Genetic diversity within Swedish national heritage cultivars of gooseberry, Ribes uva-crispa

Genetisk diversitet hos nationella mandatsorter av krusbär, Ribes uva-crispa

Josefine Nordlander

Genetic diversity within Swedish national heritage cultivars of gooseberry, Ribes uvacrispa

Genetisk diversitet hos nationella mandatsorter av krusbär, Ribes uva-crispa

Josefine Nordlander

Supervisor:	Larisa Gustavsson, SLU, Department of Plant Breeding
Assistant supervisor:	Jonas Skytte af Sätra, SLU, Department of Plant Breeding
Assistant supervisor:	Helena Mattisson, SLU, Department of Plant Breeding
Examiner:	Helena Persson Hovmalm, SLU, Department of Plant Breeding
Credits:	30 hp
Level:	Second cycle, A2E
Course title:	Independent project in Horticultural Science, A2E
Course code:	EX0857
Programme:	Horticultural Science Programme

Place of publication:	Alnarp
Year of publication:	2021

Keywords:

genetic diversity, heterozygosity, molecular characterization, PCoA, pomological heritage, Ribes grossularia, Ribes uva-crispa, SSR markers

Swedish University of Agricultural Sciences

Faculty of Landscape Architecture, Horticulture and Crop Production Science
Department of Plant Breeding

Abstract

In the year 2000, the National program for diversity of cultivated plants (Pom) was established, aiming to recover old, Swedish fruit and berry cultivars that historically have been important for breeding and commercial production. A collection of mandate cultivars of Ribes uva-crispa (gooseberry) containing valuable accessions was created. Currently, 16 accessions from the mandate list are missing in the collection and missing mandate cultivars could be found through a national inventory of plant resources. In this study, mandate cultivars and inventory findings collected by Pom, were analyzed though molecular characterization (SSR-markers), to find duplicates, mislabelings and to analyze the genetic variability of the collection.

The present work uncovered several cases of duplication among the inventory findings and one, possible case of mislabeling. All the mandate cultivars had unique SSR-profiles, which was expected. Furthermore, of the 15 SSR markers used, 6 markers are particularly effective at describing the variability of the gooseberry germplasm. The PCoA analysis revealed the presence of a relatively more homogenous group among the analyzed plant material. These accessions display more genetic similarities, compared to the rest of the analyzed plants.

The data constitutes an important basis for evaluation and addition of accessions to the present collection of mandate cultivars and for removal of duplicates among the inventory findings.

Sammanfattning

Under år 2000 grundades Programmet för odlad mångfald, (Pom), med syftet att bevara gamla kultursorter av bland annat frukt och bär. För att en sort ska bevaras behöver den dels inneha ett kulturhistoriskt värde, dels måste sorten ha varit viktig för Sverige antingen i förädlingssammanhang eller i kommersiell produktion. På denna grund valde man ut ett antal krusbärssorter som fick benämningen mandatsorter och de sorter som kunde hittas och valideras fick ingå i en samling i Alnarp (SLU). För tillfället saknas dock 16 accessioner från mandatlistan i samlingen. Äldre, saknade sorter kan hittas genom nationella inventeringar, där man samlar in intressant växtmaterial för analys. I denna studie genomfördes en molekylär karaktärisering med hjälp av SSR-markörer av mandatsorterna i samlingen och de inventeringsfynd som Pom samlat in. Målet med analysen var att hitta duplikat eller felmärkningar samt analysera samlingens genetiska variabilitet.

Studien visade att det fanns ett flertal duplikat bland inventeringsfynden och ett fall av felmärkning. Alla mandatsorter hade unika SSR-profiler, vilket var förväntat. Det visade sig också att av de 15 SSR markörer som användes, så var 6 markörer särskilt effektiva för att beskriva variabiliteten i arvsmassan hos krusbär. PCoA analysen visade att det fanns en relativt homogen grupp bland det analyserade växtmaterialet. Dessa accessioner visade på större genetiska likheter i jämförelse med resten av de analyserade krusbärsbuskarna.

Resultaten från denna studie kan ligga till grund för utvärdering av samlingen av inventeringsfynd, borttagning av duplikat och eventuell addering av accessioner till den nuvarande samlingen av mandatsorter.

Nyckelord: genetisk diversitet, heterozygositet, molekulär karakterisering, PCoA, kultursorter, Ribes grossularia, Ribes uva-crispa, SSR markörer

Table of contents

Abbreviations 7

1. Introduction 8
1.1. History of Ribes L 8
1.2. Conservation of pomological heritage 9
1.3. Molecular markers 11
2. Aim 13
3. Materials and methods 14
3.1. Plant material 14
3.2. DNA extraction 14
3.3. SSR analysis 15
3.4. Statistical analysis/Data analysis 16
4. Results 18
4.1. SSR-fingerprints 18
4.2. Identification of cultivars and duplicates 18
4.2.1. Class 1 - Single samples with unique SSR-profiles 19
4.2.2. Class 2 - Samples with similar names sharing the same SSR-profile 19
4.2.3. Class 3 - Samples with different names sharing the same SSR-profile 19
4.2.4. Class 4 - Mislabelings, duplicates, and deviating samples 19
4.3. Marker status and allele frequencies 22
4.4. Genetic diversity 23
4.5. Proximities between accessions (PCoA) 24
5. Discussion 26
5.1. Methodology 26
5.2. Identification of cultivars and duplicates 28
5.3. Allelic diversity 30
5.4. Genetic diversity within the plant collection 31
5.5. PCoA 31
5.6. Conclusion 32
5.7. Future outlook 32
References 34
Appendix 1 40
Appendix 2. 45
Acknowledgements 49

Abbreviations

EPS	Swedish Elite Plant Station
PCR	Polymerase Chain Reaction
Pom	National program for diversity of cultivated plants
SSR	Simple Sequence Repeat

1. Introduction

1.1. History of Ribes L.

Ribes L. is a genus within the plant family Grossulariaceae where black currant (R. nigrum), red currant (R. rubrum) and gooseberry (R. uva-crispa or R. grossularia) belong. There are about 150 known species of currants and gooseberries, mainly found in temperate regions of Europe and North America. European gooseberry species R. uva-crispa (synonym R. grossularia) is more distributed across the world than the North American species R. hirtellum (Anastasiadi et al. 2016; Pluta 2018). Ribes uva-crispa is a small bush approximately 1.0-1.8 meters tall and 1.0-1.2 meters wide. Most of the gooseberry cultivars have spines on their branches and their leaves are small and hairy with three to five lobes. The flowers are green, sometimes with pink tendencies, and form clusters of two to three flowers. The berries are oval, the color varies from white to yellow, green, or red, and they have a hairy or smooth surface (Heiberg 2003; Pluta 2018).

According to Nilsson (1958), the domestication of berries in Europe probably began in the Middle Ages, but the cultivation of berries became more common in the $18^{\text {th }}$ century. The first Swedish record of gooseberry cultivation is from 1638 (Norstedt 1920). Even though gooseberry can be found naturally in Sweden, it is not considered an indigenous species in contrast to red and black currant which are indigenous to Scandinavia.

Foreign gooseberry cultivars became important in the $19^{\text {th }}$ century, and Sweden began to import cultivars from Great Britain, where horticultural practices and knowledge were more advanced, and North America, where cultivars resistant to powdery mildew could be found. Many imported cultivars also had higher yields and tastier berries. A serious outbreak of powdery mildew (Sphaerotheca mors-uvae) in Sweden 1901 (Hjalmarsson \& Wallace 2007), resulted in a drastic decrease in the cultivation of gooseberries.

At the beginning of the $20^{\text {th }}$ century, C. G. Dahl initiated a breeding program at Alnarp, focusing on developing disease-resistant cultivars suitable for the changing growth conditions. North American gooseberry cultivars, resistant to powdery mildew, were imported and crossed with the European species R. uva-crispa. The imported, North American cultivars 'Houghton' and 'Mountain' originate from crosses between R. hirtellum, a wild, disease-resistant gooseberry species native to Canada, and the European species R. uva-crispa (Hjalmarsson \& Wallace 2007). Information about C. G. Dahls work was unfortunately not well preserved and parental lines got lost along the way. It is however known that the very popular cultivars 'Scania' and 'Dr. Törnmarck' were a result of C. G. Dahls extensive breeding work. During the 1940s, cultivar trials were conducted at 10 different locations in Sweden, focusing on hardiness and yield (Hjalmarsson \& Wallace 2007). The very popular cultivar 'Jacob' was marketed in 1979 and is a cross between the hybrid 'Whitesmith' x R. oxyacanthoides and the cultivar R. uva-crispa 'Achilles'. 'Jacob' is known to be both hardy and resistant to powdery mildew.

1.2. Conservation of pomological heritage

In the year 2000, the National program for diversity of cultivated plants (Pom) was established, aiming to recover old, Swedish fruit and berry cultivars that have been important in breeding and commercial production (Hjalmarsson, 2020). Important cultivars that are a part of Sweden's pomological heritage are called mandate cultivars. As a result of Pom's efforts, the Swedish National Gene Bank was established in 2016. A collection of mandate cultivars of Ribes was created with the aim to prevent loss of genetic variability and to conserve the valuable germplasm. Moreover, these old Swedish cultivars are also valuable to maintain due to their high cultural values.

The Swedish National Gene Bank keeps the mandate cultivars for long-term conservation in their central collection at Alnarp, along with inventory findings waiting to be analyzed. A virus-free backup of each mandate cultivar is kept at the Swedish Elite Plant Station (EPS) in Kristianstad. Furthermore, 32 gooseberry cultivars are kept in the field collection at Balsgård outside Kristianstad, which is a part of the Swedish University of Agricultural Sciences (SLU).

A cultivar can only be assigned as a mandate cultivar if it originates from Sweden, either as a chance seedling or as a result of conscious breeding, or if it has been cultivated in the
country for a long time (Hjalmarsson and Wallace, 2004). Historical or cultural values are important parts when deciding which cultivars should be denoted as Swedish mandate cultivars.

The selection of accessions to be included in a collection can also be based on the output of phenotypic and molecular characterization. During the phenotypic characterization, different plant traits are evaluated and documented. It includes both morphological characterstics and agronomic traits such as hardiness, fruit production, fruit quality, and disease resistance (Karhu et al. 2007; Karhu et al. 2012). Environmentally induced variation can, however, alter the phenotypic characters, which sometimes makes identification difficult (Garkava-Gustavsson et al. 2008). Molecular characterization can uncover duplicates among the accessions, secure variety purity, and trueness-to-type; it can give an indication of which accessions would contribute to a maximum amount of genetic variation in a core collection and estimate the genetic relationships among accessions. Molecular marker technology, such as SSR markers, can be used for molecular characterizations of germplasm collections (Karhu et al. 2007; Garkava-Gustavsson et al. 2008; Testolin \& Cipriani 2010; Sehic et al. 2012; Karhu et al. 2012; Yu et al. 2012; Mengistu et al. 2016).

