
 

The assessment of ecosystem 
services provided by forest edge 
effects on fields in a fragmented 
Swedish agricultural landscape 
 

A methodological framework 
 

Juliette Nguyen 

 
 
 
 
 
 
 
 
 
 
 
 
 
Master Thesis 30 credits   
Swedish University of Agricultural Sciences, SLU  
Department of Crop Production Ecology 
EnvEuro – European Master in Environmental Science  
Uppsala 2022 



 

 

Juliette Nguyen 

Supervisor  Marcos Lana,  
Swedish University of Agricultural Sciences  
Department of Crop Production Ecology 

  marcos.lana@slu.se 

External supervisor  Henrik Meilby 

Copenhagen University 

Department of Food and Resource Economics 
  heme@ifro.ku.dk 

Examiner  Göran Bergkvist 
Swedish University of Agricultural Sciences  

Department of Crop Production Ecology  
  Goran.Bergkvist@slu.se   

     

   

Credits  30 ECTS 

Level  Second cycle, A2E   

Course title  Master thesis in Environmental science 

Course code  EX0897 

Programme  European Master in Environnemental Science 
Course coordinating department Department of Aquatic Sciences and Assessment 

Place of publication Uppsala, Sweden 

Year of publication 2022 

Illustration and design Juliette Nguyen 

Copyright  Juliette Nguyen 

 

Keywords  Carbon sequestration, cropping systems, DSSAT, ecosystem services, edge 
effect, food production, landscape diversification, landscape 
fragmentation, soil heterogeneity, soil organic carbon, spatial variability, 
total nitrogen, yield. 

 

 

 

 

 

 

 
Swedish University of Agricultural Sciences  

Faculty of Natural Resources and Agricultural Sciences 

Department of Crop Production Ecology 

The assessment of ecosystem services provided by forest 
edge effects on fields in a fragmented Swedish agricultural 
landscape. A methodological framework  



 

Agricultural expansion, prompted by increasing global food demand, has fragmented, simplified, 

and homogenized the landscape in the last decades. The resilience and sustainability of croplands 

are at stake, resulting in a hight vulnerability to climate change, and having major impacts on 

environmental protection, biodiversity preservation and food security. As agricultural landscapes 

are becoming more and more homogeneous, it is essential to identify the impacts of forest edges on 

adjacent cropland and their provision of ecosystem services. Scientific research has shown a 

decrease in soil organic carbon (SOC) and total nitrogen (TN) concentration at a greater distance 

from hedgerows, but data and methodological studies along forest edges remain scarce. 

This study was conducted to identify the spatial variability in yield across a rye field with forested 

edges at the Research Station of Bjertorp, Kvänum in Sweden. Ecosystem services chosen for 

assessment included carbon sequestration, nitrogen retention and crop production, studied through 

indicators such as soil organic carbon, total nitrogen, and yield, respectively.  

The objectives of the study were multiple: first, to provide a methodological framework for 

collecting and analysing data on spatial variability in a field at the forest edge for SOC, TN and 

yield. Second, the ability of the Decision Support System for Agri-Technology Transfer (DSSAT) 

to predict this spatial variability was assessed. Finally, the identification of particular patterns in the 

spatial variability of each ecosystem service was discussed as well as their potential attribution to 

proximity to forest edges.   

The methodology showed a good efficiency in the preparation of data, as the simulation was run in 

ArcMap and DSSAT without major inconveniences. The use of ArcMap required some knowledge 

of GIS but provided a useful spatial visualisation and interface for data processing. However, the 

predictions showed mixed results, with poor agreement between measured and predicted yield for 

the areas close to the field edges. A map of the yield prediction identified the need for improvements 

regarding the spatial variability resulting from the proximity to the forest edges. This lack of ability 

to depict in-field variations are assumed to be related to the lack of microclimatic data, an important 

factor defining the production potential. On the other hand, DSSAT forecasted a SOC accumulation 

in the long run with an assumed good agreement between observed and simulated data. It was 

difficult to capture the nitrogen cycle due to external input and crop uptake. 

The collection of higher-quality data such as microclimate or site-specific soil data, as well as re-

calibration, could improve the predictions accuracy. Agro-ecosystem models could also be 

improved to depict soil heterogeneities and tree-crop interactions.  

The outcomes of this work could be used to run impact assessment studies and evaluate the effect 

of different landscape and land organization policies designed to increase the sustainability of food 

systems, resulting in new objectives of diversifying the landscape, broadening the ecosystem 

services to be promoted and respecting the environment 

Keywords: carbon sequestration, cropping systems, DSSAT, ecosystem services, edge effect, food 

production, landscape diversification, landscape fragmentation, soil heterogeneity, soil organic 

carbon, spatial variability, total nitrogen, yield. 
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Anthropogenically-driven climate change has slowed growth of agricultural 

productivity over the past 50 years in mid and low latitudes, according to the IPCC 

(2022). Agricultural expansion, prompted by increasing global food demand, has 

fragmented, simplified, and homogenized the landscape, transforming many areas 

of natural ecosystems into managed land (Mitchell et al., 2014; D'Acunto et al., 

2016;). More and more inputs are being spread onto cropping systems to 

compensate for soil depletion and to address the demand for ever higher yields as 

well as the increasing competition for land, energy, and water (D'Acunto et al., 

2016). Food production is optimized at the expense of resilience against extreme 

events, pests and pathogens that occur more frequently because of climate change, 

leading to the risk of losses and jeopardising global food security (Alberti et al., 

2021; IPCC, 2022). 

Agriculture is at the heart of several of this century's major challenges, namely 

environmental protection and biodiversity preservation, climate change and food 

security.  

Agricultural intensification is a major cause of habitat transformation and 

biodiversity loss, notably through landscape fragmentation. It involves a drastic 

reduction in the total area of continuous intact forest, leading to restricted biome 

patches with zones of transition in between them (Mitchell et al., 2015). As a result, 

natural habitats become scarcer, most forested areas are considered to be part of 

transition zones, being located 90m-100m from the forest edge (Schmidt et al., 

2017). This has direct consequences on the water and nitrogen cycles (D’Acunto et 

al., 2014; Van Vooren et al., 2018; You & Sun, 2022).  

Climate change exacerbates pressures on terrestrial ecosystems supporting 

global food systems (Creutzig et al., 2022; IPCC, 2022). Climate change mitigation 

strategies aim to reduce the carbon footprint of human activities. Agriculture and 

associated land-use changes, responsible for about 20% of global carbon emissions 

(e.g. deforestation) (EPA, 2022), could play an important role in balancing 

anthropogenic greenhouse gas emissions through the implementation of 

management strategies and cropping systems that avoid carbon-releasing practices 

(D’Acunto et al., 2014; De Stefano & Jacobson, 2018; Viaud & Kunnemann, 2021; 

You & Sun, 2022).  

1. Introduction 
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Whilst modern agriculture has succeeded in ensuring food production in the past, 

it is expected to provide even more food in the coming years to meet the explosion 

in demand driven by population growth, but also with the shift in consumption 

towards meat- and dairy-based diets (You & Sun, 2022;). The lands will not be able 

to keep up with the frenetic pace of global demand unless alternative farming 

practices are implemented. The food system needs to build on more sustainable and 

resilient cropping systems that stop damaging the environment (Foley et al., 2005; 

You & Sun, 2022).  

Consequently, the capacity of agricultural lands to provide ecosystem services 

should be emphasised. Ecosystem services are the benefits that human derive from 

the ecosystems (Millennium Ecosystem Assessment, 2005). Natural ecosystems 

usually provide the widest range of ecosystem services, while man-managed land 

usually targets one particular service, such as food production (Pereira et al., 2005). 

However, alternative multifunctional agricultural landscapes can allow for a wider 

range of ecosystem services delivery (Fischer et al., 2005; Rodríguez et al., 2006; 

Malézieux, 2012). For example, cropping systems can offer regulating and 

supporting services such as carbon emissions mitigation and soil and water 

resources protection that have important consequences on global warming 

mitigation (Mitchell et al., 2014; Viaud & Kunnemann, 2021; You & Sun, 2022).  

Structural elements that provide shelter for wildlife and that play a role in 

nutrients and water cycling are essential to maintain (Mitchell et al., 2014). Indeed, 

cropping systems that include perennial vegetation, such as hedgerows and tree 

rows have already shown to improve soil quality, nitrogen and carbon nutrient 

supply to the field, water and nutrient retention, and thus groundwater quality 

(Bambrick et al., 2010; D’Acunto et al., 2014; De Stefano & Jacobson, 2018). And 

even though landscape fragmentation has adverse effects on several ecosystem 

services, isolated forest patches that remain could still benefit adjacent fields in the 

same way and promote landscape heterogeneity. Forest field margins could 

therefore play a role in providing ecosystem services that cultivated land can no 

longer provide. 

Assessing the effects of forest edges on surrounding fields and their contribution 

to the natural carbon, nitrogen and water cycles would help identify whether tree-

based cropping systems can be promoted for more sustainable agriculture. Research 

about cropping systems aim to generate scientific knowledge on ecosystem services 

in agriculture and integrate them into a land use perspective. Research should also 

aim to assess, predict, and understand carbon and nitrogen gradients from the field 

edge, according to Eckersten (2017). 

 

The Decision Support Systems for Agrotechnology Transfer (DSSAT) 4.8 

model used in this study is a cropping system model package that is widely 

recognised to simulate crop growth, development, and yield on a daily basis (Hai-
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long et al., 2017; Hoogenboom et al., 2019). However, limited information is 

available about the use of the DSSAT model to accurately simulate the in-field 

variability of crop growth, as it is based on the assumption that a field is a uniform 

area of land (Chisanga et al., 2015; Wallor et al., 2018; Hernández-Ochoa et al., 

2022;). Combined with GIS, it could be a useful tool for assessing the effects of 

forest edges on adjacent field at increasing distances from the edge.  

1.1 Objectives 

This study was carried out in the framework of the research on Ecosystem Services 

in Sweden at the Landscape Level (ESSLA) from the SLU´s Cropping Systems 

Platform, which intends to promote sustainable agricultural practices in Sweden by 

improving resilience and the provision of ecosystem services. The aim is to identify 

the type of landscape configuration to be promoted in order to improve the 

provision of ecosystem services and to contribute to increased sustainability of 

forestry and agriculture in Sweden while maintaining agricultural production 

(Bergkvist et al., 2015). To achieve this, knowledge of ecosystem interactions and 

trade-offs between ecosystem services needs to be improved. 

 

This research intents to (1) provide a methodological framework for the 

assessment of ecosystem services agricultural fields surrounded by perennial 

vegetation, in particular food production, carbon sequestration and nitrogen 

retention; (2) evaluate the ability of the DSSAT process-based model to simulate 

within-field spatial variability of crop yields (predicted x observed yield) based on 

fixed initial conditions of SOC and TN concentrations for a field adjacent to a forest 

edge in Bjertorp, Kvänum, Sweden; (3) and discuss the potential and limitations of 

the model to depict the impact of forest edges on the ability of adjacent fields to 

provide ecosystem services, in particular food production, carbon sequestration and 

nitrogen retention. 

1.2 Background 

1.2.1 Ecosystem services 

The notion of ecosystem services (ES) is a useful framework for understanding the 

reliance of human society on its natural environment (Foley et al., 2005). It is also 

central to research on agricultural ecosystems, as design and agricultural activities 

themselves rely on the demand for products that derive from ES (Eckersten, 2017). 
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According to the Millennium Ecosystem Assessment (2005), an ecosystem is “a 

dynamic complex of plant, animal, and microorganism communities and the non-

living environment interacting as a functional unit”. Ecosystems services are simply 

the benefits that people derive from ecosystems (Pereira et al., 2005).They have 

been classified according to the type of benefits they provide (Figure 1), but all 

directly contribute to the main constituents of human well-being, namely security, 

health, social relations, basic materials for a good life and freedom of choice and 

action (Millennium Ecosystem Assessment, 2005). 

Figure 1. Classification of ecosystem services. Adapted from Kramer et al., 2022. 

Since recent decades, human-induced ecological changes have been threatening the 

availability and reliability of ES over the long term. The climate, land cover, oceans, 

biodiversity and biogeochemistry of the fundamental cycles that sustain life are 

being modified by humans to meet the growing demand for food, fresh water, 

timber, fibre and fuel (Millennium Ecosystem Assessment, 2005). In addition, 

ecological feedbacks tend to intensify ecosystem degradation, leaving the future of 

ES and those who rely on them uncertain (Millennium Ecosystem Assessment, 

2005; Carpenter et al., 2006). 

