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Accurate biomass and leaf area index (LAI) estimation are crucial for understanding forest 

productivity and carbon dynamics. Models are crucial to estimating forest biomass and LAI. This 

study aimed to estimate site-specific aboveground biomass and LAI in a young Scots pine stand in 

southern Sweden. Destructive sampling was carried out to obtain data for biomass and LAI. Site-

specific models were developed, including an individual tree LA model based on diameter at breast 

height (DBH), LAI models based on stand density (LAImodel1) and basal area (LAImodel2), stand-level 

biomass models developed based on stand density and basal area as independent variables, and tree-

level biomass models developed based on DBH. Directly measured LAI values were used to validate 

a generalized LICOR model for indirect LAI estimation, which was compared to the site-specific 

LAI model developed in this study. Evaluation metrics such as mean absolute error (MAE), mean 

squared error (MSE), and root mean squared error (RMSE) were used to compare the site-specific 

and generalized model. Results showed that site-specific LAI models of this study gave reasonable 

estimates (LAImodel1 have MAE = 0.166, MSE = 0.039, RMSE = 0.198, and LAImodel2 – MAE = 

0.011, MSE = 0.000, RMSE = 0.015) compared to the generalized model (MAE = 0.66, MSE = 

0.435, RMSE = 0.66). Directly measured LAI and indirectly measured LAI using the generalized 

LICOR model had a weak correlation (R2 = 0.1339). For stand-level biomass models, stand density 

showed moderate correlation (R2 = 0.49) to the total stand biomass, and basal area was strong 

correlation (R2 = 0.75) with the total stand biomass. These findings demonstrate the importance of 

using site-specific models to reduce prediction errors when estimating biomass and LAI in forest 

stands. 
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1.1 The Concept of Forest Biomass  

Biomass is a term that has been used across different fields, including agricultural 

sciences, renewable energy, biological sciences, environmental sciences, and 

forestry, to mean almost the same thing with little alterations. The difference in the 

meaning across these fields may be regarding their origin, end-use, or composition 

of the organic matter. Biomass, in simple terms, refers to the total mass of organic 

matter produced by living organisms (West 2014; Kumar et al. 2021; Page-

Dumroese et al. 2022). This organic matter can come from different sources, 

including plants, animals, and microorganisms (Roberts et al. 2015; Wasmi & Salih 

2021). In forestry, the biomass of trees is the focus, and it includes all parts of a 

tree, like the branches, stem, leaves, needles, stumps, roots, and fine roots (Page-

Dumroese et al. 2022). 

Forest biomass is the most abundant biomass found on land, having about 70 - 

90% of the terrestrial biomass (Houghton 2008). This biomass is essential to the 

survival of humans and animals alike. For example, in Sweden, forest biomass for 

timber, pulp, and paper production accounts for 73.5% of the biomass used within 

the country (Kumar et al. 2021). The importance of forest biomass is not limited to 

this. It is used as part of nature-based solutions to achieve the Sustainable 

Development Goals (SDGs), especially goal 13 – climate action, which is gaining 

much attention (Millennium Ecosystem 2005; IPCC 2022). Using the forest as an 

SDG tool is closely associated with the range of ecosystem services that it provides 

to both the people and the planet (Millennium Ecosystem 2005). For example, 

forest biomass is a source of foreign exchange for countries like Canada, Finland, 

Brazil, Sweden, The Russian Federation, the United States, and China, to mention 

a few (Oishimaya 2017). In Sweden, the forest industry exports more than 85% of 

its products, making it the fifth largest exporter of pulp, paper, and sawn timber 

worldwide. They also contribute to Sweden’s national GDP and provide more than 

100,000 jobs (Hallsten & Heinsoo 2016). 

1. Introduction 
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1.1.1 Factors Affecting Forest Biomass Production 

The different services the forest provides make it necessary to maximize the forest 

and increase its productivity as much as possible. An increased understanding of 

the requirements and characteristics of tree biology by researchers and forest 

managers is essential to optimize land use and increase forest productivity. To do 

so, foresters/forest managers need to understand the requirements and 

characteristics of tree biology. 

Some conditions are necessary for tree growth. These requirements are optimum 

sunlight, carbon dioxide (CO2) from the atmosphere, well-aerated soil with 

optimum temperature, water, and nutrients from the ground (West 2014). The 

combination of these factors enables the process of photosynthesis possible. Simply 

put, photosynthesis is the process by which plants produce food. Its food increases 

its biomass, i.e., growth (West 2014). Silvicultural practices are another factor that 

can impact the production of forest biomass. While not applied in the wilderness or 

primary forest, they are used in close-to-nature or nature-based forest types and are 

common in forest plantations (Larsen 2012). These practices are in three stages: 

pre-planting, planting, and post-planting operations. Examples of such silvicultural 

practices are thinning, precommercial thinning, breeding and genetics, and soil 

preparation to mention a few. The practices influence the survival, growth, 

development, quantity, and quality of tree biomass found in any forest plantation 

for a given period (Larsen 2012). 

1.1.2 Biomass Estimation 

Scots pine (Pinus sylvestris L.) is an important tree species in Sweden, and its 

economic importance is well established (Lula et al. 2021). Numerous studies have 

been conducted to estimate and develop biomass functions for Scots pine in 

Sweden. Biomass functions should meet some requirements before being used. 

They should give reliable estimates of the area of concern. They should be based 

on variables that are easy to estimate and can be reliably collected from inventory 

data (Repola 2009; Repola & Ahnlund Ulvcrona 2014). These functions are derived 

through destructive, non-destructive sampling, or both.  