The current list of mandate gooseberry cultivars comprises 35 cultivars and has been determined in advance, based on literary studies (Hjalmarsson 2020). The mandate cultivars that were found earlier have been phenotypically identified and added to the collection in Alnarp. However, several mandate cultivars are yet to be found. Missing cultivars could be found through national inventory of plant resources, but some are harder to trace than others. Names can easily be forgotten, especially if a cultivar only has been cultivated in a restricted, geographical area. It is more likely that cultivars with good resistance to diseases remain in cultivation, and names of such cultivars are therefore more frequently mentioned in literature.

Currently, 16 accessions from the mandate list are missing in the collection and missing mandate cultivars could be found through national inventory of plant resources.

The National gene bank in Sweden has mainly collected gooseberry accessions from the older collections in Alnarp and Balsgård. Many accessions have also been collected through Pom's inventory project. These "inventory findings" come from private gardens and are unidentified cultivars. The collection of inventory findings hopefully contains missing mandate cultivars or new interesting accessions that can be added to both the
collection and the mandate list. The inventory findings, therefore, need to be identified and validated to secure trueness-to type.

Apart from detection of possible synonyms, molecular characterization can assign an unlabeled accession a cultivar epithet or give information about which accessions that might be mislabeled. It is also possible that cultivars mutate, while keeping the same name, or that they are seedlings displaying a different genotype compared to the mother plant. Many cultivars that are imported from other countries are also given a new name in the native language, which might complicate the identification (Hjalmarsson 2020; Karhu et al. 2007).

By conservation of mandate cultivars of berries and fruit trees, the loss of genetic resources can be prevented, and will lead to an increase in biodiversity. Rich biodiversity strengthens the ability of species to resist diseases and pests, changes in climate, and other factors affecting the survival of a population (Sunderland 2011). A high genetic variability will increase the fitness of a species. The collection of mandate cultivars can become a source of favorable alleles that can be utilized in breeding programs and traits relevant for local adaptation can be maintained. The mandate cultivars are also an important part of our history and cultivars that are not preserved will vanish.

1.3. Molecular markers

Molecular markers have revolutionized the ability to characterize germplasm and identify traits and their inheritance. Genetic markers can be divided into three classes; markers based on morphological and agronomic traits (visual), markers based on gene products (biochemical), or markers requiring a DNA assay (molecular). Molecular markers may, or may not, have a biological effect (Khan 2015).

There are several molecular marker methods such as amplified fragment length polymorphism (AFPL), inter-simple sequence repeats (ISSRs), single nucleotide polymorphisms (SNPs), or simple sequence repeats (SSRs) (Grover \& Sharma 2016). SSRs, also known as microsatellites, are short, nucleotide motifs of 1-6 bases, widely distributed in all genomes (Grover \& Sharma 2016; Lanham \& Brennan 1998). They can be amplified by PCR, using locus-specific oligonucleotide primers. The PCR product can then be visualized by electrophoresis on a high-resolution agarose gel (Grover \& Sharma 2016; Litt \& Luty 1989) or by capillary electrophoresis (Rubtsova et al. 2016). Different
marker methods have different features, and thus the application determines which marker system should be used. In 1999, Lanham \& Brennan analyzed the genetic diversity among gooseberries using molecular markers such as ISSRs and AFLPs. However, these marker systems produce dominant markers and thus cannot differentiate between homo- and heterozygous loci, an important aspect when analyzing genetic variability. SSR markers, on the other hand, are reliable and easy to use, codominant and effective in detecting polymorphism (Antonius et al. 2011; Grover \& Sharma 2016). The high information content of SSRs have made them popular when analyzing genetic diversity, identifying synonyms, and possible genetic relatedness (Cavanna et al. 2009). Especially in diploid species, such as Ribes. In 2002, Brennan et al. were able to identify 11 polymorphic SSR markers in the Ribes species, which have proved very useful. In 2017 Mezhnina \& Urbanovich proposed another set of SSR-markers that could be used to identify cultivars of gooseberry and black currant. SSR-markers have been used previously to study the national collection of fruits and berries, especially in apple, pear and black currant (Antonius et al. 2011; Garkava-Gustavsson et al. 2008; Garkava-Gustavsson et al. 2013; Sehic et al. 2012).

Black currant (Ribes nigrum L.) is the most commercially important species in the Ribes genus and thus is more studied than related species such as gooseberries (Brennan et al. 2002). One of the most damaging and serious pests of black currant is the gall mite (Cecidophyopsis ribis). This pest can be controlled by the introgression of resistance genes from other Ribes species. In R. uva-crispa, the resistance towards C. ribis is controlled by a single gene, $C e$. Breeding programs for black currant have therefore attempted to develop molecular markers linked to the $C e$ gene in gooseberry (Brennan et al. 2009; Mezhnina \& Urbanovich 2017).

2. Aim

This project aims to evaluate the status of the Swedish national collection of gooseberry heritage cultivars and analyze inventory findings from Pom by molecular characterization, using SSR markers. Duplicates and possible mislabelings in the collection and among the inventory findings kept at Alnarp, Balsgård and Pom will be therefore revealed. The results from this study will be useful when searching for old, missing mandate cultivars and will contribute to a well-cured Swedish collection of national heritage cultivars of gooseberry, Ribes uva-crispa.

3. Materials and methods

3.1. Plant material

Branches from both verified, mandate gooseberry cultivars, un-named and un-identified inventory findings were collected from collections in Alnarp, Balsgård, the Elite Plant Station (EPS), local clonal archives (Sofiero slottsträdgård, Bergianska trädgården) and private gardens. The studied accessions in this project are listed in Appendix 1. The total number of analyzed plants was 105 .

3.2. DNA extraction

Branches were collected in February and March and put in glass bottles filled with water and a liquid fertilizer Chrysal White at a ratio of $200: 1$ with a plastic cover to initiate bud bursting. Leaf material was collected from 105 gooseberry accessions. Most of the leaf material was collected in tubes and lyophilized, but the first DNA extractions were carried out using juvenile, fresh leaf material since it took several days for the lyophilizer to freezedry the samples. The lyophilized material was stored at $-80^{\circ} \mathrm{C}$.

Genomic DNA from 80 - 100 mg fresh leaf material or 20 mg lyophilized tissue was isolated with DNeasy Plant Mini Kit (Quiagen) according to the manufacturer's instructions.

DNA purity and concentration were measured on a NanoDrop (ThermoFisher Scientific Inc.). The samples were then separated through gel electrophoresis using 1.5% agarose gel and TAE buffer (Tris-Acetate-EDTA), stained with ethidium bromide, to confirm that no degradation of the DNA occurred during extraction. The gel was run for 40 minutes at 100 V. The DNA was then visualized under UV light.

DNA was diluted with Milli-Q water to the concentration of 20-40ng/ $\mu \mathrm{l}$, with a total amount of $60 \mu \mathrm{l}$, for immediate analysis. Residual DNA was stored at $-80^{\circ} \mathrm{C}$ for later use.

3.3. SSR analysis

The markers were chosen based on previous publications where they were reported to detect polymorphism in currants and gooseberries (Droz et al., 2019; Gunnarsson 2009; Mezhnina \& Urbanovich 2017; Palmieri et al. 2013; Pikunova et al. 2015) and through personal communication with Dr. E. Droz (Agroscope, Switzerland). In this study, 15 primer pairs were chosen and analyzed for their ability to amplify different SSR loci (Table 1). All the forward primers had a specific fluorescent tag (6FAM, PET, HEX, NED).

Table 1. Primer pairs used to amplify the SSR loci.

SSR locus	Size range	Forward sequence	Reverse sequence		Fluorescent dye	Annealing temperature
e1-O01	$131-160$	CCTTTCCAGAGAAAACTCAAACA	AAGTATGGGAACAACGGCAG	6FAM	60	
e1-O21	$290-318$	TCTCTCCAACTGAGAAGGAAAA	GATTTGTTCTTGTGCAGCGA	6FAM	54	
e4-D03	$160-238$	CCCAAAAGCAAATTTAGGGT	GTGAGGCATGGAACCACTTT	PET	58	
g1-A01	$205-254$	CGAAGGTTGAATCGGTGAGT	CGTAGCCACGTAGTTCCACA	HEX	60	
g1-K04	$277-298$	TGTTCCCTGTTTCCTTCAAAA	GGACGTGGACGATGAGAGTT	6FAM	58	
g1-M07	$199-232$	TCCGTTACTGGAGTGGTGT	CCATGGTTTTCCGATTTGTT	PET	48	
g2-B20	$139-191$	CTCCATCAAATCCCTCGTTT	TCTTGCTTCCCAAACAGTATCA	PET	54	
g2-G12	$164-194$	GTGACCCACCTAAACCGTCC	GGAGTGGAGGGTTGGAAAAT	6FAM	62	
g2-H21	$238-272$	TGCCCTTTTTGGTCATTTTC	CAATCGTCGATGAAGGTCTG	HEX	54	
g2-J08	$140-181$	CGCCGAGCTCTAATCACTGT	ATAGCCCATGCCCATATTCA	NED	60	
g2-L17	$114-166$	TTTGGAAAACCTCCCCTTT	GAGCTGTTGCTGTTGCCATA	HEX	56	
gr2-J05	$160-186$	CAAAACTGATTAGGGATCA	TTTGAAGAAGAGATGGCGAAA	HEX	54	
MTT-5	$144-244$	GCGATTCCATTACGACACTTTGCA	ATAGGCAAGCATCACCTCACC	NED	52	
RJL-7	$200-238$	TCCCGTTACTGGAGTGGTGT	CCATGGTTTTCCGATTTGTT	NED	50	
RJL-11	$215+$	CGAAGGTTGAATCGGTGAGT	TTGTGAGCCGTAACCACGTA	PET	56	

A DreamTaq PCR Mastermix (ThermoFisher Scientific Inc.) was prepared according to the manufacturer's instructions. The mastermix and the DNA were loaded onto a PCR plate and DNA amplification was performed in a PCR machine (VWR Unocycler, VWR International or Eppendorf Mastercycler ep gradient S., Eppendorf) with a specific PCR program for each primer pair (Table 1). The first 5 samples of each plate were amplified twice. Those samples where the amplification failed were run again in the second plate, together with the remaining DNA samples and 5 reference samples from the first run. Two PCR runs for each primer pair were needed to include all the DNA samples. The results from the repeated samples were compared to assure consistency of the results.

