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Stand growth models are an important aid in contemporary sustainable forest management as a 
major planning and decision-making tool. However, climate change influencing growth conditions 
worldwide is a challenge to commonly used empirical models as they do not provide enough 
flexibility, which can result in inaccurate predictions and thus wrong decisions and sub-optimal 
results. Climate sensitive models based on plant physiology are a solution that provides greater 
adaptability, but they are computationally demanding and require often unavailable input data, and 
therefore they are rarely used in practice. For this reason, simple growth models for Scots pine 
(Pinus sylvestris L.) monocultures based on the concept of Light-Use Efficiency (LUE) were 
developed in this thesis. They use the yearly sums of absorbed photosynthetically active radiation 
(APAR), readily available climate data (annual precipitation and mean air temperature), and basic 
stand characteristics (age, number of trees, and site index) to predict the annual stem volume 
increment. For model fitting and validation, stand data from a long-term thinning and fertilization 
experiment established in Sweden and climate data from the Swedish Meteorological and 
Hydrological Institute were used. Two approaches differing in the method of data preparation were 
analysed. Model 1 (M1) was based on averaged variables and Model 2 (M2) used variables from the 
beginning of the measurement periods. Both models fit reasonably well with the data, but the RMSE 
exceeded 20% and they proved to provide reliable estimates for only the part of the productivity 
range included in this study. The unsatisfactory performance can be attributed to the change of the 
dependent variable in the LUE model to stem volume increment, the lack of good quality APAR 
data, and the low degree of model hybridization. 

Keywords: climate change, forest modelling, light use efficiency, photosynthetically active 
radiation, Scots pine  
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1.1 Forest production and climate change 
The productive function of the forest is an important element of sustainable forest 
management, supplying a variety of products, contributing to economic 
development, and fulfilling social functions by providing employment (Tegegne et 
al. 2018). Moreover, forests play an essential role in mitigating climate change by 
capturing atmospheric carbon dioxide in tree biomass (Lorenz & Lal 2010; 
Lundmark et al. 2014). However, climate change also poses challenges for forests. 
Reports show that the rise in temperature is progressing much faster than ever in 
recorded history and is already impacting extreme weather events. Depending on 
the scenario, the average global temperature is projected to increase between 1.4 
and 4.4 degrees by the end of the 21st century, likely leading to changes in rainfall 
patterns (IPCC 2021). Changes in growth conditions will significantly affect forest 
productivity, but the exact impact is uncertain and differs from region to region 
(Lindner et al. 2014; Reyer 2015).  

Due to the significant influence of climate change on forest productivity, it is 
necessary to consider its impact when forecasting the expected forest growth. The 
ability to accurately predict growth is indispensable in modern forestry. The 
forecasts support management decisions such as choosing silvicultural system, 
species composition, planting density, thinning strategy, and optimizing rotation 
lengths. At the estate level, it helps to determine the size of the harvest, schedule 
treatments and update the inventory data. Forecasts also facilitate planning at 
regional and national level and policy-making (Weiskittel et al. 2011). Accurate 
estimates are essential to making sound management decisions that ensure 
sustainable forest resource management (Goude 2021). Various models are used to 
simulate forest growth, but they differ in flexibility and the possibility of 
maintaining the accuracy of predictions in the face of climate change (Weiskittel et 
al. 2011). 

1. Introduction 
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1.2 Models used in forestry 
The simplest and most prevalent models are empirical, usually stand-based models 
which predict the development of basic stand characteristics such as basal area, 
height, and volume. They are often derived from large data sets of stand 
measurement, using exclusively statistical methods without attempts to deeply 
describe the underlying processes (Landsberg & Sands 2011; Weiskittel et al. 
2011). Within the range of environmental conditions and stand characteristics for 
which the models were developed, they allow for accurate growth predictions 
(Pinjuv et al. 2006; Landsberg & Sands 2011). However, their utility outside these 
conditions remains limited (Miehle et al. 2009). An alternative approach is to use 
process-based models that consist of mathematically expressed physiological 
processes, such as photosynthesis, respiration and transpiration, and incorporate the 
effects of environmental factors, to simulate forest development (Landsberg 2003). 
While adaptable to varying conditions, process-based models are usually highly 
complex and require seldom available input data (Weiskittel et al. 2011). In 
addition, many processes have not yet been sufficiently understood, whereas the 
sensitivity of the outputs to the uncertainties in the input data, parameterization and 
model structure increases with complexity (Mäkelä et al. 2000; Schmid et al. 2006; 
Landsberg & Sands 2011). Hybrid models, which consist of mechanistic elements 
and statistical relations, combine the strengths of empirical and process-based 
models (Landsberg & Sands 2011; Weiskittel et al. 2011). Although some studies 
indicate only a slight improvement in precision compared to empirical models 
(Dzierzon & Mason 2006; Pinjuv et al. 2006), their unquestionable advantage is 
greater flexibility and adaptability to changing growth conditions (Taylor et al. 
2009). 

