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Abstract 

The forest understory vegetation is largely disregarded in studies of carbon sequestration despite 

notable contribution to storage and cycling in the ecosystem. In addition to already lacking 

knowledge on this pool independently, further uncertainty and change is introduced by forest 

management and the changing climate. Using data from the Swedish NFI and Generalized Linear 

Mixed Models, we modelled the dynamics of this terrestrial carbon pool under conditions created 

by management and site characteristics. In order to do so, understory vegetation was categorized 

into the species groups graminoids, forbs, dwarf shrubs, bryophytes, and lichens. This was done due 

to differences in carbon storage and turnover of the groups as well as available biometric functions. 

Total understory carbon decreased with increasing stand basal area, percent of spruce, and 

temperature and increased with stand age, CN ratio, and precipitation. Graminoids were negatively 

influenced by stand basal area, percent of spruce, stand age, and CN ratio and positively influenced 

by temperature. Bryophytes were positively influenced by stand basal area and percent of spruce 

and were negatively influenced by stand age and precipitation. Lichens were negatively influenced 

by stand age, percent of spruce, and precipitation and were positively influenced by CN ratio and 

temperature. Dwarf shrubs were positively influenced by stand age, CN ratio, temperature, and 

precipitation and were negatively impacted by higher percent of spruce. Forbs were negatively 

influenced by stand age, CN ratio, and temperature and were positively impacted by basal area. 

Based on climate projections towards higher average temperature and increased drought events, as 

well as popular management techniques, this indicates future higher turnover of carbon within this 

pool. These dynamics should be further studied alongside the overstory pool in order to ensure 

balance between all ecosystem services provided. 

 
Keywords: carbon sequestration, forest floor vegetation, ground vegetation, mixed model, Sweden 
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1. Introduction 
 
 
 
 

In recent decades, multinational agreements regarding the responsibility to reduce 

greenhouse gas emissions have become a focal point in policy and science 

(Nordhaus 1993; Enkvist et al. 2007; West et al. 2013; UNFCCC 2015; Ritchie & 

Roser 2020). Intergovernmental cooperation, represented by such agreements as the 

Kyoto Protocol and Paris Agreement, showcases a widespread understanding and 

acceptance of the need to decrease greenhouse gases such as carbon dioxide (CO2) 

through emission reduction and sink increase (UNFCCC 1998; UNFCCC 2015). 

 

Such sinks are present naturally all over the globe (Grace 2004). Carbon is 

constantly transferred between the atmosphere and biosphere in a process known 

as the carbon cycle, and some of this transferred carbon is sequestered and remains 

in the biosphere for extended periods of time (Post et al. 1990). This occurs on a 

long-term (geologic) scale starting at hundreds of thousands of years, and a short- 

term scale spanning days to centuries (NOAA n.d.). When plants photosynthesize, 

they take up carbon from the atmosphere, about half of which is stored in vegetation 

and roots/soil and the other half respired (Prentice et al. 2001; Lorenz & Lal 2010; 

Ramachandran Nair et al. 2010). In this way, they contribute to the global carbon 

cycle on the short-term scale (Chapin et al. 2006). 

 

Of all vegetated land on Earth, forests cover 30-40% (Waring & Running 2007), 

and about 31% of all land, occurring in tropical, boreal, temperate, and subtropical 

biomes (FAO 2020). The amount and variety of land they cover makes them 

valuable in climate change mitigation through carbon sequestration (Binkley et al. 

1997; Malhi et al. 2002). Forests accumulate carbon in multiple pools including 

living biomass (both above and below ground), deadwood, detritus, and soil 

(Schlesinger 1977; Dixon et al. 1994; Clemmensen et al. 2013; Ķēniņa et al. 2018). 

 
Generally, most carbon stored in a forest is in the overstory (tree layer), which can 

store upwards of 200 times more than the understory (Moore et al. 2007; Burton et 

al. 2013). However, the understory vegetation is a carbon pool relevant over both 

spatial and temporal scales, and lack of recognition results in underestimation of 

the carbon storage potential of these ecosystems (Dirnbock et al. 2020). This is 

increasingly true in the boreal region, as the relative contribution of the understory 
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may increase with latitude. For the purpose of this paper, overstory vegetation refers 

to species of trees and tall shrubs whereas understory refers to all other vascular 

vegetation, mosses, and lichens. 

 
The understory not only contributes to the carbon storage of the forest, but also 

plays an active role in carbon turnover and cycling on varying levels. Despite the 

largest proportion of litter dry weight originating from the tree canopy, the 

understory litter can contribute greater amounts of dissolved organic carbon (DOC) 

(Hensgens et al. 2020). Woody vegetation such as dwarf shrubs generally have the 

slowest turnover rates due to reallocation abilities to stems before leaf senescence. 

Graminoids (Poaceae, Cyperaceae, and Juncaceae families) and forbs may be able 

to allocate nutrients to below-ground biomass before senescence, but have faster 

turnover rates than dwarf shrubs (Jonasson 1983). Bryophytes have been found to 

have an intermediate turnover rate, but highly biodegradable DOC (Wickland et al. 

2007). There is also variation between species groups in lability of DOC in the litter 

that can be transferred to the below-ground carbon pool through decomposition. 

Hensgens et al. (2020) found that the majority of water extractable DOC in a forest 

system was contributed by dwarf shrubs, followed by bryophytes and graminoids. 

