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At a time when data are an integral part of many industries and the world as a whole, driven by a 
digital dominant era, there is an emerging discussion surrounding the level of value captured. Using 
data accumulated in the forest management system and the surrounding databases of the forestry 
semi state Coillte, my aim was to research if there was any type of data that could potentially be 
used to identify and understand inaccuracy in long- and short-term forecasting. The Company’s 
Tactical and Strategic forecast volumes for 2018 were used in conjunction with the actual harvest 
volume from weigh-bridge measurements and roadside stocks in order to understand the current 
extent of over- and under-estimation. To achieve this, the methods of linear and stepwise backwards 
logistic regressions were used. The linear regressions based on the percentage of difference of the 
forecast volumes towards the actual harvested volumes were inconclusive. The logistic regressions 
were produced using eight binary response variables based on over-and under-estimation. For each 
forecast type they included, a dataset with all species and product volumes, a dataset with only the 
dominant species volume (Sitka Spruce/Picea Sitkensis), and datasets using the most valuable 
product (large sawlog) with total volumes and volumes of the primary species only.  The predictors 
consisted of landscape and geographic variables; namely elevation, slope, aspect, country segment, 
distance from coast, latitude, soil type and roughness. The results showed that over-estimation is the 
most common form of forecast bias with the tactical forecast models being the most accurate using 
the predictor variables, Elevation, Roughness and Soil Type. The variables, Aspect, Segment within 
country and Slope were shown to be the least valuable for prediction. Thus, these aspects should be 
taken into account when researching forecast bias at the planning level. 

Keywords: Landscape, Logistic Regression, Data mining, Elevation, Strategic forecast, Tactical 
forecast, Forecast bias 
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The idea for this thesis shifted several times as difficulties presented themselves. In 
the early days of designing the method by which the research would take place, it 
became evident that finding an institution to receive a student overseas can be a 
difficult task. As time passed and no institution was found, an attempt was made to 
make the research a meta study developed from existing research since fieldwork 
was not possible. This was revealed to have its own complexities and difficulties, 
but change came to provide opportunity. This change came in the form of 
employment by the Irish semi-state forestry company, Coillte.  

My focus hence became to facilitate a research question that would benefit both 
myself and Coillte as many questions exist that need answering surrounding the 
operation of any company. Through discussions with the strategic resource lead, 
and an understanding that forest planning was to be the main focus, a decision was 
made to research accuracy in forecasts by using the abundance of data the Company 
already possessed. Initially it would have been to compare several sources of 
forecasting and estimation including a new technology called SATMODO, which 
consisted of sensors placed on harvester heads, that calculated the length and size 
of cuts. Unfortunately, after gaining access to this dataset and progressing the 
analysis with it, a critical flaw was found 8 months later in the software that made 
it unusable. This was a major setback, as a central part of the research was tracking 
the flow of the data through the forecast steps and various estimation steps, like 
SATMODO and random samplings, in order to identify where losses and 
shortcomings were most pronounced. 

Fieldwork inaccessibility and hardware challenges were followed by the 
challenges of working a full-time job and trying to reserve the time to research and 
write a thesis. I felt it should be stated, for all who know and those who do not and 
wish to undertake this path, that it is a very challenging one that requires great 
commitment and sacrifice of time outside of every work day and weekend. The 
final challenge was the pandemic, and of course I refer to Covid-19. The 
psychological effects of being house bound did not free up time, as one would 
anticipate, but instead diluted productive time. There was no time to decompress 
and the will to get up and do things became a heavier burden every week.  

Having written this preface and remembering the road that brought me here, I 
am grateful to have seen it to the end. 

Preface 
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1.1. Technology and Forestry 
Forestry has made great technological advances over the last century. With an 
expanding scale that has been driven and facilitated by the amalgamated use of 
mechanical and digital assistance, thus greatly increasing the capacity and accuracy 
of the industry, a demand and supply dynamic formed that will continue to drive 
the scale of forestry into the future (McEwan et al. 2020). Modern forestry 
enterprises have embraced this technology widely as evident by the constantly 
increasing demand for forest software globally (Global Forestry Software Market 
2020-2024 2021) and the contractual demand for newer harvesting machinery to 
achieve the fastest pace of operation technology can provide. With software 
becoming indispensable to the short and long-term functionality of the forest 
industry, data collection has become increasingly substantial. This has led to a 
belief within the industry that a focus should be directed at getting more value out 
of this sizeable pool of information (Stojanova et al. 2006; Zhang 2014; Istomin et 
al. 2019; Rossit et al. 2019), usually coined under the term “data mining”(Clifton 
2009).  

1.2. Geography and landscape of Irish forestry 
Large-scale forest planting began over the last century in Ireland to re-forest the 
island after the forest cover was reduced to the historic low of 1.41%. A focus was 
placed on coniferous timber, especially Sitka Spruce, because it was considered to 
grow more successfully on inferior classes of land and was believed to be more 
commercially viable (O’Carroll 2004). Many cases of inferior for forestry land such 
as peatlands were planted with coniferous trees as better-quality sites were retained 
for agriculture, which has retained a prominent position in Irish culture (Gray 
1964). Therefore, the central commercial species to the Irish forest industry became 
Sitka Spruce and plantations were often placed in areas where there was availability 
rather than site specific preference to the species. Consequently, understanding the 

1. Introduction 
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landscapes still being used today and examining the combination of factors 
pertaining to them that could influence forecasting bias and error could in turn 
potentially yield valuable information. Such information could affect the decisions 
of how we manage mid- to long-term forest planning as well as question where we 
have placed out forests and why. 

1.3. Inspiration behind the variables 
Together with the goal of getting more value out of an existing pool of information 
and a coupling with the well-known, in the field of forestry, topic of landscape and 
geography, an avenue to potentially improve forecast accuracy presented itself. The 
central premise of the thesis was to search within the Company databases for 
variables whose data are regularly collected and linked to the landscape but were 
not at the time of writing used in any direct capacity in the forecasting process.  

The choice of dependant variables was inspired from information gathered 
during my employment by the semi-state Irish Forestry Company from various 
discussions with fellow foresters and from personal observation during field-work 
in the Irish counties of Wicklow in the east, Cork in the south/southwest and Kerry 
and Limerick in the West.  

In the eastern part of the country, the evidence of better-quality stands was 
thought to be related, at least partially, to the abundance of mineral soils as opposed 
to the dominance of peatlands in the west which made for poorer site conditions 
and stability (Fay et al. 2007). The stability and site conditions could be further 
inferred from the harvester machinery used in forest operations which were 
obligated to install caterpillar tracks due to the soil conditions in most of the western 
parts of the country, however, tyres were able to be used in several eastern counties.  

The strongest weather patterns in the country are commonly known to arrive 
from the southwest, originating in the Atlantic Ocean (Met Eireann, as cited by 
Rohan 1986). This increases the exposure on the western and southern parts of the 
country that leads to poorer site conditions and the prominent in Irish forestry, issue 
of windblow (Dhubháin 1998). I observed cases of sites with serious deformities 
from breakage, windblown sections and in some cases overall stunted growth when 
monitoring several forest stands in the Dingle, Iveragh and Beara peninsulas of west 
Cork and Kerry. 

A picture was starting to form surrounding landscape and geography that 
potentially characterises forestry in Ireland. The next step was to review the 
Company databases for these landscape and geographical variables that could 
potentially be used to evaluate the area effects on forecast accuracy. The selection 
was limited to variables that met robust methods of measurement with adequate 
definition and specificity to meet the criteria of academic research. 
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1.4. An introduction to regressions 
Dobson (2013) defines a model as signal and noise, where the signal is a 
mathematical description of the main features of the data and noise is the 
characteristics not explained by the model. The goal is to derive the maximum 
amount of information from the signal in the form of variability that is not attributed 
to noise (Dobson 2013). 

The selection of candidate variables for a regression is determined by the 
balancing of experience and theoretical study with the information acquired from 
data analysis. The goal thereafter is to select the variables for the model based on 
an equilibrium of complexity and necessity by leveraging the need towards the bias 
of added regressors (Hintze 2007). There are several methods at the disposal of 
statistical software for the machine selection of variables.  

Stepwise selection is a good technique to observe the effects predictor variables 
have on the response variables. The method of Backward stepwise selection is 
preferable in many situations, in comparison to the Forward stepwise selection, 
because it does not produce suppression effects where a predictor variable may be 
uncorrelated with the response variable but related to other predictors (Thompson 
& Levine 1997). The backwards stepwise selection method is one of many good 
methods of observing the value and interactions of variables, as is the scope of this 
study. 

The criteria for a good model can rely on many factors depending on the nature 
of the research. Generally, a good model is one that explains a large amount of 
variability (Dobson 2013). However, there is actually no agreed upon criteria for a 
“good” model, thus lending interpretation in a way to personal preference. A good 
way of generalizing the pillars of a good model according to Moody and Shanks 
(1994) are the selection of desirable properties (qualities), a way to measure them 
(metrics), a description of their relative importance (weightings) and the ways in 
which a model can be improved (strategies) (Moody & Shanks 1994). 

1.5. What are the tactical and strategic forecasts? 
The tactical and strategic forecasts are the mid- and long-term forecasting methods 
used by many private and public forestry entities in order to get information on 
estimated future resource volumes. 

The strategic forecast used by Coillte foresees two standard rotations into the 
future, for Sitka Spruce that is 80 years approximately. It is customarily based on 
variables available at this stage of planning like yield class, planting density, 
seedling type and others. Given the variable types used and the fact that it is not 
possible to have more accurate variables at this stage such as site, climate, growth 
and tree characteristics, only a broad accuracy is expected. The actual volume 
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recoverable from the stand at the time of harvest may be quite different from the 
strategically forecasted one. This is because it is unlikely for the trees, the site, the 
weather patterns and the silviculture applied throughout the life of the forest to be 
perfectly predicted. The world is unpredictable and the further ahead you set a 
forecast the least predictable it will be as a general rule. 

The Tactical forecast used by Coillte is mid-term and is usually carried out 3-5 
years prior to the expected harvest of a forest. At this stage, additional variables 
become available such as stand characteristics measured from sampling sites (e.g., 
top height, diameter at breast height, etc...) or remote sensing. The effects from the 
climate and weather patterns are now visible for their influence on the overall health 
of the stand (e.g., crown breakage, windfall, etc…). The additional variables 
provide a more accurate and current view of the forest’s health, quality and growth. 