Biomass estimation studies using destructive sampling often have smaller 

sample sizes and simpler models (Weiskittel et al. 2011). However, larger sample 

sizes have been used in some studies, such as those conducted by Repola (2009), 

Repola and Ahnlund Ulvcrona (2014), and Marklund (1988), with the latter being 

used mainly in Sweden. Marklund (1988)’s biomass equations for pine, birch, and 

spruce used 1286 tree samples spread around 131 sites in Sweden. The primary 

parameter in biomass estimation at the individual tree level is the diameter (DBH), 

although height can also be used in addition to DBH. However, using DBH alone 

assumes that the relationship between DBH and height is fixed, which is not always 

the case, as species, site conditions, and management history can also affect tree 
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height (Weiskittel et al. 2011). Therefore, using DBH alone should not be 

considered when estimating regional or national biomass, as it neglects species-

specific variability and site effects (Zianis & Mencuccini 2004). 

1.2 Leaf Area Index (LAI) and Its Significance in Forest 

Productivity Measurement 

The leaf area index (LAI) is a crucial parameter for measuring the productivity of 

forest ecosystems (Binkley et al. 2004; Stape et al. 2008). It reflects the 

photosynthetic capacity of a forest canopy by measuring the total leaf surface area 

per unit of ground surface area in a forest stand (West 2015). The growth rate of 

forests is proportional to the amount of sunlight their leaves intercept (Stape et al. 

2008; Binkley et al. 2010). The larger the LAI of a stand, the more sunlight it can 

intercept and utilize for photosynthesis (Almeida et al. 2007; Guiterman et al. 

2012). Although leaves are the chief photosynthetic organ in trees, other parts of 

trees, such as the petioles, green flowers, cones, and stem tissue, are capable of 

photosynthesizing (Pfanz et al. 2002). However, the photosynthetic rate by non-

leaf parts is limited by tree age, especially the stem of trees. This type of 

photosynthesis involving recycling CO2 by recapturing respiratory CO2 before it 

diffuses out of the stem is called corticular photosynthesis. Reabsorption of CO2 by 

tree parts can compensate for 60 – 90 % of potential carbon loss due to respiration 

(Pfanz et al. 2002). 

1.3 Role of LAI in Understanding Ecosystem 

Processes and Adaptations in Plantations 

The forest canopy is a critical driver in ecosystem processes and biomass 

production (Selin 2019). LAI is an essential parameter for understanding the 

ecophysiological processes of stand canopy (West 2014; West 2015). Stress in trees 

can be determined by using LAI. During periods of limited water availability and 

drought, plantations may reduce their water loss by decreasing their LAI as an 

adaptation strategy. Trees do this by shedding their leaves. Some studies have 

shown that LAI varies annually and seasonally (Guiterman et al. 2012). Thinning 

can also affect LAI, which leads to an immediate reduction in LAI at the stand level. 

While trees left in the stand may adjust their photosynthetic capacity over time, the 

stand may not recover to its original LAI (Guiterman et al. 2012). Pruning, on the 

other hand, has been found to have little effect on LAI since the leaves in the canopy 

shade themselves. Even with reduced leaf area, plantations can still intercept about 

80% of their sunlight (Alcorn et al. 2008; West 2014). Initially, leaves do not 
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function at their maximum capacity, and pruning allows the remaining leaves to 

increase their photosynthetic capacity when reduced (Quentin et al. 2011). 

1.4 Forest Resource Management Models in Sweden 

Models are essential tools for managing forest resources; they are abstractions of 

reality attempting to conceive some relationships of a system (Weiskittel et al. 

2011). In Sweden, models have a long history. They are developed to understand 

and simulate forest development, support decision-making, and evaluate 

management strategies. There are three types of models, viz, empirical, process-

based and hybrid models. Empirical models are based on statistical correlations and 

are one of Sweden's most used models. The process-based model utilizes 

ecophysiological processes that influence growth rather than models based on 

statistical correlations. The hybrid models combine some ecophysiological process 

data and statistical correlations to predict stand development (Weiskittel et al. 2011; 

Appiah Mensah et al. 2020). Empirical models uses data that are easy to obtain 

compared to Process-based or Hybrid model types. They are easy to apply in 

practice having a wide range of applications with good predictive capabilities 

(Weiskittel et al. 2011). 

Models, data, and analytical methods are integrated together to make software 

tools or applications that assist forestry professionals in making informed decisions 

regarding forest management. These software tools or applications are called 

Decision Support Systems (DSS) (Söderberg & Lundström 1996). Hugin’s system 

is an example of a DSS that uses many empirical-based models (Söderberg & 

Lundström 1996; Mats 2015). Developed in the 70s, it incorporates numerous 

models to predict timber production and quality, biomass, costs, and revenue under 

different scenarios of forest management strategies (Söderberg & Lundström 1996). 

The Heureka DSS has replaced Hugin’s system and boasts more capabilities than 

its predecessor (Elfving 2010; Mats 2015). The Heureka DSS covers a broader 

aspect of forestry beyond timber management. Its robust infrastructure allows forest 

analysis, planning, and management from a stand level to a regional level 

(Wikström et al. 2011). Heureka contains different packages used to analyze, plan, 

visualize, and generate numerous scenarios based on the set rules of a management 

system. Models in Heureka are, in one way or another, related to tree development 

and treatments (silvicultural practice) employed. Also, it allows new models to be 

added, making the system continually evolving (Wikström et al. 2011; Mats 2015). 

Therefore, empirical studies like this one are important for improving such systems. 
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1.5 Research Objectives and Justification 

LAI and biomass models have been created using destructive or/and non-

destructive sampling methods (Marklund 1988; Goude et al. 2019; Appiah Mensah 

et al. 2020; Cohrs et al. 2020; Pertille et al. 2020; Vafaei et al. 2021). These models 

are usually generalized and are based on broad assumptions resulting in inaccurate 

predictions for some sites. These inaccurate predictions might be due to the models 

not considering site-specific characteristics (Weiskittel et al. 2011). Site-specific 

empirical models could help with accurate predictions, especially when there is 

limited data or when the focus is on a specific aspect of a system or process. The 

creation of these models is critical for estimating carbon stocks for carbon 

accounting purposes and assessing forest productivity with minimal error 

(Weiskittel et al. 2011). 