The amplification of the PCR products was verified on a 1.5% agarose gel together with O'RangeRuler 50 bp DNA ladder (ThermoFisher Scientific Inc.).

After amplification, the PCR products were diluted with Milli-Q water and separated by capillary electrophoresis (3500 Series Genetic Analyzer, ThermoFisher Scientific Inc.). A test run with 8 samples was performed prior to the final analyses to adjust the concentration of the PCR products to appropriate levels.

3.4. Statistical analysis/Data analysis

The data from the capillary electrophoresis were processed with GeneMarker 3.0.1 software (SoftGenetics LLC). The markers were first called automatically and thereafter curated manually, assuming that all analyzed accessions were diploid. Lynch \& Ritland's estimator of pair-wise relatedness was calculated in Excel using the genetic analysis software GenAlEx 6 (Peakall \& Smouse 2006). The marker calls of these samples were double-checked in GeneMarker and errors were corrected. Duplicates were identified by calculating the genetic distance and were then excluded from further analysis. Based on the output data, the samples were classified into four different categories based on the classification system proposed by de Andrés et al (2007);

Class 1 - Single samples with a unique SSR-profile.
Class 2 - Samples with similar names sharing the same SSR-profile.
Class 3 - Samples with different names sharing the same SSR-profile (known synonyms or sports).

Class 4 - Samples with the same/similar names having different profiles (4a) or different samples sharing the same SSR-profile (4b) (putative cases of mislabeling).

The marker status was evaluated and allele frequencies for each locus were calculated and presented in a bar chart.

The genetic diversity was estimated by calculating allele frequencies for each locus (A), expected heterozygosity $\left(\mathrm{H}_{\mathrm{e}}\right)$, and observed heterozygosity $\left(\mathrm{H}_{\mathrm{o}}\right)$. Expected heterozygosity is the probability that a randomly selected individual is heterozygous at a given locus under Hardy-Weinberg equilibrium (Nei 1973; Alexandre \& DeGiorgio 2017). This was calculated in GenAlex, using the following equation:

$$
H_{\mathrm{e}}=1-\sum\left(p_{i}\right)^{2}
$$

Observed heterozygosity $\left(\mathrm{H}_{\mathrm{o}}\right)$ is calculated by dividing the number of heterozygous individuals by the total number of individuals.

Fixation index (F) (providing a value between -1 and +1) was also calculated for each locus and averaged over all loci. Positive values indicate inbreeding or undetected null alleles and negative values indicate an excess of heterozygosity. The fixation index is expected to lie close to zero if random mating occurs in the population (Wright, 1965).

After duplicates were excluded, a genetic distance matrix was used as input for a principal coordinate analysis (PCoA). A PCoA plot was created and used to evaluate a potential genetic structure and discover similarities or dissimilarities among the analyzed genotypes.

4. Results

4.1. SSR-fingerprints

In some cases, it was not possible to identify any peaks in the electropherogram. The following 10 accessions and inventory findings had missing values at 1-6 loci; 'Flottskär gröna’, Flottskär röda’, 'Houghton', 'Lilla busken - Släta bär’, 'POM okänd 2', 'Sandgren', 'Scania', 'Sofiero 4', 'Worchesterberry' and ‘Ångermanlands röda'. They were therefore excluded from PCoA, genetic diversity analyses, and classification with the de Andrés classification system.

The SSR-profiles of all 105 studied accessions are presented in Appendix 1.

4.2. Identification of cultivars and duplicates

Following the de Andrés classification system, 60 accessions were assigned class 1 (single samples with a unique SSR-profile). Three pairs (6 accessions) had similar names and similar profiles and were therefore assigned class 2 . No accession was assigned class 3 (known synonyms/sports). Three pairs (6 accessions) had similar names, but different profiles and were therefore assigned class 4a. Finally, 24 cultivars were attributed as mislabeled or identical to other accessions (class 4b). The classification of all studied accessions and inventory findings is shown in Table 2 . All of the mandate cultivars included in the collection at Alnarp had individual SSR-profiles, or shared SSR-profile with an un-labelled inventory find.

The accessions where 1-6 loci failed to amplify were excluded from the statistical analyses and classification, except for 'Worchesterberry', which was not excluded from the classification. In this case, the amount of the data was sufficient to be able to make a fair comparison with the accession "Worchester."

4.2.1. Class 1 - Single samples with unique SSR-profiles

Of 96 compared accessions and inventory findings, 60 had unique SSR-profiles.

The following inventory findings had unique SSR-profiles: 'POM 1', 'POM 2', 'POM 5', 'POM 7’, 'POM 9' 'POM 10', 'POM 11', 'POM 13', 'POM 14', 'POM 15', 'POM 17’, 'POM 19', 'POM 22', 'POM 23', 'POM 24', 'POM 25', 'POM 27', 'POM 28', 'POM 30', 'POM 31', 'POM 33', ‘POM 37’, 'POM 39', 'Björn K.', 'Frick', 'Hönings Früheste', 'Invicta’, 'Kalvstorp', 'Catharina Ohlenberg', 'Kerstin M.', 'Kopparbro', 'Kozachok', 'Landströms gröna - Avvikande', 'Linda', 'Linköping', 'Lottas', 'Mette P.', 'Perle von Münchenberg', 'POM gården 1', 'POM gården 2', 'POM okänd 1', 'Resistenta', 'Robustenta’, 'Ronja', ‘Roskil', 'Smiling beauty’, 'Snickarmoa', 'Sofiero 3', 'Sofiero 5', 'Spine free', 'Stora busken - Päronträd', 'Söderbrunn', 'Trasher white', 'Villa Virginia', 'Åsgatan', 'Österhammarsbruk' and 'Övertjärn'.

The four mandate cultivars, ‘Aaron', ‘Dr. Törnmark', 'Jacob’ and 'London' also displayed unique SSR-profiles.

4.2.2. Class 2 - Samples with similar names sharing the same SSRprofile

Class 2 cultivars are described as several cultivars with the same name, from different locations that share the same SSR-profile. The mandate cultivars 'Bloodhound' and 'Landströms gröna' were collected from both Balsgård and Alnarp and the mandate cultivar 'Mountain' was collected from EPS and Alnarp. Both accessions of each cultivar had identical SSR-profiles.

4.2.3. Class 3 - Samples with different names sharing the same SSRprofile

Known synonyms or sports are divided into class 3. Since no known synonym/sport was found in this project, no cultivar was assigned class 3.

4.2.4. Class 4 - Mislabelings, duplicates, and deviating samples

Class 4 is divided into two subgroups. Class 4a refers to accessions with the same or similar name, having different profiles. 'Worchester' from POM and 'Worchesterberry' from Balsgård have similar names but did not share the same SSR-profile. So was also the case
with the mandate cultivar 'Achilles' (Balsgård) and 'Akilles' (Alnarp). The cultivar 'Alicant' was collected from both Alnarp and Balsgård, but these accessions had different SSR-profiles.

Class 4b refers to different accessions sharing the same SSR-profile. 'POM 3', 'POM 20', 'POM 34', 'Hinnonmäen keltainen' (mandate cultivar), 'Olavi', 'Smedjebacken' had similar SSR-profile, but 'POM 3' differed by being homozygous at one locus.
'POM 4', 'POM 38' had almost identical SSR-profiles, but 'POM 38' was heterozygous at one locus where 'POM 4' was homozygous.
'POM 8', 'POM 16', 'POM 35', 'Industry' and 'Sofiero 7' had identical SSR-profiles, but 'POM 16' differed from the rest by one base pair in one allele at one locus

The following pairs are possible synonyms, displaying identical SSR-profiles; 'POM 6' and 'POM 9', 'POM 12' and 'POM 29', 'POM 32' and 'POM 36', 'Sofiero 6' and 'Stora busken - Landet'. The three accessions 'POM 26', 'POM 40' and 'POM 41' do also have identical SSR-profiles.

Table 2 - Studied accessions and sampling locality, classified into four different categories based on the classification system used by de Andrés et al (2007). Class 1 - Single accessions with a unique SSR-profile. Class 2-Accessions with similar names sharing the same SSR-profile. Class 3-Accessions with different names sharing the same SSR-profile (known synonyms or sports). Class 4 - Accessions with the same or similar name having different profiles (4a), or accessions with different names with SSR-profile identical to at least one other accession (4b). The asterisk (*) denotes accessions that differ in only one allele when compared to SSR-profiles of at least one other accession. The cultivars denoted with "-", were excluded from the comparison.

Analysed accession		Location	Class	Analysed accession		Location	Class
1	POM 1	POM	1	54	Hönings Früheste	EPS	1
2	POM 2	POM	1	55	Industry	EPS	4b
3	POM 3	POM	4b*	56	Invicta	EPS	1
4	POM 4	POM	4b	57	Jacob	Alnarp	1
5	POM 5	POM	1	58	Kalvstorp	External	1
6	POM 6	POM	4 b	59	Catharina Ohlenburg	External	1
7	POM 7	POM	1	60	Kerstin M.	Alnarp	1
8	POM 8	POM	4 b	61	Kopparbro	External	1
9	POM 9	POM	4 b	62	Kozachok	Balsgård	1
10	POM 10	POM	1	63	Landströms gröna	Balsgård	2
11	POM 11	POM	1	64	Landströms gröna	Alnarp	2
12	POM 12	POM	4b	65	Landströms gröna (Avvikande)	Alnarp	1
13	POM 13	POM	1	66	Lilla busken - Släta bär	External	-
14	POM 14	POM	1	67	Linda	EPS	1
15	POM 15	POM	1	68	Linköping	Alnarp	1
16	POM 16	POM	$4 \mathrm{~b}^{*}$	69	London	Balsg.	1
17	POM 17	POM	1	70	Lottas	POM	1
18	POM 19	POM	1	71	Mette P.	POM	1
19	POM 20	POM	4b	72	Mountain (Alnarp)	Alnarp	2
20	POM 22	POM	1	73	Mountain (EPS)	Balsgård	2
21	POM 23	POM	1	74	Olavi	External	4 b
22	POM 24	POM	1	75	Perle von Münchenberg	Balsgård	1
23	POM 25	POM	1	76	POM gården 1	POM	1
24	POM 26	POM	4 b	77	POM gården 2	POM	1
25	POM 27	POM	1	78	POM okänd 1	POM	1
26	POM 28	POM	1	79	POM okänd 2	POM	-
27	POM 29	POM	4 b	80	Resistenta	Balsgård	1
28	POM 30	POM	1	81	Robustenta	Balsgård	1
29	POM 31	POM	1	82	Ronja	Balsgård	1
30	POM 32	POM	4b	83	Roskil	Balsgård	1
31	POM 33	POM	1	84	Sandgren	POM	-
32	POM 34	POM	4b	85	Scania	EPS	-
33	POM 35	POM	4 b	86	Smedjebacken	POM	4 b
34	POM 36	POM	4b	87	Smiling beauty	Balsgård	1
35	POM 37	POM	1	88	Snickarmoa	Alnarp	1
36	POM 38	POM	4b*	89	Sofiero 3	POM	1
37	POM 39	POM	1	90	Sofiero 4	POM	-
38	POM 40	POM	4b	91	Sofiero 5	POM	1
39	POM 41	POM	4 b	92	Sofiero 6	POM	4 b
40	Achilles	Balsgård	4 a	93	Sofiero 7	POM	4 b
41	Akilles	Alnarp	4 a	94	Spine free	Balsgård	1
42	Alicant	Balsgård	4 a	95	Stor buske - Päronträd	External	
43	Alicant	Alnarp	4 a	96	Stora busken - Landet	External	4 b
44	Aaron	Alnarp	1	97	Söderbrunn	POM	1
45	Björn K.	Alnarp	1	98	Trasher white	Balsgård	1
46	Bloodhound	Balsgård	2	99	Villa Virginia	Alnarp	1
47	Bloodhound	Alnarp	2	100	Worchester	POM	4 a
48	Dr. Törnmarck	Balsgård	1	101	Worchesterberry	Balsgård	4 a
49	Flottskär gröna	External	-	102	Ångermanlands röda	EPS	-
50	Flottskär röda	External	-	103	Åsgatan	External	1
51	Frick	Alnarp	1	104	Österhammarsbruk	External	1
52	Hinnonmäen keltainen	Balsgård	4b	105	Övertjärn	External	1
53	Houghton	Alnarp	-				