 

Agriculture relies on the provision on numerous ES, in particular supportive 

ones such as nutrient cycles, photosynthesis, pollination, soil formation, etc (Figure 

1). However, agricultural practices, focused on food supply, progressively 

increased pressures on ecosystems, thus compromising the ability to maintain long-

term benefits (Figure 2). Overexploitation of provisioning ES has gradually 

degraded the regulating services that maintain air, soil or water quality, jeopardising 

the future yield of provisioning services (Millennium Ecosystem Assessment, 

2005; Carpenter et al., 2006). In fact, most decisions about ES involve trade-offs, 
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where the supply of one ES is enhanced and the supply of another declines. For 

example, agriculture and its associated land fragmentation can improve food 

production but alter biodiversity, water quality and climate mitigation capacity 

provided by previously forested lands (D’Acunto et al., 2014; Mitchell et al., 2014). 

Furthermore, the use of a service such as food provision in the present, might also 

impact the potential of the ecosystem to deliver ES in the future, by depleting soil 

and water quality for future crop production (Pereira et al., 2005; Rodríguez et al., 

2006; Jansson et al., 2021). Trade-offs among ES are, however, unclear, which 

render anticipation difficult (Carpenter et al., 2006). 

Figure 2. Drivers, consequences, and ecological feedbacks of agricultural intensification. 

Overall, regulating and supporting services are neglected in favour of provisioning 

services because of their low visible and immediate impact (Foley et al., 2005; 

Pereira et al., 2005; Rodríguez et al., 2006; Mitchell et al., 2014). However, the 

resilience of all ecosystems relies on these types of services and their ability to 

moderate the impacts of extreme events and disturbances of all kinds. With the 

increasing intensity of human-induced shocks, ecosystems and the people who 

depend on them are becoming significantly more vulnerable (Carpenter et al., 

2006).  

 

Some strategies could reverse the degradation of ecosystems while meeting the 

increasing demand for their services. Ecological management and planning should 

be based on a clearer understanding of changes in ES resulting from human 

intervention (Carpenter et al., 2006). The management of alternative agricultural 

practices should promote its ability to deliver ES in the long term for use in 

assessing ecological sustainability (Bergkvist et al., 2015; Eckersten, 2017). 

However, significant changes in policies, institutions and practices would be 

required. The CAP 2023-2027, for example, aims to promote greener farming 
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practices through financial support for farmers to adopt practices that benefit the 

climate and the environment (European Union, 2022).  

1.2.2 Carbon sequestration 

Carbon (C) is one of the most common elements on Earth’s biosphere. Indeed, it is 

an essential element for life, making up all plants and animals on the planet 

(Corning et al., 2016).  

Soils holds the largest terrestrial reservoir of organic carbon, with an estimated 

total storage of more than 3-4 time that of the atmosphere (De Stefano & Jacobson, 

2018; Jansson et al., 2021; Viaud & Kunnemann, 2021). Soil organic carbon is 

heavily correlated to soil organic matter, which is essential to soil function and 

productivity, generally enhancing crop yields on agricultural land. Soil organic 

matter also moderates erosion, nutrient leaching and improves soil aeration and 

water retention, thereby significantly improving soil conditions and fertility 

(Corning et al., 2016; Berazneva et al., 2019; Jansson et al., 2021). 

 

Carbon sequestration, defined as “the net removal of C from the atmosphere and 

its deposition into a reservoir” (De Stefano & Jacobson, 2018), is part of the natural 

C cycle (Figure 3). In natural ecosystems, atmospheric CO2 is taken up by plants 

during the photosynthesis and transformed into organic compounds that will deposit 

into the soil as litter and plant residues (De Stefano & Jacobson, 2018). As C is 

sequestered into the soil, it is less likely to escape under gaseous forms in the 

atmosphere (Corning et al., 2016). C transitions through various labile forms before 

a minor fraction enters the stabilised C pool, where it is sequestered (Jansson et al., 

2021). Therefore, gaseous C emissions can originate from anaerobic decomposition 

(CH4), from microbial and plant respiration (CO2), or volatile organic compounds’ 

(VOCs) emissions prior to sequestration. Erosion and leaching also play a role in 

decreasing soil organic carbon content (NASA, 2011;  Corning et al., 2016; Lal et 

al., 2018; Jansson et al., 2021).  

 

In agricultural ecosystems, soil amendments are usually applied through manure 

or fertilizer input. C is extracted from the natural cycle when crops are harvested. 

As agricultural soils have progressively been depleted of their original organic C 

pool, they are identified as having promising potential for C sequestration, through 

the adoption of specific management practices with adequate institutional and 

labour support (De Stefano & Jacobson, 2018; Jansson et al., 2021). For example, 

ecosystem-based approaches such as agroforestry, land restoration, agricultural 

diversification and precision farming can strengthen ecosystem resilience to climate 

change, restore ES and sustainably improve food production. They may therefore 

be able to preserve most of the arable land while providing many ES (De Stefano 

& Jacobson, 2018; Jansson et al., 2021; Viaud & Kunnemann, 2021; IPCC, 2022). 
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Figure 3. Carbon (C) cycle in the soil-plant-atmosphere system with a focus on soil organic carbon 

(SOC). Adapted from Jansson et al., 2021 and Chapin et al., 2009. 

1.2.3 Nitrogen retention 

Nitrogen (N) is an essential element for the development of living organisms 

through its assimilation into amino acids, basic bricks of proteins. It is also a 

constituent of nucleotides, indispensable for the formation of DNA and RNA (Knoll 

et al., 2012).  

The most important nitrogen reservoirs are gaseous nitrogen in the atmosphere 

and dissolved in the ocean, and sedimentary N sealed in continental crust, which is 

essentially inert. However, small-scale biological fluxes, whose rates are controlled 

by microbes capable of fixing this mainly gaseous N, play a crucial role in the N 

cycle (Knoll et al., 2012).  

 

In natural ecosystems, the rates of N supply and loss are very limited and tend 

to reach a steady state. The major inputs of N to the soil take place through the 

process of atmospheric deposition and fixation by microorganisms (Figure 4). N 

losses occur through leaching, erosion and surface runoff, ammonia volatilization 

and especially gaseous losses of N2 and N2O through the process of denitrification 

(Haynes, 1986; Johnson et al., 2005; Knoll et al., 2012).  

Mineral N, which is the N available for direct plant uptake, constitutes less than 

2% of the TN content of the soil. The principal forms of mineral nitrogen include 

ammonium (NH4
+) and nitrate (NO3

-), which have different mobility in soil. The 
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positively charged NH4
+ ion is unlikely to leach out as it is retained in the soil by 

cation exchange, fixation by clay minerals and microbial immobilization. It is also 

nitrified relatively quickly as NO3
-, in many cases. The NO3

- anion, however, is 

readily removed from soils by leaching to groundwater or freshwater and by 

denitrification due to its high susceptibility to diffusion and transport in soil water 

(Haynes, 1986; Gikas et al., 2016). 

 

An internal N cycle operates in the plant-soil system. Dead organic residues are 

microbially decomposed, resulting in the release of NH4
+ (mineralisation), which 

then gets oxidised by microorganisms to NO3
- (nitrification) for energy production. 

Both mineral forms of N are available for plant and microbial uptake 

(immobilization) (Haynes, 1986; Knoll et al., 2012). The N incorporated in their 

biomass then returns to the soil as detritus, which is degraded by microorganisms, 

fungi and invertebrates. This contributes to the formation of soil organic matter. 

Since most N is bound to organic compounds, its accumulation closely follows that 

of soil organic matter, and therefore SOC. The supply of litter, the type of 

vegetation and the microbial characteristics responsible for the decomposition 

process largely determine the N content of the soil (Haynes, 1986; Johnson et al., 

2005; Knoll et al., 2012).  

Figure 4. Nitrogen cycle in the soil-plant system. Adapted from Haynes, 1986. 

In agricultural ecosystems, N availability is usually the limiting factor to crop 

production when soil water supply is secured. Today, agriculture is heavily reliant 
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on commercial synthetic nitrogenous fertilizers to sustain consistent yields despite 

the loss of N through plant removal. Twice as much N as is taken up by the crops 

is applied on crops. As a result, about half of the applied N is lost through surface 

and ground waters, through leaching and runoff or to the atmosphere, mainly 

through denitrification processes (Haynes, 1986). 

 

Factors influencing the rate of mineralisation/immobilization are environmental 

parameters, but also litter quality, which is reflected in particular by the Carbon to 

Nitrogen (C:N) ratio, which is defined as “the ratio of the mass of carbon to the 

mass of nitrogen” in the soil (USDA, 2011). As soil microorganisms have a C:N 

ratio close to 8:1, they must acquire this proportion of each element to maintain this 

ratio in their organisms. However, soil microorganisms also use about 16 parts of 

C as an energy source, which means that they must obtain a ratio of about 24:1. If 

materials with a higher C:N ratio are added to the soil, a temporary nitrogen deficit 

will occur, and a net immobilization will result (Figure 5). Materials with a lower 

ratio (more N) will result in a temporary surplus of N and net mineralisation 

(USDA, 2011). Field edges, especially closer to perennial formations, are subjected 

to an external C input coming from leaves and other materials from trees, increasing 

the soil C content.  

Figure 5. Coupled cycles of carbon (C) and nitrogen (N) in the soil-plant-atmosphere system and 

their relationship to crop growth. Potential positive (+) and negative (-) feedbacks from fertilization 

(Nitrogen-rich inputs) and proximity to trees (Carbon-rich inputs) on processes and carbon to 

nitrogen (C:N) ratio are shown in orange and green, respectively. The ecosystem services assessed 

are highlighted in orange, blue and purple for the food production, carbon sequestration and 

nitrogen retention, respectively.  
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1.2.4 Cropping system and landscape fragmentation 

Cropping systems (CS) are defined as “the crops and crop sequences and the 

management techniques used on a particular field over a period of years” (Alberti 

et al., 2021). Although the definition may differ depending on the purpose of the 

research, it often includes a set of management procedures applied to a specific 

cultivated area (Bergkvist et al., 2015).  

 

The productivity of an ecosystem is mainly determined by the climate (radiation 

and temperature) and the supply of water and nutrients from the soil (Figure 6). The 

potential of cropping systems to produce food depends on many factors and their 

interactions in the soil-plant-atmosphere system. Rabbinge (1993) has identified 

different levels of production related to different types of growth factors. Defining 

factors determine the growth potential of a crop under optimum conditions, while 

limiting factors are essential abiotic resources that lead to a decline in growth and 

yield if supplied in limited quantities. Reducing factors are biotic factors such as 

weeds, pollutants and diseases that inhibit growth (van Ittersum & Rabbinge, 1997).  

Figure 6. Factors determining crop growth. Adapted from van Ittersum & Rabbinge, 1997. 

There has been an increased focus on the effects of cropping systems on soil, water 

and other natural resources within and adjacent to agricultural systems (Alberti et 

al., 2021). In this respect, ES such as water and soil quality can be used as indicators 

of the sustainability of cropping systems to reduce dependence on external inputs 

(Alberti et al., 2021). Modern cropping systems are now expected to be more 

sustainable, i.e., able to provide ES in the long term, and to optimise multiple 

functions that minimise environmental impacts on surrounding ecosystems (e.g. 

chemical contamination, soil loss...), while maintaining high and stable yields in a 
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changing climate, more independently of external inputs and non-renewable 

resources (Malézieux, 2012; Bergkvist et al., 2015).  

Natural ecosystems can serve as a reference for the environmental and social 

objectives they meet while ensuring long-term sustainability. Incorporating below- 

and above-ground biodiversity into agricultural systems through the 

implementation of more complex cropping systems (crop rotation, intercropping, 

agroforestry) is a way to improve the delivery of ES, and overall functionality of 

the soil to produce crops (Figure 7) (Malézieux, 2012; Alberti et al., 2021; 

Hernández-Ochoa et al., 2022). 

