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Globally, as well as in Sweden, the occurrence of droughts is expected to increase 
due to global warming. The drought summer of 2018 revealed the vulnerability of 
Sweden’s agriculture – with cereal yield losses of up to 50 %. Subsequently, the 
development of more resilience crop production systems to mitigate future droughts 
is required. Precision agriculture practices (PAP), widely applied in Sweden, are 
promising to base such developments upon. Hence, the aim of this study was to 
investigate the potential usage of topography for site-specific decision support, to 
extend PAP for advanced drought management in Sweden. Therefore, the drought 
effect along the study period (between crop development stages DC31-DC75) on 
crop growth development and related to field topography was assessed in a dry year 
(2018) and compared to a non-dry year (2019). Two common cereals i.e., winter 
wheat and spring barely were selected to conduct this study. The study area was in 
the south-eastern region of Skåne in Sweden. The scale varied from the whole study 
area to within the field. Crop growth development was monitored using different 
vegetation and drought indices i.e., normalized difference vegetation index 
(NDVI), normalized difference red-edge index (NDRE), normalized difference 
water index (NDWI) and the normalized difference drought index (NDDI). 
Topography was analysed at and within the field using different topographic indices 
i.e., slope, relative height (RE) and the topographic wetness index (TWI). The data 
required to conduct this study was publicly available and consisted of a high-
resolution digital elevation model, Sentinel-2 remote sensing data, weather data, 
field polygon as well as soil texture data.  
Overall, the results clearly showed an average NDVI, NDRE and NDWI reduction 
over the study period in 2018 compared to 2019 for both cereals; this reduction was 
about 25 %, 32 % and 58 % for winter wheat and about 36 %, 43 % and 69 % for 
spring barley. Topographic related within-field crop growth variations were 
prominent under dry conditions in 2018 and not present under non-dry conditions 
in 2019. Within-field crop growth variation increased with an increase in average 
field slope under dry conditions. The TWI was the most promising index explaining 
within-field crop growth development. Further studies should include other site-
specific field characteristics besides topography to better delineate within-field 
drought management zones for PAP.  
 

Keywords: drought, topography, precision agriculture, Sentinel-2, DSS 
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Title: Precision farming - a promising tool to better cope with 
droughts in the future?  
 
What picture do you have in mind when you think about drought? I always think 
about this ancient story where no rain had fallen for several years. Where acres were 
bare, and food was scarce. If you just thought about one of these really hot summer 
days, that’s also fine. However, if you live in Europe, you might remember the hot 
and dry summer of 2018. During that summer, massive yield losses with decreases 
of up to 50 % in cereals were observed in Sweden. At some places, farmers even 
needed to emergency slaughter their livestock since fodder was scarce. Although, 
the drought of 2018 was not directly noticeable for end-consumers in Swedish 
supermarkets, yet the economic impact for farmers was huge. One could now argue 
that droughts, as observed in 2018, are unlikely to occur every year and are just 
seldomly appearing extreme events - so why even bother? Researchers from around 
the globe elaborated, that extreme events, such as droughts, are more likely to occur 
in the future than they did in the past, due to global warming. Subsequently, new 
ways to better cope with droughts to counteract yield losses and to ensure food 
security in the future need to be developed. A promising concept to increase the 
overall farming efficiency is called precision agriculture. This form of agriculture 
intends to manage agricultural inputs, such as fertilizer, pesticides, or water site-
specifically. In contrast, conventional farming methods homogenously manage 
these inputs in the field with constant input rates. Nevertheless, for precision 
agriculture to work, decision support systems providing information on optimal 
farming inputs at the field level are required. However, at the current state precision 
agriculture practices do not incorporate any decision support for advanced drought 
management in Sweden. Consequently, this study aimed to bridge this gap – 
elaborating ways on how to possibly use topographic data for advanced drought 
management. Several studies from around the world already investigated field 
topography in relation to yield variability under dry conditions. All these studies 
incorporated the basic idea that crop water stress and thus crop growth variability 
can potentially be linked to field topography. Predicting soil and crop water status 
by topography seems logical, if you think about the relation of water flow linked to 
earths gravitational field. However, for Sweden, no study of topography in relation 
to crop growth variability has been conducted yet. Therefore, in this study, non-
drought (summer 2019) conditions were compared to drought conditions (summer 
2018) by monitoring crop growth development of two common cereals cultivated 
in Sweden (i.e., winter wheat and spring barley) and in relation to field topography. 
Freely available data was used such as satellite remote as well as a high-resolution 
digital elevation model. 

Popular scientific summary



 

 

Overall, the results of this study showed an inhabited crop growth of winter wheat 
and spring barley during drought conditions in comparison to none-drought 
conditions. Winter wheat was less affected compared to spring barley – indicating 
a higher drought resilience of winter cultivars compared to spring cultivars. When 
speaking of topography linked to crop growth development, the results showed that 
topography is influential in explaining within-field crop growth variability. Within-
field crop growth variations related to topography were only prominent under dry 
conditions in 2018 and not present under non-dry conditions in 2019. Overall, this 
study could show that topography is a major player in explaining within-field crop 
growth variability, especially under dry conditions. The results provided indications 
of topography potentially being useful in decision support systems for advanced 
drought management. Nevertheless, further research is needed to elaborate how to 
delineate within-field management zones in the best possible way to enable 
advanced within-field drought management. 
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The frequency of droughts is expected to increase in the 21st century due to global 
warming (Cook et al. 2014). An increased drought probability in the upcoming 
decades is elaborated in IPCC’s special report on global warming of 1.5 °C (IPCC 
2018). In this context and linked to world population growth, global agriculture is 
pressured to ensure food security (Godfray et al. 2010; Wheeler & Braun 2013). At 
the same time the environmental impact of global food systems needs to be reduced, 
when considering earths planetary boundaries (Rockström et al. 2009; Campbell et 
al. 2017; Meier 2017). Hence, today’s and tomorrow's agricultural systems are 
required to transform towards more resilient and resource efficient production 
systems, in order to adapt to present and future challenges (Howden et al. 2007; 
Lipper et al. 2014).  
 
In 2018, Sweden was affected by an extremely warm summer (Sinclair et al. 2019; 
Wilcke et al. 2020). As mentioned by Wilcke et al. (2020) the probability for the 
occurrence of such a hot and dry summer, has increased compared to the pre-
industrial era (1861–1890), as a consequence of global warming. Furthermore, the 
summer of 2018 revealed the vulnerability of Swedish agricultural systems to 
drought. Overall, 90 % of agricultural production area is rainfed in Sweden 
(Grusson et al. 2021). Subsequently, cereal production decreased by up to 50 % in 
2018 when compared to the average yield data from 2013-2017 (SCB 2019). Under 
the circumstances of global warming an increased frequency and drought severity 
coming along with an increase in evapotranspiration and changes of regional 
precipitation patterns are expected in the future (SMHI 2019). Consequently, the 
necessity for measures and tools enabling an advanced drought management is 
outlined.  
 
Precision agriculture is a promising technology to incorporate such measures. It has 
the potential capability to manage agricultural inputs (for example: water, fertilizer, 
pesticide etc.) site-specifically, respecting local field characteristics. Principally, 
precision agriculture aims to enhance crop growth while reducing environmental 
impacts by increasing its resource use efficiency via the optimization of returns in 
comparison to inputs (Pierce & Nowak 1999; Gebbers & Adamchuk 2010; Santos 
Valle & Kienzle 2020). Nonetheless, to counteract yield gaps in response to 

1. Introduction 
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agricultural drought using precision agriculture practices (PAP), decision support 
systems (DSSs) are required. Such DSSs provide site-specific information at the 
field level. 
 
High resolution digital elevation models (DEM) are a valuable resource to be 
included in DSSs for PAP. A number of benefits of DEMs such as decision support 
for seeding, fertilizing, usage of pesticide or water management are mentioned in a 
study by Sugarbaker & Carswell, Jr. (2016). Several studies have been conducted 
linking yield variability to topography at the field level considering dry and non-
dry conditions. These studies provided evidence that within-field yield variations 
can potentially be explained by topography. Most of these studies utilized within 
field yield data, which were linked to different topographic indices. Marques da 
Silva & Silva (2008) stated the influence of field topography influencing average 
maize yield considering elevation and slope. Kaspar et al. (2003) outlined the 
possibility for an site-specific management based on a negative correlation between 
corn yield and relative height/slope in years with less than average precipitation and 
a positive correlation in years with higher than average precipitation, during 
growing season. Kumhálová et al. (2011) found a significant link between field 
topography and crop yield as well as crop nutrient concentration. In another study, 
they found that the leverage of topography on yield variability was very low in wet 
years, while it was elevated in dry years (Kumhálová et al. 2011; Kumhálová & 
Moudrý 2014). In turn, this indicated a stronger relation of topography and crop 
yield under warm and dry conditions. The fact of topography being more influential 
on yield in dry years in comparison to wet years was confirmed by Chi et al. (2009) 
in a study on winter wheat in Canada. Maestrini & Basso (2018) investigated the 
within-field temporal yield variability in relation to field topography utilizing the 
topographic wetness index (TWI). They analysed high-resolution yield monitor 
data of 338 fields in the Midwest - US. As a result, the authors identified three 
different zones in terms of yield stability: zones with low and stable yields (low 
TWI, relatively dry zones), zones with high and stable yields (mid-high TWI) and 
zones with unstable yields, waterlogged in wet years (high TWI – field 
depressions). In a study from Sweden by Delin & Berglund (2005), soil electric 
conductivity and field topography was used to divide a field into management zones 
more or less vulnerable to drought or water logging. Iqbal et al. (2005) found a 
reduced cotton lint yield in areas with higher elevation, suffering from stress more 
often.  
 
Overall, the above-mentioned studies elaborated topography as a site-specific 
characteristic, being capable in explaining within-field yield variability, especially 
under dry conditions. Additionally, some of these studies suggested potential 
opportunities to implement topography as a site-specific characteristic in PAP. 
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However, only few research has been conducted investigating a relation of 
topography under dry conditions on crop growth in Sweden. Yet no study 
elaborated how high resolution DEMs that are commonly available, could 
potentially be used in PAP in Sweden. Consequently, this study aimed to bridge 
this gap in knowledge. Therefore, the influence of a very dry year (2018) in 
comparison to a non-dry year (2019) on crop growth was investigated. To evaluate 
whether and how topography could potentially be utilized, the drought effect on 
crop growth was related to topography. Two prominent cereals cultivated in 
Sweden i.e., winter wheat (Triticum aestivum L.) and spring barley (Hordeum 
vulgare L.) were selected to conduct this study. Instead of relating topography to 
cereal yields as most of the before mentioned studies, in this study the crop growth 
development was monitored using different vegetation and drought stress indices. 
Subsequently, the following vegetation indices were utilized in this study: the 
normalized difference vegetation index (NDVI), the normalized difference red-
edge index (NDRE), the normalized difference water index (NDWI) and the 
normalized difference drought index (NDDI). With the outputs gained, 
implementation options for precision agriculture were suggested in the discussion 
part of this study.  