 
Understory abundance and composition, and therefore qualities of carbon storage 

and cycling, can vary greatly under different site conditions. Changes in understory 

species’ abundances due to such variations can alter the overall carbon balance of 

the forest ecosystem (Grau‐Andrés et al. 2020). A more open canopy benefits the 

understory by increasing light availability and throughfall from precipitation to 

decrease competition for resources (Anderson et al. 1969; Thysell & Carey 2000). 

Total understory cover and almost all species groups generally increase with 

increasing light availability (Weisberg et al. 2003; Wagner et al. 2011), apart from 

bryophytes (Thysell & Carey 2000). Reindeer lichens (Cladonia subgenus Cladina) 

respond positively to increased light availability until an upper threshold (Sulyma 

& Coxson 2001; Čabrajič et al. 2010; McMullin et al. 2011; McMullin & Rapai 

2020). For mosses and lichens, too open of a canopy can cause desiccation and 

therefore decrease cover (Čabrajič et al. 2010). Dwarf shrubs and graminoids have 

a higher demand for light, resulting in dominance in open canopies, whereas in 

thicker canopies forbaceous species have been found to dominate (Shields & 

Webster 2007). Vascular plants present in the understory vegetation respond 

negatively to increased stand density and the decrease in response to increasing 

stand density is stronger in spruce (Picea) than birch (Betula) dominated forests 

(Hedwall et al. 2019). 

 

The proportion of certain tree species present in a stand can also influence the level 

of canopy closure and interference of light and precipitation. Precipitation 

throughfall is less in coniferous stands than broadleaves generally, and soils tend to 
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be drier (Nihlgård 1970; Barbier et al. 2008). Whereas the environment created by 

a larger proportion of spruce supports the cover of bryophytes, total field layer and 

other species groups are less tolerant of the microclimate created (Saetre et al. 1997; 

Ewald 2000; Augusto et al. 2003). Bryophytes do not have root systems and are 

therefore more affected by above-ground processes that change with canopy cover 

such as throughfall and light availability (Weibull 2001; Tinya et al. 2009). Spruce 

also has a relatively shallow root system (Gale & Grigal 1987), potentially creating 

more competition with understory plants and hindering their development (Barbier 

et al. 2008). 

 

Forest composition and structure changes with time over successional stages 

(Hedwall et al. 2013). In managed forests, following harvest, the site experiences 

an increase in incident light and precipitation, often allowing graminoids and forbs 

to dominate. Following this, small shrubs may dominate before seedlings overtake 

them (Balandier et al. 2009; Hedwall et al. 2013). Lichen cover in a stand can 

increase with age (Palmqvist & Sundberg 2000; McMullin et al. 2011) until about 

150 years at which time mosses may become dominant if already present (Sulyma 

& Coxson 2001). The total biomass present in the understory can continue to 

increase for at least a century before experiencing declines (Kumar et al. 2018). 

 

These relationships to management variables do not take into account the 

uncertainty introduced by changes in site conditions. The changing climate may 

result in novel conditions and increased disturbance frequency and severity (Seidl 

et al. 2014), which may be natural drivers of understory processes (Seidl et al. 2017; 

Dirnbock et al. 2020). In boreal biomes, annual temperature is predicted to increase 

in the future (Lind & Kjellström 2008), along with increased frequency of severe 

weather events such as droughts (Belusic et al. 2019). Due to the uncertainty 

regarding forest growth response to climate change and disturbance (Albrich et al. 

2018), it is important to understand how the understory and contributing species 

groups may respond. 

 

Generally, mosses and lichens dominate understory vegetation where summer 

temperatures are low and graminoids and forbs dominate where temperatures are 

higher (Walker et al. 2006). In boreal regions of Sweden, increased temperatures 

have contributed to a decrease in dwarf shrub cover (Hedwall et al. 2021). In some 

high-latitude areas, warming has resulted in an increase of graminoids due to wetter 

conditions caused by thawing of permafrost (Christensen et al. 2004), and increased 

precipitation can amplify this situation (Douglas et al. 2020). Increases in 

temperature may also increase rates of nitrogen mineralization in forest ecosystems 

(Verburg et al. 1999). 
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Nutrient availability can vary greatly between sites and promote differences in 

understory abundance and composition (Hutchinson et al. 1999; Adkison & 

Gleeson 2004). If increased fertility leads to an increase in litter from the overstory 

this can lead to a decrease in bryophytes or lichens as they are covered and cannot 

survive (Natalia et al. 2008; Wagner et al. 2011). Dwarf shrubs have deeper roots 

(Schenk & Jackson 2002) and therefore can access nutrients that are otherwise 

inaccessible for other species groups. They are also able to retain nutrients through 

resource allocation to perennial parts before leaf senescence (Jonasson 1983). 

Compared to forbs, graminoids have faster root growth meaning they can spread 

root systems into new areas when stressed for nutrients (Balandier et al. 2009). 

 

Prolonged decreases in precipitation are expected to decrease overall understory 

biomass, with the effect increasing in severity over time (Gimbel et al. 2015). 

Decreased precipitation reduces transpiration and leaf area index (LAI) of 

graminoids, forbs, and dwarf shrubs, with graminoids reacting the quickest and 

dwarf shrubs the slowest. Shrubs are also less resilient to decreases in precipitation 

compared to other species groups (Felsmann et al. 2017). Lichens and bryophytes 

generally benefit from increased precipitation, as they rely on throughfall and 

humidity for productivity and growth (Čabrajič et al. 2010; Virtanen et al. 2017; 

McMullin & Rapai 2020). 