4.3. Marker status and allele frequencies

The number of alleles (Na) and allele frequencies varied among different loci (Table 4 and Appendix 2).

The locus MTT-5 had a higher number of alleles (24) with allele frequencies ranging from 0.006 to 0.268 , compared to other loci. Markers such as g1-K04, RLJ-11, RLJ-7, g1-A01, and g1-M07 did also display high variability. Markers g2-B20, g2-L17, e1-021, g2-J08, gr2-J05, g2-H21, and e1-O01 had 2-3 alleles with high frequency.

For the three markers g2-B20, e1-021, and g2-G12, the population was almost fixated for 1-2 alleles.

The SSR markers e4-D03, g1-A01, g1-K04, g1-M07, g2-B20, g2-G12, g2-L17, gr2-J05 and MTT-5 failed to amplify some alleles and thus accessions with missing alleles had to be excluded from statistical analysis.

All repeated samples, which purpose was to assure consistency of the results, had the same allele size and composition as the original sample. Several cases of discrepancy were, however found in the allele size and allele composition when some of the data from this study was compared to the data from a previous study by Gunnarsson (2009) (Table 3). The differences in size of the amplified fragments were 1-25 base pairs. The cultivars 'Achilles' (MTT-5), and 'Hönings früheste' (RLJ-7) were attributed as triploid in Gunnarsson's study and were excluded from comparison. The cultivars 'Invicta' (MTT-5) and 'Hönings Früheste' (RLJ-11) were homozygous in this study, but heterozygous in Gunnarsson's study, while 'Worchesterberry' (MTT-5 and RLJ-7) was homozygous in Gunnarsson's study and heterozygous in this study.

Table 3. Data comparison between this study and a previous study by Gunnarsson (2009), displaying the allele composition and allele size in loci MTT-5, RLJ-7, and RLJ-11. Missing values are denoted mv. "b.p. dif." denote the differences in allele size between this and the previous study.

Accession	MTT-5 This study	$\begin{gathered} \text { Gunnarsson } \\ 2009 \\ \hline \end{gathered}$	b.p.dif.	RLJ-7 This study	$\begin{gathered} \text { Gunnarsson } \\ 2009 \\ \hline \end{gathered}$	b.p.dif.	RLJ-11 This study	$\begin{gathered} \text { Gunnarsson } \\ 2009 \\ \hline \end{gathered}$	b.p.dif.
Achilles	201/238	202/204/243		205/205	210/210	-5	250/261	252/262	-2/-1
Alicant	212/238	216/243	-4/-5	205/205	$m v$		244/261	245/262	-1
Bloodhound	201/212	204/216	-3/-4	205/205	210/210	-5	239/261	241/262	-3/-1
Dr. Törnmark	180/217	183/221	-3/-4	226/230	232/236	-6	235/261	235/262	0/-1
Hinnonmäen									
keltainen	180/236	183/241	-3/-5	204/206	208/210	-4	261/261	262/262	-1
Hönings früheste	212/219	$m v$		205/230	198/210/236		250/250	241/252	+9/-2
Invicta	212/212	200/216	+12/-4	205/205	210/210	-5	239/250	241/252	-2
Jacob	201/240	$m v$		206/206	210/210	-4	250/261	252/262	-2/-1
Kozachok	221/225	225/229	-4/-4	206/206	210/210	-4	235/250	235/252	0/-2
Mountain	211/211	$m v$		206/212	210/216	-4	231/261	232/262	-1
Perle von									
Münchenberg	191/238	194/243	-3/-5	206/228	$m v$		247/250	249/252	-2
Resistenta	191/238	194/243	-3/-5	206/206	210/210	-4	243/250	241/249	+2/+1
Robustenta	238/240	243/245	-5/-5	206/206	210/210	-4	243/261	245/262	-2/-1
Smiling beauty	221/236	225/241	-4/-5	205/205	210/210	-5	250/261	252/262	-2/-1
Spine free	200/200	202/202	-2	212/214	216/218	-4	237/261	239/262	-2/-1
Trasher white	180/212	$m v$		205/205	208/208	-3	239/261	241/262	-2/-1
Worchesterberry	198/225	200/200	-2/+25	202/205	208/208	-6/-3	237/250	239/252	-2/-2

4.4. Genetic diversity

Observed heterozygosity (Table 4) is slightly higher than expected heterozygosity for the 9 loci e1-O01, g1-K04, g1-M07, g2-B20, g2-G12, g2-H21, g2-L17, MTT-5, and RLJ-11. This is also reflected in the mean value of H_{o} and H_{e}.

The fixation index is close to zero among 10 loci, while 5 loci deviate somewhat. The marker RLJ-7 has a fixation index of 0.37, and e4-D03 0.26. The marker e1-O01 has a value of -0.24, g1-K04-0.33, and g2-L17-0.19. Averaged over all loci, the H_{o} and H_{e} are very similar, and the fixation index is very close to zero.

Table 4. Observed heterozygosity $\left(H_{o}\right)$, expected heterozygosity $\left(H_{e}\right)$, and fixation index for the 15 different markers. Na stands for "Number of alleles", which displays the number of unique alleles detected in each SSR locus.

Locus	Na	Ho	He	F
e1-O01	8	0.73	0.59	-0.24
e1-021	8	0.13	0.14	0.11
e4-D03	10	0.38	0.51	0.26
g1-A01	13	0.73	0.77	0.05
g1-K04	9	0.93	0.70	-0.33
g1-M07	13	0.79	0.73	-0.07
g2-B20	5	0.42	0.39	-0.10
g2-G12	2	0.17	0.16	-0.09
g2-H21	10	0.56	0.54	-0.04
g2-J08	9	0.49	0.51	0.04
g2-L17	15	0.76	0.64	-0.19
gr2-J05	7	0.55	0.60	0.08
MTT-5	24	0.88	0.87	-0.01
RLJ-7	14	0.45	0.72	0.37
RLJ-11	14	0.83	0.79	-0.05
Mean		0.59	0.58	-0.01

4.5. Proximities between accessions (PCoA)

The proximities between the accessions are visualized in a two-dimensional principal coordinate analysis ordination plot (Figure 1), where the percentage of variation is explained by the principal coordinates. PCoA axis 1 accounts for 20% of the variation of the data, axis 2 accounts for 13% of the variation, and axis 3 (not presented in the plot) accounts for 10% of the variation. Individuals positioned closer to each other have lower dissimilarity values than objects placed further apart. In this case, accessions far apart display more genetic divergence than accessions closer to each other. Duplicates and accessions with missing values were excluded from the PCoA.

The results indicate some structure within the analyzed plant material. The PCoA analysis revealed the presence of a relatively more homogenous group (accentuated with a red circle in Figure 1) compared to the rest of the analyzed samples. This group is formed by the following accessions: ; ‘POM 2', 'POM 9', 'POM 10', 'POM 14', 'POM 15', 'POM 16', 'POM 17', 'POM 19', 'POM 23', 'POM 24', 'POM 28', 'POM 29', 'POM 31', 'POM 38', 'POM 40', 'Alicant', 'Björn K.', 'Flottskär gröna', 'Hönings früheste', 'Invicta', 'Landströms gröna - Avvikande', ‘Linda', 'Linköping', 'Lottas', 'Mette P.', 'POM gården 1', 'POM gården 2', ‘POM okänd 2', 'Ronja', 'Sandgren', 'Smiling beauty', ‘Snickarmoa',
'Sofiero 3', 'Sofiero 4', 'Sofiero 5', 'Stor buske - Päronträd', 'Stora busken - Landet', 'Söderbrunn', 'Trasher White' and 'Villa Virginia'. There are also 7 mandate cultivars within this homogenous group: 'Akilles', 'Aaron', 'Bloodhound', 'Jacob', 'Catharina Ohlenburg', 'Landströms gröna' and 'London'.

There are also some accessions positioned to the far right of the plot (accentuated with a green circle in Figure 1) displaying high dissimilarities (high genetic divergence) compared to the accessions within the cluster. These accessions and inventory findings are 'POM 5', 'POM 20', 'POM 25', 'POM 39', 'Dr. Törnmark', 'Kerstin M.', 'Kozachok', 'Mountain', 'Robustenta', 'Scania', 'Spine free' and 'Åsgatan'. Among these, 'Dr. Törnmark', 'Mountain' and 'Scania' are mandate cultivars.

Figure 1. Principal coordinate analysis (PCoA) ordination computed from a distance matrix. Each blue dot represents one of the 86 accessions with a unique SSR profile. In total, 9 duplicates and 10 accessions with missing values were excluded from the principal coordinate analysis and are not displayed in this plot.

5. Discussion

5.1. Methodology

The SSR primer pairs used in this study generally amplified clearly and easily scored alleles. However, ten cultivars in this project had missing data for alleles in one or more loci, and therefore they had to be excluded from the statistical analyses. PCR could fail due to technical reasons such as poor DNA quality or low concentration, however, in these cases, there was no remarkable difference in DNA concentrations or quality compared to the rest of the analyzed cultivars. The excluded cultivars will be analyzed again within a successive project.