1.6. Data and Forestry 
The integrated use of data permeates every aspect of the forestry process from 
forecasting and resource planning to the management of harvested stock and the 
supply chains that handle it thereafter. Focusing on the first two, forecasting and 
resource planning, both provide the information that drive major key decisions for 
the industry, and data mining can be used to discover and extract patterns to 
improve their accuracy. As with most forestry operations, if not all, a large amount 
of data is created and stored. This includes the data surrounding long-term strategic 
forecasts, mid-term tactical forecasts and actual measured volumes that are used to 
evaluate and appreciate potential stock or keep track of its commercial 
performance. Many key decisions hinge on the information of these forecasts, from 
operational to financial and even further to a national level, when assessing the 
Country’s future timber stocks from bodies like the Council for Forest Research 
and Development (COFORD Wood Mobilisation and Production forecasting 
Group 2018). Therefore, there is a strong incentive to research ways of improving 
the accuracy of these forecasts using the resources at hand. The collection of data 
used in this research was sourced from the Irish semi-state forestry company, 
Coillte, a company established in 1989 from the Irish Forest Service and became 
the custodian of state-owned forests in Ireland (www.coillte.ie (Coillte Website) 
n.d.). 
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The main objective of the study in this thesis work was to understand the variables 
that contribute to a greater or lower level of estimation bias using data already 
available in Coillte’s forest management system and surrounding digital 
infrastructure. For this purpose, the effects of landscape features and geography on 
the bias in estimation of harvest volume were examined with the use of regression 
models.  

 
The study is expected to provide insight into the landscape factors that are the 

most and least indicative of estimation bias during the two planning stages. 
Considering that this is one of the first studies of its kind for Coillte, it will examine 
the results for valuable directions to advise future research aimed at identifying 
difficult and less accurately predictable landscapes. 
 

2. Objectives 
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3.1.  Identifying the list of forest sites 
The sample data consisted of a number of forests exported from a Forest 
Management System (FMS) using a custom query within its internal database.  The 
sites were all chosen using a specific list of parameters, which included (Figure 1): 

• Sites from the complete 2018 harvest schedule 
• Where felling activities were successfully carried out 
• Consisting of only clear-felled sites 
• And the primary species was Sitka Spruce. 

Figure 1: Snapshot of query used to export data from the FMS software 

 
 

Figure 2: To the left, a map showing the 
sample sites used in this thesis 

 The query’s output gave a list of 475 
sites (Figure 2) that became the list of 
sample sites for this Thesis. 
Following the export of the tabular 
information, a multi-part polygon was 
created for the 475 sites using the 
spatial tool in FMS and was then 
exported to ArcMap for processing.

3. Materials and Methods 
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3.2. Predictor Variables 
For this thesis work, eight predictor variables were considered; namely roughness, 
elevation, aspect, slope, distance to the coast, segment within the country, soil type 
and latitude (Table 1).  

For the ground conditions, data 
were retrieved regarding the soil type 
for each site and the corresponding 
ground roughness. The forest 
management system included a vast 
array of spatial data in the form of 
forest site spatial polygon objects and 
various types of underlying maps. 
This offered potential for the 
development of variables from the 
available spatial information. From 
use in unrelated projects within the 
Company, the land observation team 
was in possession of digital elevation 
models that had been acquired from 
the Copernicus project database (EU-
DEM v1.1 — Copernicus Land 
Monitoring Service n.d.). With some 
development using the ArcGIS and 
QGIS software this provided 
opportunity for the development of 

additional variables (Figure 3). 
The variables of aspect, elevation and slope have often been linked in literature 

with forest growth and productivity (Stage 1976; Stage & Salas 2007). 
Consequently, utilising GIS, these variables were developed and exported for each 
of the 2018 harvest sites. Furthermore, there was a particular interest to examine 
the potential for effects moving throughout the country according to the 
aforementioned noted oceanic influences. Therefore, the variable latitude was 
formed with GIS to examine if there is an affect moving linearly up the length of 
the nation. Distances from the coast were developed in three 10 km buffer 
increments to evaluate the coastal affects. Finally, a split of the sites in the country 
by quadrat was made to evaluate the broad scale merit of the Eastern to Western or 
Northern to Southern effects that had been observed by fellow foresters and my 
own personal observation from the southwest of the country. 

Figure 3: Exported image of site polygons layered 
onto the digital elevation model (DEM) 
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Table 1: Predictor variables, their categories and coding 
 
Predictor Category Coding 
Roughness unknown 0 
 Even 1 
 Uneven 2 
 Rough 3 
Elevation 10- 60 m 1 
 61-120 m 2 
 121-180 m 3 
 181-240 4 
 241-300 m 5 
 301-360 6 
 361-505 7 
Aspect N-NE 1 
 E-SE 2 
 S-SW 3 
 W-NW 4 
 N-NE 5 
Slope Gentle 0 
 Intermediate 1 
 Steep 2 
 Very steep 3 
Distance from the coast 0-10 km 0 
 10-20 km 1 
 20-30 km 2 
 > 30 km 3 
Segment within the country NE 0 
 NW 1 
 SE 2 
 SW 3 
Soil types Deep Acidic Mineral Non-Calcareous 1 
 Shallow Acidic Mineral Non-Calcareous 2 
 Blanket Peat 3 
 Alkaline Mineral Calcareous 4 
Latitude 535995-615996 degree 1 
 615997- 659997 degree 2 
 659998-695996 3 
 695997-775996 4 
 775997-935996 5 
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3.2.1. Roughness of the ground’s surface condition 
Roughness was determined by exporting the data from the Forest Management 
System that the Company uses, with a custom query for the parameters. It is defined 
as a categorical variable taking the values of Even, Uneven, Rough and Unknown. 
These values describe the evenness of the ground, size and frequency of obstacles. 
• Even: No Obstacles – ground with some small stones, field ditches present 

and machinery can move unhindered. 
• Uneven: Obstacles quite frequent – furrows, high stumps, small stones 

frequent with occasional large stones (> 40 cm), ditches and drains present 
making travel hindered. 

• Rough: Obstacles frequent – wide drains, deep ploughed furrows, large 
stones, small stones, rocks (> 60 cm) and banks. 

• Unknown: Cases where data is unavailable. 

Roughness was coded into 4 numerical categories as shown in (Table 1). 

3.2.2. Soil type of the selected sites 
Soil type was identified by exporting the data from the Forest Management System 
that the Company uses with a custom query for the thesis site parameters in the 
database. The data were then sorted by site code in alphabetical order and by 
intersected area descending. A check was then made to see if the soil type with the 
largest overall coverage also had the majority percentage from the other soil types 
that may be found in the same site. This was concluded to be the case and therefore 
the soil type with the largest coverage was attributed as the soil type for each site. 
The sites in total produced a total of 16 soil types as seen below (Table 2): 

Table 2: Full list of soil types 
Soil Type code Description  
AlluvMIN Mineral Alluvium 
AminDW Acidic - Deep - Well Drained Mineral - non calcareous 
AminPD Acidic - Deep - Poorly Drained Mineral - non calcareous 
AminPDPT Acidic - Deep - Poorly Drained Mineral - non calcareous - Peaty Topsoil 
AminSP Acidic - Shallow - Poorly Drained Mineral - non calcareous 
AminSPPT Acidic - Shallow - Poorly Drained Mineral - non calcareous - Peaty Topsoil 
AminSRPT Acidic - Shallow - Lithosolic or Podzolic - non calcareous - Peaty Topsoil 
AminSW Acidic - Shallow - Well Drained Mineral - non calcareous 
BktPt Blanket Peat 
BminDW Alkaline - Deep - Well Drained Mineral 
BminPD Alkaline - Deep - Poorly Drained Mineral - Calcareous 
BminPDPT Alkaline - Poorly Drained Mineral - Calcareous - Peaty Topsoils 
BminSRPT Alkaline - Shallow - Lithosolic/Podzolic - Calcareous - Peaty Topsoils 
BminSW Alkaline - Shallow - Well Drained Mineral - Calcareous 
Cut Cutaway Peat 
Scree Scree 
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The soil type, when reviewed as a pivot table with a column revealing the 
number of sites that comprised each type, yielded the conclusion that some soil 
types are represented by a very small number of sites. For this reason and to reduce 
the number of categories from the initial 15, a grouping was applied to make 4 
categories as shown in Table 1. 

3.2.3. Elevation from sea level 
The multi-polygon shape file of the 475 sites was used for this variable and the 
DEM (Digital Elevation Model) from the Copernicus project. Ireland as a whole 
does not exist within any single rectangle in the DEM so 2 separate ones were 
merged using the “Mosaic to new raster” tool (E20N30 & E30N30). Furthermore, 
the Clip tool was employed to isolate the raster area of the polygons of the sites. 
The raster was converted from Float point to Signed Integer with the “Copy Raster” 
tool and then converted to polygon feature using the “Raster to Polygon” tool. This 
output now carrying an attribute table with the segmented elevation data was 
intersected with the site polygons. This new feature’s attribute table data were 
exported to excel and the average elevation was determined for each site with the 
development of Visual Basic Script (VB) to create a function that concatenates 
pixel group measurements and then calculates the averages. 

This variable was continuous at this stage and was further coded into categories 
as shown in Table 1. 

3.2.4. Aspect from compass direction 
The spatial analyst tool was used on the 
clipped site raster files from the DEM, as 
developed in the previous variable, to 
calculate the aspect using the aspect tool 
which assigns compass direction. The 
raster output was converted from Float 
point to Signed Integer with the “Copy 
Raster” tool and then converted to 
polygon feature using the “Raster to 
Polygon” tool. This output now carrying 
an attribute table with the segmented 
Aspect data were intersected with the site 
polygons. This new feature’s attribute 
table data was exported to excel and the 
average aspect was determined for each 
site using VB Script to concatenate pixel 
group measurements and the average function. Furthermore, a bracket range was 

 Figure 4: Aspect Bracket Range 
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used to define parameters for direction (Figure 4) and functions were used to 
identify which degree direction each site was in. This variable is characterized as 
categorical as shown in Table 1.
 

3.2.5. Slope degree angle of forest sites 
To calculate slope, the spatial analyst tool (Figure 5) was used on the clipped site 
raster files. The raster output was converted from Float point to Signed Integer with 
the “Copy Raster” tools and then converted to polygon feature using the “Raster to 
Polygon” tool. This output now carrying an attribute table with the segmented slope 
data was intersected with the site polygons. This new feature’s attribute table data 
was exported to excel and the average slope was determined for each site using VB 
Script to concatenate pixel group measurements and the average function. This 
variable is characterized as continuous, but was later further coded into categories 
(Table 1). 