1.1. Aim 

The aim of this study was to investigate a possible relation between topography, as 
a site-specific characteristic and crop growth of two typical field crops (i.e., winter 
wheat and spring barley) under dry and non-dry conditions in Sweden. 
 
The aim of this study was achieved by:  

1. Selection of one dry and one non-dry year out of the years 2017 – 2020, in 
comparison to the long-term 30-year average (LTA) of precipitation and 
temperature. 

2. Topography (using relative height, slope, and TWI indices) and soil 
texture assessment of all arable fields within the study area. 

3. Multi-scale assessment of the spatiotemporal crop growth development 
using different vegetation and drought indices, from within- field to all 
fields. 

4. Discussion of opportunities on implementing topography as site-specific 
for PAP under Swedish conditions. 
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2.1. Crop development stages of cereals 

This study refers to the internationally accepted scale describing crop development 
of cereals proposed by Zadoks et al. (1974). The scale is based on a two-digit code 
system. The first digit code (as described in Tab. 1 below) divides the cereal crop 
development into nine main development stages. The second digit as outlined in 
the original paper describes temporal crop development with a higher level of detail 
(Zadoks et al. 1974). This study mainly focused on the crop development stages 
DC31–DC75 (stem elongation, booting, inflorescence emergence, anthesis and 
milk development), being most applicable for satellite-based vegetation sensing. 
Between DC31 – 75, the cereal matures and starts to turn yellow. Before DC31 
satellite-based vegetation sensing is difficult since the vegetation canopy is not 
dense enough to be remotely detected and after DC75 it is not meaningful since the 
cereal naturally dries and turns yellow.  

1-digit code Description 

0 Germination 

1 Seedling growth 

2 Tillering 

3 Stem elongation 

4 Booting 

5 Inflorescence emergence 

6 Anthesis 

7 Milk development 

8 Dough development 

9 Ripening 

2. Background

Tab. 1 The nine main crop development stages of cereals and there corresponding first digit code 
copied from the original paper by Zadoks et al. (1974). 
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2.2. Sentinel-2   

Remote sensing is wildly used for agriculture purposes such as land use monitoring, 
vegetation sensing, crop yield forecasting or crop stress monitoring (Segarra et al. 
2020; Weiss et al. 2020). The Sentinel-2 mission launched by the European Space 
Agency (ESA) in 2015 is a fundamental source of high quality and publicly 
available remote sensing data (ESA 2021c). Two polar-orbiting satellites (S2A & 
S2B) are phased by 180 ° to each other, leading to a temporal resolution of five 
days at the equator (ESA 2021c). The temporal resolution is even higher (up to two 
days) closer to the poles due to overlapping orbits. Both satellites are carrying 
sensors which are capable to detect 13 different spectral bands in various 
resolutions 10 – 60 m (Tab. 2). For this study, the following bands were used: B4 
(nominal red) and B8 (broad band near infra-red) in 10 m resolution and B5 (red 
edge), B7 (red edge), B8A (narrow near infrared), B11 (short wave infrared) in 20 
m resolution. 

  

Band Resolution 

(m) 

S2A - λ 

(nm) 

S2A – width 

(nm) 

S2B - λ 

(nm) 

S2B – width 

(nm) 

Band 1–Coastal aerosol 60 442.7 21 442.3 21 

Band 2–Blue 10 492.4 66 492.1 66 

Band 3–Green 10 559.8 36 559.0 36 

Band 4–Red 10 664.6 31 665.0 31 

Band 5–Vegetation red edge 20 704.1 15 703.8 16 

Band 6–Vegetation red edge 20 740.5 15 739.1 15 

Band 7–Vegetation red edge 20 782.8 20 779.7 20 

Band 8–NIR* 10 832.8 106 833.0 106 

Band 8A–Narrow NIR* 20 864.7 21 864.0 22 

Band 9–Water vapour 60 945.1 20 943.2 21 

Band 10–SWIR–Cirrus 60 1373.5 31 1376.9 30 

Band 11–SWIR** 20 1613.7 91 1610.4 94 

Band 12–SWIR** 20 2202.4 175 2185.7 185 

Tab. 2 Sentinel-2 spectral bands in nm. *near infrared (NIR); **shortwave infrared (SWIR) (ESA 
2021a). 
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2.3. Vegetation indices  

Three different vegetation indices were calculated based on the spectral bands 
provided by the Sentinel-2 mission in this study i.e., NDVI, NDRE and NDWI. 
Furthermore, based on NDVI and NDWI the NDDI was calculated.  

NDVI  

The NDVI vegetation index is ranging from -1 – 1 and is calculated using near 
infra-red light reflectance (NIR) and red visible light reflectance (nominal red) 
(Kriegler et al. 1969). The NDVI is derived based on the fact that healthy vegetation 
absorbs red light in the process of photosynthesis (chlorophyll absorbance) but 
reflects almost all NIR radiation (0.7 – 1.3 µm) due to the internal leaf structure of 
crops (scattering at mesophyll and epidermis cells) (Knipling 1970). Under stress 
conditions NIR reflectance and red light absorbance alter, due to changes in the 
individual leaf structure, as well as due to reduction of the total leaf area (Knipling 
1970). Thus, NIR reflectance decreases relatively more than red light absorbance 
(Knipling 1970). Hence, high values of NDVI are found in dense and healthy 
vegetation, whereas values close to zero are representative for bare land or 
vegetation suffering from drought possibly. NDVI was calculated (Rouse et al. 
1974) using Sentinal-2 bands B8 and B4 (eq. 1 below). 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 −  𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑅𝑒𝑑 

𝑁𝐼𝑅 + 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑅𝑒𝑑
=  

𝐵8 − 𝐵4

𝐵8 + 𝐵4
 

[eq. 1] 

NDWI 

The NDWI vegetation index is complementary to the NDVI and was first proposed 
by Gao (1996). This index was suggested for remote sensing of liquid water in 
vegetation (Gao 1996). The index is calculated using NIR reflectance and short-
wave infrared reflectance (SWIR) of vegetation. Absorption of NIR due to 
vegetation liquid water is negligible, whereas weak SWIR absorption due to the 
presence of the vegetation water content occurs (Gao 1996). Negative values of 
NDWI are expected to be found in water-stressed vegetation and positive values in 
vegetation with good water status (Gao 1996). In the literature two different 
formulas were identified to calculate NDWI using the spectral bands provided by 
the Setninel-2 mission. Djamai & Fernandes (2018) estimated the NDWI using 
bands B12 and B8A; Zhang et al. (2017) are using B11 and B8A. In this study, the 
formula presented by Zhang et al. (2017) was used since the wavelength of B11 
(see Tab. 1) is closer to the original paper by Gao than B12 (eq. 2).  
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𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
=  

𝐵8𝐴 − 𝐵11

𝐵8𝐴 + 𝐵11
 

[eq. 2] 

NDRE 

The normalised difference red-edge vegetation index is similar to the NDVI, but 
uses red-edge bands instead of nominal red (Sims & Gamon 2002). There are 
several calculation options available for this index when it is based on Sentinal-2 
spectral bands. Wolters et al. (2021) used NDRE85 (bands 8 and 5) and NDRE86 
(bands 8 and 6), see Tab. 2. However, in this study NDRE75 (bands 7 and 5) was 
used based on the research by Söderström et al. (2021). The research of Söderström 
et al. (2021) showed that NDRE75 can potentially be used as a key index to model 
within-field yield variability of winter wheat. Comparing NDVI and NDRE, the 
NDRE has a higher chlorophyl content sensitivity and tends to gets saturated later 
in the season (Li et al. 2014; Thilakarathna & Raizada 2018).  
 

𝑁𝐷𝑅𝐸75 =
𝐵7 − 𝐵5 

𝐵7 + 𝐵5
  

[eq. 3] 

NDDI 

The NDDI is calculated based on NDVI and NDWI, being a more sensitive 
indicator for drought (Gu et al. 2007). High NDDI values represent drought 
conditions, while low values (close to zero) represents non-drought conditions (Du 
et al. 2018). The NDDI combines the properties of NDVI (detecting vegetation 
health and density) and NDWI (sensitive to vegetation liquid water content) (Du et 
al. 2018).  
 

𝑁𝐷𝐷𝐼 =  
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑊𝐼

𝑁𝐷𝑉𝐼 + 𝑁𝐷𝑊𝐼
 

[eq. 4] 
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2.4. Topography and water availability 

Soil water-content can vary within the field based on topography, since water flow 
is related to earths gravitational field (Murphy et al. 2009). Subsequently, the soil-
water flow direction is downhill under saturated conditions. In hydrology, 
topography is widely used to predict water-flow or soil-water availability within a 
catchment (Beven 2011). TOPMODEL, a rainfall-runoff model, predicts soil water 
content based on TWI (Quinn et al. 1995). Other examples on how topography is 
used in hydrology range from catchment delineation to flow accumulation models. 
Digitally, topographic information is mostly available as a DEM, representing the 
surface topography (USGS 2021). As mentioned in the introduction, within-field 
yield variability can be, to some extent, explained by within-field variation of 
topography especially in the dry years. Overall, explaining within-field crop growth 
variations by topography assumes that within-field water availability can be related 
to within-field topography. Hence, in the context of this study topography dares to 
reflect upon the soil-water availability within the field. Therefore, three different 
topographic indices i.e., relative elevation (RE), slope (in %) and TWI were 
selected and derived from a high-resolution DEM (as shown below) to investigate 
within-field crop growth variability.  

Relative elevation:  

RE was calculated at the field level, by subtracting the lowest pixel elevation-value 
from all other pixel elevation-values as proposed by Kaspar et al. (2003). 

Slope: 

Slope in % was calculated at the pixel level using the “Zevenbergen & Thorne 
formula” for smooth landscapes in GDAL (GDAL/OGR contributors 2021). 

Topographic wetness index: 

TWI maps were generated at the field level using the r.topidx feature in GRASS 
GIS 7.8.5 (GRASS Development Team 2020). The TWI was first introduced by 
Quinn et al. (1995) and was estimated at the pixel level as described by Mattivi et 
al. (2019) using eq. 6 below. 