 

To date, the management of agricultural landscapes has generally focused on 

agricultural production and expansion of agricultural land, resulting in landscape 

fragmentation. Forest fragmentation, defined as “the breaking apart of areas of 

natural land cover into smaller pieces independent of a change in the amount of 

natural land cover” (Fahrig, 2003), results in the loss of habitats and their associated 

biodiversity, ES and ultimately the loss of landscape multifunctionality (Pereira et 

al., 2005; Mitchell et al., 2014). It is therefore necessary to encapsulate how 

landscape fragmentation affects the provision and flow of services according to 

local ecological and social components in order to develop effective tools for 

implementing multifunctional landscape structures. This will enable the integration 

of the ecosystem service concept into decision-making and planning activities 

(Mitchell et al., 2015). 

Figure 7. Web chart of hypothetical landscape impact on ecosystem services trade-offs: Natural 

ecosystem (green), Intensively managed cropland (orange), and Cropland with restored ecosystem 

services (blue). Adapted from Foley et al., 2005.  
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Among other farming practices, agroforestry is at the forefront of sustainable 

agricultural practices for climate change mitigation and ES provision (Pardon et al., 

2017; Viaud & Kunnemann, 2021). Agroforestry systems are land use systems 

where perennial woody plants are integrated into the same land management units 

as crops and/or pastures under a specific spatial arrangement, in order to 

approximate mixed/multifunctional natural ecosystems and derive the associated 

benefits (ecological and economic interactions) (FAO, 2015). In agroforestry 

systems, the complementary use of resources by different vegetation layers and 

species makes it possible to provide more than one product, while avoiding or 

limiting compromise of the overall yield (Malézieux, 2012; Torralba et al., 2016). 

 

Agroforestry contributes to landscape diversification and sustains production for 

increased social, economic, and environmental benefits while preventing most 

environmental damages related to agricultural expansion (FAO, 2015; Torralba et 

al., 2016). The presence of perennial vegetation may have a major impact in carbon 

sequestration, while crop dry matter only stores C for a short time, being harvested 

every season (De Stefano & Jacobson, 2018; Alberti et al., 2021; Drexler et al., 

2021). At the same time, the addition of C residues from litter and rhizomes 

provides a structured, C-rich soil, improving the physical properties of the soil for 

crop growth and long-term ecosystem resilience, allowing microorganisms to 

decompose dead plant material into an increased pool of SOC (D’Acunto et al., 

2014; Pardon et al., 2017; Viaud & Kunnemann, 2021). 

 

While excess nitrogen fertiliser applied to crops leads to significant leaching of 

nitrogen to groundwater in conventional agriculture, this is limited in tree-based 

cropping systems, as the decomposition process that makes nitrogen available to 

plants is regulated by the continuous supply of small amounts of nitrogenous 

material from organic detritus.  

Woody vegetation also acts as a physical barrier for water runoff and N- and P-

rich sediment, limiting the erosion process that carries soil particles further into 

freshwaters (Torralba et al., 2016; Pardon et al., 2017). In addition, microclimatic 

improvements arise from the intertwined woody vegetation, playing a role in the 

local water cycle, notably through improved soil moisture, as well as through 

shading and cooling effects (Kuemmel, 2003; Mitchell et al., 2014). Agroforestry 

systems could become less dependent on fertilizer and irrigation inputs, making the 

N and water cycles more similar to those of natural ecosystems (Pardon et al., 

2017).  

 

Greater diversity in the landscape allows for greater ecosystem resilience and 

stability, through physical (e.g., grass strip, forest) and natural (natural enemies and 

(bio)diversity) barriers against pests and diseases (Alberti et al., 2021). 
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Agroforestry and associated landscape complexity provide biome connectivity, 

shelter, natural habitat, food and resources for wildlife, a necessary element for long 

term agricultural production and for the environment (D'Acunto et al., 2016; 

Torralba et al., 2016). More diverse and complex agricultural ecosystems should 

contribute to better belowground biodiversity and improve overall functionality for 

crop production (Mitchell et al., 2014; Alberti et al., 2021). 
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The first objective was to provide a methodological framework on the assessment 

of the in-field spatial variability to provide ecosystem services. A methodological 

framework usually aims to “provide structured guidance on how to carry out a 

process or procedure using a step-by-step approach, in order to improve the 

consistency, robustness and reporting of the activity, improve the quality of the 

research, standardise approaches and maximise the reliability of the results” 

(McMeekin et al., 2020).  

 

The ES selected for evaluation included carbon sequestration, nitrogen retention 

and food supply. The indicators considered for these ES are soil organic carbon 

(SOC), soil total nitrogen (TN) and yield, respectively. The values of these 

indicators were simulated using a processed-based crop model. 

 

All the spatial analysis was done in ArcMap. RStudio was used for coding, and 

statistical analysis were performed on Excel and GBuild (DSSAT) (RStudio Team, 

2022).  

 

2. Materials and methods 
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2.1 Data collection 

2.1.1 Site description 

The study focused on an agricultural field from Lantmännens farms, Bjertorp, 

Kvänum, in Sweden. The field was chosen due to its particularly long edge facing 

the forest (Figure 8) and its proximity to Bjertorp weather station (58.2644 N; 

13.1132 E).   

Figure 8. Map and satellite view of Bjertorp agricultural site and chosen field and weather station 

location. 

The choice of that location offers multiple advantages for data collection. First, 

Bjertorp weather station has been collecting various meteorological data since 

2008, which can be downloaded on LantMet (SLU, 2022); second, it is located 

around Lanna research station, which is an agricultural site owned and run by the 

SLU (SLU, 2022). Data collected through soil samples in 2010-2011, and yield data 

[Mg ha-1], recorded by a harvester machine in 2010 were available (Soil and 

Environment department, SLU). The yield data had already been filtered 

automatically, so that the outliers were removed. Therefore, the field variations 

were considered accurate even though absolute values might not be.  

2.1.2 DSSAT Model 

The decision support System for Agrotechnology Transfer (DSSAT) crop models 

have been widely used to simulate crop yield of agroecological ecosystems under 

diverse management practices to optimize resource use and crop production while 

minimizing environmental damage (Soler et al., 2007;  Sarkar, 2009; Chisanga et 

al., 2015). DSSAT is a process-based crop model that simulates the main processes 

occurring in the soil and plant as well as in the soil-plant system. Using a daily time 

step, this model is able to link weather conditions to crop growth through processes 

such as photosynthesis, transpiration, heat stress or frost. It simulates a one-
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dimensional water balance with vertical flow to meet the requirements of relatively 

simple inputs for model users (Boote, 2019). It also includes database management 

programmes for every module that allows users to input, organise, store, retrieve 

and analyse crop, soil and weather data (Figure 9) (Hoogenboom et al., 2003; 

Alderman, 2021). 

The DSSAT crop model requires the production of four separate modules with 

a minimum set of data for soil (1), weather (2), crop management (3) and cultivar-

specific parameters (4) (Figure 9) (Jones et al., 2003; Chisanga et al., 2015; 

Hoogenboom et al., 2021). Since the model works for simulations on a 

homogeneous area of land, the field was divided into polygons comprising uniform 

soil properties, in order to depict the spatial variability possibly brought by the 

presence of forest at the border (Chisanga et al., 2015).  

Figure 9. Overview of the components and modular structure of the DSSAT Cropping System Models 

(Jones et al., 2003). 

2.1.3 Model input 

Soil module 

The minimum soil data consists of the metadata of the field location, including soil 

surface colour, slope, drainage and permeability, soil texture, bulk density and SOC 

for each soil horizon (Figure 10) (Hoogenboom et al., 2019). The TN was included 

in the soil parameters even though it is not part of the minimum soil data, as it is an 

indicator for one of the ES assessments, the nitrogen retention. 
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Figure 10. (Left) Soil data diagram showing the different layers of data required to highlight the 

forest edge effects. Land cover, forest buffer, nitrogen gradient, soil organic matter, soil texture and 

pH are gathered into unique polygons with a specific ID code that are imported in DSSAT. The 

output can be spatially compared if imported back into ArcMap. 

The soil data, collected through 12 soil samples that comprised the sample location, 

soil texture ([%] clay and [%] silt), pH [-] and soil organic matter [%] from 2010-

2011. The soil organic matter content was converted into SOC. 

Soil moisture content at lower limit (LL), drained upper limit (DUL), and at 

saturation (SAT), and the bulk density [g/cm3] were estimated based on textural 

analysis using pedotransfer functions (Kätterer et al., 2006; Chisanga et al., 2015). 

The map of topsoil chemical properties based on the Land Use and Cover Area 

frame Survey (LUCAS) at European scale provided gridded data, with a resolution 

of 500m (European Soil Data Center (ESDAC), 2019; Ballabio et al., 2019) and 

was assumed to be the best data source available. N data was not estimated using 

the soil organic matter content in order to obtain independent variables. 

Weather module 

The minimum meteorological data encompasses the metadata of the closest weather 

station, such as the latitude, longitude, altitude and sensor height, as well as daily 

maximum and minimum temperature, precipitation and solar radiation. 

(Hoogenboom et al., 2019).  

The weather data was downloaded on LantMet, which is a database that stores 

weather data from local weather stations and from the Swedish Hydrological and 

Meteorological institute (SMHI) (SMHI, n.d.). Bjertorp Meteorological Station, 

Sweden (58.2644 N; 13.1132 E), which is 1.5 km away from the field, provided 

minimum and maximum temperatures [°C], precipitation [mm/day] and solar 

radiation [W/m2/day] since 2008.  
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Management module 

The management module determines whether and when field operations are 

performed (Table 1) (Hoogenboom et al., 2003). Since the real management options 

were not known, those parameters were assumed based on common agricultural 

practices in the study region. 

Table 1. Management Simulation Options. 

Management options Value Description 

Planting R On reported date 

Irrigation N Not irrigated 

Fertilization R On reported dates 

Residue applications N No application 

Harvest M At maturity 

Tillage N No tillage 

Cultivar module 

The cultivar module includes genetic coefficients that describe “physiological 

processes and developmental differences among crop hybrids or varieties” 

(Chisanga et al., 2015). They are part of the inbuilt plant growth modules CERES-

Wheat and Barley Models, that can simulate growth and yield for individual 

species. With the right cultivar coefficients, the CERES models can provide 

simulations on e.g., phenology, daily growth and partitioning, plant N and C 

demands, senescence of plant material, etc. (Hoogenboom et al., 2003).  

Model calibration consisted in the adjustment of the genetic coefficients though 

”trial and error”, aiming to provide simulated rye yield that compare well with 

observed field data (Figure 11) (Chisanga et al., 2015).  

Figure 11. Crop data diagram linking the crop module and yield data. Each unique polygons holds 

a value for observed yield data [Mg ha-1] that will be compared with the simulated yield produced 

by DSSAT to validate the model. 
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2.2 Data management 

2.2.1 Data conversion and preparation 

In order to better understand the topic of edge effects and ES within agricultural 

landscape, scientific papers were collected, using specific terms in Google Scholar 

and the SLU library database. Researched key words included edge effects, field 

margins, transition zone, borders, boundary effect, distance-from-forest, forest 

edge, field-to-forest, yield response, landscape fragmentation, transect, carbon and 

nitrogen content, SOC, total nitrogen, gradient.  

The outcome of those papers was gathered in the background section to provide 

additional information on particular topics that were further developed in the 

discussion. However, most papers focused on the forest side of the field-to-forest 

boundary. The emphasis was generally on biodiversity or nutrient cycles, but no 

article provided a complete and site-specific assessment of the N and C 

concentration, comprising the local weather and soil conditions. 

TN and SOC gradients 

Based on the previous literature, the assumption was made that the TN and SOC 

content would decrease from the forest edge to the field core (Bambrick et al., 2010; 

D’Acunto et al., 2014; Mitchell et al., 2014; Pardon et al., 2017; Drexler et al., 

2021). Data about SOC and TN concentration were needed to produce a function 

that could represent the gradient in concentration across the distance to the edge. 

Amongst the scientific papers that included useful data, studies were selected 

according to their location and land use type. The preferred conditions included a 

temperate climate as well as an arable field or meadow adjacent to any type of forest 

or including a woody vegetation line among the field. Furthermore, soil samples 

providing C or N concentrations along a transect from the edge to the core of the 

field were needed. 