 

The aim of this study is to further understand how site conditions and management 

influence the total carbon stored in forest understory vegetation and the proportion 

contributed by each species group. This study analyzed variables that can be 

controlled through management (tree basal area as an indicator of forest density, 

forest age, and percentage of spruce) and site conditions that are largely 

uncontrollable by management and likely to be influenced by climate change (total 

annual precipitation, annual average temperature, and carbon:nitrogen (CN) ratio). 

 

Using Generalized Linear Mixed Models, the strength and nature of these 

relationships are modelled based on Swedish National Forest Inventory data. The 

research questions aimed to answer in this project were: (i) how do both direct and 

indirect anthropogenic variables impact understory carbon, and (ii) how might 

understory carbon dynamics change with each explanatory variable? It is 

hypothesized that the response variables will have nonlinear relationships with the 

management-oriented and soil variables (Hedwall et al. 2013) and linear with 

climate variables. 
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2. Methods 
 
 

2.1. Study Region 

The country of Sweden is located in the Fennoscandia region of Northern Europe, 

ranging from 55°N to 69°N. From 1990 to 2019, the average annual temperature 

was 6 °C and annual precipitation was 693 mm (SMHI 2021). Over the expansive 

latitudinal gradient of the country, multiple vegetation zones are present including 

nemoral, boreo-nemoral, boreal, and alpine (Rydin et al. 1999; KSLA 2015). The 

bedrock of the country is made up of mostly crystalline rocks formed in the 

Precambrian, as well as a sedimentary layer and the Caledonian orogeny made up 

of rock more than 420 million years old (SGU 2020b). Glacial activity has carved 

and scarred this bedrock, leaving behind till which is the soil type that covers the 

most area in the country (Rydin et al. 1999; SGU 2020a). 

 

Of Sweden’s total 40.8 million hectares, productive and unproductive forests 

(differentiated by a threshold of 1 m3ha-1year-1 of growth) cover 57% and 12% of 

the area, respectively. Primary forests are rare in the landscape, making up about 

9% of the total forest area (FAO 2015). The coniferous species Norway spruce 

(Picea abies) and Scots pine (Pinus sylvestris) make up the majority of the standing 

volume, with a combined 78%. The remaining living standing volume is made up 

of birch (Betula) (12%), other deciduous species (6%), and lodgepole pine (Pinus 

contorta) (1%). The rest of the standing volume is dead trees (3%), which are 

commonly left by land owners due to their benefits for biodiversity and requirement 

to qualify for certification (FSC 2013; KSLA 2015). 

 

Forest ownership in the country is primarily private with 50% by individual owners, 

25% by private companies, and the remaining 25% by the state and others (KSLA 

2015; Sténs & Mårald 2020). Management techniques have typically focused on 

optimizing yield and production, resulting in intensive practices that create even- 

aged stands being most widely used (KSLA 2015). Modern practices are becoming 

more inclusive and interdisciplinary due to increased knowledge and shifts in 

priority (FAO 2018). Forests are more clearly being recognized for their potential 

as carbon sinks and renewable energy substitution for fossil fuels (Lundmark et al. 

2014; KSLA 2015; IUCN 2021). Just as forest policy and management goals have 
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changed over time, so have the methods of monitoring forests and the information 

collected during inventories (Fridman et al. 2014). 

 

 

2.2. The Swedish National Forest Inventory 

 
The Swedish National Forest Inventory (NFI) was created in 1923 over concern for 

sustainable use of forest resources (Fridman et al. 2014). The goal of the NFI is to 

track changes and conditions of the forests as well as provide data for forecasts of 

future development. It is made up of the National Forest Assessment as well as the 

Land Inventory (SLU 2020). Since its implementation, the methods and data 

collected have changed to be relevant for the modern day. 

 

Currently, square-shaped clusters of temporary and permanent plots cover the five 

regions of the country (Figure 1), and the permanent ones are revisited every five 

years. One-fifth of the total number of plots are visited every year over the entire 

country in order to provide updated information for the entire area. The total area 

of each individual plot varies depending on the measured variable and may be 

divided by changes in type of land use or forest 

stand. 

 

Productive forest land, for the purpose of the 

NFI, is defined as land that is suitable for 

timber production (production capacity at least 

1m3/ha/year) and not used extensively for 

anything else. This also includes abandoned 

agricultural land (unused for at least three 

years) or other unused land determined as 

suitable for forestry use. Tree layer data on 

these plots is collected over an area with a 10- 

meter radius. 
 

The understory vegetation survey is done 

every ten years in a radius of 5.64 meters on 

half of the permanent plots on which overstory 

data is collected. The total area of the plot 

may be less than the intended 100 m2 

however, as areas of disturbed soil are 

 

 

 

 

 
Figure 1: Regional division of the Swedish NFI. The numbers 

represent the size of clusters used in the NFI. 

disregarded. Area coverage (in m2) of 71 species is recorded subjectively and 

independently (SLU 2020). 
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2.3. Data 

 
2.3.1. Data Acquisition 

 
The necessary data were obtained directly from an environmental assessment 

specialist at the department of forest resource management in the division of forest 

research data at the Swedish University of Agricultural Sciences (SLU). The data 

were imported to R version 3.6.1 (R Core Team 2019) for analysis. 