 

𝑇𝑊𝐼 = ln ൬
𝑆𝐶𝐴

𝑡𝑎𝑛𝛽
൰ 

[eq. 5] 
SCA = pixel specific catchment area  
tanβ = slope angle 
 
The TWI assumes that water flow is regulated by topography, implying that soil 
moisture can spatially be predicted by TWI (Schmidt & Persson 2003). 
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Subsequently, high TWI values occur in flat – converging terrain, while low TWI 
values are found in steep – diverging areas (Schmidt & Persson 2003) 

2.5. Statistics  

The statistical analysis in this study was carried on using the boxplot analysis 
developed by Spear (1952). A boxplot is a way of visualization any given set of 
data by its quartiles. The second quartile (Q2 or median) divides a dataset into two 
groups which are equal in size. The first quartile (Q1) divides the data in two groups 
were all values below Q1 and above Q1 represent 25 % and 75 % of the total dataset, 
respectively. The third quartile (Q3) divides the data into two groups were all values 
above Q3 and below Q3 represent 25 % and 75 % of the total dataset, respectively. 
The range between Q1 – Q3 is called interquartile range and represents 50 % of the 
data (Fig. 1 below).  

 

Fig. 1. A: Boxplot of the normal distribution shown in B without outliers. B: normal distribution 
with a standard deviation equal to one (µ = 1). 
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This study consists of three main parts, as shown in Fig. 2. In the first part, the 
definition of the study boundaries (i.e., study area, crops, and timeframe) and the 
preparation of the required datasets were carried out. In the second part the main 
analysis was conducted (i.e., multi-scale assessment of crop growth in relation to 
drought and topography as well as to soil texture). In part three, the results were 
discussed to elaborate possible implementation options for in precision agriculture 
in Sweden.  

3.1. Study area and materials  

3.1.1. Study area  

The study area is located in Österlen in the very south-eastern part of Sweden in the 
province of Skåne (see Fig. 3). This area was chosen for several reasons: the 
intensive cultivation of cereals, the high topographical variation, and its high 
vulnerability to drought in the Swedish context. The area is enclosed within the 
following coordinates: 55°22'14.045" - 55°56'38.674" N; 13°48'55.222" -
14°21'39.703" E. The elevation ranges from sea level to 188 m in the study area. 

3. Material and methods

Fig. 2. Overview of the method of this study. 
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The area size is about 1,246 km2, of which 62 % (775 km2) is arable land 
(Swedish Board of Agriculture 2018-2020).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.2. Study period 

The study period was chosen relevant to the crop development stages DC31–DC75. 
Hence, this period was ranging approximately from the end of April to the end of 
July for winter wheat and from the beginning of May to the beginning of July for 
spring barley. Two years i.e., 2018 and 2019 were selected, based on the drought 
feature analysis (section 3.3) out of the period 2017–2020, where Sentinel-2 data 
was available. 

3.1.3. Crops  

In Swedish agriculture, cereal production holds a dominant share, with around 40 % 
of all arable land utilized (Swedish Board of Agriculture 2009). In accordance with 
the Swedish Board of Agriculture about 44 % and 28 % of total cereal yield 
accounted for wheat and barley in 2007. Thus, two of the most grown cereals in 
Sweden i.e., winter wheat (WW) and spring barley (SB), were selected to conduct 

Fig. 3. Study area enclosed in red boundaries (basemap: 
Wikimedia OSM). 
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this study. Photos representing the different growth stages of WW are shown in 
Fig. 4. Between 2018-2019 on average 18.2 % of all arable land within the study 
area was cultivated with WW, while on average 17.4 % was cultivated with SB (see 
Tab. 3 below).  

 

Tab. 3. Arable land in the study area used for winter wheat and spring barley production in 2018 
and 2019 (Swedish Board of Agriculture 2018 - 2020). 

3.2. Data and data preparation  

The data required to conduct this study is free of charge and included: a digital 
elevation model, meteorological data, satellite images, soil type data and field 
polygon data.  

3.2.1. Weather data 

Daily precipitation in mm (P) and daily mean Temperature in °C (T), were 
downloaded from the Swedish Meteorological and Hydrological Institute (SMHI 
2020), for the years 2017–2020. In total eight P-Stations, having a full record for 
the years 2017–2020, were available within or close to the study area (Fig. 8). Daily 

Year All fields (km2) Winter Wheat (km2) Spring Barley (km2) 

2018 774.2 128.7 156.5 

2019 776.2 154.6 114.6 

Fig. 4. Crop development stages of winter wheat (Triticum aestivum L.) between DC31–DC73 
(photos by Kristin Piikki). 
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mean temperature data was obtained from two stations (Fig. 8). Historical 
precipitation data from 1991–2020 was available from four of the eight weather 
stations i.e., Lövstad, Tomelilla, Bollerup and Ystad. 

3.2.2. Digital elevation model (DEM) 

The digital elevation model used in this study was provided by Lantmäteriet. This 
dataset was originally derived from laser point data (Lidar) collected by airborne. 
The dataset is available for whole Sweden and is provided as tiles of 6.75 km2 size. 
To work more efficiently, 253 single “GeoTIFF” tiles in total were merged into one 
big file which was then clipped using the study area boundary. The horizontal 
resolution of this dataset is 2 m; the vertical uncertainty is 0.1 m (Lantmäteriet 
2021). Data was downloaded using SLU´s geo data extraction tool (GET 2021).  

3.2.3. Satellite images  

Satellite images were manually downloaded from the “Copernicus Open Access 
Hub” (https://scihub.copernicus.eu/) for the study period April-July in 2018 and 
2019 from both satellites S2A & S2B (ESA 2021b). The chosen product was Level 
2-A (“bottom of the atmosphere reflectance”). Images were downloaded 
independently of the cloud cover percentage (the chosen range was 0 to 90 % cloud 
cover). Clouds and cloud shadows were masked manually and then removed as 
shown in Fig. 5. Depending on the cloud cover magnitude, 0 – 93 % of the study 
area needed to be removed. In 2018, in total 15 images were available of which 
clouds needed to be removed from six; in 2019, five of 17 images were cloud-free. 
The actual Sentinal-2 coverage from April – July used for analysis are shown in 
Fig. 6. 

Fig. 5. Exemplary, process of cloud and cloud shadow masking and removal based 
on a RGB Sentinal-2 image (10 m resolution) captured at 26 of June 2019 for the 
area under study. A: original image. B: masked image. C: cloud and cloud shadow 
free image ready for further analysis. 
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Fig. 6. Sentinel-2 coverage after cloud and cloud-shadow removal in 2018 and 2019. The coloured areas 
(orange: 2018, blue: 2019) are showing the cloud free parts at the respective dates utilized for analysis. 
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3.2.4. Soil texture data  

Soil texture data was extracted from the digital soil map of Sweden (DSMS). Raster 
files are available for clay, silt, and sand content (in %) with a resolution of 50 m. 
The cell size was downscaled from 50 to 5 m, to ensure smooth clipping at the field 
boundary. The uncertainty of this dataset is described in details in the original paper 
by Piikki & Söderström (2019). In summary, the error of this dataset is < 8 % clay 
and <13 % sand in 75 % of the validation samples. The density of the validation 
soil samples was one per 3 hectares (Piikki & Söderström 2019). Soil clay, sand, 
and silt content maps were generated at the field level (Fig. 7). 

3.2.5. Field polygons  

Field polygons GIS layers, delineating all arable fields in the study area, were 
available from the Swedish Board of Agriculture (2018 - 2020). The dataset 
provides information about crop type, field size and the geographical location at the 
field level.

Fig. 7. Exemplary soil texture maps of sand (B), silt (C), and clay (A) content in %  for one winter 
wheat field (ID 239). 
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3.3. Drought feature analysis 

The selection of the studied years was based on the drought feature analysis. Since 
this study focused on DC31– DC75 of WW and SB, the analysis of P and T from 
April – July was most relevant. The drought feature analysis was substructure as 
outlined below:  

30-years climate average for P and T 

In accordance with the recommendations of the World Meteorological 
Organization (WMO 2015), the LTA of T and P was computed based on the time 
period 1991–2020, to identify a dry and a non-dry year. The precipitation records 
of the four weather stations had some data-gaps throughout 1991–2020. Hence, the 
ordinary mean precipitation was calculated based on three stations for the years 
1994, 1995, 2005, 2006, 2007 and 2015, while it was calculated based on four 
stations for the rest of the years respecting missing values. A complete temperature 
record was only available from Bollerup station. P and T values were aggregated 
annually and for the period April to July for all the years 1991 – 2021. Nonetheless, 
since the four stations are all located in the southern part of the study area. The LTA 
analysis is not representative for the total study area but provides approximative 
information on the climatic conditions in the region. 

P and T analysis of the years 2018 - 2019 

To gain a comprehensive understanding of P and T for the years 2018 – 2019, daily 
P and T data was analysed for each station separately. However, to summarize the 
results for the total study area the weighted average precipitation over the total study 
area was estimated based on the Thiessen polygon method. Thiessen polygons were 
automatically generated using the Voronoi Polygon feature in QGIS (QGIS 
Development Team 2021). Station weights were then calculated based on the 
fraction of the Thiessen polygon with respect to the total study area. The weighted 
average over the total study area was calculated using eq. 6 (Taesombat & 
Sriwongsitanon, 2009). Precipitation stations and their associated Thiessen polygon 
are presented in Fig. 8.  

𝑃் =  ෍ 𝑇௜𝑃௜

௡ୀ଼

௜ୀଵ

 

[eq. 6] 
PT = weighted average rainfall over the total study area 

Ti = gauged rainfall of station i 

Pi = station weight of station i  
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For T data the ordinary mean was calculated based on Skillinge and Bollerup 
station.  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Study area with Thiessen polygons for the drought feature analysis, 
weather stations, winter wheat and spring barley fields and elevation above 
sea level. Precipitation (P) and temperature (T) stations are shown as red and 
blue dotes. 

P 
T & P 

Weather Stations 
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3.4. Topography 

The topography of all arable fields (n = 19,022) in the study area was assessed by 
generating slope maps (slope in %) derived from the DEM for each field separately. 
The mean field slope (in %) was then estimated for each field and the data was 
summarized using the boxplot framework. Furthermore, investigating within-field 
topography was crucial when evaluating the effect of drought within the field. 
Besides slope RE and the TWI field-maps were elaborated from the DEM. RE, 
Slope and TWI field-maps were then divided into three zones for each field 
separately, based on the quartiles of the relative pixel distribution (<=Q1, Q1-Q3, 
>Q3). Example maps of one field for all topographic indices are presented in Fig. 9.  