 

The articles found presented three different types of tree-based CS. The effects 

of only one of the following elements were usually identified and measured: 

hedges, tree lines or forest edges. Only a few studies dealt with forest edges (2 for 

SOC data and 1 for TN (D’Acunto et al., 2014; Schmidt et al., 2019).  

Consequently, the resulting function used a combination of data extracted from 

studies of all three types.  

For each dataset exported from the literature, it was considered that the SOC and 

TN concentrations were absolute (100%) at their most distant sample point from 

the forest edge. Each concentration was therefore divided by the concentration 

collected at the farthest point from the tree line, allowing for the % unit to replace 

the various units found in each study. 
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All the datasets were combined in a plot to produce a trendline function of C and 

N concentrations as a relation to the distance from the forest (Figure 12 Figure 13). 

The powered trendline provided the best fit (R2 = 0.54 for SOC and R2 = 0.49 for 

TN) and was chosen as the resulting gradient function. To implement this, it was 

however necessary to change the distance 0 from the field edge to 0.01 m. 

Figure 12. Combination of data on Soil Organic Carbon (SOC) concentration gradient from the 

edge (0m) to the core of the field (30m and onwards), with the SOC concentration in the Y axis. The 

data was extirped from different studies (different lines). 

 

Figure 13. Combination of data on Total Nitrogen (TN) concentration gradient from the edge (0) to 

the core of the field (30m and onwards), with the TN concentration in the Y axis. The data was 

extirped from different studies (different lines). 
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It was chosen to highlight the spatial variability in the direct vicinity of the edge, 

where the concentrations tended to increase the most. Therefore, it was arbitrarily 

decided that the gradient function would only be considered from 2.5m up to 40m 

from the edge (Table 2). Beyond this distance, the SOC and TN concentrations 

would be considered at their minimum (100%). This prevents to getting lower 

values as the distance from the forest increases, and infinitely high values of SOC 

and TN for distances close to zero. 

Table 2. Gradient function of the SOC and TN concentration (y) according to the distance from the 

forest edge (x), under the form y=axb.. 

 SOC TN 

 a b a b 

From 2.5 to 40m 1.5179 -0.113 1.3704 -0.081 

From 40m and onwards 1 1 1 1 

Weather data 

The weather data obtained from Bjertorp weather station was imported into 

WeatherMan, a tool provided by the DSSAT interface that allows to import, analyse 

and export daily weather data (Hoogenboom et al., 2019). It uses the means and 

variances of the imported meteorological dataset to interpolate missing and 

incorrect values, before creating the weather file including geographical and 

climatic information provided by the user (Table 3).   

Table 3. Geographical and climatic parameters gathered in the weather module. 

Parameter Value 

Latitude 58.2644 

Longitude 13.1132 

Climate Humid continental climate 

The quality of the single available source of microclimatic data in field edge studies 

(Schmidt et al., 2017) was assessed in the potentiality of deriving factors to change 

the local weather data in order to identify the effects of the forest edge on 

hydrological conditions. To do so, a statistical analysis was conducted in Excel. 

First, the daily weather data was calculated based on the raw hourly data. Then, the 

differences between the East facing side (EFS) data and the West facing side (WFS) 

data were calculated for each parameter (minimum and maximum temperatures, 

precipitation, solar radiation. Finally, these differences were analysed using 

ANOVA, highlighting unsignificant differences (p>0.05) between most parameters 

from the EFS and WFS. Microclimatic variations were decided not to be considered 

in this study, due to the lack of consistency, short series (e.g., complete growing 

season) recording, and the lack of significant difference between the parameters at 

the EFS and WFS. 
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2.2.2 Preparation of spatial data 

Reference map and land use 

The map from Lantmäteriet was used as the reference map, using SLU Geo 

Extraction Tool (SLU, n.d.)) to download the location around Bjertorp agricultural 

site. The forest and arable land attributes were extracted from the land use layer. To 

ensure that the forest layer never overlaps the arable land layer, the forest layer was 

erased from the arable land. Then, a Multiple buffer ring was created at regular 

distances from the forest, providing parallel polygons at 5, 10, 15, 25 and 35 m from 

the forest edge. Shorter gaps (5m) have been chosen at proximity to the edge 

because that is where the concentration function show the greatest slope. It was 

considered that the concentrations remain the same from 40m and onwards, in order 

to minimize the creation of unique polygons. 

Soil data 

The soil sample layer was added in ArcMap. Each soil sample provides 

measurements on the SOM [%], the soil texture [%] and the pH [-]. The SOC 

content [%] was deduced from the SOM value in a new field in the attribute table, 

according to equation 1 (WA Government, 2022). The TN was not estimated based 

on the SOM to prevent collinearity and provide independent variables.  

 

𝑆𝑂𝑀 = 1.72 ∗ 𝑆𝑂𝐶 (1) 

The Thiessen polygon method was used to interpolate the observed data from the 

samples (Figure 14).  

Figure 14. Unique polygons representing uniform land. Soil samples (dots) from 2010 and resulting 

the merge of Thiessen polygons with forest buffer rings based on distance to the forest (data from 

the Soil and Environment department, SLU). 
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As a result, for any point in the fields, parameters were equal to the observed 

measurements at the closest sampling location (Schumann, 1998). Sub polygons 

were generated, each with a constant value for each sampled parameter. The 

polygons newly created were merged with the forest buffer polygons in order to 

obtain the final configuration of polygons. 

Nitrogen and vectorisation 

The gridded N [g/kg soil] was imported as a raster layer (Figure 15) (Ballabio et 

al., 2019; ESDAC, 2019). It first needed to be vectorised, with a succession of 

several tools, as the Raster to polygon tool requires integer data only (Figure 16). 

Therefore, the Raster calculator tool first allowed to multiply the nitrogen 

concentration by 1000 [kg/kg]. The Int tool then converted each cell value of the 

raster to an integer (by truncation). The layer was then vectorised, using the Raster 

to polygon tool. Finally, a field (of type float) was added to the attribute table of 

each layer, using the calculator to fill the column with the raster values obtained 

above, divided by 1000. The new vector layer contained N concentrations [g/kg] 

with 3 decimals.  

Figure 15. Gridded nitrogen concentration in percentages (500m spatial resolution) (data from 

ESDAC, 2019). 

Figure 16. ArcMap model using a succession of tools to transform a raster layer into a vector layer. 

Blue box corresponds to model input, yellow boxes to tools and green boxes to outputs, produced in 

ArcMap. 

N concentrations were then assimilated to each polygon by average and based in 

spatial location, using the Spatial joint tool. A new attribute field was then found in 
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each polygon, that corresponded to the weighted average of TN. At last, TN values 

were converted from g/kg into percentages [%]. 

Yield data 

Yield data [Mg ha-1] were imported into ArcMap as a text file, under the projection 

WGS 84. It was converted into a shapefile in ArcMap, resulting in a point feature 

layer (Figure 17). The yield layer was rasterised using the kriging interpolation 

method and clipped to the field shape. 

Figure 17. Yield map provided by the harvester machine and showing yield from 2010 in Mg ha-1 

(data from the Soil and Environment Department, SLU). 

Just as for the TN, the yield data was vectorised according to the steps described in 

Figure 16. Then, average yield data was spatially joined to each polygon through a 

weighted average as well. The observed yield was extracted in a table and will be 

compared with the yield resulting from the DSSAT simulation.  

SOC and TN gradient 

The mid-distances were calculated using the field calculator (Python) in order to 

find the mid-point of each buffer polygon, and to correct the default 0 distance to 

40m: 
 

def reclass(distance): 

  if (distance == 5): 

    return 2.5 

  if (distance == 10): 

    return 7.5 

  if (distance == 15): 

    return 12.5 

  if (distance == 25): 

    return 20 

  if (distance == 35): 

    return 30 

  if (distance == 0): 

    return 40 

 

reclass(!distance!) 

 

[Mg ha-1] 
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Henceforth, the concentration gradient was applied, depending on the mid-distance 

d to the forest, by adding it to the attribute table (float) according to the 

concentration trendlines obtained from the different papers. The resulting equations 

were: 

 

If the mid-distance < 40m,  

𝑇𝑁𝐺𝑟𝑎𝑑 = 𝑇𝑁𝐴𝑣𝑔 ∗ 1.3704 ∗ 𝑑
−0.081 (2) 

𝑆𝑂𝐶𝐺𝑟𝑎𝑑 = 𝑆𝑂𝐶𝐴𝑣𝑔 ∗ 1.5179 ∗ 𝑑
−0.113 (3) 

Otherwise,  

𝑇𝑁𝐺𝑟𝑎𝑑 = 𝑇𝑁𝐴𝑣𝑔 (4) 

𝑆𝑂𝐶𝐺𝑟𝑎𝑑 = 𝑆𝑂𝐶𝐴𝑣𝑔 (5) 

 

This command ensured that the SOC and TN of the field were constant at the core 

of the field, i.e., 40m from the forest edge and beyond. All polygons were assigned 

a value for SOC and TN concentration, resulting in differential concentrations 

across the field, including higher concentrations at the forested edges (Figure 18).  

Figure 18. Cartography of the (left) Soil Organic Carbon (SOC) content and (right) Total Nitrogen 

(TN) concentrations for unique polygons as input for the DSSAT crop models, produced in ArcMap. 

2.2.3 Finalisation of the soil file on RStudio 

The soil module holds a succession of soil profiles containing the minimum soil 

data for every polygon, each considered as a homogeneous soil entity. DSSAT 

provided a typical soil profile file that can be modified in order to generate one that 

is specific to the assessed fields. The parameters that were collected in the previous 

sections therefore needed to be inserted in each polygon’s soil profile. To this 

regard, a soil profile template file was created on the basis of the typical DSSAT 

file, with written code to be replaced with the specific values that were mapped in 

ArcMap for the topsoil layer (Table 4). The latitude and longitude are specified 

manually. The other parameters are estimations provided by DSSAT for Swedish 

soils.  
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Table 4. Soil module parameters. 

Variable Unit 

Soil moisture content at saturation (SAT) cm3/cm3 

Soil moisture content at lower limit (LL) cm3/cm3 

Soil moisture content at drained upper limit (DUL) cm3/cm3 

Bulk density g/cm3 

SOC % 

Clay % 

Silt % 

TN % 

pH - 

Pedotransfer functions provided a useful estimation for drainage and permeability 

characteristics on the basis of soil texture and SOC. Estimates were added in the 

attribute table in Excel according to the following equations (Kätterer et al., 2006): 

Soil moisture content at saturation (SAT)(cm3/cm3): 

𝑆𝐴𝑇 = −0.33 ∗ 𝑠𝑎𝑛𝑑 + 0.46 (6) 

Soil moisture content at lower limit (LL) (cm3/cm3): 

𝐿𝐿 = 0.44 ∗ 𝑐𝑙𝑎𝑦 + 0.025 (7) 

Soil moisture content at drained upper limit (DUL)(cm3/cm3): 

𝐷𝑈𝐿 = 0.30 ∗ 𝑠𝑖𝑙𝑡 + 0.12 (8) 

Bulk density (g/cm3): 

𝜌 = −0.19 ∗ 𝑆𝑂𝐶 + 1.82 (9) 

The attribute table was saved as a csv file with the unique polygons’ codes as head 

row. The number format (Ex: 1.234 has five characters) needed to coincide with 

the number of characters from the code (Ex: _SLLL has five characters).  

To automate the process, a code (Appendix 1) was produced in RStudio. It 

enabled to successively replace the parameters’ values in the soil profile template 

with the ones of each polygon from ArcMap. The soil file was progressively being 

created by appending the soil profiles one after the other.  

The soil file obtained contained 47 soil profiles that corresponded to the 47 

unique polygons constituting the field in Bjertorp. The first soil profiles can be 

found in the Appendix (2). 
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2.2.4 Crop modelling calibration 

Once the soil and weather data files preparation were completed, the field 

conditions were replicated in CSM-CERES model to start the calibration process.  

Observed yield data (from Figure 17) was used as a base for the estimation of 

DSSAT generic genotypes that is part of the calibration process. In order to estimate 

the rye genetic parameters, a Bayesian method was employed (Boote, 1999). This 

method uses Monte Carlo sampling from prior distributions of the coefficients and 

a Gaussian likelihood function to choose the ones that best match the observed 

values. The advantage of this approach is to combine information of different 

observations to estimate the distribution probability of parameters values and model 

predictions (Beven & Freer, 2001). To achieve this task, the Generalized Likelihood 

Uncertainty Estimation (GLUE) methodology was employed (He et al., 2010). The 

process was initially run only for developmental parameters (assuming the 15th of 

April as sowing date and the harvest date minus two weeks as the physiological 

maturity date) to correctly simulate the plant phenology (based on the thermal sum 

of different stages).  