Missing data or inaccurate data where the observed genotype does not correspond to the true genotype of an individual can be a result of genotyping errors (Bonin et al. 2004). Genotyping errors are important to take into account to avoid erroneous conclusions. Understanding the consequences of possible genotyping errors helps to prevent and limit their occurrence. The four different factors causing genotyping errors are; errors linked to the DNA sequence (such as null alleles), errors caused by low DNA quality or low DNA concentration, biochemical artifacts, and human errors (Pompanon et al. 2005).

According to Dakin \& Avise (2004), null alleles are alleles at an SSR locus that do not amplify to detected levels via PCR (despite repeated attempts). They are problematic since they can create false homozygotes. There are two potential biological reasons for null alleles. One reason could be poor primer annealing because of nucleotide sequence divergences such as indels or point mutations. Null alleles (or in this case, 'partial nulls') can also be generated due to differential amplification if the alleles have different sizes. Shorter fragments tend to amplify more efficiently than larger fragments during PCR. This may result in detection of only the smallest allele (Wattier et al. 1998). This problem can be avoided by loading more of the sample.

The possible presence of null alleles should be considered when interpreting the data. Several cultivars that are called as homozygotes might be heterozygotes for null-allele and can therefore be similar to other cultivars with similar, but not identical, SSR-profiles.

The phenomenon of an allele having an insufficient amplification is called allelic dropout. Allelic dropout affects allele frequency and decreases the observed heterozygosity, thus increasing the level of inbreeding at the specific loci. The observed molecular genotype will therefore not correspond with the actual genotype. Preferential amplification can occur if the Taq-polymerase is limiting, the DNA is degraded or if there is a mismatch between the primer and the allele template (Walsh et al. 1992). If the amplification of the smaller allele is preferential in a heterozygous genotype, the peak of the larger allele might be smaller in an electropherogram, or both may fail to amplify. Large-allelic dropout is solely linked to allele size, but allelic dropout can also occur in low-quality samples when the DNA concentration is very low (de Woody et al. 2006; Hunt 2009).

Biochemical artifacts are another cause of genotyping error. A biochemical artifact is a result that does not correspond to the true genotype and arises from the technical process. Taq-polymerase used when preparing the DNA for PCR, can sometimes carry out a nontemplated nucleotide addition to the 3^{\prime}-end of a synthesized strand. This non-templated nucleotide (usually an adenine) can result in an artefactual band on a gel, or a peak in a genotyping assay (Pompanon et al. 2005). Taq-polymerase can also cause replication slippage and lead to SSR instability, which generates "stutter bands" (de Woody et al. 2006; Castillo-Lizardo et al. 2014). This aggravates the interpretation of the electrophoretic output.

Human errors are another cause of genotyping errors. Extensive handling of samples and data can lead to a mix-up of samples/data, contamination, or pipetting errors. Manual scoring of data is also a possible source of errors. In this study, the alleles were manually called based on evaluation of the peaks in an electropherogram and the expertise of the researcher influences the number of scoring errors. The difficulty of allele-calling can, however, be reduced by having high-quality data (Pompanon et al. 2005).

One way to improve data quality is through the process of binning. Binning is referred to as a pre-processing method for data averaging and is used to reduce the effects of minor observation inaccuracies (Amos et al. 2006). When it comes to allele binning in SSR markers, alleles mostly need to be assigned different sizes and put into the corresponding allele "bin" (Idury \& Cardon 1997). The process of binning can be a source of errors and poor binning can have an impact on the identification of individuals and their parental lines.

Different fragments of the same allele can differ in size with 1 base pair, thus reduce the accuracy of binning. The allele length can also be altered if a mutation occurs in the flanking sequence (Amos et al. 2006). This affects the allele frequencies estimates as well as peak alignment during marker calling. The mobility of a DNA fragment depends on both sequence and length. GC-content (genomic DNA base composition), mostly associated with the stability of the DNA (Benjamini \& Speed 2012), can affect the mobility and a fragment with high GC content migrates differently from a fragment with low GC content.

Several of the accessions in this project had SSR-profiles with very high similarities, but differed from one another by 1-2 base pairs, or by being homo- or heterozygous at one locus. This difference can be caused by any of the previously mentioned genotyping errors. A minor mismatch in one or two SSR-locus can be accepted to count two genotypes as identical (Urrestarazu et al. 2016). 'POM 3', for example, differs from the other accessions with identical SSR-profiles by being homozygous at one locus. 'POM 3' may have failed to be identified as a heterozygote at this specific locus due to the presence of null alleles or if allelic dropout may have occurred.

Many of the inventory findings have been collected from private gardens, where the owner does not have the name of the cultivar. Private gardens are a valuable source of genetic resources, but one must keep in mind that since the entry of powdery mildew at the beginning of the $20^{\text {th }}$ century, many old cultivars have disappeared.

A limitation of this project is that the inventory findings were only analyzed with molecular markers. Phenotypical analyses, together with the genotypical analyses, would have contributed with much more information on whether some accessions are indeed duplicates or sports. Therefore, molecular, and phenotypical characterization should be combined.

5.2. Identification of cultivars and duplicates

The cultivars 'Worchester’ (POM) and 'Worchesterberry’ (Balsgård), 'Achilles’ (Balsgård) and 'Akilles’ (Alnarp) and 'Alicant' (Alnarp and Balsgård) had similar or identical names but different SSR-profiles (class 4a). These pairs were expected to share identical SSR-profiles. When the SSR-profiles of each pair were compared individually, it was discovered that 'Achilles', 'Akilles', and 'Alicant' from Balsgård and Alnarp had very similar profiles but differed at several loci with only 1-2 base pairs. There could be various reasons for this, it could for example be a large-allelic dropout, a mutation in flanking
regions, or a non-templated nucleotide addition caused by the Taq-polymerase. These accessions should therefore be considered as possible identical cultivars.
'Worchester' from POM and 'Worchesterberry' from Balsgård have similar names but did not share the same SSR-profile. When the profiles were compared individually, the differences were significant, and these accessions are most likely different cultivars.
'POM 20', 'POM 34', 'Hinnonmäen keltainen', ‘Olavi' and 'Smedjebacken’ shared the same SSR profile and most probably all represent the same cultivar, ('POM 3' is also considered identical to these accessions.) 'Hinnonmäen keltainen', commonly named 'Hinnonmäki gul' is a common cultivar in Sweden, denoted as a mandate cultivar. 'Olavi' is described in the literature as a completely different cultivar (Larsson, 1961) and was not expected to share SSR-profile with 'Hinnonmäen keltainen'. The inventory finding 'Olavi', was collected from a private garden, while 'Hinnonmäen keltainen' at Balsgård was received from The Natural Resources Institute of Finland (Luke). Since 'Hinnonmäen keltainen' was obtained from a more reliable source, 'Olavi' is most likely mislabeled. The accession 'Smedjebacken' was collected from a private garden and is most probably also mislabeled. This result suggests that all accessions above are, in fact, 'Hinnonmäen keltainen'.
'POM 4'and 'POM 38' had almost identical SSR-profiles, but 'POM 38' was heterozygous at one locus where 'POM 4' was homozygous. These accessions are considered as identical.
'POM 8', 'POM 35', 'Industry' and 'Sofiero 7' shared a similar SSR-profile. 'POM 16' had a very similar SSR-profile and was considered identical with these four accessions. 'Industry', also called 'Whinham's industry' was introduced by Robert Whinham in 1858 (Tunblad 1985). There is reason to believe that all the analyzed accessions with identical SSR-profiles are 'Whinhams industry'.

The SSR-profile of 'Landströms gröna - Avvikande' was different from the accession 'Landströms gröna' from Alnarp and Balsgård, which was expected. This confirms that it might be a seedling from 'Landströms gröna' or another cultivar.

5.3. Allelic diversity

Loci with high variability, i.e., high allele number and with more even distribution of allele frequencies, are more useful since they contribute with more information than loci with uneven distribution of allele frequencies, e.g., those where one or two alleles are very common, and the rest are found at low frequency. The locus MTT-5 had 24 different alleles with frequencies ranging from 0.006 to 0.268 . This marker proved to be very useful for differentiating between accessions. Markers such as g1-K04, RLJ-11, RLJ-7, g1-A01, and g1-M07 do also display high variability and have proved very useful. Contrary, markers g2-L17, g2-J08, gr2-J05, g2-H21, and e1-O01 have high allele frequencies for few alleles which makes them less efficient as markers.

Based on both allele frequency and the number of alleles, the markers g2-B20, e1-021, and g2-G12 are the least efficient for genetic fingerprinting among gooseberry accessions. For all these markers, 1-2 alleles are fixed in the studied plant collection.

There were several differences in allele sizes when the data from this study were compared to the data from a previous study by Gunnarsson (2009) (Table 4). The differences in size of the amplified fragments were 1-12 base pairs. For example, the cultivar 'Invicta' had allele sizes 205/205 using the marker RLJ-7, while the same cultivar had allele sizes $210 / 210$ in Gunnarsson's study. The size of the alleles differs with 5 base pairs, but both are homozygous. Only three major differences could be found. The cultivars 'Hönings Früheste' (RLJ-11) and 'Invicta' (MTT-5) were homozygous in this study, but heterozygous in Gunnarsson's study, while 'Worchester berry' (MTT-5) were homozygous in Gunnarsson's study and heterozygous in this study. The cultivars 'Achilles' (MTT-5), and 'Hönings früheste' (RLJ-7) were attributed as triploid in Gunnarsson's study. A third peak was also present in this study for each cultivar, but it was considered a stutter peak.

True alleles could be expected to differ with one base pair due to the occurrence of mutations in DNA flanking regions (Guarino et al. 2006), but in this case, the allele size discrepancy ranged from 1-12 base pairs. A likely explanation for these discrepancies is experimental artifacts and differences in binning procedures. The compared accessions that differed by being homo- or heterozygous at several loci are most likely different due to allelic dropout or null alleles. Taking all these possible causes for allele size differences into consideration is important when results from different studies are pooled together, to avoid inaccurate output data.

5.4. Genetic diversity within the plant collection

High expected heterozygosity $\left(\mathrm{H}_{\mathrm{e}}\right)$ implies a high level of genetic variability, while low heterozygosity indicates low genetic variability. If the observed heterozygosity is lower than expected in an outcrossing species, this might indicate inbreeding. In this study, the mean values of H_{o} and H_{e} are close to each other. However, 9 loci displayed somewhat higher observed heterozygosity than expected heterozygosity. This indicates that these loci do not comply with the Hardy-Weinberg principles. Forces such as non-random mating can disturb the Hardy-Weinberg equilibrium. Gooseberry is an outcrossing plant (Lim 2012). This might be the reason why H_{o} is higher than H_{e} in the majority of the SSR markers. High genetic variability is desirable when establishing a germplasm collection, especially a core collection. However, it is important to consider that the presence of null alleles can influence the diversity indexes, especially the estimates of observed heterozygosity.