Figure 5:DEM slope calculation explanatory image taken from ArcGIS pro documentation website 
(pro.arcgis.com) 

 

3.2.6. Buffered distance from coast  
Coastal buffers were made from 0-10km, 10-20km, 20-30km using a buffer tool on 
a polygon of the republic of Ireland and then intersected with the site layer (Figure 
6). This variable is categorical and can take four distinct values (Table 1). 
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Figure 6: To the left, a map showing distance 
to coastal buffer zones 

 
There was a consideration explored to 
treat this variable as ordinal and 
consequently whether it would violate 
the assumption of equal intervals 
leading to type 1 & 2 errors. Since the 
last category is not of equal interval to 
the previous three which are equal 
between each other, the assumption of 
equal intervals was indeed violated 
and this variable was be treated as 
categorical.  
   
   

       

3.2.7. Segment within the country (Quadrant) 
 
The centre point for the island of Ireland 
was calculated from its polygon feature 
and a cross section from the centre-
point, with the vertical line pointing 
north to south, that separated the 
country into four compartments (Figure 
7). These compartments were 
intersected with the site layer to get data 
on which segment of the country the 
sites fall into. The segments are 
categorical and can take values from 0 
to 3 (Table 1). 

 
 
 

 
Figure 7: To the right, a map showing 
the visualisation of the country segments 
(Quadrants). 
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3.2.8. Degrees of Latitude 
The latitude was calculated for every site by producing the Y Centroid in ArcMAP 
with the ITM IRENET95 coordinate system. This was added for each site to the 
polygon feature attribute table and exported to excel. The values ranged from 
approximately 53.6 degrees for the most southern site to approximately 93.6 
degrees for the most northern. The variable, which was initially continuous, was 
coded into 5 categories of roughly equal sample sites (Table 1). 

3.3. Response Variables 

3.3.1. The sources of the data 
The response variables were sourced from volumetric data taken from the Remsoft 
tactical optimiser software. This data was provided by the manager of Coillte’s 
central resource team of which I was also a member at the time of collection. The 
data concerned the harvest year of 2018 and included data from the strategic 
forecast volumes and tactical forecast volumes. The actual harvest volumes were 
exported from Coillte’s Forest Management System (FMS) and were comprised by 
the amalgamated volumes from digital weight dockets and roadside stock reports. 

The data were provided under agreement that all Company code designations 
and actual volume values would be used with discretion and not published. 
Therefore, the data required transformation to protect the privacy policy that was 
agreed. 

Strategic and Tactical Forecast adaptation for thesis 
The Strategic & Tactical forecast volume data were assigned to each site using a 
shapefile containing polygon features of the forest sites that were then intersected 
with the polygon export from the Remsoft software that was tasked with producing 
the forecast models. This was necessary because forecasts and harvest sites are two 
different spatial units. This thesis is using the spatial perspective of harvested forest 
sites, therefore comparatively, several forecast blocks from Remsoft were 
amalgamated into each harvest site as a general rule. 

Actual volume from harvest operations 
To calculate the actual harvest volume, two elements were required, both exported 
from FMS. The first element, the digital weight-docket (WD) data, which were 
derived from datasets formed from the weight-dockets which are digital records of 
lorry loads from each forest. The dockets get their values after the lorries pass over 
a weigh-bridge and the measured weight is then converted to volume with a 
volume/weight factor that is calibrated by actual random sampling of lorry loads 
daily. The second item was the roadside stock (RSS) which is the remaining timber 
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volume stacked roadside at each of the forest sites, for which the recorded volumes 
are stored in databases on the forest management system. Similar to previous 
variables the results were aggregated using Visual Basic script in excel to make a 
unique list of forest sites with the summarized volumes of WD’s and RSS 
comprising the actual volumetric retrieval of timber after harvesting. 

3.3.2. The response variables made from the source data 

Linear regression response variables 
For this type of regression, in order to use the data in any comparable capacity, the 
values needed to represent a linear form. Considering that all sites had various sizes, 
a simple subtraction of forecasted volumes from actuals would be inadequate. 
Therefore, the subtracted value was divided by the actual volume to become a 
representative percentage of difference (PoD) from the total of 100% volume of 
each site. 

𝑃𝑜𝐷 =
𝐹𝑜𝑟𝑐𝑎𝑠𝑡	𝑣𝑜𝑙𝑢𝑚𝑒 − 𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑	𝑣𝑜𝑙𝑢𝑚𝑒

𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑	𝑣𝑜𝑙𝑢𝑚𝑒  

 
If the actual volume was higher than the forecasted volume then it was under-
estimation and was given a negative value, conversely if it was the opposite, it was 
over-estimation and was left as a positive value. The PoD was calculated for each 
site for both the strategic and tactical forecast against the actual harvested volumes. 
 
Logistic regression response variables 
For this type of regression, the response variable must have a dichotomous form. 
The response variables for the logistic regression applied in this thesis work were 
overestimation and underestimation of harvest volume, which were defined as 
binary variables with a value 1 for overestimation and 0 for underestimation. 

Using the dichotomous principal, 8 variations of the response variable were 
created (Table 3). These where 4 variations for each forecast type (strategic & 
tactical) that were separated according to the species and product. The product in 
question was large sawlog as it is the most valuable log cut and of particular 
importance in Irish forecasts. Therefore the 4 response variables for each forecast 
type, included the overestimation or underestimation per forest site for: 

• the full set for all products and species, 
• a set for large sawlog across all species 
• a set for all products with only volumes of the primary species of Sitka 

Spruce (SS)  
• a set for large sawlog with only volumes of the primary species of Sitka 

Spruce (SS) 
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Table 3: The response variables used in the logistic regression analysis

Codes                             Description 
STR.Lsawlog.SS Strategic estimation of sawlog volume of Sitka spruce 
STR.SS Strategic estimation of all products of Sitka spruce 
STR.Lsawlog.Total Strategic estimation of sawlog volume of all species 
STR.Total Strategic estimation of all species and products 
TAC.Lsawlog.SS Tactical estimation of sawlog volume of Sitka spruce 
TAC.SS Tactical estimation of all products of Sitka spruce 
TAC.Lsawlog.Total Tactical estimation of sawlog volume of all species 
TAC.Total Tactical estimation of all species and products 

3.4. Data analysis 

3.4.1. Linear regression 
Linear regressions were utilised to examine the variability of the response 

variables explained by the predictor variables. The predictor variables that had 
originally a continuous form were used as such and dummy variables were created 
for the strictly categorical. The regressions were carried out using the RegressIT 
addon in excel, developed by Robert Nau, Professor Emeritus in the Fuqua School 
of Business at Duke University. To understand the interactions of each predictor 
variable with the response variable and given the manageable number of predictor 
variables, one-on-one regressions were selected to identify the statistical 
relationships and challenges. Multivariate linear regressions were then used to 
evaluate if a suitable model from a combination of variables could be produced. 
 

 

3.4.2. Binomial Logistic Regression 
Using binomial logistic regressions, eight stepwise binary logistic regression 
models were developed through the backward elimination procedure to assess the 
significance of landscape features in explaining the bias of volume estimation. 

The logistic regression model is an appropriate statistical tool to determine the 
influence of predictor variables on response variables, when the latter have 
dichotomous outcomes and the former are continuous, categorical or dummy 
variables. Essentially, the logistic model predicts the logit of the response variable 
(Y) from the predictor variables (X). The logit is the natural logarithm (ln) of odds 
of Y, and odds are ratios of probabilities (π) of Y happening to probabilities (1−π) 
of Y not happening. The logistic model is specified as:  
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𝑙𝑛 5
𝜋

1 − 𝜋8 = 𝛽! + 𝛽"𝑥"# + 𝛽$𝑥$# +⋯+ 𝛽%𝑥%# 

 
where β0 is the intercept and β1, β2 … βk are the coefficients of the predictor 
variables x1, x2 … xk. Using this dichotomous principle, the datasets were regressed 
using the SPSS Statistical Package (SPSS 19.0, Chicago, IL, USA). 

The tools used to access the model were the following: 

• The omnibus test: a likelihood-ratio chi-squared test of the current model 
against the null model. 

• The Pseudo R Squared Tests, though not directly indicative of the variance 
explained like in a linear regression that utilizes ordinary least squares 
(Montgomery et al. 2021), can be used as a measure of comparison between the 
models (Portl 2021). Nagelkerke’s Pseudo R2 was used, as a modification on 
Cox & Snell’s pseudo R2 to permit values up to 1. 

• The Hosmer and Lemeshaw test was used to assess the goodness-of-fit of the 
models where a significant p-value would indicate a poor fit. 

• The classification table results examine the practical results of using each 
model. 

Furthermore, after quantifying the usability of the results and their relative 
importance using the above tools, the regression results were examined for the 
individual variable characteristics and the interactions between variables from the 
full model, through the stages of removal, and in the final model. 
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4.1. A macroscopic view 
A macroscopic glance reveals that the Strategic and Tactical models tend to 
overestimate in roughly 65% of the cases with the contrast being that the average 
Percentage of Difference is moderately lower by approximately 5% between the 
forecasts (Tables 4 & 5). The Tactical forecast is derived from additional variables 
that are measured with sample plots (E.g., DBH, stand density, Top Height, etc…) 
and therefore more accuracy would typically be expected than from the Strategic 
forecast which is based largely on yield class projections and initial spacing. 

Table 4:Strategic forecast Over/Under-estimation ratio 

Strategic Forecast No. of HU Average PoD % of Total 
Under-estimation 155 -20% 33% 
Over-estimation 307 34% 65% 

 

Table 5:Tactical forecast Over/Under-estimation ratio 

Tactical Forecast No. of HU Average PoD % of Total 
Under-estimation 154 -22% 32% 
Over-estimation 305 29% 64% 

 
Forest stand normalcy 
Using data on the average tree volume, insight on the normalcy of the stands can 
be observed (Figure 8). According to the rotation period for Sitka Spruce used by 
the Company and accounting for the occasions of early and late harvests, the 
expected values for most stands should fall approximately between 0.25 and 0.70 
m3. This approximation is based on average stands YC12+ with a rotation cycle of 
30+ years (Matthews et al. 2016). Above or below this point, the stand can be 
assumed to have some atypical size characteristic to various extents. Examples of 
such characteristics could be, an extended rotation due to poorer growth than 
expected, challenges with access resulting in delaying harvesting until more 
favourable access can be secured, storm damage, windblow, poor drainage or 

4. Results 
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damages from pests and decease. As Figures 1 and 2 demonstrate, the majority of 
the stands (approx. 71%) do appear to be within expected ranges for an average 
stand. It is also demonstrated that a relatively moderate number of stands are outside 
the expected ranges (approx. 29%) of which there is a similar percentage of stands 
falling below (43%) and above (57%) the expected upper and lower range 
thresholds.  

The above indicates, that given a harvest year, nature is often unpredictable and 
a number of forests will be subject to atypical patterns.  

