Crop Residues (EF1) 0.01 

Indirect Emission  

Atmospheric Deposition (EF2) 0.01 

Nitrogen Leaching and Runoff (EF3) 0.01 

Source:  UNFCC (2022)  

Appendix 1 
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Appendix 2 

Appendix Table 2. Emission factor (EF) for emission from energy sources in Sweden 

Year 

Carbon 

Dioxide 

(CO₂) 

Methane 

(CH₄) 

Nitrous 

Oxide 

(N₂O) 

t/TJ kg/TJ kg/TJ 

2009 74.43 12.54 2.34 

2010 74.52 12.16 2.34 

2011 74.45 10.87 2.32 

2012 74.10 9.91 2.27 

2013 73.67 7.65 2.20 

2014 73.27 7.70 2.12 

2015 72.89 7.13 2.02 

2016 72.49 6.82 2.00 

2017 72.50 6.89 2.04 

2018 71.59 6.92 2.07 

2019 72.55 6.85 2.10 

2020 72.12 6.77 2.14 

Source: UNFCC (2022) & averages from author’s calculation 
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Appendix 3 

Appendix Table 3. Default values for NBG, RS, and DRY per crop type 

Crops 

N content 

in below-

ground 

residues 

(NBG) 

Ratio of 

below-

ground 

biomass to 

above-

ground 

biomass 

(RS) 

Dry matter 

fraction of 

harvested 

product 

(DRY) 

Generic value for crops not indicated 0.009 0.22 0.85 

Generic grains 0.009 0.22 0.88 

Winter Wheat 0.009 0.23 0.89 

Spring Wheat 0.009 0.28 0.89 

Oats 0.008 0.25 0.89 

Maize 0.007 0.22 0.87 

Rye 0.011 0.22 0.88 

Potatoes and Tubers 0.014 0.20 0.22 

Forages 0.022 0.40 0.90 

Perennial Grasses 0.012 0.80 0.90 
Source: 2019 refinement to 2006 IPCC Guidelines (Hergoualc’h et al., 2019)    
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Appendix 4 

Appendix Table 4. Default values for the computation of indirect N2O emissions for Sweden 

Year FRACGASF FRACLEACH 

2009 0.02 0.15 

2010 0.02 0.14 

2011 0.02 0.15 

2012 0.02 0.15 

2013 0.02 0.14 

2014 0.02 0.13 

2015 0.02 0.13 

2016 0.02 0.13 

2017 0.02 0.12 

2018 0.02 0.13 

2019 0.02 0.13 

2020 0.02 0.12 

Source:  UNFCC (2022)  
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Appendix 5 

Appendix Table 5. Hypothesis test for model selection 

Model Description Log likelihood value df 

M1 
Basic model without inefficiency  (z) 

variables 
-786.935 343 

M2 
Model with only  subsidy variables in the 

inefficiency (z) term (z3=z4=0) 
-617.063 345 

M3 
Model without subsidy variables in the 

inefficiency (z) term (z1=z2=0) 
-757.730 344 

M4 
Final model  presented in the paper with 

all inefficiency (z) variables 
-1005.051 347 
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Appendix 6 

Appendix Table 6. Parametric estimation of DDF with the basic model (without inefficiency 

component) 

Variables 
M1 (Basic Model) 

Coef. Std. Err. 

Stochastic frontier normal/half-normal model   

Dependent variable: 𝜗   

   

land -0.418*** 0.078 

labor 0.072** 0.033 

var. inputs 0.178** 0.075 

assets (excl. Land) 0.260*** 0.064 

0.5•land2 0.068*** 0.024 

0.5•labor2 -0.029** 0.014 

0.5•inputs2 -0.294*** 0.038 

0.5•assets2 -0.131*** 0.027 

land•labor -0.030 0.021 

land•inputs 0.046*** 0.010 

land•assets -0.026 0.022 

labor•inputs 0.155*** 0.021 

labor•assets -0.231*** 0.027 

inputs•assets 0.275*** 0.031 

GHGemission 0.457*** 0.019 

0.5•GHGemission2 0.039*** 0.006 

land•GHGemission -0.050*** 0.008 

labor•GHGemission -0.054*** 0.008 

inputs•GHGemission -0.007 0.013 

assets•GHGemission -0.006 0.008 

Usigma   

Constant -0.710*** 0.031 

Vsigma   

constant -21.172*** 4.525 

E(sigma_u) .7012718*** .010773 

sigma_v .0000253 .0000572 

Log likelihood = -786.9353 

Number of observations 2121 

Prob > chi2   = 0.0000 

Wald chi2(20)  2.83e+07 
*Significant at 10% level (P < 0.10), **Significant at 5% level (P < 0.05),***Significant at 1% level (P<0.01) 
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