Therefore, this study is relevant given Sweden’s limited availability of site-

specific LAI and biomass models. This research will also compare the newly 

developed LAI models with an existing generalized model by Goude et al. (2019), 

allowing for an evaluation of the accuracy and applicability of site-specific models. 

Goude et al. (2019) developed multiple models for Scots pine and Norway spruce. 

Goude et al. (2019)’s study compared directly and indirectly measured leaf area 

measurements of both species. The model of Goude et al. (2019) uses a sample size 

that cut across various sites in Sweden from the north region to the south. Models 

developed by Goude et al. (2019) related to this study are indirectly measured LAI 

using LAI-2200 C, and directly measured LA and LAI using DBH and Basal area 

as the explanatory variables respectively. 

While caution should be applied when applying site-specific models to other 

forests, their creation is essential for more accurate predictions and sustainable 

forest management. Thus, the objectives of this study are: 

I. To create site-specific LA and LAI functions and compare the function 

with Goude et al. (2019). 

II. To develop a site-specific empirical-based biomass function.  
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2.1 Study Area 

The thesis study was conducted in Hallarp, Ljunby Kommun, Kronoberg County, 

Sweden. The site is an experimental site of Scots pine managed by the 
Tönnersjöheden research station. It is part of a series of thinning experiments (trial 

2020) established in Tönnersjöheden and Siljansfors. The trials are divided into 

blocks with different future thinning treatments, which include control, thinning 

from below, heavy thinning from below, and thinning from above (Silvaboreal - 

Försök, n.d.). The destructive biomass sampling performed for this study was done 

during winter 2023, prior to thinning treatments establishment. 

 

2.2 Tree Selection 

Trees used for this study were chosen before felling, covering a diameter range of 

4 cm to  22 cm with a 2 cm interval for each diameter class (e.g., 4 cm – 6 cm, 6 

cm – 8 cm, up to 20 cm – 22 cm). Trees with physical deformities or defects, such 

as large holes or injuries in their stem, were not selected. An on-site visit was 

conducted to verify the trees’ physical condition and location. If trees had defects, 

they were replaced with trees in the same diameter class without deformity. Sixteen 

trees were selected, with two chosen trees per diameter class except for the 4 cm – 

6 cm and 20 cm – 22 cm diameter classes, where one tree was selected. This 

approach was employed to ensure that a representative sample of trees of various 

sizes was obtained, avoiding overestimation that could occur from selecting too 

many large trees. 

 

2. Materials and Methods 
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2.3 Tree Processing 

2.3.1 Field Processing 

Selected trees in the site were marked at 1.3m with a ribbon and cross calipered to 

get their DBH. The trees were felled afterwards using a chainsaw. A measuring tape 

was passed straightly along the stem to measure the total height. The total height 

was measured by placing the 1.3m mark of the measuring tape on the ribbon and 

passed along the tree length. Additionally, the height at which the living crown 

started and the length of the living crown were recorded. Afterwards, the living 

crown was divided into three sections to make up three strata. The first stratum is 

the position where the first living branch was found, and the third is the last section 

which includes the top/tip of the tree. 

Furthermore, four living branches were selected at each stratum; the selection 

was made across and along the length of each stratum, hereafter called sample 

branches. Four tree branches were also chosen from the section below stratum 1; 

this section is referred to as stratum 0. All sample branches were placed in different 

plastic bags and carefully labelled according to the plot, tree, and stratum numbers, 

and their fresh weights were measured. The sample branches were later taken to the 

laboratory for further processing. In total, there were twelve sample branches per 

tree. After this, the trees were debranched, and their branches were gathered into a 

plastic bag and labelled according to their stratum number. For strata 1, 2, and 3, 

the branches collected were separated into living and dead branches, and their fresh 

weight was measured.  

The length of the ten most recent annual shoots was measured using the 

carpenter ruler. Subsequently, the whole tree length was marked at 2m intervals, 

giving markings at 1.3m, 2m, 4m, 6m, 8m, etc. The stem was then cross calipered 

starting from the base of the stem to the 1.3m and 2m markings, and then the 

subsequent 2m interval markings to get their diameter measurement along the trunk. 

The bark thickness at each point, starting from the base, was also measured. Sample 

disks were collected at each marking, placed in a plastic bag, and labelled 

accordingly. Afterwards, the lengths and fresh weights of each stem part were 

taken. The stem parts were disposed of in the forest after this. These procedures 

were repeated for all the selected trees (Fig 1). 

The indirect LAI measurements were done with the LICOR-2200 in two (out of 

four) blocks close to when the biomass sampling was performed. The measuring 

points were obtained on two diagonals in each plot, similar to Goude et al. (2019)'s 

methodology. There were about 50 points per plot, and eight plots were measured 

in total. 
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2.3.2 Laboratory Processing 

For the biomass analysis, the sample disks collected from the stems were dried in 

an oven at 70oC for 24 hours. The barks were separated from the disks, and the bark 

and sample disks were returned to the oven until a constant weight was achieved. 

After, the weight of the disks and barks was measured on a precision scale to 

determine the dry weight (Fig. 2). The bark percentage was calculated by 

subtracting the dry weight of the bark from the dry weight of the entire disk and 

then dividing the difference by the dry weight of the entire disk. The biomass of 

each section was calculated by adding up the dry weights of the disks within each 

section, including the bark. 