Figure 8: Histogram of average tree 

4.2. Linear Regression 
The one-on-one linear regressions that were produced for each of the predictor 
variables revealed a poor fit with issues surrounding the residuals which were not 
normally distributed and the A-D normality tests were skewed (see figure 9, left). 
After a natural log transformation of the response variable, the skewedness 
improved (see figure 9, right). However, the significance of the variables and any 
attempt at a multivariate linear regression model were unsuccessful with adjusted 
R2 values being slightly improved but still insignificant (Table 6). It became 
apparent that the method of linear regression was likely not the appropriate tool for 
the data at hand and could not explain sufficient variation in the response variables 
or the relationships between the predictor variables. 

 
 
 
 

HU No. 

m3 



33 
 

Figure 9: AD tests for Aspect before and after transformation of response variable to natural log 
(LN) 

 
 

Table 6: Example of regression summary for linear regression 

 

 

4.3. Logistic Regression 

4.3.1. Evaluation tools for regressions 

4.3.1.1. The omnibus test 
The backwards stepwise regression indicated all models showed a significant 
improvement over the base model with p<0.05 (see Table 7). 

Table 7:Omnibus compilation of results – Backwards stepwise method 

LOG. REGRESSION – RESPONSE VARIABLE 
OMNIBUS 

TEST RESULTS 
Strategic estimation of sawlog volume of Sitka spruce 0.015 
Strategic estimation of all products of Sitka spruce 0.000 
Strategic estimation of sawlog volume of all species 0.022 
Strategic estimation of all species and products 0.032 
Tactical estimation of sawlog volume of Sitka spruce 0.000 
Tactical estimation of all products of Sitka spruce 0.001 
Tactical estimation of sawlog volume of all species 0.001 
Tactical estimation of all species and products 0.004 

4.3.1.2. The Pseudo R2 
Nagelkerke’s Pseudo R2 was used to compare the models between response 
variables by descending value (Table 8). The Tactical forecast of large sawlog for 
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Sitka Spruce was revealed to be the best performing. The Strategic forecast for Sitka 
Spruce was comparatively the second best and the Tactical forecast for all species 
for large sawlog was found to be the third. The rest follow in a declining order 
(Pseudo R2 < 0.1). The worst performing models were generally those using the 
Strategic forecast. 

Table 8: Pseudo R2 tests – Backwards stepwise method 

LOG. REGRESSION – RESPONSE VARIABLE 
COX & 
SNELL 

NAGELKERKE 

Tactical estimation of sawlog volume of Sitka spruce 0.080 0.113 
Strategic estimation of all products of Sitka spruce 0.077 0.106 
Tactical estimation of sawlog volume of all species 0.070 0.101 
Tactical estimation of all species and products 0.059 0.081 
Tactical estimation of all products of Sitka spruce 0.059 0.080 
Strategic estimation of sawlog volume of all species 0.043 0.065 
Strategic estimation of sawlog volume of Sitka spruce 0.036 0.053 
Strategic estimation of all species and products 0.029 0.041 

4.3.1.3. The Hosmer & Lemeshow Test 
In all cases the observed event group matched the expected event group (Table 9). 

Table 9: Hosmer & Lemeshow Test – Backwards stepwise method 

LOG. REGRESSION – RESPONSE VARIABLE HOSMER & 
LEMESHOW TEST 

Strategic estimation of sawlog volume of Sitka spruce 0.329 
Strategic estimation of all products of Sitka spruce 0.980 
Strategic estimation of sawlog volume of all species 0.084 
Strategic estimation of all species and products 1.000 
Tactical estimation of sawlog volume of Sitka spruce 0.849 
Tactical estimation of all products of Sitka spruce 0.686 
Tactical estimation of sawlog volume of all species 0.641 
Tactical estimation of all species and products 0.582 

4.3.1.4. Classification Tables 
The classification table results were compiled to examine the practical results of 
using each model (Table 10). The outcome varied from 60.2% to 76.6% in overall 
percentage of prediction. The percentage of accurately predicting over-estimation 
was at first glance high, ranging from 79.1% to 100%. However, the success in 
predicting under-estimation was quite poor ranging from 0% to 35.7%. Taking a 
closer look, the four models that appeared to predict over-estimation in 100% of 
cases (all Strategic estimations except the one for all products for Sitka Spruce 
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volumes and the Tactical estimation of sawlog volume of all species) were also the 
ones that failed to predict under-estimation in any capacity resulting in significant 
Type 1 errors with false positive predictions. To various extents, Type 1 errors were 
apparent in all models whereas Type 2 errors of false negative predictions were 
smaller in value and only in half the models with the most observed in the Tactical 
estimation of all products of Sitka spruce model. The models that revealed from 
their classification tables to be an improvement on their respective base models 
were the following: 

• Strategic estimation of all products of Sitka spruce 
• Tactical estimation of sawlog volume of Sitka spruce 
• Tactical estimation of all products of Sitka spruce 
• Tactical estimation of all species and products 

Models whose response variable was based on data from the tactical forecast 
data were overall better in their predictive capacity. Amongst the Tactical forecast-
based models and considering the Type 1 errors, some of the better models were 
the Strategic estimation of all species and products and Tactical estimation of all 
products of Sitka spruce in overall predictive success being better at predicting 
under-estimation. The Tactical estimation of sawlog volume of Sitka spruce had a 
high overall score due to a high predictive capacity with over-estimation, but when 
considering the much lower predictive capacity for under-estimation it was seen as 
a less optimal model than its counterparts. The only suitable model using data from 
the Strategic forecast was Strategic estimation of all products of Sitka spruce with 
all others failing to predict any under-estimation.  

Table 10: Classification table - Backwards stepwise method 

LOG. REGRESSION – RESPONSE VARIABLE 
% 

UNDER 
% 

OVER 
% 

OVERALL 
Strategic estimation of sawlog volume of Sitka spruce 0 100 74.3 
Strategic estimation of all products of Sitka spruce 25 88.4 65.5 
Strategic estimation of sawlog volume of all species 0 100 76.6 
Strategic estimation of all species and products 0 100 72.6 
Tactical estimation of sawlog volume of Sitka spruce 10.6 96.7 71.2 
Tactical estimation of all products of Sitka spruce 35.7 79.1 60.2 
Tactical estimation of sawlog volume of all species 0 100 73 
Tactical estimation of all species and products 19.8 92.2 66.7 
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4.3.2. Detailed description of regressions 

4.3.2.1. Strategic estimation of sawlog volume of Sitka spruce 
This model was ranked 7th out of the 8 that were run according to the comparison 

using the Negelkerke pseudo R2 (Table 8). The backwards stepwise regression, that 
completed over 7 steps, resulted in a model using the predictor variables of 
roughness and soil type. 

In the full model, with all the variables included, it could be seen that elevation, 
latitude and soil type were significant predictors (Table 11). Specifically, looking 
at their estimates and starting with elevation, categories 2 through 6 corresponding 
with 61-360 m were related significantly with the response variable. The negative 
coefficient for Elevation-Cat(2) (B=-2.09) reveals that sites at elevations 61-120 m 
were less likely to over-estimate compared to sites at 361-505 m. Similarly, the rest 
of the categories followed the same patterns having smaller negative coefficients 
showing that they were less likely to over-estimate compared to sites at 361-505 m 
though this was less the case than elevation at 61-120 m. Latitude categories of 1 
and 4, corresponding with approximately 53 to 61 degrees and 69 to 77, were 
related significantly with the response variable. The coefficients for Latitudes 1 and 
4 were similar (B1=1.053 & B4=0.965) and indicated that sites at latitudes of 53 to 
61 degrees were more likely to over-estimate compared to sites at 77 to 93 degrees. 
Sites at 69 to 77 degrees were also more likely to over-estimate compared to sites 
at 77 to 93 degrees but this was less than the case that Latitudes at 53 to 61 degrees. 
Soil category 1, corresponding with deep acidic mineral non calcareous soils, was 
related significantly with the response variable. The coefficient for Soil(1) (B=-
1.223) indicated that deep acidic mineral non calcareous soils were less likely to 
over-estimate than alkaline calcareous mineral and Cut Soils. 

The first variable to be removed from the model was slope (p = 0.948), which 
affected elevation positively; slightly increasing its significance. The removal of 
segment of the country mildly adversely affected latitude but revealed an overall 
significance in roughness. Elevation continued to improve within its categories, but 
lost marginal overall significance with every removed variable. The removal of 
aspect furthered the adverse effects on latitude and elevation. The removal of 
distance to the coast had a substantial negative affect on elevation and latitude. The 
decline in the significance in elevation lead to its removal in step 5 which had a 
negative overall effect on Latitude leading to its removal in step 6. 

The final model included soil type with overall significance, which remained 
largely unaffected throughout most steps. Nevertheless, the significance within its 
categories was affected, as was Roughness which became overall significant with 
the removal of segment in the country (Table 12). 
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Table 11: Backwards Stepwise Regression  – Full model – Response variable: Strategic estimation 
of sawlog volume of Sitka spruce 

       95% C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat   9.451 6 .150    

Elevation-Cat(1) -1.612 .852 3.583 1 .058 .199 .038 1.059 

Elevation-Cat(2) -2.091 .731 8.171 1 .004 .124 .029 .518 

Elevation-Cat(3) -1.499 .699 4.606 1 .032 .223 .057 .878 

Elevation-Cat(4) -1.548 .697 4.929 1 .026 .213 .054 .834 

Elevation-Cat(5) -1.373 .705 3.792 1 .051 .253 .064 1.009 

Elevation-Cat(6) -1.634 .704 5.379 1 .020 .195 .049 .776 

Latitude-EqDis(1) 1.053 .480 4.805 1 .028 2.867 1.118 7.350 

Latitude-EqDis(2) .617 .475 1.685 1 .194 1.853 .730 4.704 

Latitude-EqDis(3) .148 .469 .100 1 .752 1.160 .463 2.908 

Latitude-EqDis(4) .956 .453 4.440 1 .035 2.600 1.069 6.324 

Soil(1) -1.223 .509 5.782 1 .016 .294 .109 .798 

Soil(2) -.773 .544 2.019 1 .155 .462 .159 1.341 

Soil(3) -.524 .552 .900 1 .343 .592 .201 1.747 

Table 12: Backwards Stepwise Regression  – Final model – Response variable: Strategic estimation 
of sawlog volume of Sitka spruce 

       95% C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Roughness(1) .468 .413 1.282 1 .258 1.596 .710 3.586 

Roughness(2) .109 .426 .065 1 .799 1.115 .484 2.569 

Roughness(3) -.365 .370 .976 1 .323 .694 .336 1.433 

Soil   9.815 3 .020    

Soil(1) -.770 .412 3.482 1 .062 .463 .206 1.040 

Soil(2) -.283 .429 .436 1 .509 .753 .325 1.747 

Soil(3) .048 .444 .012 1 .914 1.049 .440 2.503 

4.3.2.2. Strategic estimation of all products of Sitka spruce 
This model was ranked second best according to the Negelkerke pseudo R2 (Table 
8). In the full model, only elevation appeared to have an overall significance (Table 
13). Categories 2 through 6 corresponding to 61-360 m was related significantly 
with the response variable. The negative coefficient for Elevation-Cat(2) (B=-
2.396) revealed that sites at elevations 61-120 m were less likely to over-estimate 
compared to sites at 361-505 m. Consequently, the rest of the categories in the 
variable followed the same patterns having smaller negative coefficients. This 
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showed that they were less likely to over-estimate compared to sites at 361-505 m 
though this was less the case than elevations at 61-120 m. 