3.5. Multi-scale crop growth development analysis  

Assessing the effect of drought in relation to topography by comparing dry and non-
dry conditions (2018 versus 2019) was a main objective of this study. Hence, the 
development of the different vegetation indices was investigated. Therefore, a time-
series analysis of NDVI, NDRE, NDWI and NDDI from beginning of April to the 
end of July was conducted. The general approach of this analysis and how it is 
structured is presented in the flowchart shown in Fig. 10. The approach is divided 
into three main parts, and it is identical for WW and SB. In the first part, the crop 
growth development at the field, of all arable fields cultivated with WW and SB in 
2018 and 2019 was analysed to evaluate the effect of the drought in 2018. The 
second part focused on linking crop growth development, at the field level to the 
average field slope. In the third part, crop growth development was analysed within 
the field and in relation to mean field slope topography. Generally, crop growth 
development was investigated at two different scales i.e., at the field and within the 
field, see Fig. 11 for further details. Furthermore, to display the spatiotemporal 
drought status at the field scale in an unbiased way, NDDI maps for WW and SB 
were generated. Throughout the analysis field polygons were buffered to the 
interior by 10 meters to reduce noise signals from streets, field-tracks, or buildings 
close to the field.  
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Fig. 9. Within-field topography for one winter wheat field (ID 239). RE raster (A) and RE divided into three zones (A1). Slope raster (B) and Slope 
divided into three zones (B1). TWI raster (C) and TWI divided into three zones (C1); zoning was based on the quartiles of the pixel distribution. 
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3.5.1. Crop growth development  

To assess the effect of drought on crop growth development, a time series analysis 
of the mean values of NDVI, NDRE and NDWI was conducted at the field scale 
for WW and SB in the period April–July in both years 2018 and 2019. The 
respective number of fields available for this part of the analysis is presented in 
Tab. 4. Due to the variation in cloud coverage between the different satellite images, 
the number of fields at a certain day of observation varied: ranging from 596 – 
1,230 fields in 2018 and 127 – 1,453 fields in 2019 for WW and 928 – 1,591 fields 
in 2018 and 129 – 1,135 fields in 2019 for SB. When analysing the different 
vegetation indices like for example NDVI, the mean NDVI value was calculated at 
the field scale at every date of observation and for all respective fields. Hence, this 
data was then visualized using the box plot framework. The average value of any 
such given dataset/boxplot is called mean of means (MoM). MoM values were 
calculated for each date in the study period as well as over the total study period. 
 
 

Fig. 10. Flow chart presenting the different parts of the crop growth development analysis in 2018 
and 2019 of winter wheat and spring barley and how it is related to topography. The level of detail 
increases from left to right. 
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3.5.2. Crop growth development versus mean field slope  

The crop growth development was assessed from a topographical perspective by 
investigating the influence of the mean field slope on the time series of the average 
values of the different vegetation indices (NDVI, NDRE, NDWI and NDDI) at the 
field level. The selected fields for this part were successively cultivated by the same 
crop in 2018 and 2019. The selected fields were divided into three slope categories 
based on the mean field slope distribution (<= Q1, Q1-Q3, >Q3). For this part of 
the analysis, an overall field size threshold of 3 hectare was chosen to avoid the 
usage of small narrow field strips cultivated in both years. In total, 363 fields 
successively cultivated with WW and 230 with SB, were used for this analysis 
(Tab.  4). Additionally, this analysis was conducted and is presented for nine. 
representative SB/WW fields separately. The location of the fields used in this part 
of the analysis are presented in Fig. 12. 

Tab. 4. Total field area of winter wheat (WW) and spring barley (SB) fields as well as the number 
of field polygons (n) in 2018 and 2019. 

 
 
 
 
 
 
 
  

Year  

WW 

(n) 

WW 

(km2) 

SB 

(n) 

SB 

(km2) 

2018 1230 120.9 1591 141.6 

2019 1453 145.2 1135 104.3 

2018 - 2019 363 32.1 230 16.72 

Fig. 11. A: Field scale, NDVI, NDRE, NDWI and NDDI were calculated as mean values for the 
whole field. B: Within-field scale, NDVI, NDRE, NDWI and NDDI were calculated as mean 
values for each zone separately Zones were derived from topographic indices maps. The zones 
visible in map B are derived from TWI. Sentinal-2 image of spring barley field (ID 885) at 
01.06.2021.  
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Fig. 12. Spatial location of all winter wheat and spring barley fields cultivated in 
both consecutive years 2018 and 2019 as well as nine winter wheat and spring 
barley fields. Precipitation (P) and temperature (T) stations are shown as red, 
and blue dotes. 
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3.5.3. Crop growth within-field development variability  

To investigate within-field spatial variations of crop growth development in relation 
to within-field topography and drought, fields were divided into three zones (based 
on RE, Slope and TWI maps). These three zones represent the quartiles of the 
topographic maps at the pixel scale of the individual field under study (<= Q1, 
Q1 - Q3, >Q3). The average values of NDVI and the NDDI were calculated at zonal 
bases to track the crop growth development within the field separately (Fig. 13). 
This part of the analysis was conducted for nine fields cultivated successively with 
WW and nine fields cultivated successively with SB. The selected fields represent 
the slope categories of section 3.5.2 i.e., three fields out of every slope category. 
Furthermore, NDVI within field variation was analysed for all fields cultivated with 
WW/SB in both consecutive years 2018 and 2019, using the same approach as for 
the nine fields (Fig. 12) but only using TWI to divide the fields. Additionally, NDDI 
maps were generated to visualize the spatiotemporal drought status of WW/SB 
within the field unbiased. 

 
  

Fig. 13. Spatial NDVI distribution in one spring barley field (ID 885) at 24 of May 2019 with 
NDVI ranging from 0.2 (beige) to 1.0 (dark green). The field was divided into three zones based 
on RE (top), Slope (middle) and TWI (bottom) maps to investigate the within field topographic 
related NDVI variation. 
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3.6. Crop growth development versus other site-
specifics 

Furthermore, to investigate other possible factors affecting crop growth in response 
to drought, the following analysis was carried out at the field scale. 
From the MoM NDVI time series of all fields cultivated with WW (n = 1,230) and 
SB (n = 1,142) in 2018 the maximum was selected. Two groups of fields for both 
crops were then drawn from the boxplot at the time series maximum i.e., the two 
extreme quartiles (fields with NDVI <= Q1 and >Q3). The selection date for the 
two groups was 24 of May and on 3rd of June for WW and SB respectively 
(as shown in Fig. 14). WW and SB fields of out of the two extremes were than 
linked to common site-specific characteristics such as slope (%), clay content (%), 
field size (ha) and spatial location. 

  

Fig. 14. Average NDVI time series of all winter wheat (red) and spring barley (blue) fields 
in 2018. The mean field NDVI distribution at the time series maximum of both crops is 
presented as a boxplot. 
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3.7. Software  

Due to the huge number of satellite images, field polygons, vegetation indices and 
topographic indices, automatization was a crucial to conduct this work successfully. 
Therefore, the Python programming language and the various available libraries 
written in Python were utilized. To name only the most important libraries used for 
this work:  
 

- Numpy, Pandas and Glob for data analysis  
- GDAL, Geopandas and Rasterio for spatial data analysis  
- Matplotlib and Seaborn for data visualization  

 
Libraries were managed using the anaconda software distribution (Anaconda 2021) 
and the package installer for python (pip).  
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The results of this study are presented in the following order: First, the results of 
the drought feature analysis, justifying the selection of the years 2018 and 2019 are 
presented. The second part focuses on crop growth development of SB and WW in 
2018 and 2019 and the assessment of the drought effect. In the third part, the results 
of a possible relation between drought stress and field topography are presented.  

4.1. Drought feature analysis  

Out of the years 2017 – 2020 the year 2018 was the driest year both on an annual 
scale as well as for the study period (April to July). The years 2017 and 2019 were 
wet years of which 2019 was closer to the LTA. The year 2020 was dry and warm, 
with an average temperature close to the LTA during April–July. As the results of 
the drought feature analysis the year 2018 was selected as a dry year and the year 
2019 as a non-dry year to conduct the crop growth development analysis in this 
study. 

LTA precipitation and temperature 

The LTA precipitation estimated on the period 1991 – 2020 based on Lövstad, 
Tomelilla, Bollerup and Ystad weather station was 705.9 ± 104.3 mm. The LTA 
temperature of this period was 8.6 ± 0.7 °C computed based on Bollerup station. 
For the period April–July, the LTA precipitation was 197.9 ± 63.9 mm and the LTA 
temperature was 12.7 ± 0.8 °C. The year 2017 was rather wet with 23 % more 
rainfall compared to the LTA. The years 2018 and 2020 were rather dry with 18 % 
and 12 % less rainfall compared to the LTA. In 2019, the annual rainfall was 6 % 
higher compared to the LTA. Annual P and T values and for the period April – July 
are presented in Tab. 5 below.  
 
 
 
 
 
 

4. Results
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Tab. 5. Annual precipitation (P) and temperature (T), and for the period April–July (P: n = 4, T: 
n = 1). 

Year Annual P (°C) April-July P 

(mm) 

Annual T (°C) April-July T 

(mm) 

2017 868.7 267.4 8.8 12.4 

2018 581.9 103.1 9.5 15.3 

2019 753.0 230.4 9.6 13.3 

2020 624.1 148.3 9.9 12.7 

 
In 2018, the mean temperature between April–July was noticeable elevated by 
3.25 standard deviations above the LTA. In keeping with that, 2018 was the driest 
year in the period 2017–2020, due to its low precipitation and high temperatures, 
especially between April–July. The year 2017 was a wet year with both annual and 
summer precipitation above the LTA. In 2019, both summer and annual 
precipitation were close to the LTA. However, in 2018, temperature was elevated 
on an annual basis and during summer when comparing it to the LTA by 11 % and 
54 % respectively. The year 2020 was a dry year with reduced summer and annual 
precipitation. Nonetheless, the mean summer temperature between April – July was 
equal to the LTA in 2020. Thus, the year 2018 was selected as a dry year and the 
2019 as a year close to the LTA. The precipitation and temperature time series from 
1991–2020 are presented in Fig. 15.  

Fig. 15. A: Precipitation and temperature (Annual in black, April–July in blue) for the 
period 1991–2020. LTA’s are displayed as horizontal lines. 
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Weighted average over the study area 

In 2018, between April–July, about 99.4 mm (n stations = 8) of precipitation were 
fallen on average over the total study area. In comparison 2.2 times more rainfall 
(217.1 mm, n = 8) was gauged in 2019. The spatial rainfall variability between April 
to July in 2018 and 2019, is presented in Fig. 16 using the Thiessen polygon 
method.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

Rainfall events analysis 

In 2018, 15 rainfall events (> 1 mm) occurred, while in 2019 the number of rainfall 
events (> 1 mm) was 34, more than twice as high compared to 2018. The weighted 
average daily precipitation over the total study area is presented in Fig. 17.  
When focusing on the study period of the year May–July, it was clearly noticeable 
that especially 2018 was very dry in comparison to 2019. In 2018, P was 93 % 
lower in May, 67 % lower in June and 54 % lower in July in comparison to 2019. 
Temperature was 37 % warmer in May and 18 % warmer in July in 2018 when 
compared to 2019. In June, the temperature difference was quite small. Further 
information for all months can be obtained from Fig. 18.  