The sample branches collected from the field were also processed. The samples 

were first sorted and prepared for further analysis. Afterwards, 20 needles were 

collected per branch for each stratum. These 20 needles per branch make it 80 

needles collected per stratum. These 80 needles per stratum were placed in a plastic 

bag, labelled, and put into a freezer for LAI measurement later, further referred to 

as LAI needles. The remaining sample branches were cut up, set in a metallic frame, 

labelled, and put into the oven for 24 hours. The sample branches were removed 

after 24 hours, and their needles were separated, placed in a new metallic frame, 

and labelled. The sample branches without needles and their needles (hereafter 

referred to as sample needles) were put into the oven for another 24 hours. After 24 

Stem section sample 

disk collection 

Stem section length 

measurement 

Stem section length and 

weight measurement 

Living crown 

sectioning 

Sample branch selection 

and weight measurement 

Tree stem length sectioning 

Diameter measurement 
Annual length 

measurement 

DBH Measurement Felling Tree height measurement Living crown 

measurement 

Figure 1: Tree processing procedures in the field. Sectioning involves marking  with ribbon and cutting with 

chainsaw, starting from Tree stem length sectioning, other sectioning involves marking with ribbon without 

cutting. 
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hours, the sample needles and branches without needles were taken out, weighed, 

and recorded (Fig. 3). 

The LAI needles were digitally scanned, and their area was measured using the 

ImageJ version 1.53t image analysis software. Afterwards, the LAI needles were 

oven-dried for 24 hours at 70oC, and their dry weight was measured later. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Data Processing and Analysis 

Data entry and pre-processing were conducted using Microsoft Excel version 2302 

(build 16130.20218), while the statistical analyses were performed using R version 

4.2.3 (Shortstop Beagle) by R-Core-Team (2023). The data was checked for 

inaccuracies, inconsistencies, and missing values during the pre-processing phase 

to ensure data quality. Linear models were fitted using the lm package, and the 

anova package was used to test for differences between strata. 

Normality and homoscedasticity of the measurement data were tested using the 

Shapiro-Wilk Test (Shapiro & Wilk, 1965). A p-value greater than 0.05 indicated 

that the distribution followed normality. The moment package was used to check 

the skewness of the distribution.  

To estimate Leaf Area Index (LAI), a step-by-step procedure is shown in Fig. 4. 

Oven dry sample disk 

at 70oC for 24 hours 

Separate bark from 

sample disk 

Oven dry separated disk and 

bark until weight is constant 

Figure 2: Sample disk processing for biomass analysis 

Oven dry cut branches 

at 70oC for 24 hours 

Separate needles 

from branches 

Oven dry separated 

needles and branches at 

70oC for 24 hours 

Weigh dried separated 

needles and branches 

Sample branch sorting LAI needles selection Branch cut to smaller bits 

Figure 3: Sample branch processing for Leaf Area Index and biomass analysis 
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The analyses of the biomass content of trees, Specific Leaf Area (SLA), and Leaf 

Area (LA) were conducted first on needles and then at the individual tree level.  

The projected area (PA) in cm2 was calculated as the sum of the LAI needles 

area obtained from ImageJ according to their plot, tree, and strata. 

The half total surface area (HTSA, cm2) was predicted using the regression 

equation (R2 = 0.997) by Goude et al., 2019 (Equation 1), as the volume of the 

sample needles was not measured during the laboratory work. 

The specific leaf area (SLA), measured in cm2g-1, was calculated for each LAI 

needle by dividing the HTSA (cm2) by the dry weight (g) of the needles. 

The total needle dry weight (g) of each stratum was measured by getting the ratio 

of the needles weighed in the lab, and the needles weighed on the field were 

multiplied by the SLA (cm2g-1) to calculate the half total leaf area (cm2) of each 

stratum. 

This information was then summarized by the plot and tree number to obtain 

each tree’s half-total leaf area (m2). Linear regression was performed with DBH 

(mm) as the independent variable to estimate the half-total leaf area for all trees on 

the site. 

Further analyses of the LAI were made on a plot level. The resulting information 

was summarized, filtering out dead trees to estimate the leaf area per plot (m2). The 

leaf area per plot (m2) was then divided by the size in m2 of the various plots to 

obtain the LAI (m2m-2).  

 

Total needle weight × specific 

leaf area 

Half-Total 

Leaf Area  

Half-total leaf area / Plot size 

Leaf Area 

Index 

Half total surface area / LAI 

needles dry weight 

Specific 

Leaf Area 

Sum of LAI 

needles area collected 

from ImageJ 

Projected 

Area 

Estimated using Goude et al. 

(2019)’s HTSA function, which is “-

2.982+1.597×PA” 

Half Total 

Surface Area 

Figure 4: Procedures to estimate Leaf Area Index (LAI) 
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𝐻𝑇𝑆𝐴 =  −2.982 + 1.597 × 𝑃𝐴   

Equation 1: Goude et al., 2019 Half total surface area equation 

A regression model was created using stand density and basal area (stemsha-1) as 

the independent variables in equations 2 and 3. The variables are assumed to have 

a linear relationship with LAI: 

𝐿𝐴𝐼𝑚𝑜𝑑𝑒𝑙1  =  𝛽0 + 𝛽1 ∗ 𝑠𝑡𝑎𝑛𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

Equation 2: model 1 

Where: 

Β0 = intercept 

Β1 = slope 

𝐿𝐴𝐼𝑚𝑜𝑑𝑒𝑙2 = 𝛽0 + 𝛽1 ∗ 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎 

Equation 3: model 2 

Where: 

Β0 = intercept 

Β1 = slope 

The LAI (m2m-2) models created were compared to Goude et al., 2019 equations 

using MAE, MSE, RMSE, while AIC statistical metrics was used to test for the 

model having the best fit, between the two LAI models developed from this 

research. 

For biomass estimation,  the dry weight of the sample needles and LAI needles 

were summed up to obtain the total sample branch needles weight (g) for each 

stratum (equation 4). The total sample branch needles weight (g) was then divided 

by the weight of the living branch for each stratum collected in the field to obtain 

the dry/fresh weight ratio (equation 5). The ratio was multiplied by the sum of the 

fresh weight (g) of the sample branch and the living branch of the stratum collected 

in the field to obtain the total weight of the needles for each stratum (equation 6). 