The fixation index is close to zero among 10 loci, while loci RLJ-7 and e4-D03 deviate by having a higher positive value. This indicates that un-detected null-alleles could exist in these loci. The markers e1-O01, g1-K04 and g2-L17 differentiate by having a higher, negative fixation index compared to other markers, which may indicate an excess of heterozygosity due to negative assortative mating. Negative assortative mating can lead to an increase of heterozygosity in a population since individuals with different phenotypes are more likely to mate than individuals with similar phenotypes (Hedrick, 2016).

5.5. PCoA

An area could be identified within the PCoA-plot, where the accessions were more homogenous, compared to the rest of the studied cultivars. An explanation as to why these accessions were more homogenous could not be found in the literature. It is possible that the accessions within the group are related somehow, and therefore display more genetic similarities. It is, however, difficult to draw such a conclusion based on data from a lowdensity marker system. Application of high-density single nucleotide polymorphism markers (SNPs) allowed more detailed clarification of genetic relationships among Swedish mandate cultivars in apple (Skytte af Sätra et al., 2020). Thus, further analyses of a larger number of individuals with SNP markers would help to clarify parent-offspring and other types of relationships in the gooseberry germplasm.

Accessions far apart display more genetic divergence than accessions closer to each other In this case, 'POM 5', 'POM 20', 'POM 25', 'POM 39', 'Dr. Törnmarck', 'Kerstin M.', 'Kozachok', 'Mountain', 'Robustenta’, 'Scania', 'Spine free' and 'Åsgatan' (positioned to the far right of the plot) display the highest genetic divergence compared to the accessions with more genetic similarities. Interestingly, 'Dr. Törnmarck', 'Mountain' and 'Scania' are all cultivars with an American background (Hjalmarsson \& Wallace 2007; Hjalmarsson 2020; Niggli \& Frei 2019). As to date, only ‘Dr. Törnmarck', 'Kozachok', 'Mountain' and 'Scania' in this deviating group are denoted as mandate cultivars. If the collection aims to cover up as much genetic diversity and resources as possible, it would be a good idea to include accessions that are more distantly related.

5.6. Conclusion

The present work uncovered several cases of duplication among the inventory findings and one, possible case of mislabeling. All mandate cultivars in Pom's collection at Alnarp had individual SSR-profiles, which was expected since these accessions previously have been identified through phenotypical analyses. This study furthermore revealed that 6 SSR markers (MTT-5, g1-K04, RLJ-11, RLJ-7, g1-A01 and g1-M07) were more effective compared to the others and proved very useful for distinguishing between gooseberry accessions and describing the variability of the gooseberry germplasm. The data constitutes an important basis for evaluation and addition of accessions to the present collection of mandate cultivars and for removal of duplicates among the inventory findings.

5.7. Future outlook

In this study, 105 accessions and inventory findings were analyzed. The results are valuable for the preservation of gooseberry cultivars that are a part of Sweden's pomological heritage. It would, however, be interesting to perform a molecular characterization on remaining inventory findings and accessions from other, interesting sources. Molecular characterization of the inventory findings could also be complemented with a phenotypical characterization.

Further research will be done in an upcoming project that aims to study genetic diversity, identify duplicates and mislabeling, and hopefully will also reveal parent-offspring
relatedness. The remaining Swedish cultivars will be analyzed along with cultivars from collections in the Ukraine, Latvia, and Denmark. The result from the upcoming study will be compared with the results of this study.

At the moment, there is no standardized way for analyzing the germplasm of Ribes. Primers with high reproducibility and consistency that can be used to differentiate between different genotypes could for example be used as an international, molecular standard. If analyzation of Ribes germplasm was conformed to a standard, it would be easier to compare and pool together results from different studies, which would benefit all parties.

References

Alexandre M. H., DeGiorgio, M. (2017) An Unbiased Estimator of Gene Diversity with Improved Variance for Samples Containing Related and Inbred Individuals of any Ploidy. G3 Genes|Genomes|Genetics. Vol. 7 (2), pp. 671-691. DOI: 10.1534/g3.116.037168

Amos, W., Hoffman, J. I., Frodsham, A., Zhang, L, Best, S., Hill, A. V. S. (2006) Automated binning of microsatellite alleles: problems and solutions. Molecular ecology resources. Vol. 7 (1), pp. 10-14. DOI: 10.1111/j.1471-8286.2006.01560

Anastasiadi, M., Mwangi, P. M., Ordaz-Ortiz, J. J., Redfern, S. P., Monique, M. B., Simmonds, S. J., Terry, L. A. (2016) Tissue biochemical diversity of 20 gooseberry cultivars and the effect of ethylene supplementation on postharvest life. Postharvest Biology and Technology. Vol. 117, pp. 141-151. DOI: 10.1016/j.postharvbio.2016.02.008.

Antonius, K., Karhu, S., Kaldmäe, H., Lacis, G., Rugenius, R., Baniulis, D., Sasnaukas, A., Schulte, E., Kuras, A., Korbin, M., Gunnarsson, Å., Werlemark, G., Ryliskis, D., Todam-Andersen, T., Kokk, L., Järve, K. (2011). Development of the Northern European Ribes core collection based on a microsatellite (SSR) marker diversity analysis. Plant Genetic Resources. Vol. 10 (1), pp. 70-73. DOI: 10.1017/S1479262111000980

Benjamini, Y., Speed, T. P. (2012) Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acid Research. Vol. 40 (10), p. e72. DOI: 10.1093/nar/gks001

Brennan, R., Jorgensen, L., Woodhead, M., Russell, J. (2002). Development and characterization of SSR markers in Ribes species. Molecular Ecology Notes. Vol. 2, pp. 327-330. DOI: 10.1046/j.1471-8286.2002.00233.x.

Brennan, R., Jorgensen, L., Gordon, S., Loades, K., Hackett, C., Russel, J. (2009) The development of a PCR-based marker linked to resistance to the blackcurrant gall mite (Cecidophyopsis ribis Acari: Eriophyidae). Theoretical and Applied Genetics. Vol. 118, pp. 205-211. DOI: 10.1007/s00122-008-0889-x

Bonin, A., Bellemain, E., Bronken Eidesen, P., Pompanon, F., Brochmann, C., Taberlet, P. (2004) How to track and assess genotyping errors in population genetics studies.

Molecular Ecology. Vol. 13 (11), pp. 3261-73. DOI: 10.1111/j.1365294X.2004.02346.x.

Castillo-Lizardo, M., Henneke, G., Viguera, E. (2014) Replication slippage of the thermophilic DNA polymerases B and D from the Euryarchaeota Pyrococcus abyssi. Front. Microbiology. DOI: 10.3389/fmicb.2014.00403

Cavanna, M., Marinoni, D. T., Beccaro, G. L., Bounous G. (2009) Microsatellite-based evaluation of Ribes spp. germplasm. Genome. Vol. 52 (10), pp. 839-48. DOI: 10.1139/g09-057.

Dakin, E., E., Avise, J., C. (2004) Microsatellite null alleles in parentage analysis. Heredity. Vol. 93 (5), pp. 504-509. DOI: 10.1038/sj.hdy. 6800545.
de Andrés, M. T., Cabezas, J. A., Cervera, M. T., Borrego, J. (2007) Molecular Characterization of Grapevine Rootstocks Maintained in Germplasm Collections. American Journal of Enology and Viticulture. Vol. 58 (1), pp. 75-86.
de Woody, J., Nason, J. D., Hipkins, V. D. (2006) Mitigating Scoring Errors in Microsatellite Data from Wild Populations. Molecular ecology Notes. Vol. 6, pp. 951-957. DOI: 10.1111/j.1471-8286.2006.01449.x

Droz, E., Frei, M., Julmi-Moreillon, C., Niggli, C. (2019). First attempt to characterize Ribes genetic resources with SSR markers in Switzerland. XII RUBUS \& RIBES Symposium, 23-28 June 2019, Zürich, Switzerland. [2021-09-17]

Garkava-Gustavsson, L., Kolodinska Brantestam, A., Sehic, J., Nybom, H. (2008) Molecular characterisation of indigenous Swedish apple cultivars based on SSR and S-allele analysis. Hereditas. Vol. 145 (3), pp. 99-112. DOI: 10.1111/j.00180661.2008.02042.x.

Garkava-Gustavsson, L., Mujaju, C., Sehic, J., Zborowska, A., Backes, G., M., Hietaranta, T., Antonius, K. (2013) Genetic diversity in Swedish and Finnish heirloom apple cultivars revealed with SSR markers. Scientia Horticulturae. Vol. 162, pp. 43-48. DOI: 10.1016/j.scienta.2013.07.040

Grover, A. \& P. C. Sharma (2016) Development and use of molecular markers: past and present. Critical Reviews in Biotechnology. Vol. 36 (2), pp. 290-302. DOI: 10.3109/07388551.2014.959891

Guarino, C., Santoro, S., De Simone, L., Lain, O., Cipriani G., Testolin, R. (2006) Genetic diversity in a collection of ancient cultivars of apple (Malus \times domestica Borkh.) as revealed by SSR-based fingerprinting. The Journal of Horticultural Science and Biotechnology. Vol. 81 (1), pp. 39-44. DOI: 10.1080/14620316.2006.11512026

Gunnarsson, Åsa. (2009). Molekylär karakterisering av krusbär och vinbär. (Examensarbete) Högskolan i Kristianstad.

Hedrick, P. W. (2016) Inbreeding and Nonrandom Mating. Kliman, R. M. (red), Encyclopedia of Evolutionary Biology, Cambridge: Academic Press, pp. 249-254. DOI: 10.1016/B978-0-12-800049-6.00023-8.

Heiberg, F. M. (2003) CURRANTS AND GOOSEBERRIES. Caballero, B. (red) Encyclopedia of Food Sciences and Nutrition (Second Edition), Cambridge: Academic Press, pp. 1708-1712. DOI: 10.1016/B0-12-227055-X/00317-5.

Hjalmarsson, I. (2020) Conservation of Ribes and Rubus cultivars in the Swedish National Gene Bank. Acta Horticulturae. Vol. 1277, pp. 89-94. DOI: 10.17660/ActaHortic.2020.1277.12

Hjalmarsson, I., Wallace, B. (2004) Content of the Swedish berry gene bank. J. Fruit Ornamental Plant Research. Vol. 12, pp. 129-138.