 

2.3.2. Data Preparation 

 
The recorded understory species were conglomerated into the species groups 

“bryophytes”, “forbs”, “dwarf shrubs”, “graminoids”, and “lichens”. In some cases, 

a species group was found to have a total coverage area higher than the total plot 

area. This is likely due to the subjective and visual method used to estimate area 

coverage over such a large plot size, in which individual species may overlap or 

occur very close together, essentially occupying the same space. In these cases, the 

coverage area was set equal to the total plot area. The species groups were chosen 

based on available allometric functions from Lehtonen et al. (2016). These 

functions were chosen as they were created in a Finnish context, being the most 

geographically similar to Sweden of those available. The functions derive biomass 

from percentage cover, so the area coverage of each category was converted to 

coverage percent based on the total plot area. For one category, dwarf shrubs, there 

were two functions created by Lehtonen et al. (2016): one for northern Finland and 

one for Southern Finland. The outputs from both models were quite similar, so only 

the southern one was used in the end. This was chosen because the latitudinal 

southern boundary was 63.3185° N and Sweden’s geographical center is located at 

62.3875°N. This means the majority of Sweden falls below this and the southern 

model is, therefore, assumed more appropriate. 

 

The carbon content for each species group was then calculated by multiplying the 

biomass results with known carbon proportions for each. These values were 0.5 for 

dwarf shrubs, 0.47 for graminoids and forbs, and 0.35 for lichens and bryophytes 

(IPCC 2006; Peichl & Arain 2006; Smith et al. 2015; Adamovics et al. 2018). All 

categories were then added together to obtain an overall understory carbon content 

for each plot. 

 
The data was restricted to a ten-year period due to the time interval between 

inventories, so that each subplot would be present only once. Of the original 20,125 

plots visited in the ten-year period between 2007 and 2016, 15,700 of these were 

classified as productive forest land, and about half of these (7,816) had understory 
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vegetation coverage data. When further restricted to include only those plots with 

soil data, the number of qualifying plots was reduced to 3,650. Overall, a further 

287 plots were removed due to missing meteorological data (3), outliers in CN ratio, 

age, and basal area (73), and outliers in forb and lichen carbon proportion that 

skewed the data (211). This resulted in the final data set consisting of 3,363 plots. 

 

The explanatory variables were tested for intercorrelation with a Pearson 

correlation test. This helped to prevent collinearity between variables. No variables 

exceeded a correlation coefficient of 0.49 and were therefore considered 

appropriate to include in the model together. Morans.I tests were also run for each 

model to ensure adequate accounting for spatial autocorrelation within the data. P- 

values of 1 indicated insignificance of any relations (Table 7). 

 

 

 

 

2.3.3. Model 

 
Generalized Linear Mixed Models (GLMMs) were implemented using the gamlss 

package (v5.3-4) and function in R (Rigby & Stasinopoulos 2005). This allows for 

the implementation of a random effect to account for the spatial design of the NFI, 

present in this study as plots nested in regions. A two-dimensional smoother of plot 

coordinates was also implemented to remove spatial autocorrelation in the residuals 

using the gam function in the mgcv package (v1.8-28) (Wood 2017) called within 

the gamlss function. 

 

Due to hypothesized non-linear relationships between the response variables and 

some explanatory variables, the squared values for total basal area, CN ratio, 

percent of spruce, and stand age were used in the models. The variables used in the 

continuous (Formula 1) and binomial (Formula 2) portions of the model are listed 

below, where y indicates the response variable of total understory carbon or 

proportion of a species group. 
 

𝑦 = 𝐵𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎 + 𝐵𝑎𝑠𝑎𝑙 𝐴𝑟𝑒𝑎2 + 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑆𝑝𝑟𝑢𝑐𝑒 + 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑆𝑝𝑟𝑢𝑐𝑒2 + 𝑆𝑡𝑎𝑛𝑑 𝐴𝑔𝑒 + 𝑆𝑡𝑎𝑛𝑑 𝐴𝑔𝑒2 + 𝐶𝑁 𝑅𝑎𝑡𝑖𝑜 + 

𝐶𝑁 𝑅𝑎𝑡𝑖𝑜2 + 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑛𝑛𝑢𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑛𝑢𝑎𝑙 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 
 

𝑦 = 𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑠𝑎𝑙 𝐴𝑟𝑒𝑎 + 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑆𝑝𝑟𝑢𝑐𝑒 + 𝑆𝑡𝑎𝑛𝑑 𝐴𝑔𝑒 + 

𝐶𝑁 𝑅𝑎𝑡𝑖𝑜 + 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑛𝑛𝑢𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑛𝑢𝑎𝑙 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 

 
(1) 

 

 

 
(2) 
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These explanatory variables were all standardized as z-scores before use in the 

model. Response variables of species groups were divided by total understory 

carbon to obtain proportion values. 

 

Due to the proportional qualities and zero inflation of the species group carbon data, 

an inflated beta distribution with the default logit mu and sigma and log nu and tau 

link functions was used in the case of the response variables. The standardized 

values of understory carbon contained no zeros and were normally distributed, 

allowing the use of a Gaussian distribution when total understory carbon was the 

response variable. The total understory carbon values were then standardized to z- 

scores before use in the Gaussian distribution model, and the output values were 

later unstandardized for evaluation and interpretation. 