 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑏𝑛𝑒𝑒𝑑𝑙𝑒𝑠(𝑔) = 𝐿𝐴𝐼𝑛𝑒𝑒𝑑𝑙𝑒𝑠(𝑔) + 𝑠𝑏𝑛𝑒𝑒𝑑𝑙𝑒𝑠(𝑔) 

Equation 4: Total sample branch needles dry weight 

 

Where: 

▪ 𝑇𝑜𝑡𝑎𝑙 𝑠𝑏𝑛𝑒𝑒𝑑𝑙𝑒𝑠  is the total sample branch in grams, 

▪ 𝐿𝐴𝐼𝑛𝑒𝑒𝑑𝑙𝑒𝑠(𝑔) is leaf area index sample alone, 

▪ 𝑆𝑏𝑛𝑒𝑒𝑑𝑙𝑒𝑠(𝑔) is the sample branch needles without LAI needles. 
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dfratio =  
𝑇𝑜𝑡𝑎𝑙 𝑠𝑏𝑛𝑒𝑒𝑑𝑙𝑒𝑠(𝑔)

𝐿𝑖𝑣𝑖𝑛𝑔 𝑏𝑟𝑎𝑛𝑐ℎ𝑔
 

Equation 5: Needles dry/fresh weight ratio 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑤𝑛𝑒𝑒𝑑𝑙𝑒𝑠(𝑔) = 𝑑𝑓𝑟𝑎𝑡𝑖𝑜 ∗ (𝑠𝑎𝑚𝑝𝑙𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑓𝑟𝑒𝑠ℎ(𝑔) + 𝑙𝑖𝑣𝑖𝑛𝑔 𝑏𝑟𝑎𝑛𝑐ℎ(𝑔))  

Equation 6: Total needle weight for a stratum 

where: 

▪ 𝑇𝑜𝑡𝑎𝑙 𝑠𝑤𝑛𝑒𝑒𝑑𝑙𝑒𝑠(𝑔) is the total stratum needles weight, 

▪ 𝑆𝑎𝑚𝑝𝑙𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑓𝑟𝑒𝑠ℎ(𝑔) is the fresh weight of the sample branches before 

processing. 

 

 

For the branches (living and dead), a similar procedure was followed. A dry and 

fresh weight ratio was calculated and multiplied by the sum of the samples and 

remaining branches. The result was summed up to obtain the total weight of the 

branches. The estimation of the stem weight followed almost the same procedure. 

The weight of the stem discs without bark was upscaled to the stem to get the bark 

weight. All the dry weights, stem without bark, bark, needles, branches without 

needles, stem discs, and cones were summed up to get the aboveground biomass of 

a tree. A linear regression equation was created using DBH (mm) as the 

independent variable and total weight (kg) as the dependent variable. The equation 

was applied to the site data, and the biomass of all the trees on the site was 

calculated. The result was summarized according to the plot to get the total weight 

(kg) in a plot and a regression equation using basal area, stand density (stems ha-1) 

as the independent variables and the total weight per plot as the dependent variable.  
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3. Results 

3.1 Projected Area and Specific Leaf Area 

The highest projected area (PA) of LAI needles was found at the top of the crown, 

with mean values of 118 cm2 for stratum three, 85 cm2 for stratum two, and 67 cm2 

for stratum one needles (Table 1). The mean SLA per tree was 67.67 (±1.902) cm2g-

1 (mean + SE), with a significant difference between the strata (p<0.0001). Higher 

SLA was observed at the base of the crown and lower SLA at the top of the crown 

(Fig. 5). Projected area reduces from top of the crown to the bottom, while SLA 

decreases from the base to the top of the crown. 

Table 1: Group mean ranking of the projected area of LAI needles across stratum. 

Stratum Means (cm2) G1 G2 G3 

3 118 a   

2 85  b  

1 67   c 

 

 

Figure 5: Specific leaf area (cm2g-1) of the needles across the crown stratum. 
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3.2 Leaf Area 

There was a significant difference in LA between the individual trees for varying 

DBH (p>0.001) (Table 2). The individual tree regression was created using the 

DBH as the independent variable (Table 2). DBH and LA were positively correlated 

(R2 = 0.883), with large trees having a higher LA. The LA model in this study 

generally underestimated the LA with a standard error (SE) of ±2.48, while Goude 

et al. (2019)’s model overestimated LA, SE ±2.85 (Fig. 6). The RMSE, MSE and 

MAE were higher in Goude’s estimates than in this study's estimates (Fig. 7). The 

LA model developed in this study performs better than Goude et al. (2019)’s model 

but tends to underestimate (Fig. 7). 

Table 2: Model of half total leaf area, LA (m2) for individual trees as a function of tree diameter at 

breast height, DBH (mm). 

Response 

variable 

Parameter Estimates Std. Error Pr (> |t|) R2 

log (LA) intercept -7.926 1.006 1.64e-06 ***  

 log (DBH) 2.131 0.208 6.92e-08 *** 0.883 

Significance code: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 

 

 

 

Figure 6: Comparison of the measured values of half total leaf area (m2) per tree to the predicted 

value of the study and Goude et al. (2019)’s LA model. The line on each bar or error bar represents 

the standard deviation. 
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Figure 7: Evaluation metrics between Goude et al. (2019) and the developed model function in this 

study. Goude’s function has higher errors across all metrics. The evaluation metrics are MAE = 

Mean Absolute Error, MSE = Mean Squared Error, and RMSE = Root Mean Squared Error. 

 

3.3 Leaf Area Index 

Directly measured LAI showed a positive correlation (R2 = 0.55) and a significant 

difference between varying stand densities (p<0.001). Directly measured LAI and 

basal area were also positively correlated (R2 = 0.997) (Table 3). 