Hjalmarsson, I., Wallace, B. (2007) Gooseberry and Currant in Sweden: History and Cultivar Development. Plant Breeding Reviews. Vol. 29, pp. 145-175

Hunt, J., L. (2009) Loss of heterozygosity. Tissue Based Molecular Pathology. Pp. 50-55. DOI: 10.1016/B978-044306901-7.50010-9.

Idury, R., M., Cardon, L., R. (1997) A simple method for automated allele binning in microsatellite markers. Genome Research. Vol. 7 (11), pp. 1104-1109. DOI: 10.1101/gr.7.11.1104.

Karhu, S., Antonius, K., Kaldmäe, H., Pluta, S., Rumpunen, K., Ryliskis, D., Sasnauskas, A., Schulte, E., Strautina, S., Grout, B. (2007) The core collection of the northern European gene pool of Ribes created by RIBESCO project. Sodininkyste ir daržininkyste. Vol. 26 (3), pp. 179-186. ISSN 0236-4212.

Karhu, S., Antonius, K., Kaldmäe, H., Gunars L., Rugenius, R., Baniulis, D., Sasnauskas, A., Schulte, E., Kuras, A., Korbin, M., Gunnarsson, Å., Werlemark, G., Ryliskis, D., Toldam-Andersen, T., Kokk, L., Kadri, J. (2012). Development of the Northern European Ribes core collection based on a microsatellite (SSR) marker diversity analysis. Plant Genetic Resources. Vol. 10, pp. 70-73. DOI: 10.1017/S1479262111000980.

Khan, J. (2015). Molecular Markers: An Excellent Tool for Genetic Analysis. J. of Molecular Biomarkers \& Diagnosis. Vol. 6 (3). DOI: 10.4172/21559929.1000233

Lanham, P., G. Brennan, R., M. (1998) Characterization of the genetic resources of redcurrant (Ribes rubrum: subg. Ribesia) using anchored microsatellite markers. Theor Appl Genet. Vol. 96, pp. 917-921. DOI: 10.1007/s001220050820

Lanham, P., G. Brennan, R., M. (1999) Genetic characterization of gooseberry (Ribes grossularia subgenus Grossularia) germplasm using RAPD, ISSR and AFLP markers. The Journal of Horticultural Science and Biotechnology. Vol 74 (3), pp. 361-366. DOI: 10.1080/14620316.1999.11511122

Larsson, G. (1961) Sortförsök med krusbär vid Öjebyns försöksstation. Sveriges Pomologiska Förenings Årsskrift. Vol. 62, pp. 87-97.

Lim, T., K. (2012) Ribes uva-crispa. In: Edible Medicinal And Non-Medicinal Plants. Springer, Dordrecht. Pp. 51-55. DOI: 10.1007/978-94-007-4053-2_6

Litt, M., Luty J., A. (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. The American Journal of Human Genetics. Vol 44, pp. 397-401

Mengistu, F., Motoike, S., Cruz, C. (2016) Molecular Characterization and Genetic Diversity of the Macaw Palm Ex Situ Germplasm Collection Revealed by Microsatellite Markers. Diversity. Vol. 8 (20) DOI: http://dx.doi.org/10.3390/d8040020

Mezhnina, O. A., Urbanovich, O. Y. (2017) Study of genetic variability of representatives of Ribes L. grown in Belarus. Cytol. Genet. Vol. 51, pp. 441-447 (2017). DOI: https://doi.org/10.3103/S0095452717060081

Nei, M. (1973) Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. Vol. 70 (12), pp. 3321-3323. DOI: 10.1073/pnas.70.12.3321

Niggli, C., Frei, M. (2019) Stachelbeeren: Sortvielfalt und Kulturgeschichte. Haupt Verlag AB : Bern.

Nilsson, F. (1958) Odling av Frukt och Bär. (Stockholm, Sweden: Saxon \& Lindström), p. 296.

Norstedt, O. (1920) Prima loca plantarum sueciarum. Suppl. 4. Botaniska notiser. Pp. 195.

Palmieri, L., Grando, M., Sordo, M., Grisenti, M., Martens, S., Giongo, L. (2013). Establishment of molecular markers for germplasm management in a worldwide provenance Ribes spp. Collection. Plant Omics. Vol. 6, pp. 165-174.

Peakall, R. and Smouse P.E. (2006) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics. Vol. 28 (19), pp. 2537-2539. DOI: 10.1093/bioinformatics/bts460

Pikunova, A., Knyazev, S., Bakhotskaya, A., Kochumova, A. A. (2015). Microsatellite loci polymorphism in Russian black currant (Ribes Nigrum L.) varieties from collection of All-Russian Research Institute of Breeding Fruit Crops. Sel'skokhozyaistvennaya Biologiya. Vol. 50, pp. 46-54. DOI: 10.15389/agrobiology.2015.1.46eng.

Pluta, S., (2018) Gooseberry - Ribes uva-crispa, sin. R. grossularia L. In: Rodrigues, S., de Oliveira Silva, E., Sousa de Brito, E. (eds.). Exotic Fruits. Pp. 211-218. Academic press, Cambridge, Massachusetts. DOI: 10.1016/B978-0-12-803138-4.00027-7

Pompanon, F., Bonin, A., Bellemain, E., Taberlet, P. (2005) Genotyping errors: causes, consequences and solutions. Nature Review Genetics. Vol 6, pp. 847-859. DOI: 10.1038/nrg 1707

Rubtsova, G., A., Ponomareva, E., V., Afanasiev, K., I., Shaikhaev, E., G., Kholodova, M., V., Pavlov, S., D., Zhivotovsky, L., A. (2016) A detection of allelic variants at microsatellite markers by using capillary and traditional electrophoresis. Russian J. of Genetics. Vol. 52, pp. 423-427. DOI: 10.1134/S1022795416040086

Sehic, J., Garkava-Gustavsson, L., Fernández- Fernández, F., Nybom, H. (2012) Genetic diversity in a collection of European pear (Pyrus communis) cultivars determined with SSR markers chosen by ECPGR. Scientia Horticulturae. Vol 145, pp. 39-45. DOI: 10.1016/j.scienta.2012.07.023

Skytte af Sätra, J., Troggio, M., Odilbekov, F., Sehic, J., Mattisson, H., Hjalmarsson, I., Ingvarsson, P. K., Garkava-Gustavsson, L. (2020) Genetic Status of the Swedish Central collection of heirloom apple cultivars. Scientia Horticulturae. Vol. 272. DOI: 10.1016/j.scienta.2020.109599

Sunderland, T., C., H. (2011) Food security: Why is biodiversity important? International Forestry Review. Vol. 13, (3), pp. 265-274. DOI: 10.1505/146554811798293908

Testolin, R., Cipriani, G. (2010). Molecular markers for germplasm identification and characterization. Acta Horticulturae. Vol. 859, pp. 59-72. DOI: 10.17660/ActaHortic.2010.859.5.

Tunblad, B. (1985) Endast Sverige svenska krusbär har. Hemträdgården. Vol. 40 (1), pp. 20-22.

Urrestarazu, J., Denancé, C., Ravon, E. et al. (2016) Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biol. Vol. 16, 130. DOI: 10.1186/s12870-016-0818-0

Wattier, R., Engel, C., R., Saumitou-Laprade, P., Valero, M. (1998) Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Molecular Ecology. Vol. 7, pp. 1569-1573. DOI: 10.1046/j.1365-294x.1998.00477.x

Wright, S. (1965) The Interpretation of Population Structure by F-statistics with Special Regard to Systems of Mating. Evolution. Vol. 19 (3), pp. 395-420. DOI: 10.2307/2406450

Walsh, P., S., Erlich, H., A., Higuchi, R. (1992) Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appl. Vol. 1 (4), pp. 241-50. DOI: 10.1101/gr.1.4.241.

Yu, J. Z., Fang, D. D., Kohel, R. J., Ulloa, M., Hinze, L. L., Percy, R. G., Zhang, J., Chee, P., Scheffler, B. E., Jones, D. C. (2012) Development of a core set of SSR markers
for the characterization of Gossypium germplasm. Euphytica. Vol. 187, pp. 203213. https://doi.org/10.1007/s10681-012-0643-y

Appendix 1

SSR profiles of 105 gooseberry cultivars generated with 15 different primer pairs.
Missing values are denoted as mv and the asterisk (*) denotes mandate cultivars. (See page 36.)