1.3 Linking growth and light absorption 
A key discovery that laid the foundation for developing various process-based (e.g., 
McMurtrie et al. 1990; Kirschbaum 1999) and hybrid models (e.g., Landsberg & 
Waring 1997; Peng et al. 2002; Mason et al. 2011) was the Light-Use Efficiency 
(LUE) concept (Waring et al. 2016). It is a simple model of the dependence of plant 
growth on photosynthetically active radiation (PAR), the part of the spectral band 
with a wavelength of 400-700 nm used by plants for photosynthesis that has been 
absorbed by foliage (APAR) (Landsberg & Sands 2011). LUE is usually expressed 
as dry biomass production per APAR unit (Waring et al. 2016). Monteith (1977) 
was the first to show a strong linear relationship between APAR and the 
accumulation of dry matter of agricultural plants. Subsequently, based on his 
findings, Jarvis and Laverenz (1983) analysed the application of this model to 
forests (as cited in Waring et al. 2016).  
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The use of LUE to predict hourly or daily production is limited as it is highly 
variable at short intervals. Yet, averaged over longer periods, LUE becomes 
substantially linear (Waring et al. 2016). The advantage of using APAR is that other 
factors influencing plant growth are also indirectly considered. Soil nutrient 
content, water availability, and temperature significantly influence leaf area 
production and, thus, the amount of light absorbed (Cannell 1989). 

Estimates of LUE values for total or above-ground dry biomass production of 
different tree species range from 0.2 to 3.3 g MJ-1, with lower values mainly found 
in temperate and boreal forests and higher in tropical eucalyptus plantations 
(Landsberg & Sands 2011). Many studies have shown that LUE also varies 
depending on climatic factors and site properties, including temperature (Waring 
2000), water availability (Stape et al. 2008; Garbulsky et al. 2010) and soil fertility 
(Wang et al. 1991; Gower et al. 1992; Martin & Jokela 2004; Campoe et al. 2013).  

Temperature is one of the main factors influencing the metabolic processes of 
plants. It affects the rate of photosynthesis, which decreases with departure from 
optimal conditions and ceases beyond certain thresholds (Kolari et al. 2007; 
Landsberg & Sands 2011). Air temperature also influences the atmospheric vapour 
pressure and thus the rate of transpiration. If soil water availability is too low to 
compensate for the losses, stomata close and stomatal conductance decreases, 
reducing the CO2 uptake (Landsberg & Sands 2011). Soil fertility affects 
photosynthesis efficiency, which depends on the nitrogen content in the leaves, and 
the carbon allocation to the roots, influencing the above-ground biomass LUE 
(Cannell 1989; Landsberg & Sands 2011; Waring et al. 2016). LUE also changes 
together with the stand development. After an initial, short increase, it declines with 
the tree age (Saldarriaga & Luxmoore 1991; Martin & Jokela 2004). This can be 
explained by a decrease in xylem hydraulic conductance with height increment and 
a growing proportion of respiring to photosynthesizing tissues (Mencuccini & 
Grace 1996). To account for the influence of environmental factors, many models 
use modifiers ranging from 0 to 1 depending on the deviation from the optimal 
conditions to calculate a utilizable APAR (e.g., Landsberg & Waring 1997; Mäkelä 
et al. 2008; Goude et al. 2022). 

The absorbed PAR (APAR), which is key in all LUE-based models, is highly 
variable and depends on many factors: cloud cover, latitude, the time of day and 
year affect the amount of radiant energy reaching the earth's surface (Landsberg & 
Sands 2011). On the other hand, the radiation absorption is influenced by the foliage 
area, optical properties and orientation of leaves, foliage clumping and stand 
structure (Binkley et al. 2013).  
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There are several methods of APAR estimation that differ in accuracy and labour 
intensity. Direct methods are based on measuring the difference between the 
irradiance above and below the canopy using solar radiation sensors (Fitter et al. 
1980; Pierce & Running 1988). This can be done continuously over extended 
periods (Cannell et al. 1987; Wang et al. 1991; Mäkelä et al. 2008) or 
instantaneously to estimate the fraction of PAR absorbed (fAPAR) and calculate 
the APAR using constant measurements of total incident PAR (Pierce & Running 
1988; Runyon et al. 1994). fAPAR can also be measured by both a plant canopy 
analyzer (Ahl et al. 2004) and hemispherical photography (Weiss & Baret 2017).  

The most prevalent methods to estimate APAR are light interception models (e.g., 
Medlyn 2004) and simple functions such as Beer’s Law (Monsi & Saeki 2005). The 
latter is better suited for practical use as it requires no parameterization. Beer’s Law 
describes the logarithmic increase in radiation absorption with the leaf area index 
(LAI), assuming that the canopy is closed, uniform and the leaves are distributed 
randomly (Waring et al. 2016). LAI refers to the projected leaf area (Weiskittel et 
al. 2011) or half of the total leaf area per unit area of ground for non-flat leaves 
(Chen & Black 1992). It can be estimated by direct measurement of foliage 
harvested by destructive sampling (Mason et al. 2012; Goude et al. 2019) or litter 
collection (Martin & Jokela 2004). LAI can also be estimated indirectly using 
optical instruments (Mason et al. 2012; Goude et al. 2019), which provide a quick 
and less labour-intensive assessment but cause underestimation if the leaves are 
clumped (Chen et al. 1997; Goude et al. 2019). Additionally, Goude et al. (2019) 
demonstrated how the LAI of Scots pine and Norway spruce stands could be 
successfully estimated using correlation functions with basal area. In the future, 
rapidly developing remote sensing may become an affordable and accessible 
method of obtaining detailed LAI and APAR data (Dash & Ogutu 2016). 