 

 
 

. 
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3. Results 
 
 
 

3.1. Biomass and Carbon Content 

Dwarf shrubs and bryophytes made up the majority of the total biomass and carbon 

content (Figure 2). Bryophytes were the highest in biomass (46%), but dwarf shrubs 

were highest in carbon (45%) due to the differences in carbon content per unit 

biomass between the species groups. 

 

 

 

Figure 2: Proportions of biomass and carbon of each understory species group in relation to the 

total for all studied plots. 



21  

3.2. Model Outputs 

 

 
3.2.1. Total Understory Carbon 

 
All explanatory variables presented a significant relationship with total understory 

carbon as shown by the linear (β1) and quadratic (β2) coefficients in conjunction 

with the relationship p-values (P) (Table 1). Total basal area (β1=-0.16 P<.001, β2=- 

0.13 P<.001) and yearly temperature (β1=-0.18 P<.001) displayed negative 

relationships (Figure 3a&e). Age (β1=0.44 P<.001, β2=-0.21 P<.001), CN ratio 

(β1=1.03 P<.001, β2=-0.70 P<.001), and total annual precipitation (β1=0.06 

P<.001) positively impacted the amount of carbon in the understory (Figure 

3c,d&f). Age and CN ratio are characterized by an increase that levels off at high 

values. Percent of spruce in the stand had a negative influence on total understory 

carbon, with a levelling off at the lowest values of spruce (β1=0.02 P=.632, β2=- 

0.16 P<.001) (Figure 3b). 

 

 
Figure 3: Understory carbon content progression along values of a) total basal area, b) percent of 

spruce in stand, c) stand age, d) CN ratio, e) average annual temperature, and f) annual 

precipitation. In each panel, all other variables are kept constant except the one represented on 

the x-axis. OBSERVE: Y-axis scales differ between panels based on possible carbon contents with 

each variable. Residual plots (Figures 10-15) can be found in the Appendix. 
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3.2.2. Species Groups 

 
Total Basal Area 

 
Of all the species groups, total basal area had the strongest influence on graminoids 

(β1=-0.38 P<.001, β2=0.24 P<.001). The proportion of understory carbon present 

in graminoids reached the lowest value around 35 m2 ha-1 before slightly increasing 

again. Bryophytes had a linear relationship similar in strength to that of graminoids, 

however the general trend was opposite (β1=0.36 P<.001, β2=-0.16 P<.001). 

Lichens (β1=-0.19 P<.001, β2=0.09 P=.012) displayed a weaker but similar 

progression with increasing basal area as graminoids (Figure 4). Forbs were barely 

significantly affected, and the nonlinear response was insignificant (β1=0.08 

P=.038, β2=0.02 P=.479). Neither the linear nor nonlinear relationships were 

significant with dwarf shrubs (β1=-0.05 P=.330, β2=-0.06 P=.176) (Table 2). 
 

 
 

Figure 4: The effect of total basal area on the proportion of understory carbon in each species 

group. OBSERVE: Y-axis scales differ between panels based on possible carbon contents with each 

variable. Residual plots (Figures 10-15) can be found in the Appendix. 
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Percent of Spruce 

 
Percent of spruce in the stand was found to have a significant relationship on some 

level with all species groups. Lichens (β1=-0.16 P<.001, β2=0.03 P=.396) and 

bryophytes (β1=0.16 P<.001, β2=0.16 P<.001) displayed slopes of equal strength 

in opposite directions at 0% spruce in the stand, but only the upward curve to the 

trend in bryophytes was significant. The sharpest curve in progression with 

increasing spruce in the stand was in dwarf shrubs (β1=0.15 P=.003, β2=-0.41 

P<.001), resulting in the proportion of carbon decreasing at around 25% of the stand 

comprised of spruce. Graminoids (β1=-0.40 P<.001, β2=0.25 P<.001) displayed a 

significant and upward curve after 75% (Figure 5). Neither coefficient for forbs 

were significant (β1=-0.07 P=.086, β2=0.04 P=.329) (Table 3). 

 

 
Figure 5: The effect of percent of spruce in the stand on the proportion of understory carbon in each 

species group. OBSERVE: Y-axis scales differ between panels based on possible carbon contents 

with each variable. Residual plots (Figures 10-15) can be found in the Appendix. 
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Stand Age 

Stand age showed generally the weakest relationship with all the species groups 

(Table 4). The strongest relationship was with graminoids (β1=-0.59 P<.001, 

β2=0.44 P<.001). As can be seen in Figure 6, this trend was characterized by an 

upwards parabolic shape with the direction of the relationship changing at about 

100 years. The other significant linear trends were with dwarf shrubs (β1=0.28 

P<.001, β2=-0.1 P=.061) and forbs (β1=-0.18 P<.001, β2=0.09 P=.047). The 

nonlinear characteristics of the relationship with forbs was only border-line 

significant. Bryophytes had an insignificant slope at a stand age of 0 years, followed 

by a negative response with increasing age (β1=0.04 P=.447, β2=-0.14 P=.003). 

Proportion of understory carbon in lichens (β1=-0.05 P=.281, β2=0.04 P=.303) was 

not significantly related to stand age. 

 

Figure 6: The effect of stand age on the proportion of understory carbon in each species group. 

OSERVE: Y- axis scales differ between panels based on possible carbon contents with each variable. 