Fig. 16. Precipitation variability based on the Thiessen-polygon method 
within the study area for the years 2018 and 2019 between April – July. 
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Fig. 17. Daily weighted average precipication (in mm) and temperature (in °C) over the whole study area, for the period April–
July of 2018 and 2019. 
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Fig. 18. A: weighted monthly average precipitation (n = 8) in 2018 and 2019. B: monthly 
average temperature (n = 2). 
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4.2. Slope, soil texture and field size  

The obtained average field slope of all arable fields in the study area was 4.2 ± 
3.5 % (n = 19,020). Within the study area the average field size was 4.0 ± 5.8 ha 
(n = 19,020). Soil texture is mainly dominated by sand, with an average sand 
content of 60 ± 14 %; average clay content is 12 ± 6 %; average silt content is 28 ± 
6 %, see Fig. 19. 

Overall, about 40 % of the total arable land in the study area had an average field 
slope ranging from 2 – 4 % (Fig. 20, A). About 50 % of the total arable land was 
covered by fields with a size ranging from 4 – 15 ha (see Fig. 20, B). 
 

Fig. 19. Boxplots of soil texture in %, field size in ha and average field slope in %, for all fields in 
the study area as well as for fields cultivated successively with winter wheat (WW) and spring 
barley (SB) in 2018 and 2019. 

Fig. 20. A: Categorizing all fields as a fraction of total fields area, based on the average field 
slopes (A) and the field size (B). 
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4.3. Crop growth development 

This part of the analysis was carried out on all fields cultivated with WW/SB in 
2018 and 2019. The aim of was to assess the effect of drought on crop growth 
development during the crop development stages DC31-DC75, considering NDVI, 
NDRE and NDWI. In 2018, crop growth development was noticeable affected by 
drought when considering NDVI, NDRE and NDWI, with a mean reduction over 
the total time series of 36 % for the NDVI, 69 % for the NDWI and 43 % for the 
NDRE in comparison to 2019 for SB, and 25 % for the NDVI, 58 % for the NDWI 
and 32 % for the NDRE in comparison to 2019 for WW. Hence, when comparing 
between WW and SB, the negative effect in 2018 was 6 % - 11 % higher for SB in 
comparison to WW. As a result, both WW and SB were negatively affected by 
drought, with a noticeable higher drought-resilience of WW in comparison to SB. 
Furthermore, the results provided evidence that the negative effect severity of 
drought varied between fields of the same crop type. Overall, some fields seemed 
to be more resilient in response to drought - performing equally good under dry 
conditions in comparison to non-dry conditions. 

NDVI: 

For both crops the NDVI MoM values were on average 25 % (WW) and 36 % (SB) 
lower over the study period (April–July) in 2018 in comparison to 2019. For WW, 
the maximum of NDVI MoM value of the time series was reached at 24 of May 
with a value equal to 0.77 ± 0.07 (n = 1,230); while in 2019 the maximum value 
was reached 20 days later at 13 of June with a value equal to 0.91 ± 0.02 (n = 761). 
Hence, MoM NDVI time series maximum for WW was 18 ± 10 % higher in 2019 
in comparison to 2018. For SB the maximum NDVI MoM value of the time series 
was reached at 3rd of June in 2018 with a value equal to 0.68 ± 0.02 (n = 1,142); 
while in 2019 the maximum value was reached 20 days later at 23 of June with a 
value equal to 0.91 ± 0.04 (n = 935). As a result, for SB, the MoM NDVI time series 
maximum was 33 ± 2.7 % higher in 2019 compared to 2018.  
However, in 2018 the maximum NDVI was 0.09 higher for WW in comparison to 
SB. Furthermore, the mid-season was shorter, and the crop started to turn yellow 
earlier in 2018 than in 2019 for WW. This indicated a longer phase of maturation 
under non-dry conditions. Despite the offset between 2018 and 2019, the mid-
season length was similar for SB in both years. Visually inspecting the range of the 
boxplots of the NDVI MoM time series revealed a very narrow range in 2019 
compared to 2018 for WW and SB. This difference was especially noticeable in the 
mid-season. Hence, during non-dry conditions a homogeneous crop growth among 
fields was observed. During dry conditions a higher variation of crop growth in 
response to drought was noticed. Interestingly, some fields indicated a relatively 
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high crop growth during dry conditions in 2018, being equally high as the MoM in 
2019 (see Fig. 21).  

NDRE: 

Generally, the MoM NDRE time series pattern was very similar to NDVI. MoM 
maximum NDRE was reached at the same dates as NDVI for SB and WW in both 
years as shown in Fig. 22. Nonetheless, NDRE had a noticeable offset of 0.18 
(n = 4) in comparison to NDVI when considering the difference between NDVI and 
NDRE over the total time series (April–July) and between 2018 and 2019 for WW 
and SB. In keeping with that, the offset between NDRE and NDVI comparing the 
time series of MoM maximum values between the same years was 0.19 in 2018 and 
0.16 in 2019 for WW and 0.23 in 2018 and 0.21 in 2019 for SB. This offset 
indicated a lower level of saturation of NDRE in comparison to NDVI. For both 
crops, the MoM NDRE values were on average 32 % and 43 % lower over the total 
study period in 2018 when compared to 2019.  

 
 

Fig. 21. A: Winter Wheat. B: Spring Barley. Time series of MoM values of NDVI (dashed line, 
2018 in red, 2019 in blue). The blurred area is delineated by the standard deviation, the boxplot 
and outliers are visualized in the respective colours. 
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NDWI: 

For WW, the MoM NDWI time series maximum values correspond to the same 
dates obtained from the NDVI time series with values of 0.36 ± 0.09 (24 of May 
2018, n = 1,230) and 0.57 ± 0.03 (13 of June 2019, n = 761). For SB, the maximum 
NDWI MoM time series values were reached on 1st of June in 2018 with NDWI 
equal to 0.23 ± 0.13 (n = 1,142) and 20 days later on 21 of June in 2019 with NDWI 
equal to 0.56 ± 0.13 (n = 935), slightly earlier than NDVI. The MoM maximum 
values of NDWI were 58 % and 143 % higher in 2019 when compared to 2018 for 
WW and SB respectively. The MoM values of NDWI were below zero until mid of 
May for SB, indicating that the vegetation canopy had not significantly developed 
yet. This indicated that the reflectance was mainly dominated by soil before May. 
For WW, the MoM NDWI values, including all fields within one standard deviation 
from the mean, stayed above zero from the beginning of April in 2019, indicating 
a higher and earlier crop growth development. While at second of May in 2018, 
90.9 % (n =1,119) of all WW fields had a mean field NDWI above zero. Hence, in 
the beginning of April, WW crops had a higher biomass and vegetation water 
content when compared to SB. Between end of May until mid of July the MoM 
value of the NDWI time series was 69 % lower in 2018 (NDWI = 0.2 ± 0.12, n = 6) 

Fig. 22. A: Winter Wheat. B: Spring Barley. Time series of MoM values of NDRE (dashed line, 
2018 in red, 2019 in blue). The blurred area is delineated by the standard deviation, the boxplot 
and outliers are visualized in the respective colours. 
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compared to 2019 (NDWI = 0.48 ± 0.12, n = 10) for SB. Considering the total study 
period from April to July, the MoM value of the NDWI time series was on average 
58 % lower in 2018 (NDWI = 0.16 ± 0.07, n = 15) compared to 2019 (NDWI = 
0.38 ± 0.06, n = 17) for WW. The time-series plot is presented in Fig. 23 below. In 
conclusion, these results indicated a higher level of drought stress for both crops in 
2018 comparing to 2019, as the NDWI reflects upon the crop water content beside 
crop density.  

  

Fig. 23. A: Winter Wheat. B: Spring Barley. Time series of MoM values of NDWI (dashed line, 2018 
in red, 2019 in blue). The blurred area is delineated by the standard deviation, the boxplot and 
outliers are visualized in the respective colours. 



49 

 

4.4. Crop growth development versus mean field slope 

To assess a possible relation between mean field slope (in %) and crop growth 
development in response to drought, fields cultivated successively with WW 
(n = 363) and SB (n = 230) were selected, and then classified in three groups 
according to the quartiles of the mean field slope values (<=Q1, Q1–Q3, >Q3). The 
curves for NDVI, NDRE, NDWI and NDDI, were developed for the three slope 
groups separately. The curves represent the vegetation indices MoM values in each 
slope class. The crop growth development was than compared between the three 
slope classes (Fig. 24 and 25).  

Winter wheat: 

The differences between the vegetation indices MoM values in the different slope 
classes were quite small in both years. The standard deviation overlapped when 
considering the whole study period of all three slope classes for NDVI, NDRE and 
NDWI by >= 92 % in 2018 and 2019. Therefore, no consistent link between mean 
field slope classes and crop growth development, considering NDVI, NDRE, 
NDWI and NDDI was noticed in 2018 or in 2019. 