Stand density and basal area were used to create a model function (Table 3). A 

simple multiple linear regression was used instead of a log-transformed linear 

regression model or a nonlinear regression model to fulfil the assumption of 

linearity between the variables. Supplementary Fig. 1-3 shows the goodness-of-fit 

for the multiple linear regression. This implies that the model assumptions and 

predictions aligns with the observed data. 
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Table 3: Model of leaf area for a stand as a function of stand basal area (m2ha-1) and stand density 

(stems ha-1). 

Response variable Parameter Estimates Std. Error Pr (> |t|) R2 

LAImodel1 Intercept 

Stand density 

1.0145848 

0.0006395 

0.3059018 

0.0001550 

0.00509 ** 

0.00103 ** 

 

0.55 

LAImodel2 Intercept 

Basal area 

0.007847 

0.087375 

0.031758 

0.001223 

0.808 

>2e-16 *** 

 

0.9973 

Significance code: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 

3.3.1 Model comparison 

The quality of the models assessing how well they fit the data, was evaluated using 

the AIC. The LAImodel1, with stand density as its independent variable, has a poor 

fit to the data (AICc = 1.57), when compared with LAImodel2, which had a better fit 

(AICc = -80.12) (Table 4). The lower the AICc value of the models, the better the 

model quality. LAImodel2 boasts for more than 99% the probability that it is the 

model with the best fit (cum.wt = 1.00, AICcwt = 1), Table 4. The better of the 

models developed is LAImodel2 with basal area as its explanatory variable. 

Table 4: AICc of the LAI models 

Model 

Name 

Response 

variable 

K AICc Delta_AICc AICcwt Cum.wt LL 

LAImodel2 Basal area 3 -80.12 0.00 1 1.00 44.06 

LAImodel1 Stand density 3 1.57 81.69 0.00 1.00 3.21 

 

3.3.2 Study Model vs Goude et al., 2019 LAI Model 

The RMSE, MSE, and MAE were used to evaluate the accuracies and performance 

of the models developed in this study compared to Goude et al. (2019)’s LAI model 

for P. sylvestris (Fig. 8). The models from this study provided lesser error compared 

to Goude et al. (2019)’s model, with a mean LAI of 2.92 (±0.076) m2m-2 

(mean±SE), LAImodel1 had a mean LAI of 2.26 (±0.056) m2m-2, LAImodel2 had a 

mean of 2.26 (±0.07) m2m-2. All the LAI models developed in this study 

demonstrated improved performance and lesser errors than Goude et al. (2019)’s 

model.  

There was no significant difference (p > 0.05) between directly measured LAI 

when compared with indirectly measured LAI estimated using Goude et al. 

(2019)’s coefficients (Fig. 9). There was a weak positive correlation between 

directly measured LAI and indirectly measured LAI (R2 = 0.1339). 
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Figure 8: Evaluation metrics to compare the errors between the different models of this study and 

that of Goude et al. (2019)’s. The evaluation metrics are MAE = Mean Absolute Error, MSE = 

Mean Squared Error, and RMSE = Root Mean Squared Error. LAI_model_1 uses stand density as 

its variable, while LAI_model_2 uses basal area as its response variable. 

 

Figure 9: Directly measured LAI relationship with Goude's adjusted equations for LICOR-2200 C 

measurement of LAI. The blue line represents the linear regression between directly measure LAI, 

m2m-2, and LAI, m2m-2 estimates using Goude’s LICOR-2200 C equations. 
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3.4 Biomass Model 

The total aboveground biomass (kg) of the individual trees was calculated by 

summing up their components. The total aboveground biomass model created for 

P. sylvestris was based on tree DBH (mm), Table 5. The independent and dependent 

variables were log-transformed. Total weight and DBH were positively correlated 

(R2 = 0.86) with a SE of ±11.17.  

Table 5: Individual tree biomass using DBH (mm) as the independent variable 

Response variable Parameter Estimates Std. Error Pr (> |t|) R2 

Log (Dry weight) Intercept -6.5133 1.1528 7.93e-05 ***  

 Log (DBH) 2.1494 0.2399 6.34e-07 *** 0.86 

Significance code: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 

 

At the stand level, the standing biomass of the site is 166 tonnes. Two biomass 

models were created using stand density (Biomassmodel1) and basal area 

(Biomassmodel2) as the independent variable. Stand density showed moderate 

positive correlation with the total aboveground stand biomass (R2 = 0.5), while 

basal area showed strong positive correlation (R2 = 0.75) (Table 6). There was a 

significant difference between the independent variables, stand density (p< 0.05) 

and basal area (p<0.0001) (Table 6). Biomassmodel2 is having a higher coefficient of 

determination (R2 = 0.75). This shows that about 75% of the variance of 

aboveground stand biomass is predictable when basal area is used as the 

independent variable in the model. 

 

Table 6: The biomass model uses stand density and basal area (m2ha-1) as independent variables. 

Response variable Parameter  Estimates Std. Error Pr (> |t|) R2 

Biomassmodel1 Intercept 

Stand density 

 1496.376 

4.466 

2442.109 

1.210 

0.54987 

0.00242 ** 

 

0.49 

Biomassmodel2 Intercept 

Basal area 

 -4377.77 

565.31 

2311.58 

87.83 

0.0791 

1.56e-05 *** 

 

0.7474 

Significance code: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 

 

Model performance was evaluated using RMSE and MAE for the biomass models. 

Biomassmodel2 gave lesser error (RMSE = 2143.3, MAE = 1726.1) compared to 

Biomassmodel1 (RMSE = 2356.2, MAE = 1668.5) (Fig 10). The closer MAE and 

RMSE are to zero the more accurate the predictions to the real value. 
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Figure 10: Evaluation metrics to compare the performance between two biomass models. 