Once the model was able to mimic the observed physiological maturity date with 

less than 10% error, growth coefficients (maximum number of kernels per plant and 

grain filling rate), were calculated. The overall procedure was done using 30000 

runs of the model and using 2/3 (31) of the polygons for calibration and 1/3 for an 

independent validation. Polygons for model calibration and validation were 

randomly selected. Each simulation run generated indexes to compare the simulated 

and observed values in all the individual polygons.  

At the end of the process, the set of genetic coefficients with higher probability 

of matching the observed values was selected by GLUE and used to generate the 

yields (Appendix 3). 

2.3 Data analysis 

2.3.1 Evaluation of the methodological framework 

Once the model generated yields for all polygons, the attribute table of the shape 

file was edited on OpenOffice to include new columns related to yield. The 

observed [%] and predicted [kg ha-1] SOC were mapped in the same way.  

As for the TN concentrations, a correlation table was produced with possible 

variables for comparison. The variables with highest correlation were plotted and 

mapped in ArcMap. They included cumulative N mineralization and cumulative N 

immobilization [kg ha-1].  
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The meteorological data (Figure 19) shows a typical Swedish weather with cold 

and dry days in winter, humid spring, and warm temperatures in summer. Important 

rain events occurred in the summer, indicating that in this year crops probably did 

not suffer any intense stress related to drought or higher temperatures. 

 

 

Figure 19. Weather conditions for year 2010 at Bjertorp weather station, Kvänum, Sweden. 

2.3.2 Evaluation of DSSAT models performance 

For model evaluation, the simulated rye yield was compared with the observed 

values of 2010. Since the model outputs (predicted yield) are produced with 0% 

moisture, the observed yield data was adjusted to reflect this (HWAMM variable). 

The measured yield is based on a yield map shown in the previous section (Figure 

17).  

 

Even though statistical tests (e.g., regression) are a common tool for model 

evaluation, distance measures were considered more appropriate in this study. 

Wallach et al. (2019) found that system models do not necessarily satisfy the 

assumptions (e.g., normality) on which those tests are based. In addition, the 

amount and variability of data affects the acceptance of the model. But most 

importantly, mathematical models are tools for simplifying the complex reality of 

agronomic processes. Even with sufficient data, models remain estimates and the 

null hypothesis would be rejected in all cases. Quantitative measures of how well 

the model simulates the data therefore seem more appropriate than tests at arbitrary 

levels (Wallach et al., 2019). 

Therefore, performance statistics were determined to assess the model 

predictions quality. They included the root mean square error (RMSE) and 
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normalised RMSE (NRMSE), the index of agreement (d-stat) and model efficiency 

(EF) as recommended by Wallach, Makowski, Jones, & Brun (2019). 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑃𝑖 −𝑂𝑖)2
𝑛

1

(10) 

 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑀
× 100% (11) 

𝑑 − 𝑠𝑡𝑎𝑡 = 1 −
∑ (𝑃𝑖 −𝑂𝑖)

2𝑛
𝑖=1

∑ (|𝑃𝑖′| − |𝑂𝑖′|)2
𝑛
𝑖=1

(12) 

 

𝐸𝐹 = 1 −
∑ (𝑃𝑖 −𝑂𝑖)

2𝑛
𝑖=1

∑ (𝑃𝑖 −𝑀)2𝑛
𝑖=1

(13) 

With n as the number of observations, Pi and Oi referring to the predicted and 

observed values and M to the mean of the observed variable. Pi’ and Oi’ 

corresponded to Pi – M and Oi – M, respectively.   

The RMSE allows to determine statistical differences between predicted and 

measured values. The NRMSE gives a relative measure of the residual variance of 

the model, with a prediction considered excellent [%] if the NRMSE < 10%; good 

if 10% < NRMSE < 20%; fair if 20% < NRMSE < 30%; and poor if NRMSE > 30%, 

according to (Hoogenboom et al., 2003). The closest index of agreement d-stat to 

one, the better the agreement between the measured and simulated variables. The 

EF determines the goodness of fit with the best degree of fit at 1. A value of 0 would 

indicate an equal fit to Pi=M and negative values an even worse fit (Mayer & Butler, 

1993; Wallach et al., 2019).  

 

The prediction deviation (PD) [%] was calculated for each prediction, using the 

following equation:  

𝑃𝐷 =
𝑂𝑖 − 𝑃𝑖
𝑂𝑖

(14) 

Where Oi and Pi are the observed and predicted values, respectively. Therefore, the 

PD indicates an underestimation if it is negative and vice versa (Soler et al., 2007). 

2.3.3 Effects on selected ecosystem services 

The output files regarding SOC and TN included data with different concentrations 

than those of the input files, and normalization (Vnorm) was required to allow plotting 

and comparison (Developers, Google, 2022).  
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𝑉𝑛𝑜𝑟𝑚 =
(𝑉𝑖 − 𝑉𝑚𝑖𝑛)

(𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛)
(15) 

 

Where Vmin and Vmax are the minimum and maximum of the values considered.  

The predicted normalized error (PNE) was calculated to highlight the difference 

between normalized observations and simulations.  

 

𝑃𝑁𝐸 = 𝑁𝑂𝑆𝑂𝐶 − 𝑁𝑃𝑆𝑂𝐶 (16) 

With NOSOC and NPSOC being the normalzed observed and predicted SOC, 

respectively. 
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3.1 Methodological framework  

In the existing literature on effects of perennial vegetation on agricultural fields, 

hedgerows were the most studied structural element, compared to forest edges and 

tree rows. However, similar effects were described regarding their impacts on SOC 

and TN concentrations on adjacent lands. The data found on the three types of 

structural elements were combined to generate concentration curves for SOC and 

TN at increasing distances from forest edges (Figure 20). Both resulting functions 

show a similar decrease, with a slightly more abrupt slope for TN. Both curves 

reach 100% around 40m from the forest edge (100% SOC= 40m and 100% TN= 

50m). This leads to a percentage error of 0.05% for SOC and 1.64% for TN.  

 

 

Figure 20. Concentrations curves of Soil Organic Carbon (SOC) and Total Nitrogen (TN) in 

relation with the distance to the forest. Based on literature data on hedgerows, tree rows and forest 

edges and their effects on carbon and nitrogen concentrations on adjacent land. 

The correlation table (Table 5) indicates a strong correlation with the distance from 

the forest edge d with the TN, with a smaller effect on SOC, suggesting that the 

gradient function was able to match the TN and SOC “observed” values. Yield, 

however, shows quite a highly positive correlation with distance from the forest 
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edge (r=0.69), illustrating very clearly the spatial heterogeneity in the field. TN and 

SOC have a negative correlation with yield, supporting the fact that a decrease in 

TN and SOC is observed when yields increase and inversely.   

Table 5. Correlation table between input variables and ecosystem services indicators. The colour 

gradient show where the value of each cell falls within the selected range, with red and green 

highlighting the strongest correlations (negative and positive). 

  pH clay sand silt d LL DUL SAT BD TN SOC Yield 

pH 1.00 
           

clay 0.96 1.00 
          

sand -0.97 -0.95 1.00 
         

silt 0.92 0.87 -0.98 1.00 
        

d -0.06 -0.08 0.09 -0.09 1.00 
       

LL 0.96 1.00 -0.95 0.87 -0.08 1.00 
      

DUL 0.92 0.87 -0.98 1.00 -0.09 0.87 1.00 
     

SAT 0.97 0.95 -1.00 0.98 -0.09 0.95 0.98 1.00 
    

BD 0.29 0.27 -0.19 0.13 0.57 0.27 0.13 0.19 1.00 
   

TN -0.11 -0.08 0.09 -0.09 -0.86 -0.08 -0.09 -0.09 -0.54 1.00 
  

SOC -0.29 -0.27 0.19 -0.13 -0.56 -0.27 -0.13 -0.19 -1.00 0.54 1.00 
 

Yield 0.28 0.26 -0.32 0.34 0.69 0.26 0.34 0.32 0.50 -0.56 -0.49 1.00 

d: distance from the forest edge, LL: Soil moisture content at lower limit, DUL: Soil moisture content at 

drained upper limit, SAT: Soil moisture content at saturation, BD: Bulk density, TN: Total nitrogen, SOC: 

Soil organic content. 

Soil pH and texture (reflected by clay, silt and sand) are found to have a non-

negligible correlation with yield (negative for sand), as well as with SOC. However, 

no significant correlation was found between soil characteristics and TN. Soil 

moisture contents (LL, DUL, SAT) also show a positive correlation to yield. 

From this table, it is evident that pH and soil texture are strongly correlated, 

suggesting a high degree of collinearity, which should be taken into account for an 

appropriate interpretation. Indeed, the percentages of silt, sand and clay are linked 

together by the soil texture diagram, summing up to 100% for each soil profile. 

3.2 DSSAT models performance 

The appendix (3) shows the genotype coefficients generated by the GLUE (DSSAT 

model) after calibration.  

 

The Figure 21 (left) reveals that the model tends to overestimate the yield. In 

addition, the scatter of the points shows a curved pattern that deviates from the 1:1 

trend line. The presence of horizontal lines indicates that some of the polygons had 
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the same soil and weather data, which lead the model to produce the exact same 

yields. 

And whilst the observed yield had a mean of 5875 kg ha-1 and a standard 

deviation of 639 kg ha-1, the predicted dataset showed a greater mean (6241 kg ha-

1) and a lower standard deviation (354 kg ha-1). This is reflected by the Figure 21 

(right), which highlights a greater variability in the observed dataset, that was not 

accurately depicted by the model. 

  

Figure 21. (Left) comparison of measured and predicted rye yield (2010). (Right) box plot 

comparing minimum, 1st quartile, median, 3d quartile and maximum values for measured 

(HWAMM) and simulated (HWAMS) rye yield at maturity. 

The R2 suggests that the model was not able to depict much variation from the 

observed variable) (Table 6). However, the prediction is considered close to 

excellent with a NRMSE of 10.7 % (Hoogenboom et al., 2003). The index of 

agreement d-stat (0.662) suggests that the model provides a good fit for the 

observed yield. According to Mayer & Butler (1993), the negative EF (-0.52) 

reflects a worse fit to the data than Pi = M. 

Table 6. Model performance statistics based on the comparison of observed and predicted rye yield 

for 2010. 

Model performance statistics Value 

R2 0.364 

RMSE 627.87 

NRMSE [%] 10.7 

d-stat 0.662 

EF -0.519 

R2, coefficient of determination; EF, forecasting efficiency; d-stat, index 
of agreement; RMSE, root mean square error; NRMSE, normalized 
RMSE 

y = 0.3348x + 4274.2
R² = 0.3639
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The prediction deviation ranged from -33% to 11%, which indicates that the model 

tended to overestimate the yields (Figure 22, left). Most predictions, however, fall 

in between 10 and -10%, suggesting a fair fit for most observations. Most field core 

polygons have accurate predictions (<|5%| and <|10%|) and that the poorest 

predictions are mostly found at the forest edge, with important overestimations (PD 

< 0). 

The observed yields at the field core (dark green areas) seem to be relatively 

high, which was well depicted by the simulation (Figure 22, right). However, the 

polygons at the edges show a lower yield that is less accurately predicted. No low 

values at all were predicted by the model, illustrating the model’s tendency to 

overestimate the yields, especially at shorter distances to the forest edges. The upper 

left corner shows particularly low yields. 

 

Figure 22. (Left) prediction deviation (PD) calculated via equation 10. Green colour indicates an 

absolute predicted deviation of less than 5%. Blue colour indicates an underprediction of more than 

5% and yellow to red colours indicate an overprediction of 5% to 33%. (Right) Cartography of the 

measured yield (above) and simulated rye yield (below) for 2010, at studied site, Bjertorp, Kvänum, 
Sweden. Yellow to red colours show relatively low yields while light and dark green show relatively 

high yields. 

3.3 Ecosystem services 

3.3.1 Food production 

Food production provision was assessed in the previous section through the model 

evaluation that compared the observed and predicted yield at maturity [kg ha-1]. 