Spring barley: 

SB fields of the class <= Q1 (i.e., fields with a rather small topographic within-field 
variation in terms of slope) had a higher average field NDVI, NDRE, NDWI and 
lower NDDI, towards the end of June in 2018 in comparison to SB fields of the two 
other classes (Q1 – Q3 and > Q3). At the time series peak on 26 of June in 2018 
MoM values of NDVI, NDRE, NDWI of the fields of class <= Q1 was 15 %, 16 %, 
62 % higher compared to the fields of the slope class > Q3. Hence, the average 
(over study period) NDDI value was 30 % lower for the fields of class <= Q1 
compared to the fields of class > Q3 in 2018. This indicated that during 2018, SB 
fields with a smaller mean field slope were more resilient in response to drought, 
compared to fields with a higher mean field slope. Generally, NDVI, NDRE, NDWI 
and NDDI values differed slightly between fields of the three slope classes in 2019 
and much less when compared to 2018. Furthermore, in both years MoM values of 
NDVI, NDRE, NDWI for the slope classes Q1 – Q3 and >Q3 never exceeded the 
values of the slope class <= Q1. Nonetheless, the standard deviation overlap, 
considering the study period was on average >= 69 % when considering all three 
slope classes, both years and all vegetation indices.  
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Fig. 24. NDVI (left) and NDRE (right), time series in the three slope classes for winter wheat (A) and spring barley (B) in 2018 and 2019. 
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Fig. 25. NDWI (left) and NDDI (right), time series in the three slope classes for winter wheat (A) and spring barley (B) in 2018 and 2019. 
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4.5. Crop growth development versus slope,                    
clay-content, field-size and location 

In this section the results and the figures obtained from section 3.3 of the NDVI 
index, only for 2018 were used. WW and SB fields were classified based on the 
NDVI boxplot quartiles (>=Q1, Q1–Q3, >Q3) at the time-series maximum MoM. 
The aim of this analysis was to assess the effect of different field characteristics 
(i.e., slope, clay-content, field-size and location in the study area) on crop growth, 
under drought conditions. The analysis was carried on at the field scale, meaning 
calculation were based on mean field values (i.e., mean field slope, mean field 
NDVI etc.). In the dry year 2018, the maximum MoM NDVI value was reached at 
24 of May for WW and at 3rd of June for SB (see Fig. 14). The MoM maximum 
NDVI value of WW was 14.5 % higher compared to SB, with 0.77 ± 0.07 
(n = 1,230) and 0.68 ± 0.02 (n = 1,142) for WW and SB respectively. In this 
analysis special attention was paid to the two extreme classes (<=Q1 and >Q3). 
WW and SB fields of the two extremes classes were than related to the before 
mentioned site-specific field characteristics (see Fig. 26). The results showed that 
25 % of all SB fields had a mean field NDVI below 0.6 and 25 % a mean field 
NDVI above 0.78; for WW 25 % of all fields had a mean field NDVI below 0.73 
and 25 % had a mean NDVI above 0.83. In summary the results of this analysis 
provided no clear indication of a relation between field size, spatial location, mean 
field clay content and mean field NDVI. Nevertheless, a weak link for WW and a 
stronger relation for SB between mean field slope and mean field NDVI was 
revealed. This implied, the potential of a lower mean field slope contributing to a 
higher crop growth. Whereas in fields with a high mean field slope crop growth 
tended to be inhibited when considering the drought conditions in 2018. 

Field slope versus NDVI: 

For WW, the two extreme groups had a MoM slope value of 3.2 % for the group 
NDVI <= Q1 and 2.8 % for the group NDVI > Q3 (see red dots in the Fig. 26 B1). 
Overall, the mean slope distributions were ranging from 0.6 % – 6.4 % for the group 
NDVI <= Q1, and from 0.6 % – 7.9 % for the group NDVI > Q3. Therefore, no 
well-elaborated relation was identified between mean field slope and mean field 
NDVI. Similarly results, were obtained for SB, but with a stronger relation of mean 
field slop and mean field NDVI. The MoM field slope values were 3.4 % for NDVI 
<= Q1 in comparison to 2.2 % for NDVI > Q3 (white dots in the Fig. 26 B2). The 
range of the mean slope distribution for NDVI > Q3 was noticeably narrower for 
SB fields. This indicated that, fields with gentle slopes had an increased crop growth 
compared to fields with steeper slopes. For SB fields of the group NDVI <= Q1, 
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75 % of fields had a mean field slope values ranging from 0.7 % – 4.6 %; while for 
fields with NDVI > Q3, 75 % of fields had mean field slope values ranging from 
0.6 – 2.6 % (Fig. 26 B2).  

Field clay content versus NDVI: 

For WW, the two NDVI groups had a MoM clay content values of 16 % for the 
group NDVI <= Q1 and 13 % for the group NDVI > Q3, red dots in the Fig. 26 C1. 
For SB, the results were almost equal (white dots Fig. 26 C2). Subsequently, the 
response of mean field NDVI in relation to mean field clay content was weak for 
both WW and SB. Overall, no indication of a higher mean field NDVI in relation 
to a higher mean clay content was provided by both NDVI groups, see Fig. 26 C 
below.  

Field size versus NDVI: 

For both NDVI groups and crops the range of the field size distribution was almost 
equally wide. Therefore, no relation between field size and crop growth was found 
for both cereals (Fig. 26 D1 & D2).  

Fig. 26. Assessment of the field characteristics on drought resilience for both winter wheat (WW) and 
spring barley (SB). A: mean field NDVI boxplot at 24 of May for WW and 3rd of June for SB. B1, B2: 
Mean field slope. C1, C2: mean field clay content. D1, D2: Field size. MoM values are presented in 
red and white dotes. 
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Geographical location versus NDVI: 

Mean field NDVI linked to field location revealed no definite spatial patterns for 
both cereals. However, there seemed to be a tendency of WW fields with NDVI > 
Q3 being located in the south-east of the study area (see Fig. 27). 
  

Fig. 27. Spatial field location in relation to mean NDVI performance (NDVI <= Q1 and NDVI > 
Q3). A: winter wheat fields. B: spring barley fields. 

A B 



55 

 

4.6. Crop growth development of nine fields 

To better understand the effect of drought on crop growth development, nine fields 
were selected for WW and nine for SB. The selection was based on the three 
quartiles of the mean fields slope values of all WW/SB field successively cultivated 
in 2018 and 2019 (<=Q1, Q1–Q3, >Q3). The location of the nine WW and SB fields 
is presented in Fig. 12 in the methods section. The field size (ha) and mean field 
slopes (%) are presented in Tab. 6. The crop growth time series, for each field and 
both years, were drawn for the different indices (NDVI, NDWI, NDRE and NDDI) 
to visualize the effect of drought on crop growth.  

Tab. 6. Mean field slope and field size of nine winter wheat and nine spring barley fields. 

 

4.6.1. Winter Wheat 

In general, and for all the indices, there was a shift between index values in 2018 
compared to 2019. The shift was negative for NDVI, NDRE and NDWI, while it 
was positive for NDDI. The minimum NDDI time-series values between Mai–June 
was on average 35 %, 52 % and 43 % higher in 2018 in comparison to 2019 for the 
slope classes <=Q1, Q1-Q3 and >Q3, respectively (Fig. 31). From the figures, it is 
noticeable that the time series maximum variability was much smaller in 2019 
compared to 2018, for NDVI, NDRE and NDWI. This indicated an increased crop 
growth variability in response to drought in 2018. Hence, this confirmed the before 
stated effect of a higher crop growth variation in in response to drought. Crop 
growth tended to be homogeneous between fields under non-dry conditions, 
however. The standard deviation of the time series maximum of all nine fields was 
5.0, 4.5 and 2.1 times lower in 2019 when compared to 2018 for NDVI, NDRE, 
NDWI respectively, see Fig. 28, 29, 30. Overall, the differences in crop growth 
development in response to drought could not be explained by mean field slope 
from the nine fields.  

 Winter Wheat   Spring Barley   
Quartile ID Slope (%) Size (ha) ID Slope (%) Size (ha) 

<=Q1 
  

169 1.23 29.48 45 1.78 13.41 

275 1.84 21.24 243 1.59 19.59 

385 1.38 16.30 919 1.53 28.90 

 86 3.93 29.42 119 3.16 28.08 

Q1-Q2 239 3.03 36.62 121 3.13 44.10 

 344 3.91 31.76 909 2.46 20.07 

 47 7.86 12.10 138 6.25 8.91 

>Q3 292 6.69 14.72 183 8.29 8.41 

 389 4.63 31.54 885 8.80 9.16 
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4.6.2. Spring Barley  

The same results obtained for WW were obtained for SB. However, for SB the 
differences between 2018 and 2019 were much higher compared to WW. 
Subsequently, this indicated a higher effect of drought on SB in comparison to WW. 
The time series minimum NDDI values in June were on average 150 %, 146 % and 
431 % higher in 2018 in comparison to 2019 for the slope classes <=Q1, Q1-Q3 
and >Q3, respectively (Fig. 31). In comparison to WW the NDDI minimum 
differences of SB were much higher i.e., 4.2, 2.8 and 10 times. Hence, a higher 
drought-stress vulnerability of SB when compared to WW was obtained from these 
results. The standard deviation of the maximum time series value of all nine fields 
was 7.8, 3.75 and 4.5 times lower in 2019 in comparison to 2018 for NDVI, NDRE, 
NDWI respectively, see Fig. 28, 29, 30. The same remark noticed for WW, on crop 
growth homogeneity between fields under non-dry conditions was noticed for SB. 
Under dry conditions fields responded to drought with a higher degree of variation.
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Fig. 28. Mean field NDVI time series for winter wheat (top row) and spring barley (bottom row) fields. First column: mean field slope <= Q. Second column: mean field slope 
Q1-Q3. Third column: mean field slope > Q3 
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Fig. 29. Mean field NDRE time series for winter wheat (top row) and spring barley (bottom row) fields. First column: mean field slope <= Q. Second column: mean field 
slope Q1-Q3. Third column: mean field slope > Q3. 
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Fig. 30. Mean field NDWI time series for winter wheat (top row) and spring barley (bottom row) fields. First column: mean field slope <= Q. Second column: mean 
field slope Q1-Q3. Third column: mean field slope > Q3. 
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Fig. 31. Mean field NDDI time series for winter wheat (top row) and spring barley (bottom row) fields. First column: mean field slope <= Q. Second column: mean field 
slope Q1-Q3. Third column: mean field slope > Q3. 
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4.7. Within-field crop growth development  

To evaluate possible crop growth variations related to topography, fields were 
divided into three zones, based on different topographic indices. Fields were 
divided based on RE, Slope and TWI maps. The within-field drought response was 
studied in those zones separately (section 3.5.3). Crop growth development was 
observed using NDVI and NDDI. This part of analysis was carried on the nine fields 
also used in the previous section 4.6. The results showed that within-field zonal 
variations of NDVI and NDDI were very small in the non-dry year 2019 for both 
SB and WW. While, in 2018, those variations were higher for both crops, and even 
higher for SB when compared to WW. Furthermore, fields zoning based on TWI 
showed the best results consistency (i.e., crop growth resilience improved in the 
same zonal order for all nine fields, lower zones were less resilient than upper) 
comparing to zoning based on RE and slope. The TWI zonal NDVI and NDDI crop 
growth development for the nine fields are presented in Fig. 32-35. Figures of zonal 
crop growth development based on RE and slope maps are appended. 

4.7.1. Winter wheat  

The difference between zones in terms of NDVI and NDDI development was quite 
small in 2019 regardless of the zoning method. In 2018 WW fields had a higher 
NDVI and NDDI variation considering the different zones, except for fields with a 
low mean field slope <= Q1. The highest consistency in NDVI and NDDI variations 
resulted from fields zoning based on TWI. Field zones with low TWI (steeper areas) 
were more vulnerable to drought in 2018. Results from zoning based on RE and 
slope were less consistent - meaning that sometimes, lower zones were more 
vulnerable to drought and sometime less, and vice versa.  