Biomass_model_1 uses stand density as its independent variable, while Biomass_model_2 uses 

basal area as its independent variable. MAE = Mean Absolute Error, RMSE = Root Mean Squared 

Error. 
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4.1 LA and LAI models 

This research aimed to create site-specific LA and LAI models for P. sylvestris and 

then compare them with Goude et al. (2019) model. LAI remains a vital metric 

providing stand productivity information (Lovynska et al. 2018). The result from 

this study showed that LA could be estimated from DBH and LAI estimated from 

stand density or basal area. 

Comparing the LA model from this research and Goude’s LA showed that this 

research model mostly underestimated LA, while Goude et al. (2019)’s LA model 

generally overestimated (Fig. 6). LA model from this study estimates LA with 

minimal error compared to Goude et al. (2019) LA, with a minimal error margin 

between both models (Fig. 7). The LA model of this study has lesser deviations 

from the actual values (Fig. 7) with a 9% prediction accuracy compared to Goude 

et al. (2019) function. The lesser deviation by the model of this research could 

indicate that Goude’s function was slightly improved. Goude et al. (2019)’s 

generalized LA model gives reasonable estimates and can be applied when site-

specific LA models are unavailable. This reasonable estimation by Goude’s LA 

model can be due to the study's large samples obtained across various locations in 

Sweden. The model from this study could be improved if height data of the site 

were available, then predictions are better than using only DBH. Generally, models 

where DBH is not the only predictor but are used with other tree variables, like 

crown depth, crown volume, and tree height, give better estimates than models with 

DBH alone (Xiao et al. 2006). Given this, LA can be determined by multiple tree 

characteristics (Xiao et al. 2006). However, other tree variables stated cannot be 

easily measured and getting such data at stand level can be expensive. Therefore, 

DBH, a very easy-to-measure tree variable, is a good predictor for LA models, 

given its significant relationship with LA (Table 2). 

LAI in this study is high, 2.26 m2m-2, compared to Lovynska et al. (2018) LAI 

with a value of 1.12 m2m-2 for a stand of 56 – 90 years, and that of Xiao et al. (2006) 

with a value of 1.53 m2m-2 for a 73-year-old stand. Given that the stand is 24 years 

old, this could be a reason for its high LAI value. An LAI of 2.08 m2m-2 was 

estimated in a young P. sylvestris stand of 17 years which agrees with findings from 

4. Discussion 
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this study (Andrzej & Kalucka 2008). According to Gholz and Fisher (1982), LAI 

reached its maximum for Pinus contorta between 12 to 40 years, and they believe 

that the peak LAI could last about 30 years. However, this peak stage and how long 

it lasts depends on many factors like site nutrients, water availability, shade 

tolerance, and growth rate of the species (Vose et al. 1994; White et al. 2010). 

When developing LAI functions, tree age is one of the parameters not usually 

considered. Only a few research studies have been carried out on the development 

of LAI and LA for P. sylvestris over time (Vose & Swank 1990; Andrzej & Kalucka 

2008). Parameters commonly used at the stand level for estimating LAI are basal 

area, stand density, and biomass (Vose & Swank 1990; Vose et al. 1994; Andrzej 

& Kalucka 2008; Goude et al. 2019). Site-specific LAI coefficients were developed 

for this research and compared with Goude et al. (2019) LAI function. Indirectly 

measured LAI using Goude et al. (2019) LICOR functions were also validated. 

LAImodel1 and LAImodel2 gave reasonable estimates with little error (Fig. 5). Previous 

studies have shown that LAI and stand density are related (Vose & Swank 1990; 

Vose et al. 1994; Andrzej & Kalucka 2008), which also shows the influence of 

thinning on stand LAI (Guiterman et al. 2012). Guiterman et al. (2012) experiment 

to determine the influence of thinning on LAI showed that LAI is generally reduced 

and significantly different from an unthinned stand, but the thinning grade does not 

influence LAI. However, the case is different at the tree level, with trees in highly 

thinned stands expected to have increased LA and LAI (Guiterman et al. 2012). 

The error from LAImodel2 was minimal, having a near-perfect correlation (R2 = 

0.997). This near-perfect correlation is because the basal area and LA functions are 

measures dependent on DBH. This research was conducted at the site level, and 

differences due to block effects were not explained. This relationship could not 

show the variation between the blocks, given that treatments (thinning grades) are 

not applied yet, thus the reason for a close-to-perfect relationship. 

When LAI was compared with indirectly measured LAI using Goude et al. 

(2019)’s function, there was no relationship between the directly measured LAI and 

indirectly measured LAI (Fig. 6). The poorly explained relationship (R2 = 0.1339) 

between directly measured LAI (destructive sampling) and indirectly measured 

LAI indicates that Goude et al. (2019)'s function is probably not suitable to estimate 

LAI from LICOR-2200 for this experiment in Hallarp. Instead, it will be possible 

to use-site specific coefficients to improve Goude et al. (2019) function and, thus, 

improve the relationship mentioned above. 

 

4.2 Biomass Model 

In this research, site-specific aboveground biomass models were also developed in 

addition to LA and LAI models. The most accurate method to determine trees' 
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biomass is through the destructive method, but this is time-consuming, and it is 

unwise to cut down all the trees in a stand to estimate their carbon content (Repola 

2009; Durkaya et al. 2016). Allometric relationships have been developed to reduce 

the forest's cost and level of destruction and get estimates of carbon stock in a stand 

(Repola 2009). The total dry weight (kg) of the tree was used as the response 

variable in contrast to the tree component-based allometric relationship for biomass 

that can be found in Repola (2009) and Repola and Ahnlund Ulvcrona (2014). 

Biomass estimation models developed for P. sylvestris in this study provides 

valuable insights into aboveground biomass estimation at both tree and stand levels. 