1.4 The Swedish context 
Sweden’s forested area ranks first in Europe, amounting to almost 28 million ha 
(Forest Europe 2020), of which 84% is productive forest land. One of the most 
fundamental production tree species is Scots pine (Pinus sylvestris L.), whose share 
in the growing stock on forest land amounts to 39.4 % (SLU 2021). Scots pine is a 
shade-intolerant pioneer species, undemanding to site properties, both in terms of 
fertility and moisture conditions, while being highly resistant to both drought and 
frost (Larsen et al. 2005; Houston Durrant et al. 2016). It is characterized by a 
medium growth rate, which in the conditions of northern Sweden reaches about 5-
10 m3 ha-1 year-1 of mean annual increment depending on the site productivity 
(Nilsson et al. 2012).  
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Simulations indicate that by the end of the 21st century, the average annual 
temperature in Sweden may increase from 2.3 to 5.5 degrees (RPC4.5) (SMHI 
2022a). Predicted changes in precipitation patterns also forecast increased rainfall 
in winter and decreased in summer, excluding only the northern parts of the country 
(Blenkinsop & Fowler 2007). This significantly exacerbates the need for wider use 
of models incorporating climate variables in practical forestry. 

Relatively little research has been done on applying climate-sensitive hybrid and 
process-based models for Swedish conditions. The existing studies include a 
modification of the BIOMASS process-based model (McMurtrie et al. 1990) for 
boreal conditions to investigate the effects of climatic factors on Norway spruce 
productivity (Bergh et al. 1998) and simulate the impact of climate change on the 
production of several tree species and its economic implications (Bergh et al. 2010). 
The same model accompanied other models to measure the impact of intensive 
silviculture on forest production and its potential contribution to climate change 
mitigation (Poudel et al. 2012). ForSAFE is another detailed process-based model 
designed to assess the long-term impact of environmental changes on Swedish 
forests. It consists of four sub-models that simulate forest growth, soil chemistry, 
decomposition process and soil hydrology, and includes feedback mechanisms 
between them (Wallman et al. 2005).  

On the other hand, Subramanian (2016) developed a less complex hybrid model 
merging the 3-GP (Landsberg & Waring 1997) and the empirical Heureka-Regwise 
(Wikström et al. 2011) models, but the parameterization was performed for only 
one region. The only hybrid growth model parameterized for all Sweden was 
developed by Goude et al. (2022). It is based on the Schumacher (1939) empirical 
equation with time replaced by a potentially usable light sum (Mason et al. 2007), 
obtained by correcting PAR with climate and site modifiers (Landsberg & Waring 
1997). Still, physiological-based modelling of forest growth remains an open field 
for further research. Moreover, according to Landsberg (2003), hybrid models may 
become the main aid tools used in future forest management due to their flexibility 
and practical values. 

1.5 Thesis aim 
Despite being significantly simplified compared to those based solely on the 
mechanistic approach, the existing hybrid models are still more computationally 
demanding than the popular empirical models and require often unavailable data. 
Therefore, with a view to practical application, this study aimed to develop a simple 
model based on the data from an extensive long-term experiment using empirical 
methods with a limited application of any mechanistic equations. It was based upon 
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the Light-Use Efficiency concept due to its simplicity, strong correlation of APAR 
with growth and wide application. For practical reasons, the dependent variable was 
changed from biomass production to stem volume increment. The stem volume is 
well known, widely used, and easy to calculate with good accuracy, whereas the 
volume increment remains the crucial variable for the economy in forestry. The 
inclusion of readily available climatic variables and basic stand characteristics was 
intended to improve the explanatory power of the model and its sensitivity to 
changes in growing conditions, while maintaining the ease of its use in practice. 

This thesis aims to address the following research questions: 

1. Could estimates of absorbed photosynthetically active radiation predict 
stem volume growth in boreal Scots pine stands? 

2. Does the inclusion of climate and stand variables in the model improve 
prediction accuracy? 
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2. Materials and methods 

2.1 Stand and climate data 
This thesis was based on data collected from a thinning and fertilization experiment 
(“GG-experiment”) established in 1966-1983 in Sweden (Nilsson et al. 2010). The 
aim of the research was to evaluate the influence of various types, intervals, timing 
and intensity of thinning and the effect of fertilization on the growth and yield of 
Scots pine and Norway spruce monocultures. The investigated treatment regimens 
included various thinning grades, from light (20-25% of basal area removed) to 
very heavy (60-70% of basal area removed), delaying the first treatment, thinning 
carried out from below or from above, and two types of fertilization. The 
experimental design consisted of blocks, one per site, covering most of the country's 
latitudinal gradient, divided into plots of approximately 0.1 ha. Stand data were 
collected at the beginning of the experiment, at each thinning and irregularly 
between them. More detailed information on the design and the treatments studied 
can be found in Nilsson et al. (2010). 

From the available data set, 205 plots for Scots pine were selected, which covered 
48 sites between 56 ° and 67 ° latitude (Fig. 1). All treatments were included except 
for thinning from above and fertilization, as they affect the site index estimates from 
the dominant height (Weiskittel et al. 2011). The selection produced 1217 
measurement periods that spanned the years 1966 – 2016. The data set used in this 
thesis contained measurements of stands age between 26 to 95 years (mean = 57) 
collected at unequal time intervals from 1 to 14 years. The stand characteristics 
included: basal area, stand density, and top height, ranging between 6.0 – 51.6 m2 
ha-1 (mean = 21.8 m2 ha-1), 150 – 4000 trees ha-1 (mean = 969 trees ha-1), and 9.0 – 
28.3 m (mean = 17.8 m), respectively (Table 1). The experimental plots were also 
characterized by a large diversity of the site fertility and stand growth. The site 
index (SI), expressed as the predicted dominant height at the age of 100, ranged 
from 17 to 33 m with a mean value of 24 m. The periodic annual volume increment 
(PAI) ranged between 1.9 and 19.5 m3 ha-1 year-1, on average amounted to 7.1 m3 
ha-1 year-1 (Table 1). 
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Figure 1. The map of the location of experimental sites in Sweden. The sites randomly selected for 
model fitting are marked with green/triangles, and for model validation with red/circles.  