4.7.2. Spring barley  

For SB as for WW, the within-field crop growth development variations were quite 
small for NDVI and NDDI in 2019 and higher in 2018. Similarly, when compared 
to WW the highest consistency in NDVI and NDDI variations resulted from fields 
zoning based on TWI (zones with low TWI were more vulnerable to drought when 
compared to zones with medium to high TWI). The results from zoning based on 
RE and Slope were less consistent. 
 



62 

 

4.7.3. Quantitative assessment of within-field crop growth 
variations 

To quantitatively assess the degree of within-field variations, the same approach 
applied on the nine fields, was applied on the three slope quartiles (<=Q1, Q1-Q3, 
>Q3) of all WW (n = 363) and SB (n = 230) fields cultivated successively in 2018 
and 2019. From the results of the nine fields, zoning based on TWI and the NDVI 
index were chosen to carry out this analysis. The mean NDVI value in each zone 
was calculated at the time series maximum for each field separately. The date of 
the time-series maximum varied on the individual field level. The mean NDVI 
values were than aggregated by computing the MoM NDVI for each zone and all 
fields of the same slope quartiles (<=Q1, Q1-Q3, >Q3). The results and 
comparisons for WW and SB are presented in Tab. 7 an 8. Overall, the results 
showed that the influence of topography on crop growth development was 
negligible in the non-dry year 2019. In 2018, crop growth in high TWI zones was 
higher when compared to low TWI zones. This relation increased with an increase 
in mean field slope. Furthermore, within-field NDVI variations were smaller for 
WW in comparison to SB.  

Winter Wheat: 

The within-field MoM NDVI variations between the different zones for WW based 
on time series maximum values were quite small in 2019 for all slope quartiles 
(<=Q1, Q1-Q3, >Q3) (Tab. 7). In 2018, the within-field variation was on average 
negligible for fields with a low mean field slope(<=Q1). Whereas for fields with a 
medium to high mean field slope (Q1-Q3 and >Q3) the NDVI mean difference at 
the maximum value of the time-series, between zone three (higher TWI) and zone 
one (lower TWI) was 0.018 and between zone two (medium TWI) and zone one 
was 0.012 (Tab. 7).  

Spring Barley: 

For SB the same results as for WW were obtained. No NDVI variations between 
the different within-field zones were noticed in 2019 for all slope quartiles (<=Q1, 
Q1-Q3, >Q3) (Tab. 8). However, in 2018 within field variations, between the three 
zones, were noticeable for all slope quartiles (<=Q1, Q1-Q3, >Q3) with a tendency 
to increase with an increase in mean fields slopes. For example, the MoM of the 
NDVI differences between TWI zone three and zone one was 142 % higher between 
fields of the slope quantiles >Q3 compared to <=Q1 and was 92 % higher between 
fields of the slope quantiles Q1-Q3 compared to <=Q1 (Tab. 8). Furthermore, the 
results showed that in dry years, zones with a higher TWI had a higher NDVI 
compared to zones with a lower TWI. This indicated a higher resilience of zones 
with a higher TWI in response to drought.  
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Fig. 32. Winter wheat-within field NDVI crop growth development variations for the nine fields, zoning method based on TWI maps. 
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.Fig. 33. Winter wheat-within field NDDI crop growth development variations for the nine fields, zoning method based on TWI maps. 
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Fig. 34. Spring barley within-field NDVI crop growth development variations for the nine fields, zoning method based on TWI maps. 
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Fig. 35. Spring barley within-field NDDI crop growth development variations for the nine fields, zoning method based on TWI maps. 
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Tab. 7. Winter wheat, NDVI (MoM) values (based on the time series maximum of the individual fields), in the three different TWI zones (1, 2, 3) in 2018 

 and 2019 in relation to the mean field slope categories (1 = low TWI, 2 = medium TWI, 3 = high TWI). 

Slope Category n 1 NDVI 2 NDVI 3 NDVI Δ (2 – 1) Δ (3 – 1) Δ (3 – 2) Year 

<=Q1 91 0.781 0.783 0.787 0.002 0.006 0.004  

Q1-Q3 181 0.778 0.787 0.791 0.009 0.012 0.004 2018 

>Q3 91 0.778 0.791 0.796 0.013 0.018 0.005  

<=Q1 91 0.914 0.916 0.917 0.002 0.003 0.001  

Q1-Q3 181 0.913 0.917 0.918 0.004 0.005 0.002 2019 

>Q3 91 0.912 0.916 0.918 0.004 0.006 0.002  

 
Tab. 8. Spring barely, NDVI (MoM) values (based on the time series maximum of the individual fields), in the three different TWI zones  

(1, 2, 3) in 2018 and 2019 in relation to the mean field slope categories (1 = low TWI, 2 = medium TWI, 3 = high TWI). 

Slope Category n 1 NDVI 2 NDVI 3 NDVI Δ (2 – 1) Δ (3 – 1) Δ (3 – 2) Year 

<=Q1 58 0.736 0.742 0.749 0.006 0.014 0.008  

Q1-Q3 114 0.689 0.702 0.716 0.014 0.027 0.014 2018 

>Q3 58 0.682 0.700 0.716 0.018 0.034 0.016  

<=Q1 58 0.911 0.913 0.914 0.003 0.003 0.000  

Q1-Q3 114 0.908 0.911 0.913 0.003 0.004 0.001 2019 

>Q3 58 0.901 0.906 0.907 0.005 0.006 0.001  
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4.7.4. NDDI maps 

The NDDI reflects upon the crop drought status. Therefore, NDDI maps can reveal 
different levels of drought-stress within the field. The aim of this section is to 
present NDDI maps to show the spatial-temporal variation of drought stress of three 
WW fields and three SB fields for both years 2018 and 2019. These three fields 
were selected based on the mean field slope quartiles (<=Q1, Q1-Q3, >Q3) - one 
field out of each slope category. The results are presented in Fig 36-41. RE, Slope 
and TWI and clay content maps, are presented besides NDDI maps. In summary, 
NDDI maps revealed a non-uniform drought response of both WW and SB within 
the field in 2018. Drought-stress in SB fields was higher in comparison to WW 
fields. The below listed points can serve as interpretation guidelines when visually 
inspecting the presented NDDI maps by eye: 
 

- The fields reached higher NDDI values in 2018 in comparison 2019. 
- The NDDI variability range within the field was higher in 2018 with NDDI 

distributed as patches. In 2019, the NDDI distribution within the field was 
more uniform. Hence, a non-uniform drought response for all selected fields 
in 2018 was indicated. 

- On average, the NDDI standard deviation of all three WW and SB fields was 
11.4 times higher in 2018 compared to 2019 when considering all available 
maps in June. 

- As described above, the drought affected SB fields more than WW fields in 
2018. Higher values of NDDI were noticed for SB fields in comparison to 
WW fields. Subsequently, WW showed a higher drought resilience 
compared to SB in response to drought in 2018. 
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Fig. 36. NDDI maps of winter wheat field: ID 169. Spatiotemporal NDDI development in 2018 and 2019. 
Field topography (RE, Slope and TWI) maps and clay content are presented at the bottom. 
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Fig. 37. NDDI maps of winter wheat field: ID 239. Spatiotemporal NDDI development in 2018 and 
2019. Field topography (RE, Slope and TWI) maps and clay content are presented at the bottom. 
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Fig. 38. NDDI maps of winter wheat field: ID 389. Spatiotemporal NDDI development in 2018 and 2019. 
Field topography (RE, Slope and TWI) maps and clay content are presented at the bottom. 
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Fig. 39. NDDI maps of spring barley field: ID 919. Spatiotemporal NDDI development in 2018 and 2019. 
Field topography (RE, Slope and TWI) maps and clay content are presented at the bottom. 
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Fig. 40. NDDI maps of spring barley field: ID 121. Spatiotemporal NDDI development in 2018 and 2019. 
Field topography (RE, Slope and TWI) maps and clay content are presented at the bottom. 
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Fig. 41. NDDI maps of spring barley field: ID 885. Spatiotemporal NDDI development in 2018 and 2019. 
Field topography (RE, Slope and TWI) maps and clay content are presented at the bottom. 
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The aim of this study was to assess the effect of topography in relation to drought 
of two field crops (WW, SB). A multi-scale analysis using satellite images was 
carried out from within-field to the total study area. Several indices related to 
vegetation growth and drought stress were utilized in this analysis (NDVI, NDRE, 
NDWI and NDDI). Topographic indies i.e., slope, RE and TWI maps were 
elaborated from a high-resolution DEM. In the following sections the results are 
discussed, and general conclusions are retrieved.  

5.1. Drought response of WW and SB 

Considering all vegetation indices used in this study, the results indicated that both 
WW and SB production were negatively affected by the extreme dry summer of 
2018. The degree of the drought effect varied, with WW production being less 
affected compared to SB. This was supported by average yield (in kg/ha) data for 
the region of Skåne. In 2018, WW and SB yields were 43.2 % and 51.5 % lower in 
comparison to 2019, confirming that SB production was more affected by dry 
conditions compared to WW (SCB 2018, 2019). Similar results were found by a 
study from Czech Republic, where SB compared to winter crops was significantly 
more affected by dry conditions (Hlavinka et al. 2009). 
The different response of SB and WW to drought can possibly be explained by the 
root-depth, which is of fundamental importance for water uptake, especially during 
dry conditions (Richards et al. 2002). Furthermore, Richards et al. pointed out, that 
an earlier sowing time is the easiest way to increase the overall root-depth. Thorup-
Kristensen et al. (2009) showed a root-depth twice as high for winter wheat (2.2 m) 
in comparison to spring wheat (1.1 m). In another study by Djanaguiraman et al. 
(2019) a difference in depth of WW in comparison to spring wheat roots, 
penetrating soils 1.5 times deeper was elaborated. Although, these results are for 
wheat, the general principles are supposed to be applicable for spring and winter 
barley cultivars. In summary, the observed difference in drought resilience between 
WW and SB can possibly be linked to a higher root-depth of WW compared to SB.  
 

5. Discussion
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5.2. Within-field variation  

The results showed that within-field variation, considering NDVI and NDDI, was 
prominent in 2018 and not indicated in 2019. TWI seemed to be the most consistent 
topographic index in explaining this variation when compared to RE or Slope. An 
high influence of topography linked to within-field variation in dry years compared 
to non-dry years is supported by Kumhálová et al. (2011), Chi et al. (2009) and 
Kaspar et al. (2003). Furthermore, a study by Pilesjö et al. (2005) showed that 
topography can potentially be used to delineate within-field agricultural 
management zones in central Sweden. Nevertheless, explaining within-field 
variation of NDVI and NDDI in dry years by topography only might be biased, 
enabling a risk to underestimate the actual within-field variability. Besides, 
topography other circumstances may contribute to within-field drought response 
variations. To name a few examples possibly relevant: soil texture, organic carbon 
content, compacted layers, or the presence of shallow ground water. 