The individual tree biomass model based on DBH demonstrated a high positive 

correlation between the total dry weight and DBH, with an R2 value of 0.86. This 

high correlation indicates that DBH is a reliable predictor for estimating the 

aboveground biomass of individual trees with a small margin of error (Mäkinen & 

Isomäki 2004; West 2015; Durkaya et al. 2016; Wegiel & Polowy 2020). A 

drawback of this simplified allometric relationship involves its inability to account 

for the differences in the weight of tree components, like foliage and branches, 

whose amount and sizes are affected by intra-specific competition and silvicultural 

practices within a stand (Weiskittel et al. 2011). 

At the stand level, models developed incorporated stand density and basal area 

as independent variables. Stand density and basal area are critical indicators of 

stand productivity and biomass accumulation (West 2015; Wegiel & Polowy 2020). 

Another measure used as a reliable predictor of stand biomass is the dominant 

height or site index (Weiskittel et al. 2011; West 2015). The result from this study 

confirmed the strong influence of both stand density and basal area on biomass 

estimation. The biomass model with basal area as its independent variable exhibited 

a highly significant influence on biomass estimation. This influence of the basal 

area on the total stand aboveground biomass is due to basal area giving an idea of 

the individual tree sizes and their growth rather than the number of trees in the 

forest. Stand density is an essential indicator of stand biomass at the initial stocking 

stage of any plantation, as the sizes of the seedlings do not matter. Stand density 

determines individual tree biomass and total biomass in a stand (Mäkinen & 

Isomäki 2004). Highly stocked stands lead to increased stand biomass and reduced 

individual tree biomass due to competition for limited resources, while lowly 

stocked stands lead to reduced stand biomass and an increase in individual tree 

biomass (West 2014; Wegiel & Polowy 2020).  

It is important to acknowledge the limitation of this study, as the models 

developed in this research are specific to P. sylvestris and limited to the study site. 

Other factors, such as site conditions, age, and tree characteristics, may influence 

biomass estimation and should be considered when applying the model to different 

stands or species. 
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5. Conclusion 

This research successfully developed site-specific LA, LAI, and aboveground 

biomass models for young P. sylvestris stands. The LA and LAI models were 

compared with the existing generalized models of Goude et al. (2019). The findings 

highlighted the importance of creating site-specific models, as they reduce 

prediction error. It also suggests the limitation of generalized models if their 

application is outside the range at which their sample data were collected. In this 

case, the age of the sample trees used could have led to a high margin of error, as 

age was not a parameter used in the generalized model. 

Further research is recommended to refine and validate these models using larger 

sample sizes and incorporating stand conditions considering the influence of stand 

age, thinning and other environmental factors. The aboveground biomass model 

created for P. sylvestris at both the tree and stand level offers a cost-effective and 

non-destructive alternative to estimate biomass, avoiding the need for destructive 

sampling, facilitating sustainable forest management, and contributing to carbon 

sequestration assessments while minimizing environmental impacts. 
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Site-specific empirical models: An approach to accurate estimates with 

minimal error. 

This research aimed at developing site-specific models for leaf area index, so called 

LAI and total aboveground biomass for young Scots pine in southern Sweden. LAI 

describes how dense or leafy a forest or plant is. For instance, in a thick forest 

surrounded by trees, when we look up, we see a lot of leaves covering the sky, so 

it is difficult for light to penetrate the forest canopy. That is because the forest has 

a high leaf area index. LAI is important because it tells us how much sunlight 

penetrates through the leaves. Since plants needs sunlight to photosynthesize, it 

shows how well photosynthesis is occurring in the forest, and thus the health of the 

forest. 

Accurate estimation of biomass and Leaf Area Index (LAI) is crucial for carbon 

accounting, assessing forest productivity, and guiding sustainable forest 

management. Existing LAI and biomass models based on destructive or non-

destructive sampling methods often rely on generalized assumptions, leading to 

inaccurate predictions for specific sites. Empirical models focusing on certain 

aspects of forest systems, for example the volume of a tree at different diameter at 

breast heights (DBH), gives improved predictions for a specific site compared to 

non-site-specific empirical models. However, Sweden currently faces a scarcity of 

site-specific LAI and biomass models. 

This study addresses the need for site-specific models by creating LAI and 

biomass functions using destructive sampling in a young Scots pine (Pinus 

sylvestris) stand in Southern Sweden. The objectives of this study are in twofold: 

first, to compare the newly developed site-specific LAI function with a generalized 

model by Goude et al. (2019), assessing accuracy and applicability; and second, to 

develop a site-specific empirical model function. 

To achieve this, we collected a total of 16 trees in Hallarp, South Sweden. The 

trees selected represents a range of DBH and height. Destructive sampling involved 

felling the selected pine trees, measuring their DBH, and a collective aboveground 

biomass measurement which include components like stem, branches, and needles. 

Additionally, LAI was estimated by collecting and analyzing needles samples from 

each tree. Statistical analysis of the collected data enabled the estimation of total 
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aboveground biomass and LAI for the entire pine stand. By examining the 

relationship between stand density and basal area, valuable insights were gained 

regarding the influence of these factors on LAI and total aboveground biomass.  

The result contributes to the knowledge of biomass and LAI models for pine in 

Sweden, and their application given certain conditions. Additionally, the analysis 

provides valuable information on factors that could limit the effectiveness of 

generalized LAI models such as the influence of stand age not accounted for in the 

model, and the application of such models outside the range of their sample data. 
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Appendix 1 

 

Supplementary Figure 1: Residual plot showing Homoscedasticity for LAImodel2. The horizontal line 

represents the expected or ideal condition of equal variance across all trees. 

 

 

Supplementary Figure 2: Spread level plot showing no clear pattern of the points. A widening gap 

or narrowing spread indicates heteroskedasticity (non-constant variance), which is not the case in 

this model, as that would violate the assumption of linearity for LAImodel2. 

 



41 

 

 

Supplementary Figure 3: Residual-leverage plot showing the influence of the observations on a 

model estimate. The horizontal line represents the threshold for high leverage points. 
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