The results show a poor agreement between the observed and predicted datasets, 

suggesting that the model should be recalibrated to try and provide a better fit.  

The simulated yield (HWAMS) shows some good correlation with a few 

variables (Table 7). The pH and soil texture demonstrate a significant correlation 
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with the measured yield (positive and negative). In addition, the distance from the 

forest has a great correlation with both the measured and simulated yield, indicating 

that the model was able to depict some of the effects of the forest edge on food 

production. Both yield variables show a similar negative correlation with observed 

TN. The N leached during season (NLCM) also shows a nearly equal correlation to 

HWAMM and HWAMS (0.34 and 0.32), respectively. CO2EC, which corresponds 

to the cumulative CO2 emissions from soil, is highly correlated to HWAMS, and 

fairly correlated to HWAMM.  

Furthermore, the NGasC and organic nitrogen (ONAM) have a close to zero 

correlation with both yield datasets. 

Most of the variables seem to behave differently with regard to observed or 

simulated yield.  

Several variables show a relatively high negative correlation to HWAMM, while 

showing a significantly lower correlation to HWAMS (OrgNBal, NIAD, NMNC and 

NIMC). On the contrary, the variables that are positively correlated to HWAMS, are 

not as much correlated to HWAMM (InNBal, SNBal, N2OEC).  

Table 7. Correlation table with initial harvest yield at maturity (HWAMM) and simulated harvest 

yield at maturity (HWAMS) against various input and output variables. The colour gradient show 

where the value of each cell falls within the selected range, with red and green highlighting the 

strongest correlations (negative and positive). 

 HWAMM HWAMS 

pH 0.28 0.09 

clay 0.26 0.04 
sand -0.32 -0.15 

silt 0.35 0.20 

d 0.69 0.61 
TN -0.56 -0.42 

SOC -0.49 -0.03 

OCAM -0.54 -0.16 
InNBal 0.08 0.40 

OrgNBal -0.44 -0.25 

SNBAL -0.01 0.30 
NIAD -0.32 -0.22 

NLCM 0.34 0.32 

NGasC 0.04 -0.04 
NMNC -0.61 -0.21 

NIMC -0.61 -0.03 

LNTD 0.12 0.30 
ONAM 0.00 0.04 

N2OEC 0.08 0.26 

CO2EC 0.48 0.87 
d: distance from the forest edge, TN: Observed Total Nitrogen, SOC: Observed 
Soil Organic Carbon, OCAM: Predicted Soil Organic Carbon, InNBal: Inorganic 
Nitrogen Balance, OrgNBal: Organic Nitrogen Balance, SNBAL: Seasonal 
Nitrogen Balance, NIAD: Total soil NO3-

 + NH4
+, NLCM: N leached during 

season, NGasC: N Gas losses, NMNC: Cumulative N mineralization, NIMC: 
Cumulative N immobilization, LNTD: Total soil litter N, ONAM: Organic N at 
maturity, N2OEC and CO2EC: Cumulative N2O and CO2 emissions from soil 
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3.3.2 Carbon sequestration 

There is a good fit between the observed and predicted values (R2 = 0.97). However, 

the scatter plot (Figure 23) proves the tendency of the model to overestimate the 

SOC at maturity, as most points lie above the 1:1 trend line.  

 

 

Figure 23. Comparison of normalized measured and simulated soil organic carbon (SOC) for 2010 

at the studied site, Bjertorp, Kvänum, Sweden. 

The Figure 24 (left) displays the spatial variability across the field. Although the 

variables have different units, the two maps show a very similar pattern, with 

relatively higher values near forest edges. The model seems to have predicted the 

SOC with accuracy. However, the Figure 24 (right) highlights the almost systematic 

over-prediction of the model. Only a few points are located above the zero line. In 

general, the predicted normalized error (PNE) vary from 0.03 to -0.14. Greater gaps 

are found close to forest edges. 
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Figure 24. (Left) cartography of the initially observed SOC gradient in % (above) and the predicted 

SOC at the end of the season in kg ha-1 (below), in 2010, at the studied site, Bjertorp, Kvänum, 

Sweden. Light to dark blue colours indicate relatively low to high concentrations, respectively. 

(Right) difference between normalized observed SOC (NOSOC) and normalized predicted SOC 

(NPSOC) calculated according to equation 16 (method section). 

The correlation between OCAM and SOC is extremely strong (Table 8). For both 

the OCAM and CO2EC, the model was able to depict the relation with forest edge, 

as indicated by the relatively high absolute coefficient of correlations (r=-0.63 and 

r=0.62, respectively). No significant correlation was found for OCAM and CO2EC 

with pH and soil texture. CO2EC appears to show an important correlation to both 

observed and simulated yield (HWAMM and HWAMS). 

Table 8. Correlation table comparing organic carbon at maturity (ONAM) and cumulative CO2 

emissions from soil (CO2EC). The colour gradient show where the value of each cell falls within 

the selected range, with red and green highlighting the strongest correlations (negative and 

positive). 

 OCAM CO2EC 

TN 0.55 -0.35 

SOC 0.98 -0.06 
HWAMM -0.54 0.48 

HWAMS -0.16 0.87 
pH -0.29 0.00 

clay -0.28 0.03 

sand 0.19 0.01 
silt -0.12 -0.03 

d -0.63 0.62 
TN: total nitrogen, SOC: Soil organic carbon, d: 
distance from the forest edge, HWAMM: initial 
harvest yield at maturity, HWAMS: simulated 
harvest yield at maturity 
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3.3.3 Nitrogen retention 

As, the model did not provide an output equivalent to TN, several variables could 

be candidates for comparison.  

Most of the N variables are positively correlated with TN (Table 9). However, 

only a few shows a significant correlation with TN (positive or negative. They 

include the cumulative N mineralization (NMNC) [kg ha-1], cumulative N 

immobilization (NIMC) [kg ha-1] and Organic N at maturity (ONAM) [kg ha-1]. The 

SOC exhibits greater correlations with N-related model output variables. Most N 

variables are correlated with pH and soil texture (clay, sand and silt).  

As for the distance from the edge d, only NGasC, NMNC, NIMC and ONAM 

show some level of correlation, which is negative in all cases.  

Table 9. Correlation between input data and N-related model output variables. The colour gradient 

show where the value of each cell falls within the selected range, with red and green highlighting 

the strongest correlations (negative and positive). 
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TN 0.04 0.01 0.08 0.14 -0.09 0.04 0.41 0.50 0.08 0.23 

SOC 0.29 0.02 0.30 0.19 -0.14 -0.04 0.60 0.67 0.33 0.38 

pH -0.21 -0.60 -0.41 -0.94 0.89 0.94 -0.85 -0.63 -0.36 0.74 

Clay -0.36 -0.52 -0.54 -0.84 0.88 0.90 -0.80 -0.57 -0.47 0.73 

Sand 0.07 0.64 0.28 0.96 -0.95 -0.90 0.85 0.59 0.19 -0.83 

Silt 0.11 -0.68 -0.11 -0.98 0.96 0.86 -0.83 -0.57 -0.01 0.85 

d 0.00 0.05 0.00 0.05 -0.03 -0.27 -0.27 -0.33 -0.03 -0.44 

InNBal, OrgNBal and SNBAL: Inorganic, organic, and seasonal N balance, NIAD: Total soil NO3-
 + NH4

+, 

NLCM: N leached during season, NGasC: N Gas losses, NMNC: Cumulative N mineralization, NIMC: 

Cumulative N immobilization, LNTD: Total soil litter N, ONAM: Organic N at maturity, TN: total nitrogen, 

SOC: Soil organic carbon, d: distance from the forest edge, OCAM: Organic C at maturity. 

The NIMC [kg ha-1] (Figure 25, left) shows an important spatial variability across 

the field. As indicated by its inverse correlation to the distance d (-0.27), the NIMC 

increases at proximity to the forest edges. The same behaviour is observed for the 

ONAM [kg ha-1], as shown in Figure 25 (right). 
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Figure 25. (Left) cartography of the cumulative N immobilization in kg ha-1 for year 2010 on studied 

site. (Right) cartography of the predicted organic nitrogen at maturity for year 2010 on studied site, 

Bjertorp, Kvänum, Sweden. Light to dark colours indicate a moderate to intense activity. 

Table 10 indicates high correlations between N productivity and yield, especially 

for simulated yield. A high correlation was identified with the distance from the 

forest edges as well, indicating that the model was able to capture the distance 

effects. 

Table 10. Correlation table regarding nitrogen productivity in relation to the distance to the forest 

edge (d) and the measured and simulated yield (HWAMM and HWAMS). The colour gradient show 

where the value of each cell falls within the selected range, with red and green highlighting the 

strongest correlations (negative and positive). 

 Nitrogen productivity 

 DPNAM DPNUM YPNAM YPNUM 

TN -0.39 0.29 -0.42 -0.26 

d 0.73 -0.24 0.62 0.32 

HWAMM 0.58 -0.38 0.61 0.46 
HWAMS 0.83 -0.79 1.00 0.83 
DPNAM: Dry matter-N fertilizer productivity [kg (DM)/kg (N fert)], DPNUM: Dry matter-N uptake 

productivity [kg (DM)/kg (N uptake)], YPNAM: Yield-N fertilizer productivity [kg (DM)/kg (N fert)], 
YPNUM: Yield-N uptake productivity [kg (DM)/kg (N uptake)]. 

The low correlation between TN initial observations and NMNC, NMIC and 

ONAM is illustrated by the lack of trend in Figure 26. The scatter plots do not 

follow a particular curve and are spread away from the 1:1 line. Normalized 

observations however show similar values highlighted by the apparition of vertical 

lines of points. This is probably due to the coarse resolution of the TN dataset that 

results in equal values for multiple polygons.   
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Figure 26. Normalized predicted (left) Cumulative Nitrogen immobilization (NIMC), (middle) 

Cumulative Nitrogen mineralization (NMNC), and (right) Organic Nitrogen at Maturity (ONAM) 

against normalized observed Total Nitrogen (TN).  
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4.1 Methodological framework  

The results showed that the methodological framework provides a good reference 

for the preparation of the different data modules needed to run the DSSAT models. 

The methodology was based on the best available data, mainly found in the 

literature (from open-source databases) or provided by SLU researchers. At the end, 

the simulation could be run with the files produced according to the steps described 

in the method section. The same method should be effective when applied to higher 

resolution data. There is indeed considerable room for improvement in the results 

obtained, for example by obtaining local data through the collection of soil samples 

instead of using gridded data. As the resolution of the soil data was rather coarse, 

Thiessen's method generated large polygons, which were considered homogeneous 

in terms of soil properties. Gridded data such as N data (500m resolution) leads to 

high uncertainties regarding such detailed effects as impacts of forest edges in 

individual fields. The availability of field samples would allow for a finer resolution 

and better accuracy in the predictions, given that soil heterogeneities arise from the 

small-scale distribution of chemical, physical and biological soil properties, 

substantially impacting water and nutrient retention capacity of individual soils 

(Wallor et al., 2018).  

The SOC and TN concentration curves (Figure 20) could be more accurate if 

produced on the basis of site-specific soil data, providing SOC and TN 

concentrations at different distances from the forest edge.  

In this study, the power trendlines were chosen as they provided the highest 

coefficient of determination (R2). However, they bring important bias to the 

resulting SOC and TN concentrations. First, the concentrations tend to decrease 

infinitely as the distance increases, potentially resulting in unreasonably low 

concentrations at very large distances. Second, the functions show infinitely high 

concentrations at distances very close to 0m. In both cases, arbitrary decisions were 

necessary and the distances of 2.5 and 40 meters from the edges are assumed to be 

the limits. Furthermore, the data showed important variability with respect to the 

function. This is probably due to the combination of data from different studies, 

different locations, soil types or cropping systems. The paper from Schmidt et al. 

4. Discussion 
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(2017) provided most of the data, from replicates collected on the same sites thus 

adding in greater weight in the function than any other paper. Since most of the 

research has focused on the edges of hedgerows, tree lines or the inner side of 

forests adjacent to croplands, further research and data on forest edges is needed. 