Climate data for each site covering the duration of the experiment were obtained 
from the Swedish Meteorological and Hydrological Institute (SMHI). The data set 
consisted of climate variables estimated with a meteorological model calibrated 
using observational data from meteorological stations, which was done in the 
framework of the UERRA project (Niermann et al. 2018, SMHI 2022b). It included 
monthly sums of precipitation, global radiation, and PAR, as well as average 
monthly values of minimum, maximum, daily and day-time temperatures. The data 
was provided in raster files with a spatial resolution of 11 km. Each experimental 
plot was assigned climate data from the nearest pixel. 

The mean annual air temperatures at the experimental sites, averaged over period 
1966 – 2016, ranged from 0.9 °C in the north to 7.1°C in the south and showed high 
variability between years and sites located at a similar latitude (Fig. 2c). The lowest 
mean annual temperature recorded in a single year was -2.2 °C, and the highest 
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was 9.4 °C. Similarly, average yearly PAR sums decreased with latitude from 1783 
to 1379 MJ m-2 year- 1 (Fig. 2b), with extreme values being 1238 and 2028 MJ m-2 
year-1. The amount of precipitation did not show a marked trend with a north-south 
gradient, but there was considerable variation between years (Fig. 2a). The smallest 
annual rainfall during the period 1966 – 2016 within the experimental sites was 349 
mm while the greatest reached 1248 mm. 

 

Figure 2. The experimental sites average values for 1 ° latitudinal bands and period 1966 - 2016:  
yearly sums of precipitation (a) and photosynthetically active radiation (b) and annual mean air 
temperatures (c). The vertical lines represent ±1 standard deviation. 

2.2 Data preparation 
The entire data processing and the subsequent model fitting and evaluation were 
performed using the R (version 4.1.2) statistical program (R Core Team 2021). The 
preparatory work consisted in calculating the climatic conditions prevailing at 
individual sites in each distinguished period and estimating the amount of radiation 
absorbed by the canopy of stands. 
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To estimate the amount of radiation potentially usable for photosynthesis, the 
monthly PAR sums were first modified by the influence of temperature. A 
mechanistic approach was used, as the response of photosynthesis to temperature 
variation is distinctly non-linear (Landsberg & Sands 2011), and therefore a linear 
model could misrepresent its effect. The modifier was calculated with the 	
following function derived from the 3GP model (Landsberg 1998, as cited in 
Waring 2000): 

f! = $!#$%&"!#'&
!()*"!#'&

% × $!#%+"!#$%&
!#%+"!()*

%
#
,#%+-,()*
,()*-,#'&

$
  (1) 

where Tmean was the average monthly day-time temperature (°C) that, according to 
previous studies, provides greater accuracy than daily means (Mason et al. 2011, 
Goude et al. 2022). Topt, Tmax and Tmin referred to the optimal, maximum, and 
minimum temperatures that determine the rate of photosynthesis, the values of 
which were assumed at 20, 40, and -2 °C, respectively (adopted from Goude et al. 
2022). fT takes values from 0 to 1 for Tmean in the range of Tmin to Tmax and 0 for 
Tmean outside the threshold values. 

LAI was estimated from the basal area using the correlation function (R2 = 0.68, 
RMSE = 0.057 m2 m−2) developed by Goude et al. (2019) for Scots pine stands in 
Sweden: 

LAI = 0.651 + 0.088 × BA (2) 

where BA is the basal area of stands (m2 ha-1). 

Absorption of radiation by canopy was estimated from the annual sums of the 
modified PAR and stands' LAI using Beer's Law (Monsi & Saeki 2005): 

APAR = PAR × 41 − e"%×'()7 (3) 

where k refers to the light extinction coefficient which depends on the canopy 
properties influencing the light penetration efficiency. In this study, k = 0.5 was 
assumed, which is the mean value for both deciduous and coniferous forests, 
commonly used in process-based models (Landsberg & Sands 2011; Weiskittel et 
al. 2011).  

In order to exclude the impact of considerable mortality on the inter-periodic 
changes in LAI and stand growth, the periods in which the mortality exceeded 30% 
of the total basal area were removed. Preliminary analysis showed that further 
lowering the threshold did not result in significant improvement in the accuracy of 
the models (R2 gain <1%, RMSE gain <0.01%).  
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Due to irregular measurement intervals, it was impossible to determine precisely 
the temporal resolution of the constructed model, and thus it was necessary to adopt 
certain assumptions. Consequently, two approaches were analyzed that differ in 
assumptions and thus in the method of data processing. 

2.2.1 Model 1 
Model 1 (M1) assumed that the differences in the stands’ PAI were best explained 
by both the mean climatic conditions and the averaged values of stand parameters 
in each period. Given that M1 is based on annual average variables, the temporal 
resolution was therefore set to one year. 