The removal of variables in the ensuing steps showed that the removal of the 
variable distance to the coast corresponded with an increase in the significance of 
soil type overall. The significance of soil category 3 (blanket peat) was lost (p > 
0.05) when segment within the country was removed. Roughness had a sizeable 
positive effect from the removal of latitude but not enough to become significant, 
the other variables had a small effect on it. Elevation was a strong significant 
variable throughout the regression with marginal effects from the other variables. 

In the final step, the variable of elevation had similar descriptions as the full 
model with mildly increased coefficients (B). The variable of soil type remained 
with overall significance and the variable of roughness with no improvement to the 
model estimated with any further removals (Table 14).  

Table 13: Backwards Stepwise Regression – Full model – Response variable: Strategic estimation 
of all products of Sitka spruce 

       95% C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat   20.321 6 .002    

Elevation-Cat(1) -1.077 .779 1.913 1 .167 .341 .074 1.567 

Elevation-Cat(2) -2.396 .659 13.234 1 .000 .091 .025 .331 

Elevation-Cat(3) -1.812 .626 8.385 1 .004 .163 .048 .557 

Elevation-Cat(4) -1.492 .631 5.587 1 .018 .225 .065 .775 

Elevation-Cat(5) -1.968 .627 9.860 1 .002 .140 .041 .477 

Elevation-Cat(6) -1.628 .635 6.577 1 .010 .196 .057 .681 

Table 14: Backwards Stepwise Regression – Final model – Response variable: Strategic estimation 
of all products of Sitka spruce 

       95% C.I.for EXP(B) 

 B S.E Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat   18.896 6 .004    

Elevation-Cat(1) -.985 .695 2.005 1 .157 .374 .096 1.460 

Elevation-Cat(2) -2.156 .605 12.700 1 .000 .116 .035 .379 

Elevation-Cat(3) -1.704 .589 8.370 1 .004 .182 .057 .577 

Elevation-Cat(4) -1.350 .597 5.118 1 .024 .259 .081 .835 

Elevation-Cat(5) -1.878 .600 9.806 1 .002 .153 .047 .495 

Elevation-Cat(6) -1.628 .616 6.978 1 .008 .196 .059 .657 

Roughness   6.808 3 .078    

Roughness(1) .700 .380 3.397 1 .065 2.013 .957 4.236 

Roughness(2) .377 .395 .909 1 .340 1.458 .672 3.164 

Roughness(3) .071 .350 .042 1 .838 1.074 .541 2.134 
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Soil   9.753 3 .021    

Soil(1) -.138 .378 .134 1 .714 .871 .416 1.825 

Soil(2) -.251 .392 .411 1 .522 .778 .361 1.678 

Soil(3) .570 .405 1.981 1 .159 1.769 .799 3.913 

 

4.3.2.3. Strategic estimation of sawlog volume of all species 
This model was ranked 5th out of the 8 that were run compared by the Negelkerke 
pseudo R2 (Table 8). In the full model as well as the final model, elevation and soil 
type were significant (Table 15). Elevation categories 2, 3 and 6 corresponding to 
61-180 m and 301-360 m were related significantly with the response variable. The 
negative coefficient for Elevation-Cat(2) (B=-1.836) reveals that sites at elevations 
61-120 m were less likely to over-estimate compared to sites at 361-505 m. 
Consequently, categories 3 and 6 followed the same patterns having smaller 
negative coefficients showing that 120-180 m and 301-360 m elevations were less 
likely to over-estimate compared to sites at 361-505 m though this was less the case 
than elevations at 61-120 m and Elevation-Cat(3) less the case from Elevation-
Cat(6). Soil type showed an overall significance as a variable (p=0.017). Sites with 
Soil(1) and Soil(2), corresponding to Acidic, well to poorly drained, Shallow or 
Deep, non-calcareous, with or without peaty top soil sites were less likely to over-
estimate then alkaline calcareous mineral soils and cut. For Soil(2) it was less the 
case than Soil(1) (Bs1=-1.7 and Bs2=-1.4). 

The removal of variables in the ensuing steps showed that with the  removal of 
aspect, elevation lost significance in its 3rd category (p > 0.05) but this effect was 
reversed by the removal of slope. The removal of distance to the coast also reduced 
the significance of elevation categories 3 & 4, but this was partially reversed by the 
removal of latitude. Soil type was beneficially affected by segment within the 
country bringing overall significance to the variable. The removal of aspect reduced 
the significance of soil type’s 3rd category  (p > 0.05), this trend continued until the 
last step until the removal of latitude which increased significance but not to p < 
0.05. 

The final step after the removal of latitude, which had a minimal effect on the 
model, the regression was concluded with the variables of elevation and soil type 
with similar significance as with the full model (Table 16). 
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Table 15: Backwards Stepwise Regression – Full model – Response variable: Strategic estimation 
of sawlog volume of all species 

       95% C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat   10.450 6 .107    

Elevation-Cat(1) -.830 .891 .868 1 .351 .436 .076 2.498 

Elevation-Cat(2) -1.836 .729 6.348 1 .012 .159 .038 .665 

Elevation-Cat(3) -1.359 .694 3.828 1 .050 .257 .066 1.002 

Elevation-Cat(4) -1.296 .695 3.478 1 .062 .274 .070 1.068 

Elevation-Cat(5) -.938 .706 1.763 1 .184 .392 .098 1.563 

Elevation-Cat(6) -1.507 .701 4.623 1 .032 .222 .056 .875 

Soil   10.211 3 .017    

Soil(1) -1.725 .594 8.444 1 .004 .178 .056 .570 

Soil(2) -1.434 .628 5.208 1 .022 .238 .070 .817 

Soil(3) -1.166 .633 3.397 1 .065 .312 .090 1.077 

Table 16: Backwards Stepwise Regression – Final model – Response variable: Strategic estimation 
of sawlog volume of all species 

       95% C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat(1) -.851 .786 1.174 1 .279 .427 .091 1.991 

Elevation-Cat(2) -1.675 .665 6.338 1 .012 .187 .051 .690 

Elevation-Cat(3) -1.287 .654 3.872 1 .049 .276 .077 .995 

Elevation-Cat(4) -1.279 .656 3.807 1 .051 .278 .077 1.006 

Elevation-Cat(5) -.944 .675 1.959 1 .162 .389 .104 1.459 

Elevation-Cat(6) -1.527 .680 5.040 1 .025 .217 .057 .824 

Soil   9.375 3 .025    

Soil(1) -1.526 .535 8.133 1 .004 .217 .076 .620 

Soil(2) -1.253 .547 5.239 1 .022 .286 .098 .835 

Soil(3) -1.049 .552 3.614 1 .057 .350 .119 1.033 

 

4.3.2.4. Strategic estimation of all species and products 
According to Nagelkerke’s pseudo R2, this was the worst performing model (Table 
8). The full model, as with all previous, produced some significance with the 
variable of elevation (Table 17). Elevation categories (5) and (6) corresponding to 
241-360 m were related significantly with the response variable. The negative 
coefficient for elevation categories (5) and (6) (B=-1.274/-1.562) revealed that sites 
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at elevations 241-360 m were less likely to over-estimate compared to sites at 361-
505 m. 

Elevation was negatively affected by the removal of latitude losing significance. 
The removal of segment within the country returned significance, which remained 
to the final step. 

The final step of the model included only the variable Elevation, which was 
significant for category 5 and 6, similar to the full model (Table 18). 

Table 17: Backwards Stepwise Regression – Full model – Response variable: Strategic estimation 
for all products and species 

       95% C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat(1) .083 .832 .010 1 .920 1.087 .213 5.551 

Elevation-Cat(2) -.976 .635 2.360 1 .124 .377 .108 1.309 

Elevation-Cat(3) -1.048 .592 3.129 1 .077 .351 .110 1.120 

Elevation-Cat(4) -1.099 .594 3.422 1 .064 .333 .104 1.068 

Elevation-Cat(5) -1.274 .594 4.603 1 .032 .280 .087 .896 

Elevation-Cat(6) -1.562 .597 6.847 1 .009 .210 .065 .676 

Table 18: Backwards Stepwise Regression – Final model – Response variable: Strategic estimation 
for all products and species 

       95%C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat   12.201 6 .058    

Elevation-Cat(1) .156 .719 .047 1 .828 1.169 .286 4.784 

Elevation-Cat(2) -.711 .541 1.727 1 .189 .491 .170 1.418 

Elevation-Cat(3) -.853 .531 2.583 1 .108 .426 .151 1.206 

Elevation-Cat(4) -.962 .534 3.245 1 .072 .382 .134 1.088 

Elevation-Cat(5) -1.071 .542 3.906 1 .048 .343 .119 .991 

Elevation-Cat(6) -1.453 .563 6.665 1 .010 .234 .078 .705 

4.3.2.5. Tactical estimation of sawlog volume of Sitka spruce 
According to Nagelkerke’s pseudo R2 this was the better performing model (Table 
8). The full model and the final model found elevation, latitude and roughness to 
be related significantly with the response variable (Tables 19 and 20). The 
Coefficients for elevation were negative with the values following a descending 
order with the close exception of Elevation-Cat(3) and (4). Elevation-Cat(1) (B=-
3.004) revealed that sites at elevations 10-61m were less likely to over-estimate 
compared to sites at 361-505 m. Every category thereafter, with the exception of 
the aforementioned (3) and (4) which were reverse, followed the same patterns 
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having descending lower negative coefficients. This indicates that as elevation 
decreases there is less likelihood for over-estimation compared to sites at 361-505 
m and with every category being less the case from the one above it. In other words, 
as elevation decreases so does the intensity of over-estimation.  

The variable latitude had overall significance with Latitudes (1) and (2) having 
similar coefficients (B1=1.176; B2=1.158) indicating that sites at latitudes of 54 to 
61 degrees were more likely to over-estimate compared to sites at 77 to 93 degrees. 
Sites at 61 to 65 degrees were also more likely to over-estimate compared to sites 
at 77 to 93 degrees but this is less the case than latitudes at 54 to 61 degrees. The 
variable roughness showed overall significance but without significance between 
its categories and the reference category.  