The distance from which SOC and TN concentrations are considered constant 

can be discussed. On-site measurements could be used to support the decision about 

the distance considered based on local soil properties and observations. It is also 

based on the hypothesis that the SOC and TN concentration decreases with distance 

from the forest, but soil samples could prove otherwise. This is reinforced by the 

fact that soil already shows in-field spatial heterogeneity without consideration of 

forest boundaries (Wallor et al., 2018).  

 

As revealed by the correlation table in the result section (Table 5), several 

variables exhibit multicollinearity. Soil moisture contents (LL, DUL and SAT) 

show collinearity to soil pH and texture, cause by the use of pedotransfer equations 

(Equations 6, 7, 8 and 9). Similarly, bulk density and SOC content exhibit 

collinearity (r=-1), leading to a significant correlation between bulk density and 

distance. This phenomenon demonstrates the importance of independency between 

input variables and can be avoided if all data are collected at the site, making it 

unnecessary to use estimation equations for unknown variables (e.g., pedotransfer 

functions) (Wallor et al., 2018). Therefore, the correlations obtained between the 

variables would have more significance regarding the actual processes depicted by 

the model. Moreover, yield is more sensitive to certain variables, such as the 

available water capacity under rainfed conditions, leading to a significant difference 

in crop model outputs (Wallor et al., 2018). However, significant correlations were 

found, supporting the assumption that yield tends to decrease at smaller distances 

from the forest edges (inverse correlation to d), at the same time as increased 

concentrations in TN and SOC. One could relate these observations to crop N 

uptake as well as to carbon sequestration as processes occurring where crop growth 

is optimal. However, this would not be in line with the initial assumption that C and 

N concentrations are higher at the forest edge. 

Soil moisture showed a low correlation with yields, suggesting that water 

availability is not a limiting factor for crop growth at the studied site. However, one 

should be careful with those observations due to the collinearity phenomenon 

described above.  

 

As illustrated by the yield map (Figure 17) the Southern limit of the field showed 

a greater yield. That might reflect the typical Swedish sun radiations coming from 

the south and the interception of diffuse radiation from the trees on the Northern 

side.  
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Further research is needed to establish databases on the effects of forest edges 

on adjacent agricultural fields. This is essential to provide more data for the 

concentration functions to be created in the future, as well as for comparative 

research on the subject.  

Other studies showed the importance of a better understanding of the soil 

heterogeneity at the field level. Site conditions and yield performance are shown to 

vary between polygons. Some authors proposed a field arrangement design based 

on “management zones" with adapted management practices that include specific 

soil and microclimatic properties (Wallor et al., 2018 ; Hernández-Ochoa et al., 

2022). This would be in line with the use of different polygons such as in this study 

and it is a great example of application once forest borders effects are better 

understood.  

 

Although the use of ArcMap is not always intuitive, it is an important 

complement for the visual evaluation of input and output variables, as well as for 

the preparation of soil data to be fed to DSSAT. However, the production of an 

alternative visual framework could also be considered for future work, as it gives 

the reader an overview of the steps ahead.  

4.2 Model performance 

The information obtained from DSSAT is recognised as a decision support tool for 

farmers and government for crop production optimisation and cropping system 

management (Hoogenboom et al., 2003). One drawback in the use of process-based 

models such as DSSAT is the characteristic of being a data-intensive model that 

combines a set of complex ecosystems. In addition, DSSAT is an old interface that 

has strongly been improved since the 1990’s but is sometimes unreliable to perform 

the tasks expected from it. Output files and codes are extremely numerous and 

complex. As an example, the TN did not appear in any of the output files. 

Furthermore, the simulation had to be run for each polygon individually to obtain 

the correct values regarding N allocation summary, increasing the amount of time 

required to run the simulations. Besides, DSSAT does not facilitate the conversion 

of units, as most of the output variables are expressed in kg ha-1, whereas the initial 

N and SOC concentrations were imported as percentages.  

Furthermore, the DSSAT crop models do not simulate horizontal fluxes, thus 

considering water re-distribution amongst polygons and surface runoff neglectable 

and therefore considerably simplifying natural processes (Buck-Sorlin, 2013).  

 

In this study, the evaluation of the model is mixed. Although the index of 

agreement indicates a satisfactory fit between observed and predicted yields (d-stat 

= 0.662), and the NRMSE reflects a good prediction (NRMSE = 10.7%) 
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(Hoogenboom et al., 2003), the model evaluation showed poor model performance 

in accurately predicting in-field variability (R2 = 0.36). The negative efficiency 

factor (EF < 0) suggests that significant improvements in data inputs are needed, 

indicating that Pi = M is a better approximation of the observed yield for the current 

simulation.  

The crop growth and yield are impacted by an important number of factors, as 

illustrated by the many correlated variables to HWAMM (Table 7). However, the 

differences highlighted by the table between the measured and simulated variables 

suggest that the model predictions are not able to properly depict all processes, as 

shown by some low or unmatched correlations.  

However, if the simulation considered only the field core, the results would show 

a better agreement with the observed yield, as illustrated by the mapping of the 

prediction deviation (Figure 22 (left)). As illustrated by the Figure 21 and 22 (right), 

the model showed a tendency to overpredict yields, especially at the forest edge. 

The focus for improvement should therefore concentrate on polygons near forest 

edges.  

 

Probably the major reason for this inability to accurately predict yield variability 

at the edges may be the lack of microclimatic data. Indeed, DSSAT was fed with 

uniform soil data, based on only 12 soil samples, although enhanced by a distance-

adapted concentration of SOC and TN. Crucial processes such as light exposure, 

canopy interception, differential soil moisture and temperature related to the 

presence of trees at the edge of the field were left out. This information could be 

added by assessing microclimatic variations in various locations of the field. 

However, long-term, consistent, and robust data need to be collected and analysed 

(Schmidt et al., 2019). Microclimatic data could help to better depict the variability 

of growth, as it has important consequences on certain determining factors such as 

radiation and temperature (van Ittersum & Rabbinge, 1997). Microclimatic data can 

also have an impact on limiting factors such as soil moisture. This is therefore a 

crucial element to consider for future research. 

 

Spatial soil heterogeneities at the field scale remain underexplored. Useful 

information could however be retrieved from such studies, by helping to understand 

how to exploit this heterogeneity in allocating crops. Hernández-Ochoa et al., 

(2022) suggest that management zones should be assigned with specific crop 

species or cultivar according to their soil properties/zone specification. As an 

example, high yielding crop cultivars could be grown on zones with optimum 

conditions, while more tolerant crops species could be grown on zones that show 

poor nutrient conditions or water availability. This approach is probably feasible 

for large areas, while for small fields the amount of work involved in changing 

seeds and adjusting the machinery might overcome the economic benefits. Some of 
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the poorest zones could hold biodiversity-improving species, flower strips or 

legumes, which could improve overall field productivity and ES provision. 

Landscape elements such as hedgerows and trees are also known for their beneficial 

effects on wind regulation and water erosion (Hernández-Ochoa et al., 2022).  

 

Wallor et al. (2018) tested 11 different models to assess their sensitivity to soil 

variability and hydrological boundary conditions. The research supports the 

findings of this study on the need for more extensive data, indicating that the lack 

of information of subsoil properties could result in poor performance of all models. 

Interpolated and assumed values at unsampled depth had a significant impact on 

model performance. Data provided by Wallor et al. (2018) for a field in Germany 

would be worth assessing according to this study’s methodological framework.  

 

Hernández-Ochoa et al., 2022 outlined the importance of calibration, which 

should ideally be based on consistent and fine resolution data including multiple 

soil and crop state variables in parallel for several dates within one growing. 

Furthermore, the temporal replicates of samplings on a longer period could enable 

the calibration to be based on the 1st year of experiment, and provide more data 

from the 2nd and 3d year for model validation as was proposed by Hernández-Ochoa 

et al. (2022) and Wallor et al. (2018).  

4.3 Potentials and limitations for DSSAT to predict 

ecosystem services provision 

 

In this study, it was expected that SOC, TN, and yield exhibit spatial 

heterogeneity at the forest edges due to differences in C input and decomposition 

rates of litter from trees (Bambrick et al., 2010).  

4.3.1 Food production 

With respect to the food production, the model tendency to overestimate the yield 

was already analysed above. Crop production depends on many different factors 

such as climate, soil characteristics, and crop species (Hai-long et al., 2017), with 

some factors more determining than others (van Ittersum & Rabbinge, 1997). It is 

not surprising that the DSSAT models were not able to consider all parameters with 

accuracy.  

It is already remarkable that both the measured and predicted yield behave as 

expected with respect to the distance from the forest edge (highly positive 

correlation) (Table 7). However, it is important to keep in mind that the model was 

calibrated for that specific parameter, basing its estimations of genetic coefficients 
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on observed yield values. And whilst one could have expected some correlation 

coefficients to show similarities between the measured and predicted yield, it is 

surprising that both datasets still demonstrate strong correlations to different 

parameters.  

Some correlation coefficients might show bias due to collinearity: this is the case 

for SOC, TN and d, as the latter was used to evaluate the increase in SOC and TN 

concentrations at the forest edge. In addition, pH and SOC parameters could be 

collinear because SOC was calculated from the SOM, and accumulation of soil 

organic matter through the decomposition process can lead to the increase of 

organic acids (Hong et al., 2019).  

 

The negative correlation coefficient between yield and NIAD (NO3
- + NH4

+) at 

crop maturity suggests that plant uptake have occurred during crop growth, leaving 

less inorganic N available for the plants behind. It is a bit unclear what the organic 

and inorganic N balances represent, especially because they show correlations 

coefficient that do not match those of ONAM and NIAD, respectively. Besides, 

while the Organic N balance shows a significantly negative correlation to measured 

yield, inorganic N coefficient is neglectable. On the other hand, the Inorganic N 

balance shows a strong positive correlation with predicted yield. The lack of 

correlation between both yield datasets and ONAM could be explained by the fact 

that the N uptake does not matter anymore at maturity. It seems like other variables 

could be more explanatory about the loss of N, however, such as NLCM and 

inorganic N, due to the high mobility of NO3
- in soil.  

At last, it is interesting to note that N2O and CO2 gaseous losses are positively 

correlated to simulated yield. These results support the assumption that the 

provision of food balances with other ES such as climate mitigation and air quality, 

as increased yields tend to occur along greater gas emissions.  

For a better understanding of the overall behaviour of the system, it would be 

important to determine the correlation with meteorological data. 

 

When it comes to yield data, it is challenging to look at field edge effect, due to 

the presence of artefacts in the yield data. And while it is crucial to filter the data to 

identify any outliers, this often results in a loss of detail on the variability that one 

might be trying to assess. The yield map (Figure 17) depicts the greatest variability 

in the data. However, it can be biased especially on the edges due to practical 

harvesting. While harvest usually starts from the edges (to open space for the 

combine to turn later), the yield scale installed in the combine sensors is operating 

at all times meaning that when it is turning on an empty area it still registers weight. 

As a result, edges are always more compacted due to heavy machinery traffic 

(Carlesso et al., 2019), which is one of the possible explanations for lower yield on 

the upper left edge of the field (Figure 21 (right)). In addition, the observed yield 
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data have been averaged, thus losing some of their variability, resulting in more 

uniform values.  

Information on the current and historical use of the field and its surroundings 

could also provide an explanation for the observed spatial variability in yield. In 

2010, the field was adjacent to a road to the west and to a household in the lower 

left corner. Shade and cardinal direction are also factors that can affect crop yields, 

through differential solar radiation, as discussed with van Ittersum & Rabbinge 

(1997) founding. 

Besides, forests are also known to have effects on local microclimatic parameters 

such as wind speed, soil moisture, and light incidence, which can lead to changes 

in water, nutrient absorption, and photosynthesis. 

4.3.2 Carbon sequestration 

SOC is affected by many factors, such as crop yield, temperature, and 

microbiological activity.  As a cropping system model, DSSAT cannot simulate all 

those factors (Hai-long et al., 2017).  Nevertheless, the model still predicts 

relatively accurate values and variability for the SOC at maturity. The correlation 

between predicted and observed SOC is particularly high, with a small tendency to 

overpredictions. This suggests that the model potentially predicts a long-term SOC 

accumulation, which would support the assumption that forest edges positively 

affect carbon sequestration, as shown by the Figure 24. This is also indicated by 

SOC’s correlation with the distance to the forest (d=-0.56), which is observed for 

the OCAM as well (d=-0.63). OCAM is significantly correlated to soil pH, which 

suggests that pH is responsible for chemical processes regarding C compounds in 

the soil, especially inorganic C. Organic matter can also affect soil pH through the 

accumulation of organic acids (Hong et al., 2019). 