5.3. Implementation opportunities for precision 
agriculture in Sweden 

Decision support systems (DSSs) for precision agriculture are mostly build and 
developed upon proximal and remote sensing data. Globally, many different web-
service are available using remote sensing data for DSSs. To name a few examples 
from Europe, FieldSense and SatAgro provide DSSs based on Sentinel-2 and 
Landsat remote sensing data. Advantages of the mentioned DSSs and how they can 
be used for PAP are outlined in two case studies from Denmark and Poland, 
conducted by the European association of remote sensing companies 
(EARSC 2018, 2019). Some of the advantages pointed out in those studies were: 
reduced crop scouting time for farmers, irrigation timing and management, 
optimizing the application of fertilizers.  
In Sweden, the web-based service CropSAT developed by SLU, owned by the 
company Dataväxt, provides free of charge global decision support maps based on 
Sentinel-2 data. Currently, CropSAT mainly operates as a DSS providing site-
specific information for variable rate application (VRA) of nitrogen fertilizer, 
besides vegetation maps. A study by the federation of Swedish farmers showed that 
in 2020 about 100,000 – 200,000 hectares of arable land cultivated with wheat were 
managed using PAP for improved fertilizing (LRF 2020). As stated in the 
introduction, the drought frequency is expected to increase in the 21st century at the 
global scale (Cook et al. 2014). Hence, an increasing irrigation demand is expected 
for Sweden as outlined in a recent study (Grusson et al. 2021). In consequence, 
there is an increasing need for DSSs providing information on drought magnitude 
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as well as DSSs for advanced irrigation management at the field level, to better 
cope with drought induced water stress in the future. 

5.3.1. Historical and near-real time monitoring of crop growth 
development 

This study showed that crop growth development can be monitored at different 
scales (field scale and within-field scale) using vegetation and drought indices and 
using automatization tools like Python and GDAL. Studying historical data can 
improve the understanding of crop growth in response to drought. In turn historical 
data from past years is required when assessing the crop drought status near-real 
time. Furthermore, crop growth development monitoring can identify fields which 
are more vulnerable or resilient to drought, enabling to develop relevant site-
specific management strategies. Such information can help to intervene at the right 
time and place to mitigate drought effects. Hence, to assess the effect of drought in 
the future in near-real time, a crop growth development monitoring system is 
needed. 
In conclusion, a suggestion of this study is to develop a near-real time crop growth 
development monitoring system, at different scales from field to district level. 
Potentially, this could enable an improved drought response assessment within the 
field, within the district and between different districts to manage drought in a better 
way.  

5.3.2. Topography as a site-specific drought management  

Topography is one site-specific factor contributing to an enhanced understanding 
of the within-field drought response, enabling precision agriculture improvements. 
Subsequently, topography is a promising factor to evaluate the within-field drought 
risk prior to a drought event, potentially increasing the preparedness of farmers. 
The results of this study showed that topography is a main factor influencing 
within-field variability of NDVI and NDDI in dry years. It was further evaluated 
that within-field crop growth variability was less important in fields with a 
relatively low mean field slope. However, for SB the within-field crop growth 
variability was higher in fields with medium to high mean field slope. In general, 
topography is a factor among others controlling within-field crop growth in 
response to drought. Nonetheless, it remains uncertain how efficient the different 
topographical indices are to delineate within-field drought management zones.  
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5.3.3. NDDI maps for irrigation management  

Considering, the presented NDDI maps, areas affected by drought did not 
necessarily correspond to field topography or clay content when visually inspected 
(Fig. 42). This indicated that variability of within-field crop growth development 
could not be explained by field topography only. Therefore, NDDI maps are 
necessary to investigate the within-field spatiotemporal development of the 
vegetation drought status. In a study from Sweden by Campana et al. (2018) the 
authors elaborated the potential benefit of irrigation in the context agricultural 
drought to counteract yield losses. The study showed that yields were reduced by 
up to 50 % if irrigation measures were not implemented. Grusson et al. (2021) 
outlined an increased need for irrigation especially in the early season (May – June) 
for cereal crops in Sweden, considering future climate changes. DSSs for irrigation 
requirement assessment and management are increasingly needed in Sweden to 
adapt to climate change. Therefore, NDDI maps could potentially be utilized as 
decision support for precision irrigation.  

5.4. Future improvements 

Automatization  

Apart from masking of clouds and cloud shadows, most of the analytical parts of 
this study have been conducted by developing automatization algorithms. 
Nevertheless, to implement the suggested tools (i.e., NDDI maps and near-real time 
crop growth development monitoring) in the context of a DSSs for precision 
agriculture in Sweden, an automated detection and removal of clouds will be 
necessary. For Sentinel-2 data several algorithms for the detection of clouds are 
available. In a study by Tarrio et al. (2020) the authors achieved the best cloud 
cover detection, by using an ensemble of approach, combining the results of several 
algorithms. In this study, clouds were masked manually for the total study area 
(see Fig. 4). In order, to improve the efficiency of the developed algorithms, instead 
of masking clouds manually, a quality control for the input satellite images at the 
field level is suggested, irrespectively to the original cloud coverage percentage. 
Detecting clouds and cloud shadows at the field level might most likely increase 
the accuracy of any used detection algorithm. Deciding automatically, instead of 
manually, if a satellite image could be used versus discarded (cloud free field versus 
cloud covered) in the analysis will make the algorithm applicable for DSSs 
development. 
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Which resolution to use? 

In this study, the resolution of the input datasets varied: DEM (2m), Sentinel-
2 (10 - 20m), soil texture maps (50m). For, example one 20 m Sentinel-2 pixel 
incorporates 100 DEM pixels. Hence, the resolution of Sentinal-2 data was virtually 
increased to 2 m to optimize clipping and thus to prevent information losses at the 
field boundaries. Nevertheless, future studies should evaluate which resolution is 
optimal while preserving the result quality. This question should especially be 
evaluated for the DEM. Since topographic indices maps for fields with a low mean 
field slope were very scattered, it made it difficult to split the field in zones 
manageable for precision agriculture. 

Sentinel-2 offset 

In a recent study by Rufin et al. (2021) the authors elaborated a spatial offset 
between Sentinel-2A/B with a mean shift of 14 m in x direction and 13.4 m in y-
direction. In this study, this offset was generally ignored. Nevertheless, when 
displaying the spatiotemporal crop growth development at the field level using the 
graphics interchange format (GIF) in motion, the described offset was visible at the 
field level. Therefore, future studies should elaborate how relevant this offset is 
when describing within-field crop growth development for PAP in Sweden. 
Therefore, the operational coregistration approach suggested by Rufin et al. (2021) 
could possibly be used to improve the overall result quality of this study.  

Deductive versus inductive data analysis and within field variability  

A deductive approach was used to investigate within-field crop growth 
development variability based on field topography in this study. The results 
indicated that field topography seemed to influence crop drought response in fields 
with medium to high mean field slope. The variability of within-field crop growth 
development  was however not detected in fields with low mean field slope (rather 
flat fields). However, from this perspective it cannot be concluded that the 
variability of within-field crop growth development does not occur in flat fields. 
The results rather indicated that within-field variability was not detected when 
splitting the fields based on RE, slope or TWI maps into zones, especially in flat 
fields. In Fig. 42 below it is clearly noticeable that within-field crop growth 
variability of the presented WW field (ID 169) did not correspond to the field 
topography. Subsequently, it is very important to mention that variations in crop 
growth are also caused by variations in other environmental factors except drought. 
Such factors can be nutrient deficiencies, poor crop establishment or disease etc. 
Subsequently, using an inductive approach to delineate zones of elevated and 
reduced crop growth within the field in response to drought or possibly other 
factors, might be useful. An increased accuracy in detecting within-field crop 
growth variability is associated with an inductive approach since it is unbiased. 



80 

 

Potentially, using an inductive approach for data analysis could help to develop an 
advanced splitting base to delineate drought management zones at the field level. 

 

Fig. 42. Showing the inaccuracy in zoning the field based on topographical indices maps, to 
visualize the drought response within the field. 
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This study assessed the usage of NDVI, NDRE, NDWI and NDDI to evaluate the 
effect of drought on two cereal crops (winter wheat and spring barley) in the south 
of Sweden. Therefore, the drought effect along the study period (crop development 
stages DC31-DC75) on crop growth development was related to field topography 
and was assessed in a dry year (2018) and compared to a non-dry year (2019). The 
results showed that winter wheat and spring barley were both affected in the dry 
year of 2018 but by a different degree - winter wheat was less affected compared 
to spring barley. An average reduction over the study period of NDVI, NDRE and 
NDWI in 2018 compared to 2019 of about 25 %, 32 % and 58 % for winter wheat 
and about 36 %, 43 % and 69 % for spring barley was observed. Furthermore, the 
results clearly indicated that field topography is an important site-specific factor 
when reasoning within-field drought stress and crop growth variations. 
Topographic related within-field crop growth variability increased with an increase 
in mean field slope. The topographic wetness index (TWI) was the most efficient 
index in explaining crop growth variations within the field. Topography related 
crop growth variability was negligible in fields with a low mean field slope as well 
as during non-dry conditions in 2019. Overall, topography proved to be a major 
factor when explaining crop growth development variations within the field under 
dry conditions. Subsequently, topography as a site-specific field characteristic can 
help farmers to adapt to climate change, mitigating droughts in the future. However, 
further work is required to use topography as a site-specific factor for precision 
agriculture practices in an appropriate way. Therefore, a more accurate field zoning 
for drought monitoring and assessment is crucial to enable an advanced site-specific 
drought management.  

6. Conclusion 
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Appendix

Fig. 43. Winter-wheat within field NDVI crop growth development variations for the nine fields, zoning method based on RE maps. 
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Fig. 44. Winter wheat within-field NDVI crop growth development variations for the nine fields, zoning method based on slope maps. 
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Fig. 45. Winter wheat within-field NDDI crop growth development variations for the nine fields, zoning method based on RE maps. 
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Fig. 46. Winter wheat within-field NDDI crop development growth variations for the nine fields, zoning method based on slope maps. 
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Fig. 47. Spring barely within-field NDVI crop growth development variations for the nine fields, zoning method based on RE maps. 
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Fig. 48. Spring barley within-field NDVI crop growth development variations for the nine fields, zoning method based on Slope maps. 
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Fig. 49. Spring barley within-field NDDI crop growth development variations for the nine fields, zoning method based on RE maps. 
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Fig. 50. Spring barley within-field NDDI crop growth development variations for the nine fields, zoning method based on slope maps. 