In this approach, the age of stands and the top height were averaged for each period 
between measurements. LAI was calculated using Equation 2 based on the residual 
basal area after the treatment and the remaining and removed basal area at the next 
revision, and subsequently averaged. Monthly precipitation and modified PAR 
values were summed for each period and then averaged to annual sums. The same 
method was used for rainfall totals during the summer months (June to August). 
APAR estimates were computed with Equation 3 from the mean LAI and annual 
PAR. It was assumed that both SI and the residual stand density were relatively 
constant in each period, thus the unaltered values from the measurement events 
were used in the subsequent model fitting and validation. 

2.2.2 Model 2 
Model 2 (M2) assumed that the variation in climatic conditions on a given site in 
particular periods was relatively small, and the growth of the stand in the following 
years could be predicted based on measurements made in the year of the revision 
only. Therefore, the period for which M2 simulates the annual volume increment is 
longer than in the case of M1, since it depends on the measurement intervals, which 
averaged seven years.  

The data set for M2 consisted of the initial values of stand age, top height, SI, and 
residual stand density at the beginning of each period. LAI was computed with 
Equation 2 based on the residual basal area measured in the year of revision. The 
values of total precipitation, rainfall in the summer months and the modified PAR 
were summed up in the period of 1 year from the time of every measurement. Using 
Equation 3 APAR was then calculated from the previously obtained LAI estimates 
and PAR sums.  

The data preparation process and methods used are presented graphically in the 
Figures 3 and 4.  
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Figure 3. The diagram of the data sources for the stand and climate variables included in the initial models and the 
functions used. The green/dotted boxes represent the variables derived from the thinning and fertilization experiment 
(”GG – Experiment”), the red/dashed boxes - variables from the Swedish Meteorological and Hydrological Institute 
(SMHI), the black/solid boxes - variables computed with functions, and the functions are marked with the grey/solid 
boxes. 
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2.3 Materials 

Table 1 presents the summary of the climate variables for both data processing 
methods and the stand data, which were used in the subsequent fitting and 
validation of the models. 
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Figure 4. The diagrams representing two methods of data processing: Model 1 was based on averaged variables 
and Model 2 was based on variables from the beginning of the measurement periods. The timeline reflects the 
period between two following measurements of a given measurement plot. The green curly brackets indicate 
the period for which the variables were averaged, and the green arrows show the point in time from which the 
variables were taken. 
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Table 1. Summary of the stand and site characteristics, and climate variables. Climate variables 
were calculated according to two analysed methods: as periodic averages and as values in the first 
year from the time of measurement (values in brackets). 

Variable Mean Median Range 
Stand and site 

   

Basal area (m2 ha-1) 21.8 20.4 6.0 – 51.6 
Stand density (trees ha-1) 969 710 150 – 4000 
PAI (m3 ha-1 year-1) 7.1 6.6 1.9 – 19.5 
Top height (m) 17.8 17.8 9.0 – 28.3 
SI (m) 24.4 24.6 17.2 – 33.0 
Age (years) 57 56 26 – 95 
Climate    

Mean annual temperature (°C) 4.0 4.3 -0.9 – 7.5 

 (4.4) (4.8) (-1.4 – 8.5) 
Mean annual day-time temperature (°C) 5.1 5.6 -0.3 – 8.4 

 (5.6) (6.0) (-0.8 – 9.3) 
Modified PAR (MJ m-2 year-1) 1177 1232 797 – 1497 

 (1317) (1341) (685 – 1730) 
APAR (MJ m-2 year-1) 847 849 439 – 1276 

 (912) (915) (428 – 1462) 
Precipitation (mm year-1) 741 735 522 – 943 

 (801) (789) (381 – 1148) 
Precipitation in summer (mm year-1) 256 258 146 – 374 

 (284) (289) (96 – 641) 

2.4 Model fitting and evaluation 
Both datasets, including stand data from 205 measurement plots within 48 
experimental sites (4 plots per site on average), were randomly divided. 32 sites 
were assigned for model fitting and 16 for validation (Fig. 1) which corresponded 
to 663 and 350 measurement periods, respectively. The model was fitted with the 
“lmer” function (“lme4” package; Bates et al. 2015). The linear mixed-effects 
model was chosen with regard to the experimental design to avoid pseudo-
replication. For the variables for which heteroscedasticity was detected, a log 
transformation was applied to meet the basic assumptions of the statistical analysis. 
The transformation bias was corrected according to Baskerville (1972), and the 
correction factor should also be applied in the future use of these models. The p-
values of the model parameters were calculated using the t-test and the 
Satterthwaite's method for estimating the degrees of freedom (“lmerTest” package; 
Kuznetsova et al. 2017). The pseudo-coefficients of determination for the fixed 



24 

effects (R2) and the entire model (𝑅*+) were obtained using “r.squaredGLMM” 
function (“MuMIn” package; Bartoń 2022) and the root mean square error was 
calculated as follows:  

RMSE = <∑ (y, − f,)+-
,./ N⁄  (4) 

RMSE% = RMSE 4∑ f,-
,./ N⁄ 7⁄ × 100 (5) 

where yi are the observed values, fi are the fitted values, and N is the number of 
observations. RMSE was computed using back-transformed values. Additionally, 
the variance inflation factor (VIF) was used to detect autocorrelation (“car” 
package; Fox & Weisberg 2019). The variables for which VIF was greater than 10 
were considered significantly autocorrelated. 