Residual plots (Figures 10-15) can be found in the Appendix. 
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CN Ratio 

CN ratio generally showed the strongest relationships with proportions of total 

carbon out of all explanatory variables (Table 5). The strongest relationship was 

with forbs (β1=-2.03 P<.001, β2=1.26 P<.001), which had a similar trend as 

graminoids (β1=-1.57 P<.001, β2=0.92 P<.001), with an L-shaped relationship 

(Figure 7). By a CN value of 40 both species groups contributed little to none of the 

total understory carbon. The only other coefficients greater than one occurred with 

dwarf shrubs (β1=1.62 P<.001, β2=-1.22 P<.001), which displayed a downward 

curve around 45 in an otherwise positive trend. Lichens (β1=-0.25 P<.001, β2=0.38 

P<.001) displayed the weakest relationships with CN ratio for both levels of the 

variable, with an increase at CN value of about 25. Bryophytes (β1=0.10 P=.123, 

β2=-0.09 P=.165) were not significantly related on either level. 
 

 
 

 
 

Figure 7: The effect of CN ratio on the proportion of understory carbon in each species group. 

OBSERVE: Y- axis scales differ between panels based on possible carbon contents with each 

variable. Residual plots (Figures 10-15) can be found in the Appendix. 
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Average Yearly Temperature 

 
Temperature had a positive influence on graminoids (β1=0.09 P<.001) and forbs 

(β1=0.19 P<.001). Lichens (β1=-0.04 P=.001) and dwarf shrubs (β1=-0.11 P<.001) 

were negatively impacted by increasing temperature, with a stronger negative 

influence on dwarf shrubs (Figure 8). The relationship with bryophytes (β1=0.02 

P=.126) was insignificant (Table 6). 

 

Figure 8: The effect of mean annual temperature on the proportion of understory carbon in each 

species group. OBSERVE: Y-axis scales differ between panels based on possible carbon contents 

with each variable. Residual plots (Figures 10-15) can be found in the Appendix. 
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Total Annual Precipitation 

Relationships with precipitation were found to only be significant with dwarf shrubs 

(β1=0.06 P<.001), bryophytes (β1=-0.06 P<.001), and lichens (β1=-0.06 P<.001). 

As is indicated by the coefficients (Table 6), precipitation had an equally strong 

influence on all of these response variables. The direction of the relationship differed 

between them with a decrease in the understory carbon proportion present in the 

lichen and bryophytes species groups (Figure 9). Neither graminoids (β1=- 0.00(2) 

P=0.989) nor forbs (β1=-0.01 P=.379) were significantly related to precipitation. 

 

 
Figure 9: The effect of annual precipitation on the proportion of understory carbon in each species 

group. OBSERVE: Y-axis scales differ between panels based on possible carbon contents with each 

variable. Residual plots (Figures 10-15) can be found in the Appendix. 
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4. Discussion 
 

This study demonstrated that both forest management and site conditions have 

significant relationships with understory carbon content and composition. To our 

knowledge, no previous studies have modelled understory carbon dynamics the way 

it has been done here. A study by Muukkonen and Mäkipää (2006) used similar 

methods to model understory above-ground biomass, but only included linear 

responses in their models and did not directly study the carbon content of the 

understory or contribution of species groups. As the carbon contents modelled here 

are derived from equations based on cover and biomass, studies of these 

measurements will also be compared as a proxy for carbon. 

 

 

4.1. Management 

 
The GLMMs give a more in-depth understanding as to why dwarf shrubs and 

bryophytes dominate both in cover and in contribution to the understory carbon 

pool. As indicated by the results here, current management regimes create 

conditions under which these species groups generally benefit more than others. 

 
A less dense forest with a more open canopy is conducive to overall understory 

development and carbon storage (Alaback & Herman 1988; Hedwall & Brunet 

2016). Forest density (estimated in our study using the basal area variable) had a 

negative influence on the proportion of understory carbon contributed by most 

species groups, as well as the total understory. The insignificance of the relationship 

between stand density and dwarf shrubs was unexpected as canopy structure and 

shading has previously been shown to have an impact on their cover (Alaback & 

Herman 1988; Moola & Mallik 1998). However, it agrees with Ali et al. (2019) 

who found that dwarf shrubs did not significantly differ between stands of differing 

density. The lack of relationship found here could be due to a delayed response to 

stand density. Moola and Mallik (1998) found that dwarf shrubs were able to persist 

for longer periods of time in shaded environments. As it is unknown for how long 

a stand had been at the measured total basal area when the data was collected, it is 

possible that the dwarf shrub cover had simply not yet responded to the density the 

stand was currently at. Forbs also responded unexpectedly to basal area, with a 

linear positive response to increasing stand density. However, it is in line with 
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findings by Wilson and Puettmann (2007) which showed that forbs responded 

negatively if at all to thinnings, implying a preference for a consistently more closed 

canopy. Wilson and Puettmann (2007) as well as Ali et al. (2019) report a lower 

sensitivity of forbs to stand density but considering the significance levels of the 

relationships found here, our results are at odds. McKenzie et al. (2000) also found 

a very weak relation between forbs and canopy characteristics, which agrees with 

the only borderline significant relationship found in our study. This barely 

significant relationship could also be explained by species turnover along the light- 

availability gradient. Individual species in the group have a wide range of light 

requirements and species turnover may therefore occur within the group while still 

remaining present overall. 