The removal of variables in the ensuing steps showed that in step 3 roughness 
was negatively affected by the removal of the distance to the coast variable but 
remained significant overall. Roughness regained a positive effect in the next step 
with the removal of slope.  

The model concluded after six steps with the significant variables of elevation, 
latitude and roughness with no improvement to the model estimated by any further 
variables removed (Table 20). The significance and coefficients were similar to the 
full model, who’s key variables were not strongly impacted by the regression steps. 

Table 19: Backwards Stepwise Regression – Full model – Response variable: Tactical estimation 
of sawlog volume of Sitka spruce 

       95% C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat   11.126 6 .085    

Elevation-Cat(1) -3.004 .925 10.556 1 .001 .050 .008 .304 

Elevation-Cat(2) -2.537 .846 8.994 1 .003 .079 .015 .415 

Elevation-Cat(3) -2.511 .815 9.487 1 .002 .081 .016 .401 

Elevation-Cat(4) -2.526 .818 9.531 1 .002 .080 .016 .398 

Elevation-Cat(5) -2.416 .816 8.756 1 .003 .089 .018 .442 

Elevation-Cat(6) -2.396 .819 8.565 1 .003 .091 .018 .453 

Latitude-EqDis   17.229 4 .002    

Latitude-EqDis(1) 1.176 .456 6.663 1 .010 3.242 1.327 7.918 

Latitude-EqDis(2) 1.158 .460 6.326 1 .012 3.182 1.291 7.844 

Latitude-EqDis(3) .025 .440 .003 1 .955 1.025 .433 2.427 

Latitude-EqDis(4) .757 .411 3.392 1 .065 2.133 .953 4.774 

Roughness   8.768 3 .033    

Roughness(1) .187 .437 .183 1 .668 1.206 .512 2.839 

Roughness(2) .605 .471 1.651 1 .199 1.831 .728 4.606 

Roughness(3) -.321 .396 .656 1 .418 .726 .334 1.577 
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Table 20: Backwards Stepwise Regression – Final model – Response variable: Tactical estimation 
of sawlog volume of Sitka spruce 

       95% C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat   10.649 6 .100    

Elevation-Cat(1) -2.639 .846 9.740 1 .002 .071 .014 .375 

Elevation-Cat(2) -2.115 .790 7.162 1 .007 .121 .026 .568 

Elevation-Cat(3) -2.177 .779 7.816 1 .005 .113 .025 .522 

Elevation-Cat(4) -2.270 .781 8.440 1 .004 .103 .022 .478 

Elevation-Cat(5) -2.246 .790 8.092 1 .004 .106 .023 .497 

Elevation-Cat(6) -2.382 .801 8.850 1 .003 .092 .019 .444 

Latitude-EqDis   13.899 4 .008    

Latitude-EqDis(1) .753 .333 5.100 1 .024 2.122 1.105 4.078 

Latitude-EqDis(2) .782 .348 5.041 1 .025 2.186 1.104 4.326 

Latitude-EqDis(3) -.158 .327 .233 1 .629 .854 .450 1.622 

Latitude-EqDis(4) .577 .335 2.964 1 .085 1.781 .923 3.434 

Roughness   7.959 3 .047    

Roughness(1) .172 .414 .173 1 .677 1.188 .528 2.673 

Roughness(2) .551 .439 1.575 1 .209 1.735 .734 4.101 

Roughness(3) -.261 .375 .483 1 .487 .770 .369 1.607 

 

4.3.2.6. Tactical estimation of all products of Sitka spruce 
This model was of average performance, ranking 5th of the 8 in total according to 
Negelkerke’s pseudo R2 (Table 8). The full model, with all the variables entered, 
found elevation to be related significantly with the response variable (Table 21). 
Elevation was found to have overall significance and according to the negative 
coefficients, category 2 corresponding to 61-120 m had the highest negative 
coefficient for Elevation (B=-2.085) which revealed that those sites at elevation 61-
120m were less likely to over-estimate compared to sites at 361-505 m. 
Consequently, categories 1 and 3 to 6 followed a similar pattern but with smaller 
negative coefficients showing that 10-61 m and 120-360 m elevations were less 
likely to over-estimate compared to sites at 361-505 m though this was less the case 
than elevations at 61-120 m and between the categories according to the descending 
order of their respective coefficients.  

The removal of variables in the ensuing steps showed that elevation continued 
to be significant and largely unaffected through to the final step. Roughness in the 
full model was not significant, but was close to significance (p=0.057) as well as 
the first two of its categories. The removal of the variables of aspect, distance to the 
coast and soil type appeared to have had a negligible effect on roughness. However, 
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the removal of latitude in step 4 achieved a positive effect making the variable 
significantly related with the variable. This significance continued to improve with 
the removal of segment of the country leading to an overall significance in the 
variable.  

The final model included elevation and roughness (Table 22). Elevation was 
very similar in significance and coefficients to the full model. Roughness gained 
significance with Categories 1 and 2, corresponding to unknown and even soils, 
more likely to over-estimate compared to sites that were rough, with similar 
coefficients (B1=0.828; B2=0.841).  

Table 21: Backwards Stepwise Regression – Full model – Response variable: Tactical estimation 
of all products of Sitka spruce 

       95% C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat   14.209 6 .027    

Elevation-Cat(1) -1.704 .687 6.163 1 .013 .182 .047 .699 

Elevation-Cat(2) -2.085 .589 12.546 1 .000 .124 .039 .394 

Elevation-Cat(3) -1.588 .551 8.306 1 .004 .204 .069 .602 

Elevation-Cat(4) -1.573 .555 8.015 1 .005 .207 .070 .616 

Elevation-Cat(5) -1.861 .554 11.294 1 .001 .156 .053 .460 

Elevation-Cat(6) -1.546 .563 7.539 1 .006 .213 .071 .642 

 

Table 22: Backwards Stepwise Regression – Final model – Response variable: Tactical estimation 
of all products of Sitka spruce 

       95% C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat   15.425 6 .017    

Elevation-Cat(1) -1.628 .583 7.799 1 .005 .196 .063 .616 

Elevation-Cat(2) -1.919 .513 14.020 1 .000 .147 .054 .401 

Elevation-Cat(3) -1.385 .501 7.631 1 .006 .250 .094 .669 

Elevation-Cat(4) -1.314 .508 6.685 1 .010 .269 .099 .728 

Elevation-Cat(5) -1.619 .518 9.781 1 .002 .198 .072 .546 

Elevation-Cat(6) -1.422 .539 6.968 1 .008 .241 .084 .693 

Roughness   12.076 3 .007    

Roughness(1) .828 .364 5.183 1 .023 2.289 1.122 4.669 

Roughness(2) .841 .384 4.793 1 .029 2.318 1.092 4.922 

Roughness(3) .203 .339 .360 1 .549 1.225 .631 2.381 
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4.3.2.7. Tactical estimation of sawlog volume of all species  
This model had a good performance, ranking 3rd of the 8 in total according to 
Negelkerke’s pseudo R2 (Table 8), but when taking into consideration the 
classification table results (Table 10), there are substantial type 1 errors.  

In the full model (Table 23) the variables elevation, latitude and soil type were 
found to be related significantly with the response variable. The performance of 
these variables was enhanced moderately through the backwards stepwise process 
and due to the similarities, the variables will be described in detail in the final model 
section further down. 

The initial removal of the variables aspect and slope showed no significant effect 
on the model. The removal of the segment in the country in step 4 increased the 
significance of latitude and brought an overall significance into roughness. The 
removal of the Distance to the coast variable in step 5 decreased the significance of 
the model by affecting roughness and soil type negatively. The removal of soil type 
and the next least significant variable further depreciated the model into its final 
form with the variables of elevation, latitude and roughness with the latter no longer 
significant.  

The model could be seen to perform best at step 4 (Table 24) with elevation, 
latitude, roughness and soil type controlling for distance from the coast. So this was 
selected as the final model. In the final model, Elevation was observed to be related 
significantly with the response variable. The coefficients for this variable were very 
similar with a slight discernible increase from categories 1 to 4 and then a decrease 
in 5 and then an increase in 6, similar but lower than categories 3 and 4. This 
indicates that sites in elevations between 10-240 m were progressively less likely 
to over-estimate in comparison to sites with an elevation of 361-505 m. The above 
over-estimation is less the case for sits at 241-360 m, 241-300 m and 301 to 360 m. 
Latitude was found to have overall significance, with sites within categories 1 and 
2 corresponding to 53-65 degrees being more likely to over-estimate than sites in 
latitudes of 77-93 degrees. For sites in category 1 with a coefficient of B=0.862 
(approx. 53-61 degrees) was less the case than sites in category 2 (approx. 61-65 
degrees) with coefficient B=1.371. Roughness was found to have only overall 
significance with its reference category and soil type had one category significant 
towards the reference category. Soil 1, corresponding with to Deep Acidic Mineral 
Non-Calcareous sites were less likely to over-estimate then alkaline calcareous 
mineral soils and cut. 
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Table 23: Backwards Stepwise Regression – Full model – Response variable: Tactical estimation 
of sawlog volume of all species 

       95% C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat   8.841 6 .183    

Elevation-Cat(1) -1.997 .944 4.475 1 .034 .136 .021 .864 

Elevation-Cat(2) -2.214 .843 6.899 1 .009 .109 .021 .570 

Elevation-Cat(3) -2.292 .810 8.011 1 .005 .101 .021 .494 

Elevation-Cat(4) -2.308 .811 8.095 1 .004 .099 .020 .488 

Elevation-Cat(5) -2.169 .810 7.181 1 .007 .114 .023 .558 

Elevation-Cat(6) -2.194 .813 7.273 1 .007 .112 .023 .549 

Latitude-EqDis   13.975 4 .007    

Latitude-EqDis(1) .813 .458 3.154 1 .076 2.255 .919 5.532 

Latitude-EqDis(2) 1.356 .487 7.754 1 .005 3.881 1.494 10.078 

Latitude-EqDis(3) .055 .450 .015 1 .903 1.056 .438 2.550 

Latitude-EqDis(4) .572 .420 1.859 1 .173 1.773 .778 4.036 

Soil   6.145 3 .105    

Soil(1) -1.027 .518 3.937 1 .047 .358 .130 .987 

Soil(2) -.575 .558 1.065 1 .302 .562 .189 1.677 

Soil(3) -.539 .551 .955 1 .329 .583 .198 1.719 

Table 24: Backwards Stepwise Regression – Final model – Response variable: Tactical estimation 
of sawlog volume of all species 