The models were built by manually simplifying the initial models using a stepwise 
approach. The removal of a given parameter was determined by whether: 1) there 
was a significant autocorrelation, 2) the parameter estimate was consistent with 
scientific knowledge, and 3) it significantly improved the model (p-value <0.05). 
Since the thesis aimed to construct a model based on the LUE concept, APAR was 
the key variable that could not be removed. Variables corresponding to the location 
and the main factors influencing LUE, namely latitude, age and structure of the 
stand, climatic conditions, and site fertility were also included, but disregarded 
where proved insignificant. The initial models were therefore as follows: 

PAI = APAR + Age + N + H012 + SI + P0 + P3 + Lat (6) 

where PAI was periodic annual volume increment (m3 ha-1 year-1), APAR was 
absorbed photosynthetically active radiation (MJ m-2 year- 1), Age was stand age 
(years), N was stand density (trees ha-1), Htop was top height (m), SI was site index 
from top height (m), Pt was annual sum of precipitation (mm year- 1), Ps was annual 
sum of precipitation during summer months (mm year- 1), and Lat was latitude (°). 
In addition, the models accounted for the random effect of sites and the nested 
random effect of plots.  

The models were validated by applying them to previously extracted datasets that 
were not used in the fitting process. Subsequently, the analysis of residuals was 
performed and the RMSE values were calculated according to the Equation 4 and 
5 and the R2 values were computed as follows: 
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R+ = 1 − ∑ (6'"7')./
'01

∑ (6'"69)./
'01

 (7) 

where yi are the observed values, fi are the predicted values, and yH	is the mean of 
the yi values.  
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3. Results 

3.1 Model fitting 
The final models consisted of APAR, age and density of stand, site index, and total 
annual precipitation variables (Table 2). Top height was removed due to high 
autocorrelation (VIF > 10) with stand age and SI, while its correlation with PAI 
was much lower than in the case of the other two variables. Although the remaining 
variables were significant for the models, latitude and sum of rainfall during 
summer were not retained, as they displayed a correspondingly positive and 
negative relationship with PAI, which was inconsistent with the expectations based 
on plant physiology. Moreover, the random variability between treatments within 
the sites was 0 and therefore the nested random effect of plots was removed. 

Table 2. Estimated parameters for the fitted PAI models: APAR (MJ m-2 year-1), both stand age 
(years) and density (trees ha-1), site index (m) and annual precipitation sum (mm year-1); standard 
errors, p-values, pseudo-coefficients of determination for both the fixed effects (R2) and the entire 
model (𝑅!"), absolute (m3 ha-1 year-1) and relative (%) RMSE. Model 1 was based on averaged 
variables and Model 2 used variables from the beginning of the measurement periods. 

 

Response 
variable 

Parameters Estimates St. Error p-value R2 

(R#") 
RMSE 
(RMSE%) 

Random 
variance 

Model 1        

Log (PAI) Intercept -2.238e+00 2.668e-01 1.07e-15 0.72 1.64  
 APAR 6.564e-04 1.577e-04 5.22e-05 (0.83) (21.9 %)  
 Age -5.115e-03 1.198e-03 3.27e-05    
 Log (Density) 2.095e-01 2.645e-02 3.52e-13    
 SI 8.499e-02 8.027e-03 < 2e-16    
 Precipitation 5.043e-04 1.600e-04 0.00171    
 Site (random)      0.02186 

Model 2        

Log (PAI) Intercept -1.089e+00 2.651e-01 4.72e-05 0.56  1.85  
 APAR 7.860e-04 1.037e-04 1.58e-13 (0.73) (25.7 %)  
 Age -5.039e-03 1.141e-03 1.21e-05    
 Log (Density) 1.877e-01 2.381e-02 1.82e-14    
 SI 3.997e-02 8.412e-03 3.76e-06    
 Precipitation 3.834e-04 8.044e-05 2.31e-06    
 Site (random)      0.02644 
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Both models fit reasonably well with the model data. Having compared the model 
based on average values (M1) with the model based on the values from the 
beginning of the measurement periods (M2), the former outperformed the latter, 
having a higher share of explained variance, 72 % compared to 56 %, and bearing 
a slightly lower error (Table 2). However, further analysis of residuals found M1 
biased positively and M2 negatively for high PAI values. Moreover, M2 tends to 
overestimate the dependent variable for the least productive stands (Fig. 5). The 
effect of APAR on PAI, taking into account the influence of other parameters, was 
greater in M2 compared to M1 (Fig. 6). 

 

Figure 5. Residuals of the fitted PAI model based on averaged variables (M1) (a) and model based 
on variables from the beginning of the measurement periods (M2) (b). Coloured lines indicate the 
trend of the residuals. Note: The values shown in the graphs are back-transformed. 

 

 

Figure 6. Absorbed photosynthetically active radiation (MJ m-2 year-1) plotted against periodic 
annual volume increment (m3 ha-1 year-1). The lines represent the marginal effect of APAR on PAI 
in Model 1 (a) and Model 2 (b). 
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The inclusion of climate and stand variables in the models significantly improved 
their accuracy. The age of the stand was the most influential additional parameter, 
increasing the explained variance from 28 to 51 % for M1 and from 26 to 41 % for 
M2. The site index enhanced the model fit by another 14 % (M1) and 7 % (M2), 
while the stand density and the annual rainfall sum together accounted for a further 
7 % and 8 % of the explained variance for M1 and M2, respectively. The additional 
parameters also reduced the RMSE from 37.6 to 21.9 % (M1) and from 37.5 to 
25.7 % (M2).  