 
Lichens responded unexpectedly, as they only decreased with increasing forest 

density. As high levels of light can cause desiccation (Čabrajič et al. 2010), it would 

be expected for them to begin at a low value as bryophytes did, and then peak at an 

intermediate basal area. Helle et al. (1990) reported an initial decrease in lichen 

cover following clearcutting as would be expected, but an overall lack of response 

to changes in stand density and canopy cover otherwise. They did, however, find 

positive correlations between litter and logging residue variables, showing the 

importance of potentially including variables such as these in similar studies in the 

future. 

 
Bryophytes were the only other species group to respond positively to increasing 

density, but that relationship was expected (Weibull 2001; Tinya et al. 2009). It is, 

however, at odds with a study by Saetre et al. (1997), who did not find a significant 

relationship between basal area and bryophyte cover. According to their results, the 

composition of the overstory was more influential on bryophyte cover, however in 

our study the relationship between stand density was stronger than that with percent 

of spruce which represents canopy composition more closely. 

 
A higher percent of spruce in a stand has a negative influence on most species 

groups and the total understory (Rowe 1956; Saetre et al. 1997; Ewald 2000; 

Augusto et al. 2003). Bäcklund et al. (2016) found a general lower cover of all 

species groups except bryophytes when comparing pine and spruce stands in 

northern Sweden. This negative influence of spruce content on understory presence 

may not come only from decreased light availability due to the thick canopy, but 

also from factors such as below-ground competition for resources and accumulation 

of litter (Saetre et al. 1997; Petersson et al. 2019). Graminoids had the most severe 

negative influence from spruce. Graminoids have relatively shallow root systems 

(Schenk & Jackson 2002), which may mean they compete more directly with 

shallow spruce root systems and explain the more severe response. Thomas et al. 
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(1999) also reported a more dramatic positive response from graminoids to 

openings in the canopy compared to other species groups. The negative response of 

proportion of understory carbon in graminoids found here could be due to this 

higher sensitivity of graminoids to light availability. 

 
The general negative influence of dense plantation management style may be 

somewhat offset by the benefits from decreased canopy cover through thinning. 

Total understory cover as well as the majority of species groups respond positively 

to openings in the canopy (Alaback & Herman 1988; Thomas et al. 1999; Thysell 

& Carey 2000). A management technique that allows for openings in the canopy is 

continuous cover, selective harvest. This technique allows not only for openings in 

the canopy (Lähde et al. 2002; Saiful & Latiff 2019), but also more variation in age 

within a stand (Lundmark et al. 2014). 

 
Total understory carbon content increased with the age of the stand. This is at odds 

with several existing studies (Pregitzer & Euskirchen 2004; Peichl & Arain 2006; 

Bradford & Kastendick 2010; Uri et al. 2012). Kumar et al. (2018), however, report 

that total understory biomass can increase for at least a century. More specifically, 

they found increases in forbs, bryophytes, and dwarf shrubs over a long period of 

time. Dwarf shrubs followed this pattern with a linear increase with stand age. 

Alaback (1982) reported an almost complete disappearance of dwarf shrubs from 

forest understory after a couple of decades. Results here indicate almost the opposite 

of this, as dwarf shrubs make up almost half of all understory carbon in the stand at 

an age of 200 years. Forbaceous carbon decreased initially and then experienced a 

slight increase at the highest stand ages, similar to results found by Alaback (1982) 

of reestablishment of forbs in stands after about 140 years. However, the influence 

of stand age found by Alaback (1982) and others may be influenced by an increase 

in stand density over time, which has been controlled for in the models created in 

our study through inclusion of the basal area variable. The processes modelled in this 

study, therefore, can more likely be attributed to time for establishment and 

development. 

 

 

4.2. Site Conditions 

 
The results presented in our study indicate that increasing temperatures decrease 

total understory carbon whereas increasing precipitation supports understory 

carbon content. Soil properties represented by CN ratio positively influenced dwarf 

shrubs and lichens and negatively impacted graminoids and forbs. The proportion 

of carbon stored in graminoids and forbs increased with increasing temperatures 

and was uninfluenced by changes in amount of precipitation, whereas lichens and 
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dwarf shrubs decreased with increases in temperature. Dwarf shrubs were 

positively influenced by increased precipitation while bryophytes and lichens 

decreased. 

 

According to the relationships modelled here, the shifting climate towards generally 

higher temperatures and more frequent and prolonged periods of decreased 

precipitation in boreal regions (Gauthier et al. 2015; Ruiz-Pérez & Vico 2020) 

would decrease total understory carbon in the studied sites. Ciais et al. (2005) found 

higher correlation between forest gross primary production (GPP) anomalies and 

rainfall rather than temperature increases. However, the relation here between total 

understory carbon and temperature was stronger than that between total understory 

carbon and precipitation. It is possible that the negative influence stems from a 

decrease in soil moisture availability with heightened temperatures (Rustad et al. 

2001). 

Beierkuhnlein et al. (2011) reported a higher sensitivity of Swedish graminoid 

ecotypes to drought but an insignificant impact of warming on biomass production. 

According to the results here, warming has a weak but significant positive influence 

on graminoid cover. Both graminoids and forbs had insignificant relations with 

precipitation in this study, indicating a stronger influence by temperature. This 

disagrees with existing studies that have found precipitation to have a greater 

influence on forbaceous vegetation (Fuhlendorf et al. 2001; Compagnoni et al. 