       95%C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat   8.419 6 .209    

Elevation-Cat(1) -2.062 .910 5.137 1 .023 .127 .021 .757 

Elevation-Cat(2) -2.162 .824 6.884 1 .009 .115 .023 .579 

Elevation-Cat(3) -2.214 .793 7.798 1 .005 .109 .023 .517 

Elevation-Cat(4) -2.210 .791 7.808 1 .005 .110 .023 .517 

Elevation-Cat(5) -2.083 .794 6.881 1 .009 .125 .026 .591 

Elevation-Cat(6) -2.185 .804 7.392 1 .007 .112 .023 .543 

Latitude-EqDis   16.278 4 .003    

Latitude-EqDis(1) .862 .352 6.000 1 .014 2.368 1.188 4.720 

Latitude-EqDis(2) 1.371 .402 11.619 1 .001 3.938 1.791 8.662 

Latitude-EqDis(3) .174 .360 .233 1 .629 1.190 .587 2.412 

Latitude-EqDis(4) .642 .371 2.996 1 .083 1.900 .919 3.931 

Dist.Coast   2.994 3 .392    

Dist.Coast(1) .569 .386 2.168 1 .141 1.766 .828 3.766 

Dist.Coast(2) .253 .341 .551 1 .458 1.288 .660 2.515 
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Dist.Coast(3) -.044 .305 .021 1 .884 .957 .527 1.738 

Roughness   8.085 3 .044    

Roughness(1) -.003 .433 .000 1 .995 .997 .427 2.331 

Roughness(2) .510 .476 1.148 1 .284 1.665 .655 4.228 

Roughness(3) -.403 .395 1.038 1 .308 .669 .308 1.450 

Soil   6.361 3 .095    

Soil(1) -1.145 .504 5.155 1 .023 .318 .118 .855 

Soil(2) -.784 .522 2.253 1 .133 .457 .164 1.271 

Soil(3) -.730 .534 1.874 1 .171 .482 .169 1.371 

 

4.3.2.8. Tactical estimation of all species and products 
This model was of moderate performance ranking 4th of the 8 in total according to 
Negelkerke’s pseudo R2 (Table 8). The full model revealed a significant 
relationship between the response variable and elevation, slope and segment of the 
country (Table 25). Elevation was significant overall as well as within categories 
2-6, corresponding with 61-360 and Slope showed overall significance for its 
reference category. The performance of these variables was enhanced moderately 
through the backwards stepwise process and due to the similarities, the variables 
will be described in detail in the final model section further down. 

The removal of variables in the ensuing steps showed that elevation and slope 
remained unaffected by the removal of other variables to the final step. Roughness 
became significant in category 2 (Even) after the removal of latitude and retained 
this significance until its removal in step 5. Segment in the country became 
significant in category 3 (SE) after the removal of aspect and retained it until its 
removal in step 6. Soil type was close to being significant but never quite achieved 
it, however no benefit was gained by its removal at any stage of the regression. At 
step 4, the model had the most variables with various degrees of significance with 
no positive gain by the removal of any other variables. The further removals of 
roughness and segment within the country in the next steps, had they been accepted, 
had little effect on the model. 

The 4th step of the backwards stepwise regression was selected as the final model 
with the variables of  elevation, slope, roughness, segment within country and soil 
type. During the evaluation of the final model (Table 26), elevation had an overall 
significance and was significantly related with the response variable. Elevations 2 
to 6, corresponding with 61-360 m were less likely to over-estimate in comparison 
to sites with an elevation of 361-505 m. For category 3 (121-180 m) this was less 
the case than category 2 (61-120 m) and for both it was less the case than the 
categories 4 (181-240 m), 5 (241-300 m) and 6 (301-360 m) which were 
progressively less likely to over-estimate as seen from categories 4 towards 6. 
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The variable of slope appeared to have an overall significance but no specific 
indication of significance between the categories and the reference category. The 
variable of roughness, though not significant overall, revealed sites in its 2nd 
category, corresponding with even sites, were more likely to over-estimate than 
rough sites. However, the coefficient indicates that this effect was not very strong. 
The Segment within the country variable, though not significant overall, had sites 
in category 3, corresponding with the south-eastern quadrant, more likely to over-
estimate than sites in the reference category, corresponding with the south-western 
quadrant. Soil type was retained in the final model but was not significant, however, 
its presence was maintained to the last step as no improvement to the model was 
achieved with its removal. 

Table 25: Backwards Stepwise Regression – Full model – Response variable: Tactical estimation 
of all species and products 

       95% C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat   14.834 6 .022    

Elevation-Cat(1) -1.234 .725 2.898 1 .089 .291 .070 1.205 

Elevation-Cat(2) -1.560 .615 6.424 1 .011 .210 .063 .702 

Elevation-Cat(3) -1.292 .581 4.944 1 .026 .275 .088 .858 

Elevation-Cat(4) -1.733 .582 8.852 1 .003 .177 .056 .554 

Elevation-Cat(5) -1.883 .584 10.382 1 .001 .152 .048 .478 

Elevation-Cat(6) -1.954 .593 10.873 1 .001 .142 .044 .453 

Slope-Cat   10.736 3 .013    

Slope-Cat(1) .156 .594 .069 1 .793 1.168 .364 3.746 

Slope-Cat(2) 1.002 .591 2.873 1 .090 2.723 .855 8.670 

Slope-Cat(3) .075 .594 .016 1 .899 1.078 .337 3.451 

Seg.Country   4.951 3 .175    

Seg.Country(1) .435 .398 1.196 1 .274 1.545 .708 3.369 

Seg.Country(2) .126 .389 .104 1 .747 1.134 .529 2.431 

Seg.Country(3) .584 .279 4.372 1 .037 1.792 1.037 3.097 
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Table 26: Backwards Stepwise Regression – Final model – Response variable: Tactical estimation 
of all species and products 

       95%C.I.for EXP(B) 

 B S.E. Wald df Sig. Exp(B) Lower Upper 

Elevation-Cat   13.921 6 .031    

Elevation-Cat(1) -1.153 .670 2.960 1 .085 .316 .085 1.174 

Elevation-Cat(2) -1.464 .574 6.504 1 .011 .231 .075 .713 

Elevation-Cat(3) -1.219 .552 4.880 1 .027 .296 .100 .872 

Elevation-Cat(4) -1.656 .555 8.908 1 .003 .191 .064 .566 

Elevation-Cat(5) -1.753 .561 9.775 1 .002 .173 .058 .520 

Elevation-Cat(6) -1.796 .569 9.972 1 .002 .166 .054 .506 

Slope-Cat   10.373 3 .016    

Slope-Cat(1) .211 .576 .134 1 .714 1.235 .400 3.816 

Slope-Cat(2) 1.013 .572 3.139 1 .076 2.754 .898 8.448 

Slope-Cat(3) .168 .580 .084 1 .772 1.183 .379 3.689 

Roughness   5.398 3 .145    

Roughness(1) .704 .378 3.476 1 .062 2.022 .965 4.237 

Roughness(2) .927 .408 5.173 1 .023 2.528 1.137 5.621 

Roughness(3) .620 .357 3.023 1 .082 1.859 .924 3.739 

Seg.Country   5.319 3 .150    

Seg.Country(1) .333 .332 1.005 1 .316 1.395 .728 2.676 

Seg.Country(2) .036 .315 .013 1 .908 1.037 .559 1.923 

Seg.Country(3) .569 .263 4.672 1 .031 1.766 1.054 2.958 

Soil   5.873 3 .118    

Soil(1) .076 .413 .034 1 .854 1.079 .481 2.422 

Soil(2) -.594 .438 1.841 1 .175 .552 .234 1.302 

Soil(3) -.112 .426 .069 1 .793 .894 .388 2.060 

 

4.3.3. Summary of results 
The machine decision to remove a variable from the model is based on the 
probability of the likelihood-ratio statistic based on the maximum partial likelihood 
estimates (Backwards Regression (LR) 2021). 

What can be seen in Table 27 below, is the removed variables in every step 
across as regressions. The shaded area covers the first 3 steps and helps with the 
amalgamation into the top 3 results in the overall section on the bottom right side. 
Looking at the variables that were removed in stepwise order from every model, 
we can see that aspect, slope and segment within the country tend to be the least 
favoured by the regressions. These three variables were consistently found to be 
selected for removal within the first 3 steps in the majority of the regressions. The 
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following 3 variables to be removed most often starting from step 4 were latitude, 
distance from coast and soil type.  

Table 28 provides a summary view of the variables found in the final models 
after no more benefit can be gained by any further removals. The most common 
variable to be found in the final models is that of elevation (7 of 8) followed by 
roughness (5 of 8) and soil type (5 of 8). The only other variable to be found in a 
final step more than once was latitude. Latitude appeared to be a good candidate in 
tactical forecast volume datasets for large sawlog and regardless of species. The 
only regression that didn’t include elevation in its final step was for the strategic 
forecast volumes for large sawlog for Sitka spruce. 
 

Table 27: Tables of variables removed per model 

 
STR.Lsawlog.SS  STR.SS  STR.Lsawlog.Total 

Steps Variable  Steps Variable  Steps Variable 
1 Slope  1 Dist.Coast  1 Seg.Country 
2 Seg.Country  2 Slope  2 Aspect 
3 Aspect  3 Seg.Country  3 Slope 
4 Dist.Coast  4 Latitude  4 Roughness 
5 Elevation  5 Aspect  5 Dist.Coast 
6 Latitude     6 Latitude 

        
STR.Total  TAC.Lsawlog.SS  TAC.SS 

Steps Variable  Steps Variable  Steps Variable 
1 Roughness  1 Aspect  1 Aspect 
2 Aspect  2 Dist.Coast  2 Dist.Coast 
3 Slope  3 Slope  3 Soil 
4 Latitude  4 Seg.Country  4 Latitude 
5 Dist.Coast  5 Soil  5 Seg.Country 
6 Seg.Country     6 Slope 
7 Soil       

 
     Overall 

      Variable Top 3 
TAC.Lsawlog.Total  TAC.Total  Aspect 7 

Steps Variable  Steps Variable  Slope 6 
1 Aspect  1 Latitude  Seg.Country 4 
2 Slope  2 Aspect  Variable Low 3 
3 Seg.Country  3 Dist.Coast  Latitude 5 
4 Dist.Coast  4 Roughness  Dist.Coast 4 
5 Soil  5 Seg.Country  Soil Type 3 
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Table 28: Summary of variables in final models 

 
STR.Lsawlog.SS  STR.SS  STR.Lsawlog.Total 

No. Variable  No. Variable  No. Variable 
1 Roughness  1 Elevation  1 Elevation 
2 Soil type  2 Roughness  2 Soil type 
   3 Soil type  

  

        
STR.Total  TAC.Lsawlog.SS  TAC.SS 

No. Variable  No. Variable  No. Variable 
1 Elevation  1 Elevation  1 Elevation 
   2 Latitude  2 Roughness 
   3 Roughness  

  

        

TAC.Lsawlog.Total  TAC.Total  Top 3 
No. Variable  No. Variable  Variable No. 