3.2 Model validation 

The validation of the models showed a similar performance in respect of the 
prediction error to that indicated by the analysis of the fit. The validation RMSE of 
M1 and M2 were 21.0 and 21.6 %, respectively. Likewise, the fitted and predicted 
values of M2 explained a similar share of variability in the datasets. However, R2 
of M1 dropped from 0.72 to 0.62 (Table 3). Therefore, despite differences in the fit 
of the models, their predictive power appeared to be similar. 

Taking into account the smaller range of PAI values included in the validation 
dataset, the trend of the residuals from validation and fitting of M1 was essentially 
the same. M1 overestimated predictions for the most productive stands and slightly 
underestimated the mid-range PAI values (Fig. 7a). In contrast, the values fitted and 
predicted by M2 showed different residual patterns for PAI > 8 m3 ha-1 year-1. In the 
validation, M2 overestimated the stem volume increment for both the fastest and 
slowest-growing stands (Fig. 7c). Large discrepancies occurred when the models 
were validated against incompatible datasets (e.g., Model 2 with a validation data 
set based on averaged variables). It showed growing overestimation (M1) or 
underestimation (M2) with increasing PAI (Fig. 7b, d). 

Table 3. Model validation results against data sets processed according to the methods used in 
Model 1 and Model 2. The validation data set M1 consisted of averaged variables, and M2 contained 
variables from the beginning of the measurement periods. 

Models Validation data set M1 Validation data set M2 
RMSE 
(RMSE%) R2 RMSE 

(RMSE%) R2 

Model 1 1.40 (21.0 %) 0.62 1.68 (23.4 %) 0.45 
Model 2 1.50 (24.1 %) 0.56 1.47 (21.6 %) 0.58 
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Figure 7. Residuals from the validation of the model based on averaged variables (M1) (a,b) and 
model based on variables from the beginning of the measurement periods (M2) (c,d). The plots a 
and c show the validations against the compatible data sets (method of data processing), while the 
plots b and d against the incompatible data sets. Coloured lines indicate the trend of the residuals. 
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4. Discussion 

The models developed in this study display a reasonable fit with the data. Moreover, 
the models showed a moderately large error, over 20%, which was additionally 
confirmed by the validation results. As expected, Model 1 offered a better fit as the 
use of averaged values smoothed out the year-to-year variability of the climate 
variables. However, the validation against the separate data sets indicated that both 
models explained a similar share of variance. This may suggest that although the 
year-to-year variation was reduced using averages, the variability between sites 
remained large and resulted from factors not considered in the models. The worse 
fit of models for high-production stands was caused by the asymmetric distribution 
of the PAI values in the data set, resulting in fewer plots with annual volume 
increment above 9 m3 ha-1 year-1. In addition, M2 showed inconsistent residual 
patterns between model fitting and validation. This can be attributed to the larger 
marginal effect of APAR in M2 compared to M1, which relationship with PAI was 
highly variable for large APAR values (Fig. 6). The validation indicated that the 
unbiased predictions can only be obtained for part of the volume increment range, 
which implies that these models should be used with caution for the fastest and 
slowest-growing stands. Neither can these models be used interchangeably without 
producing negatively or positively biased predictions. M2 tends to underestimate 
PAI over the one-year prediction period and M1 produces the overestimated longer-
term predictions.  

Compared to the Heureka empirical model commonly used in Sweden, both models 
displayed significantly inferior performance. Fahlvik et al. (2014) showed that the 
volume increment predictions generated by Heureka deviated on average by less 
than 0.5 % from the observed values. This likely indicates that the benefits of 
including climatic variables that allow adjustment to changing conditions are 
outweighed by the lower accuracy of the models developed in this thesis.  

One of the reasons for the inferior performance could be the replacement of the 
above-ground or total biomass production with the stem volume increment. Growth 
conditions affect not only the rate of biomass production but also the partitioning 
of assimilated carbon between foliage, branches, stem, and roots (Cannell 1989). 
Focusing only on the main harvestable part of the tree, while practical, could disrupt 
the linear relationship between absorbed radiation and biomass production. In 
studies in which gross primary productivity estimated from measurements on the 
eddy covariance flux towers was used, the R2 coefficients of the LUE relationship 
ranged from 0.45 to 0.64 (Turner et al. 2003; Garbulsky et al. 2010), which largely 
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exceeds the share of the explained variance by M1 (R2=0.28) and M2 (R2=0.26), 
when only APAR was included.  

The lower precision could also result from the lack of accurate and frequent 
measurements of the absorbed radiation or LAI. APAR estimates were derived 
indirectly from the basal area using two Equations (2 & 3), possibly resulting in 
accumulation of inherent uncertainties. Rarely do forest canopies meet the 
requirements of the Beer’s Law, and the accuracy of the estimates is influenced by 
the crown's structure and the properties of the leaves (Binkley et al. 2013; Waring 
et al. 2016). Uncertainties related to the calculation of LAI could stem from the 
model itself and from disregarding possible temporary changes in leaf area caused, 
e.g., by water stress or defoliation caused by pests. In addition, possible errors in 
the interpolation of climate variables could also have some impact on the precision 
of the PAR data, which resulted in lower accuracy of the APAR estimates. Direct 
measurements of absorbed radiation and dry biomass produced are expensive and 
labour-intensive. Still, they can accurately estimate the light use efficiency, as 
exemplified by the well-fitted LUE models developed for willow by Cannell et al. 
(1987) with R2 exceeding 0.9.  