Analysed	aceessions	g^{2}-421		${ }^{\text {22-J08 }}$		92-L17		gr2-J05		MTT-5		RLJ-7		RLJ-11	
1	PoM 1	246	254	154	154	136	136	164	170	${ }^{201}$	219	206	230	250	261
2	POM 2	246	254	154	154	120	136	164	170	212	219	205	230	239	250
3	Pom 3	246	254	149	156	120	136	164	170	180	180	204	206	261	261
4	ром 4	246	254	154	154	120	153	164	164	212	212	205	205	239	250
5	PoM 5	246	272	149	156	${ }^{136}$	138	164	178	200	213	204	206	243	${ }^{261}$
6	Pom6	254	254	154	154	120	136	170	170	201	212	206	230	243	250
7	ром 7	250	254	154	154	136	136	170	170	191	201	206	206	247	250
8	PoM 8	254	254	154	154	120	120	164	170	212	212	205	205	239	250
	ром9	254	254	154	154	120	136	170	170	201	212	206	230	243	250
10	Ром 10	246	254	154	154	120	128	170	178	207	212	${ }^{205}$	218	250	252
11	POM 11	246	254	154	154	118	120	164	170	238	242	${ }^{223}$	236	239	250
12	POM 12	246	254	154	154	136	136	164	170	212	219	205	230	239	250
13	PoM 13	246	246	154	156	118	136	164	174	215	240	230	236	239	250
14	PоM 14	254	254	154	154	120	136	164	170	221	236	205	205	244	250
15	POM 15	246	254	154	154	${ }^{120}$	${ }^{136}$	164	170	212	219	205	230	239	250
16	PoM 16	254	254	154	154	120	120	164	170	212	212	205	205	239	250
17	Pom 17	254	254	154	154	${ }^{120}$	136	164	170	${ }^{212}$	219	205	${ }^{205}$	243	${ }^{261}$
18	PoM 19	246	254	154	156	120	${ }^{136}$	164	170	201	213	206	230	239	250
19	Ром 20	246	254	149	156	120	136	164	170	180	236	204	206	261	261
20	POM 22	246	254	154	156	120	${ }^{136}$	164	164	213	225	206	236	250	250
${ }^{21}$	Pom 23	254	254	154	154	${ }^{120}$	120	170	170	201	212	206	206	244	250
22	POM 24	254	254	154	154 154 154	120 136	136	170	170	${ }^{201}$	212	206	230	243	250
23	POM 25	260	262	149	154	${ }^{136}$	146	164	164	197	240	230	230	261	${ }^{261}$
24	POM 26	246	254	154	154	120	120	164	164	219	225	205	230	250	250
25	PoM 27	254	262	154	158	${ }^{120}$	136	164	170	209	240	${ }^{214}$	${ }^{220}$	239	${ }^{261}$
26	POM 28	254	${ }^{254}$	154	154	120	136	164	170	201	212	205	205	244	250
27	POM 29	246	254	154 154 154	154 154 154	${ }^{136}$	${ }^{136}$	164	170	${ }^{212}$	219	205	230	239	250
28	Pom 30	246	254	154	${ }^{154}$	${ }^{120}$	136	164	170	${ }^{238}$	${ }^{240}$	230	230	239	${ }^{242}$
29	Ром 31	254	254	154	154	120	136	170	170	201	212	205	${ }^{205}$	${ }^{239}$	${ }^{261}$
30	Ром 32	254	254	154	154	120	120	164	164	212	212	204	206	229	250
31	PoM 33 Pou 34	254	$\begin{array}{r}254 \\ \hline 25 \\ \hline\end{array}$	${ }_{149}^{149}$	156 156 156	120 120	136 136	164 164	178 170	197 180	${ }_{2}^{215}$	206 204	${ }_{2206}^{223}$	239	250 261
${ }_{33}^{32}$	Pom 34 Pon 35	${ }_{254}^{246}$	$\begin{array}{r}254 \\ \hline 254 \\ \hline\end{array}$	149 154	156 154 1	120 120	136 120	164 164	170 170	180 212	236 212	204 205	206 205	261 239	261 250
34	POM 36	254	${ }_{254}^{254}$	${ }_{154}$	${ }_{154}$	120	120	164	164	212	212	204	206	229	250
35	Ром 37	246	254	154	154	120	136	164	170	238	240	230	230	239	239
36	Ром 38	246	${ }^{254}$	154	${ }^{156}$	${ }^{120}$	153	164	164	212	212	205	205	239	250
37	Pom 39	250	254	156	156	120	136	164	164	238	240	206	206	243	261
	POM 40	246	254	154	154	120	120	164	164	219	225	205	230	250	250
39	PoM 41	246	254	154	154	120	120	164	164	219	225	205	230	250	250
40	Achilles * (Balsgrard)	254	254	154	156	120	137	164	170	201	238	205	205	250	261
41	Akilles * (Alnap)	254	254	154	${ }^{156}$	${ }^{120}$	${ }^{136}$	164	170	201	238	205	205	250	260
42	Alicant (Balsgagrd)	254	254	154	156	120	136	170	170	212	238	205	205	244	261
	Alicant (Alarap)	254	254	154	$\begin{array}{r}156 \\ \hline 154\end{array}$	${ }^{120}$	${ }^{136}$	170	170	212	238	205	${ }^{205}$	244	${ }^{261}$
44	Aaron *	254	254	154	154	120	120	164	170	201	212	205	205	239	239
45	Bjïm K.	246	254	154	156	120	${ }^{136}$	170	170	212	212	205	230	250	261
46	Bloodhound *(Balsgard)	246	254	154	154	${ }^{136}$	${ }^{136}$	164	164	201	212	205	${ }^{205}$	239	261
47	Bloodhound * (Alaap)	246	254	154	154	${ }^{136}$	136	164	164	201	212	205	205	239	261
	Dr. Tömmarck *	254	256	149	156	${ }^{120}$	128	170	178	180	217	226	230	235	261
	Flotskiar froina	254	254	154	156	120	136	164	170	201	238	205	205	250	261
50	Flotskair roda	246	254	154	156	120	136	164	170	212	236	206	206	250	261
51	Frick	246	254	154	154	118	120	164	174	225	240	223	230	242	250
52	Himommien keltainen *	246	254	149	156	120	136	164	170	180	236	204	206	261	261
53	Houghon	254	271	149	156	$m v$	mv	164	178	200	213	204	206	229	261

Analysed	accessions	92-H21		g2-J08		92-L17		gr2-J05		MTT-5		RLJ-7		RLJ-11	
54	Hönings Früheste	246	254	154	154	120	136	164	170	212	219	205	230	250	250
55	Industry *	254	254	154	154	120	120	164	170	212	212	205	205	239	250
56	Invicta	246	254	153	153	120	153	164	164	212	212	205	205	239	250
57	Jakob *	254	254	154	154	120	120	170	170	201	240	206	206	250	261
58	Kalvstorp	246	254	154	156	118	120	164	170	213	238	230	230	239	250
59	Catharina Ohlenburg *	254	256	154	154	120	120	164	170	201	212	205	205	239	239
60	Kerstin M.	246	271	149	156	136	138	164	178	200	213	204	206	244	261
61	Kopparbro	254	254	154	154	118	120	164	174	212	214	214	223	250	261
62	Kozachok	254	262	154	156	131	139	176	176	221	225	206	206	235	250
63	Landströms gröna * (Balsgår)	246	254	154	154	120	136	170	170	201	219	205	205	239	244
64	Landströms gröna * (Alnarp)	246	254	154	154	120	136	170	170	201	219	205	205	239	244
65	Landströms gröna (Avvikande)	246	254	154	160	120	136	170	186	201	217	205	205	243	261
66	Lilla busken - Slata bär	246	246	154	156	136	136	$m v$	$m v$	212	212	206	230	239	239
67	Linda	254	254	154	156	120	120	164	164	223	225	205	205	250	250
68	Linköping	254	254	154	156	120	136	164	170	216	238	205	205	250	261
69	London *	254	254	154	154	120	136	170	170	212	212	205	205	239	250
70	Lottas	254	254	154	156	120	136	164	170	212	236	205	205	250	261
71	Mette P.	254	254	154	156	120	120	164	170	212	238	205	205	239	250
72	Mountain * (Alnarp)	254	258	154	156	132	145	170	178	211	211	206	212	231	261
73	Mountain * (EPS)	254	258	154	156	132	145	170	178	211	211	206	212	231	261
74	Olavi	246	254	149	156	120	136	164	170	180	236	204	206	261	261
75	Perle von Münchenberg	246	254	156	172	120	153	164	164	191	238	206	228	247	250
76	POM garaden 1	254	254	154	154	120	136	170	170	201	212	206	230	243	250
77	POM gàrden 2	254	254	154	154	120	136	170	170	201	212	206	230	243	250
78	POM okänd 1	246	246	154	154	136	136	164	164	219	240	205	230	241	250
79	POM okänd 2	254	256	154	154	120	136	164	170	201	238	205	205	250	261
80	Resistenta	246	254	156	172	120	153	164	164	191	238	206	206	243	250
81	Robustenta	250	254	156	156	120	136	164	164	238	240	206	206	243	261
82	Ronja	248	254	154	154	120	136	170	170	195	212	206	206	250	250
83	Roskil	254	254	154	156	120	136	164	178	215	225	206	206	250	261
84	Sandgren	254	254	154	154	120	136	170	170	201	212	206	230	243	250
85	Scania	254	271	149	156	138	141	164	178	200	213	204	206	229	261
86	Smedjebacken	246	254	149	156	120	136	164	170	180	236	204	206	261	261
87	Smiling beauty	246	254	154	156	120	136	164	170	221	236	205	205	250	261
88	Snickarmoa	254	254	154	158	136	136	164	164	201	209	205	205	244	250
89	Sofiero 3	254	254	154	156	120	136	170	170	212	238	205	205	243	261
90	Sofiero 4	254	254	154	154	120	120	164	170	$m v$	$m v$	205	205	239	239
91	Sofiero 5	254	254	154	156	120	136	164	170	201	238	205	205	250	261
92	Sofiero 6	254	254	154	154	120	120	164	170	201	212	205	205	239	239
93	Sofiero 7	254	254	154	154	120	120	164	170	212	212	205	205	239	250
94	Spine free	260	271	149	154	133	138	178	178	200	200	212	214	237	261
95	Stor buske - Päronträd	254	254	154	154	120	136	164	170	201	212	205	230	239	239
96	Stora busken - Landet	254	254	154	154	120	120	164	170	201	212	205	205	239	239
97	Söderbrunn	254	256	154	154	120	120	164	170	201	212	205	205	239	244
98	Trasher white	246	254	149	154	120	136	164	164	180	212	205	205	239	261
99	Villa Virginia	246	254	154	156	120	136	170	170	212	215	205	230	250	261
100	Worchester	254	256	154	170	136	136	177	177	212	219	205	210	237	250
101	Worchesterberry	246	246	154	162	120	149	164	164	198	225	202	205	237	250
102	Ångermanlands röda *	246	246	154	154	118	136	164	164	$m v$	$m v$	205	223	239	241
103	Åsgatan	254	271	149	156	120	138	164	178	200	213	204	206	229	261
104	Österhammarsbruk	246	262	154	154	118	136	164	170	240	240	230	230	239	250
105	Övertjärn	246	254	154	154	118	120	164	164	225	238	223	223	241	241

Appendix 2

Allele frequencies with graphs by locus for codominant data.

RLJ-11

Acknowledgements

I would like to express my gratitude to my main supervisor Larisa Gustavsson for the overall supervision during the project, and a special thanks to my co-supervisors Jonas Skytte Af Sätra and Helena Mattisson for all valuable help with statistics and supervision in the laboratory. I would also like to express my gratitude to Eric Droz who provided very useful information about both SSR loci and experimental conditions. A special thanks to Inger Hjalmarsson from the Swedish National Gene Bank who shared her expertise in the area and shared valuable thoughts during the project. Lastly, I would also like to thank my closest friends and family (especially my dear mother) for all encouragement and support during this project.

Publishing and archiving

Approved students' theses at SLU are published electronically. As a student, you have the copyright to your own work and need to approve the electronic publishing. If you check the box for YES, the full text (pdf file) and metadata will be visible and searchable online. If you check the box for NO, only the metadata and the abstract will be visible and searchable online. Nevertheless, when the document is uploaded it will still be archived as a digital file.

If you are more than one author you all need to agree on a decision. Read about SLU's publishing agreement here:
https://www.slu.se/en/subweb/library/publish-and-analyse/register-and-publish/agreement-for-publishing/
\boxtimes YES, I/we hereby give permission to publish the present thesis in accordance with the SLU agreement regarding the transfer of the right to publish a work.NO, I/we do not give permission to publish the present work. The work will still be archived and its metadata and abstract will be visible and searchable.