1 Elevation  1 Elevation  Elevation 7 
2 Latitude  2 Slope  Roughness 5 
3 Dist.Coast  3 Roughness  Soil Type 5 
4 Roughness  4 Seg.Country    
5 Soil Type  5 Soil Type    
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5.1. Evaluation of the Linear Regression 
The outputs of the linear regression, after various corrections and transformations 
of the response variables, revealed that it was unlikely for the current data to yield 
any significant results with this particular method. Estimation bias was clearly 
evident in the forecasts and especially focused around over-estimation (Tables 4 & 
5). 

If a relationship between the predictor variables and the response variables could 
not be found, it is probable that in order to use a linear regression, the data needed 
to be more targeted to clear the noise and with a larger population of forests. Several 
methods could accomplish this such as a timescale in order to have a more 
structured and longer scope of the effects between the variables. A method to 
approach this could utilise data from several harvest years, gathered specifically 
around sites meeting specific characteristics, such as using only sites that over-
estimate.  

A larger pool of data could bring a clearer statistical view to the subcategories 
that are formed. To see the value in this, we could turn our attention to the fact that 
some categories in the predictor variables were poorly represented due to using only 
a single harvest year (e.g., there were very few sites with a Northern Aspect in the 
2018 schedule) and others that became poorly represented when further divided 
into the categories of another variable (e.g., The roughness per segment of the 
country). Considering this research was targeted at examining the effectiveness of 
data already possessed for additional value, expanding further in data already 
available by adding additional harvest years is an easy way to broaden each 
variable. The use of a timescale could potentially provide evidence that criteria such 
as stand maturity, might not be the only suitable decision maker in harvesting and 
that an amalgamation of sites that are more difficult to forecast with sites that are 
more accurate could improve the overall accuracy of the forecast for a given harvest 
year. 

5. Discussion  
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5.2. Evaluation of the Logistic Regression 
The logistic regression revealed a greater amount of information about the 
relationships between the predictor variables and the response variable. It was most 
evident that elevation was by far the best predictor variable having presence in all 
full models and their subsequent final steps (Table 28). There was an overall 
negative relationship (negative coefficients) with over-estimation bias across all 
regressions. The nature of this negative relationship was not always consistent but 
some possible patterns emerged. Elevation was found to have a much higher 
number of significant categories in datasets based on tactical forecast volumes. 
Overall significance amongst the better performing regressions was apparent in 
both tactical and strategic forecast datasets for Sitka spruce volume only, as well as 
with tactical forecast volume for all species and products set. This would indicate 
it is a poorer candidate for large sawlog alone. In the datasets for all species and 
products, elevation appeared to have an order of descending values of coefficients 
from higher elevations to lower against the reference category which corresponds 
with the highest elevation. This could indicate an expected hypothesis that lower 
elevations behave in a more predictable manner or have less adverse site conditions 
like exposure, water runoff, rougher soils and a correlation with higher slopes. 
However, for most other regressions this is not the case as elevation was not as 
ordered with its coefficients.  

Elevation 1, corresponding to 10-60 m, was found to have the lowest or second 
lowest coefficients in 6 out of the 8 regression models and in 5 of 8 models no 
overall significance. Elevation 1 yielded better results in the tactical volume 
datasets generally. Specifically, it became significant (P < 0.05) but with the lowest 
coefficient in the tactical volume for large sawlog across all species set. It became 
more significant in the tactical volume for all products of Sitka Spruce set and was 
the most significant in the tactical volume for large sawlog for Sitka spruce set. This 
revealed that potentially for Sitka Spruce large sawlog volumes, lower elevations 
had the least over-estimation in both the full models and the final steps.  

Elevation 2, corresponding to 61-120 m, had very strong coefficients in the Sitka 
spruce only regressions for all products. It performed the poorest in Sitka spruce 
datasets for large sawlog. Therefore, amongst the better performing regressions it 
is an indicator of least over-estimation for Sitka Spruce overall. The reason for 
elevations 10-60 m behaving so much worse than those at 61-120 m could be related 
to the fact that the very low elevations, which are also flatter, commonly have 
trouble with drainage in Ireland and therefore are less predictable if the sites are not 
tended to during their rotation. After Elevations 2 (61-120 m) the patterns become 
less evident and the remaining categories do not exhibit any strong pattern between 
regressions. 
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Among the better performing regressions, roughness and soil type are seen as 
good predictors even though the effect of roughness is not always visible through 
typical significance in the full models (Table 28).  

Overall, soil type has a negative relationship with over-estimation similar to 
elevation. Soil type was found to be significant in several regressions and amongst 
the ones that have significant values within their categories it appears that acidic 
soils overestimate more so than alkaline and shallow acidic more so than deep 
acidic. Even though the initial hypothesis based on discussions amongst foresters 
was that Blanket Peat should be the most unpredictable, the regressions cannot 
confirm this view.  

Roughness primarily had overall significance. In a single case, roughness 
achieved significance between its categories and the reference category, founding 
even sites to overestimate more than rough sites. This is difficult to interpret in a 
vacuum such as this as it may be related to stand stability, drainage or the 
distribution of rough and even sites in the specific annual plan this thesis was based 
on.  

Finally, latitude, which is only present in one of the better regressions final steps 
indicates that the southern latitudes of the country are more likely to overestimate 
than the northern. This can explain the overall over-estimation being high 
nationwide as the majority of forests are located in the South. 

5.2.1. The story of variables Removed 
Much can be said about the variables that remain in a model but the variables that 
are removed also reveal useful information especially when there is consistency 
(Table 27). The variables of aspect, slope and segment within the country were the 
least favoured by the regressions. This would suggest that given the data used, these 
variables were not suitable to predict bias to any significant rate. 

The variable of aspect had a strong influence with its removal in 3 of the 8 
regressions. This influence was mostly positive after removal to the significance of 
other variables. It would appear that the relationship of directional aspect with that 
of ground roughness has some importance and one has an effect on the other. It is 
speculative to provide any explanation and it would definitely be a relationship 
worth examining further in the future. It’s possible that erosion and soil depth is 
related to directional aspect as some directions face harsher weather than others on 
a more consistent basis. 

In 6 of the 8 regressions, the variable of segment within the country had a strong 
influence on the model by its removal. In 4 of those 6 regressions the effect was 
positive giving significance to other variables, especially roughness. In 2 of the 6 
the effects were negative on other variables and concerned only the strategic 
forecast volume datasets for the species of Sitka spruce. It is most likely that the 
number of sample sites was not large enough for segment within the country to be 
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fully developed. The tactical forecast volumes for all species and product sets had 
the only regression that found any significance in this variable with no overall 
significance and south-eastern sites over-estimating more compared with south-
western sites. At the beginning of this thesis, it was stated that an overall belief 
exists amongst the foresters in Coillte that the eastern sites are better than the 
western sites and perhaps that belief can be seen as overconfidence in the forecasts. 
Furthermore, the removal of segment within the country almost always benefitted 
the remaining variables making it a poor candidate for the purposes of this thesis 
and inferior to its large-scale geographical counterpart, latitude. 

The variable of slope had a relatively small contribution to the models. Slope 
was found to be the second most removed variable in the first three steps of the 
regressions. Regressions with total species values were found to gain significance 
with the removal of this variable. Conversely, the regression using the set of tactical 
forecast volumes for large sawlog in Sitka spruce was the only regression to lose 
significance by the removal of slope. The only regression that found slope to be 
overall significant was the tactical forecast volumes for all species and products, 
though no inferences can be made about the categories. Slope may not have been a 
significant contributor due to the site selection process which would limit the 
inclusion of a large number of sites with significant slopes from accumulating in 
the annual harvest schedule. Subsequent substitutions may have occurred with sites 
on the harvest schedule for 2018 due to the complexities surrounding road access, 
maintenance, logging and space for roadside timber placement. Therefore, a longer 
period with additional harvest years could express the value of this variable better. 
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In this thesis work, factors affecting the estimation bias were studied. Overall, the 
results of the research showed that most landscape features are not good predictors 
of accuracy in estimation of harvest volume in Ireland. Therefore, the interpretation 
of the meaning of the results has to be handled with care.  

What we can do is see the suggestion and direction that has resulted from this 
research to understand which key areas are valuable for future focus if the pursuit 
of this kind of accuracy through data mining is further developed. There is evidence 
to support the notion that further research into estimation bias and any attempt at 
quantifying it for the possibility of forecast correction will include the variable of 
elevation. Ground roughness is also a strong candidate along with understanding its 
relationship to directional aspect. Attempts at understanding large scale 
geographical patterns with forecast bias are more likely to be successful using 
latitude rather than splitting the country into quadrats. Finally, soil type is also a 
good candidate and will likely need to be examined more closely with various tree 
growth variables to fully understand its potential. 

Reflecting on the results, it appears that both the strategic and tactical forecast 
data predictions are better when using data for Sitka Spruce only. Furthermore, 
using only the volume of the most valuable product (large sawlog) is better for the 
tactical forecast but not for the strategic forecast. This could be expected as the 
tactical forecast uses sample measurements which increase its accuracy to the level 
of products as the size of the trees becomes more certain, whereas the strategic 
forecast, which is based primarily on growth yield class predictions, species type 
and provenance, would be less accurate. The overall predictive value of tactical 
forecast-based datasets is better than that of the strategic as 3 of the 4 tactical 
volume-based datasets were able to predict an amount of under-estimation whereas 
only 1 of the 4 strategic volume-based datasets was able to do the same. 

When considering the most valuable predictor variables, elevation had the best 
results while it was clear that aspect, slope and segment within the country were the 
least suitable to use. Other research also confirms, that for Sitka spruce and in the 
northern country conditions, elevation is a key indicator of growth quality and 
therefore accuracy in forecasts while aspect on its own and slope are not strong 
predictors (Blyth & Macleod 1981). 

6. Conclusion 
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In future research, there would be great value in repeating these regressions for 
other harvest years to ascertain the consistency of the findings. If they are 
confirmed, additional research on the results using a larger pull of data with more 
targeted characteristics is needed. There is potential to broaden the approach on 
how to structure a harvest year plan with less over-estimation by selecting sites with 
a mix of sites that are expected to produce less accurate results with sites that are 
known to have less variance. 
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