 

Surprisingly, HWAMS is not as much correlated to SOC and OCAM (r=-0.03 and 

r=-0.16) than HWAMM is (r=-0.49 and -0.54). It seems like the model did not depict 

accurately the correlation between yield and SOC/OCAM. However, the 

correlations between yield (measured and simulated) and cumulative CO2 

emissions from soil (CO2EC) are both significant, suggesting a better ability of the 

model to estimate gaseous emissions from the C cycle (Figure 3).  

4.3.3 Nitrogen retention 

The poor fit between observed TN and N-related output variable demonstrates the 

failure of the model to accurately explain the fate of N. However, the N cycle is 

complex cycle with various inputs and outputs that are hard to quantify (Figure 4). 

Moreover, DSSAT does not take runoff and horizontal fluxes into account, omitting 

a potentially important output pathway of N. Although it was expected that forest 
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edges reduce N leaching and losses by having more organically bound N, NLCM 

does not show any significant correlation with distance from the forest. 

 

Overall, simulated variables show a high correlation to soil texture, in particular 

for NIAD and NLCM. This might reflect the great retention potential of negatively 

charged clay particles, to which NH4
+ is easily bound to. In basic environments, 

NH4
+ liberates an H+ to volatilize as NH3 (Brennan, 2022).  

Basic pH soils might exhibit less N leaching, as indicated by the positive 

correlation of NLCM to pH.  

It is surprising that both cumulative mineralization and immobilization show a 

significant correlation to the distance from the forest, suggesting a more intense N 

cycling at the forest edge. It might be related to the concentrations of TN that 

increase at the edges, to which both variables are positively correlated too (potential 

for collinearity). 

 

The N productivity (Table 10) is well correlated to the distance from the forest 

edge, indicating the better ability of the crop to make use of the N at the centre of 

the field, where the yield is relatively higher. These results support this study’s 

assumption that the areas close to the forest show trade-offs between provisioning 

(food supply) and supporting ES (N retention).  

 

The N retention is regulated by complex processes such as particle binding, crop 

uptake, immobilization, mineralisation and denitrification. It is hard to depict clear 

trends from the results obtained, especially in a fertilized field, considering the 

significant artificial input of N. Furthermore, specific variables such as seasonal TN 

were not provided by the model for the entire soil depth, which appears surprising 

for such a decision support tool. Besides, the processes regarding the N fate seem 

to have a stronger correlation to other input variables than TN. A variable that 

identifies the C:N ratio would be of great interest as well, as an indicator of soil 

quality. 

Many variables were computed for daily output, which represented to much 

averaging and sorting work to assess for this project’s scope. Again, the lack of 

microclimatic data might explain the poor model performance regarding N 

predictions, resulting in a lack of clear trend between measured and simulated 

variables (Figure 26). 

One can add that the model had difficulty in including the initial TN values in 

the simulation, even involving running it several times and for each polygon 

individually. It is still not obvious if the model took the TN into account in its 

calculation. With the use of DSSAT crop models, other indicators than the TN 

should be considered due to the difficulty to find an equivalent in the output 
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variables. Organic nitrogen at maturity (ONAM) or total soil NO3
- + NH4

+ (NIAD) 

could be considered.  

4.3.4 General remarks 

All the processes occurring in the soil and within the plant and atmosphere are 

heavily intertwined (Gruber & Galloway, 2008). They are highly determined by 

local environment such as chemical and soil properties like pH and soil texture, 

hydrology and microclimate. The extreme complexity of such processes cannot be 

encapsulated by a model, even if agro-ecosystem models are getting better at 

depicting interactions and correlations between the multiple parameters and 

compounds at stake. Furthermore, all feedbacks resulting from changes in the 

natural nutrient cycles are balanced and can vary depending on site-specific 

characteristics, as mentioned above (van Ittersum & Rabbinge, 1997; Hernández-

Ochoa et al., 2022). This increases the uncertainties related to CS modellisation.  

Besides, a strong correlation between two variables is not a proof of causality, 

and even though the soil-plant atmosphere system is at heart of many well-

documented processes, there are still uncertainties about how to quantify those 

processes. Collinearity can also be a source of bias in the interpretation of the 

interaction of different variables.  
 

Propositions for improvements and future assessments include control samples 

at all field edges to allow for a comparison between forested and non-forested 

edges. It seems that the yield map showed lower yield at proximity to most borders 

(Figure 17). This could result from a greater soil compaction from heavy 

machinery.  

A future experimental design should include several soil samples and replicates 

to be collected in the field, at given distances from the forest and various depth. The 

data collected should encompass the exact location of the sample, as well as the soil 

properties and chosen indicators.  

More refined, field-specific and higher resolution observations would probably 

improve the understanding between variables correlations and lead to more precise 

effects resulting from soil heterogeneity, as the aim in the long run would be for the 

model to depict spatial variation at smaller scale (Hernández-Ochoa et al., 2022).  

 

Until now, agriculture has focused on increasing yields to the greatest extent at 

the expense of the environment, with considerable damage to soil, water, and air 

quality. Intensive production succeeded through the spread of intensive agricultural 

systems that left no room for natural habitats and biodiversity.  

 

Carbon sequestration and nitrogen retention lie amongst a wide range of ES to 

promote through the CS management strategies that would make the food system 
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more resilient. Many strategies that include crop and landscape diversification have 

been proved to increase the provision of such ES (e.g., intercropping, flower strips, 

hedgerows, etc.) (Bambrick et al., 2010; De Stefano & Jacobson, 2018; Alberti et 

al., 2021). Therefore, field division in management zones, as suggested by 

Hernández-Ochoa et al. (2022), could lead to a more efficient use of the landscape 

and its soil characteristics. Smaller patches would allow for the allocation of 

specific crops and objectives, focusing on particular ES depending on their specific 

location. Non-edible crops that benefit biodiversity and ES could be placed with a 

better understanding of nutrients and water cycles in order to improve overall 

productivity and allow for the food system to be more sustainable. 

 

Depending on the ES to be enhanced, the optimal size of fields and the 

importance of forest edges vary. As illustrated in Figure 7, the future of cropping 

systems lies in promoting the multifunctionality found in natural ecosystems. 

Although food production is essential for global food security, it must be 

supplemented by other (supporting) ES that will ensure resilient and sustainable 

food supply in the long term. 

 Machinery size and labour costs are currently a limiting factor that hinders the 

reduction of field sizes. But it is hoped that the development of new technologies 

will provide better tools to enable the redefinition of the scale of zoning 

management (Hernández-Ochoa et al., 2022) 

 

Finally, the transition to multifunctional cropping systems must be accompanied 

by policy adjustments to enable a change in consumption and societal behaviour, 

including through taxation and heavy regulatory tools. Agricultural expansion is 

driven by market pressure and cannot be stopped by the mere will of farmers or 

scientists.  

The implementation of sustainable and environmentally friendly farming 

systems seems to be one of the many measures needed to ensure a sustainable food 

production system and is in line with the European objective aimed at promoting 

small farms, in order to preserve local traditions and products (Eulalia Claros, 

2014). Smaller fields are thought to be associated with a wider range of ES, 

particularly for biodiversity and species richness (habitat use and complementary 

resources at the boundaries) and risk control (e.g., pests and diseases, flooding, and 

yield losses) (Hernández-Ochoa et al., 2022). The Common Agricultural Policy has 

recently increased European Green Deal's ambitions with financial support for 

farmers who adopt climate-sensitive and nature-friendly practices despite trade-offs 

on food production and thus yield (European Union, 2022; Hernández-Ochoa et al., 

2022). 
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Research such as this one could provide a reference for discussions between 

policy makers, farmers, and researchers to address the current challenges posed by 

agriculture and its associated landscape fragmentation.  
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This research achieved its objective of providing a methodological framework 

for the assessment of ecosystem services with DSSAT crop models. Using the best 

available data, this study was a first attempt to describe the spatial variability of 

yield, SOC and TN in the vicinity of forest edges at the field scale. It highlighted 

several limitations, such as the lack of high-quality datasets concerning the 

microclimate associated with forest edges, the poor quality of gridded data, thus 

underlining the importance of site-specific data collection.  

The analysis of the results demonstrated the bias induced by the potential 

collinearity between some variables, leading to misinterpretations.  

Few other studies of soil heterogeneities in the field were found, demonstrating 

the need for further research on this topic, especially in heterogeneous landscapes 

that include forests or other structural elements. 

 

As for model performance, the results of this study were encouraging. They 

already showed room for improvement with regard to the production of high-

quality datasets. Whilst DSSAT performed a reasonable prediction for yield, it 

bared a bias that could partially be corrected by recalibration using microclimatic 

data, that emphasise the differences in potential production by providing 

differential defining factors. Process-oriented, dynamic agro-ecosystem models 

such as DSSAT could offer an appropriate tool for assessing soil heterogeneity in 

the future, in particular at the forest edges, and the consequences for the provision 

of ecosystem service.  

 

In summary, there is great potential for the assessment and promotion of more 

multifunctional cropping systems. There is a growing demand for the transition to 

climate and environmentally sensitive farming practices, which require policy 

support to offset the trade-offs in food production.  

There are still many variables to be examined due to the large amount of data, 

processes and results produced by DSSAT, and crop models in general. These 

elements go beyond the scope of this research but are certainly worth further study. 

 

 

5. Conclusion 
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In recent years, agricultural land-use planning has become a central issue regarding 

both food security and climate change mitigation. Agriculture has always 

determined the configuration of the landscape in order to optimize yield, machinery 

use and monetary benefits. And while food production was once the primary 

objective of agricultural activities, it is now clear that compromises must be made. 

Today, agricultural land is seen as having promising potential for climate regulation 

and biodiversity, as well as for the restoration of natural areas. However, recovering 

these benefits from cropland requires changes from conventional agricultural 

practices.  

 

In nature, trees play a crucial role in biodiversity, soil formation, the water cycle 

and climate change mitigation. Because of agriculture, trees have given way to 

hectares of arable land for cultivation. However, alternative designs that include 

incorporating trees within agricultural land could improve overall yields while 

ensuring the long-term ability of land to provide food and withstand sudden natural 

hazards. Trees could play a major role in restoring many of the natural benefits that 

agricultural lands can no longer provide. Previous publications have highlighted 

some tree-induced trends in soil carbon storage (reducing greenhouse gases in the 

atmosphere) and nitrogen retention (preventing water and soil pollution). Evaluated 

at the field scale, the benefits of integrating trees into agricultural fields could 

provide useful expertise to farmers and policy makers regarding the landscape 

configuration to be promoted for environmental preservation and protection.  

 

In this Master Thesis, three objectives were pursued:  

First, it was aimed to propose a procedure for evaluating the selected benefits 

observed near forest edges for a field in Bjertorp, Sweden. This was a first attempt 

to use a crop model to describe the spatial variability of an agricultural field with 

respect to yield, soil carbon and nitrogen concentrations as indicators of the impacts 

of trees on food production, carbon storage and nutrient cycling (mitigation and 

regulation benefits). 

Second, the ability of the crop model to predict this spatial variability of the 

selected indicators was assessed. To do this, observed yield data from the study site 

were compared to simulated yield data produced by the crop model. The model was 
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based on a set of initial data on soil and weather conditions to provide a simulation 

as close to reality as possible. 

Third, the potential and limitations of using the crop model were highlighted and 

discussed for possible improvements as well as for developing future research on 

forest edges along agricultural fields. 

 

The results showed encouraging results regarding the use of the crop model to 

predict the spatial variability of selected benefits associated with the presence of 

trees, especially in the central area of the field. However, predictions near forest 

edges could be improved by using local climate data that are known to have a major 

impact on soil properties, local temperatures, and thus yield. The predictions of 

carbon and nitrogen concentrations have some bias at the forest edge due to the 

inability of the model to accurately predict yield and technical limitations of the 

crop model (interface, "old" model, ungenerated variables...). 

 

High-quality data on both microclimate and site-specific soil properties are 

needed for further research to obtain more detailed results regarding spatial 

variability in yield and other natural benefits. This could help shape future policies 

in promoting more sustainable agriculture, especially through appropriate 

landscape organization. 
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