The inclusion of climate and stand variables in the models developed in this thesis 
substantially improved their accuracy. The significant parameters retained 
correspond to all the major factors influencing LUE, such as age, soil fertility and 
water availability. The influence of temperature was included by the modifier of 
useable PAR, which allowed to exclude the sum of radiation intercepted in the 
winter months when the photosynthesis process ceases.  

The age was negatively correlated with PAI, which corresponds with the findings 
of Saldarriaga and Luxmoore (1991) and Martin and Jokela (2004) on the steady 
decline of LUE with the development of the stand after exceeding a certain age. 
The significant positive effect of the site index in the models satisfactorily reflected 
the impact of site fertility on the stand growth, as the photosynthesis rate and the 
allocation of carbon to aboveground biomass, and thus the stem volume increment, 
increase alongside the soil nutrient content (Cannell 1989; Landsberg & Sands 
2011; Waring et al. 2016). The effect of stand density can be attributed to the impact 
of tree spacing on biomass partitioning between stem and branches (Cannell 1989). 
In addition, higher density may also result in faster and greater development of the 
leaf area, which allows for more efficient canopy expansion if gaps are formed. The 
annual precipitation was poorly positively correlated with the stem volume 
increment. This was in line with the observed effects of water availability on LUE 
(Stape et al. 2008; Waring et al. 2016). However, the poor correlation contradicts 
the findings of Garbulsky et al. (2010) indicating that annual rainfall is the main 
factor controlling growth across terrestrial biomes and best explains the spatial 
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variability of LUE. This may suggest that water scarcity rarely limits forest growth 
in Sweden, which is in line with other studies that found water to be a significant 
limiting factor only in certain regions (Bergh et al. 1999; Belyazid & Zanchi 2019). 
Furthermore, Scots pine is characterized by high resistance to drought and low soil 
moisture requirements (Houston Durrant et al. 2016).  

On the other hand, the poor correlation could also result from omission of the 
influence of temperature, water holding capacity of soil and runoff on the overall 
water balance (Landsberg & Sands 2011), which may also explain the negative 
relationship between precipitation in summer months and the PAI obtained in the 
initial models. Due to its incompatibility with plant physiology, this parameter was 
removed. Another variable not retained in the final models was latitude, which 
showed a positive correlation with PAI. This was in clear contradiction to the global 
patterns of changes in productivity which diminishes with growing distance from 
the equator (Gillman et al. 2015).  

The results of the validation suggest that replacing the complex equations 
expressing physiological processes with the linear relationship of climate, site and 
stand variables against the volume increment failed to reflect adequately the 
influence on stand growth, which deteriorated prediction accuracy of the models. 
Probably, the lack of sufficient representation of factors influencing the water 
balance, for example, by disregarding equations of air vapor pressure deficit and 
soil water content, was of great importance, as they describe in more detail the 
impact of water availability and temperature on the stomatal conductance, and thus 
on the photosynthesis rate (Landsberg & Sands 2011). Hybrid models with a greater 
proportion of mechanistic elements showed a better performance. For instance, the 
popular 3-GP model tested against independent data from southern Sweden 
produced stand volume estimates that explained 97% of the variation (Landsberg 
et al. 2003), over 1.5 times more than in the case of M1 (R2=0.62) and M2 (R2=0.58). 

While the models developed in this study proved less accurate than the more 
complex hybrid models, their undoubted advantage is the ease of application. They 
require only readily available climatic variables collected by meteorological 
stations and basic stand and site parameters measured in forest inventories, as well 
as necessitate no complex calculations. Considering their simplicity combined with 
climate sensitivity, this simplified hybrid modelling approach appear worthy of 
further exploration.  

Possible improvements may include, in particular, the use of better-quality APAR 
data, which is a key variable for LUE-based models. While thorough and frequent 
measurements of the absorbed radiation may prove unattainable, especially when 
applied on a large scale, the rapidly developing remote sensing might offer new, 
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promising opportunities. Research has shown that contemporary fAPAR products 
are close to meeting the 10% accuracy requirement set by the UN Global Climate 
Observing System (Liang & Wang 2020). Although their spatial resolution stays 
predominantly within the range of 1 km, some may already provide information at 
the level of a single stand (Putzenlechner et al. 2019). However, instrument 
limitations and high costs make it impossible to achieve both high spatial and 
temporal resolutions simultaneously. In the future, this could be overcome by using 
a constellation of relatively inexpensive microsatellites that enable detailed and 
frequent data acquisition (Dash & Ogutu 2016), which could not only improve the 
accuracy of the models but also greatly facilitate their practical application. 
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5. Conclusions 

1. The simplified hybrid models based on the LUE concept were able to 
predict stem volume growth in boreal Scots pine stands whereas the 
inclusion of climate and stand variables significantly improved their 
prediction accuracy. However, the greater simplicity of use was attained at 
the expense of precision of the estimates with both models underperforming 
compared to the popular hybrid and empirical models. 

2. Possible reasons for the inferior performance were the replacement of 
aboveground or total biomass production with stem volume increment, the 
accumulation of uncertainties related to the APAR estimation method, and 
insufficient representation of the effect of individual factors on the stand 
growth. 

3. Using better quality APAR data could possibly improve the prediction 
accuracy and rapidly developing remote sensing may soon enable the 
acquisition of more accurate data with high temporal resolution. This would 
allow for a relatively inexpensive and low labour-intensive method of 
constructing models built upon the LUE concept. Moreover, the easy 
availability of the data would greatly facilitate their practical application. 
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