2021). In the Eastern United States, Fridley and Wright (2018) observed a decrease 

in forbaceous biomass with increasing temperature. However, neither increased 

precipitation nor cooler temperatures positively influenced graminoids nor forbs in 

the results presented here. In fact, forbs were positively influenced by increasing 

temperature. Discrepancies between our study and others could be due to the scope 

of data used, as temperature and precipitation values in our study are only those 

within the range that occurs in Sweden. Dwarf shrub response modelled in our study 

is in agreement with Hedwall et al. (2021) who found a negative response of dwarf 

shrub cover in Sweden with increasing temperatures. 

 
Nitrogen mineralization in boreal soils may increase with higher temperatures 

(Verburg et al. 1999), and fertilization is gaining more interest in the forestry 

community (Sténs et al. 2011). According to the results here, increased N 

mineralization and fertilization will decrease total understory carbon as well as the 

proportion of said carbon that is present in dwarf shrubs, bryophytes, and lichens. 

The decrease of understory carbon with increasing fertility (lower CN ratio) is 

potentially due to the higher nutrient availability to the overstory, supporting 

development of the canopy and allowing less light to reach the understory (Thomas 

et al. 1999). However, this is accounted for to some extent with the inclusion of 

basal area and spruce presence variables in the model, indicating an alternative 

influence. The results presented here indicate a threshold at which the fertility is 
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low enough that bryophytes and dwarf shrubs begin to suffer as well. This could be 

a point where resources are low enough that the understory is being outcompeted 

below ground. The overall decrease in understory carbon is then likely impacted by 

the species turnover that takes place, with a decrease in species groups with higher 

carbon contents such as dwarf shrubs towards graminoids and forbs. As these are 

species groups with longer turnover and decompositions rates than those of 

graminoids and forbs (Jonasson 1983; Wickland et al. 2007; Hensgens et al. 2020), 

this would mean a shorter time of carbon storage in the understory pool. 

 

 

 
4.3. Implications for Species and Carbon Turnover 

 
The understory can contribute greatly to forest net primary production (NPP), as 

this vegetation layer generally has a faster turnover time than that of the overstory 

(Nilsson & Wardle 2005; Wardle et al. 2012). Therefore, with decreasing 

understory carbon along gradients of stand density, percent of spruce, and 

temperature the cycling of carbon in the system would slow down. This could 

influence the soil characteristics of the site, as understory vegetation has been found 

to influence CN ratio, moisture, and temperature (Gurlevik et al. 2004; Pan et al. 

2018). 

 
Species turnover along the gradients in explanatory variables modelled here impact 

the carbon turnover time within the aboveground understory carbon pool as well. 

For example, over a gradient towards more dense, dark forests, as has been the trend 

in European forestry in recent years (Rautiainen et al. 2011), there is a shift towards 

forbs and bryophytes and away from graminoids and dwarf shrubs found here. 

Increases in spruce, one of the two dominant forestry species used in Sweden 

(KSLA 2015), only benefitted the species group bryophytes according to the 

models in this study, and within the temporal scale of regeneration to harvest 

(Skogsstyrelsen n.d.), only dwarf shrubs increased. Predicted changes in site 

conditions will promote only graminoids and forbs according to the models 

presented here, as all other species groups were either negatively impacted by all 

variables or more negatively impacted by one or more than the positive effect of 

the other(s). 

 
A decrease in dwarf shrubs would mean less carbon per unit biomass according to 

the ratios used in our study. It would also mean shorter longevity of stored carbon, 

as dwarf shrubs have longer turnover times than most species groups (Jonasson 

1983; Hensgens et al. 2020). As graminoids and forbs do not contain any woody 

material that survives year-round, this means carbon will be cycled more quickly 
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through the system. However, some perennial species may maintain biomass 

throughout the year. In drought scenarios, Beierkuhnlein et al. (2011) found more 

necrotic tissue of graminoids, meaning that these more frequent extreme weather 

events will cause losses of biomass and increase the rate of carbon cycling as well. 

 
Species turnover within groups will also impact carbon longevity in the system 

because there are variations in deciduous and evergreen species as well as annual 

and perennial within the groups categorized here. For example, requirement 

gradients over light and nutrient availability exist between the dominant dwarf 

shrub species in Sweden (Calluna vulgaris, Vaccinium vitis-idaea, and V. myrtillus) 

(Kulmala et al. 2018). This means that dwarf shrub cover could remain constant, 

but the biomass would be stored in deciduous species rather than evergreen under 

dense forest conditions, and therefore increase the carbon turnover rate. 

 

 

 
4.4. Future Studies 

 
The current lack of knowledge regarding the dynamics of the understory carbon 

pool with management and climate shows potential for future development in this 

line of research. Moving forward, there are multiple things that could be 

implemented in order to get a more clear and in-depth understanding to these 

processes. 

 
For example, biomass functions specific to Sweden could provide more precise 

calculations appropriate for the data collected in this region, as applicability of 

models can vary spatially (GFOI 2016). There is potential for more technologically 

advanced methods to be used for biomass calculation in the future as well, as 

demonstrated by Seidel et al. (2012) who used terrestrial laser scanning to estimate 

understory biomass in coppice stands. Both the functions and data collection could 

be improved upon by inclusion of layer height. Measurements by ICOS Sweden (T 

Biermann 2021, personal communication, 22 July) found variation in thickness of 

bryophyte cover within a single stand, and Helle et al. (1990) reported an increase 

in cover of lichens with stand age but a decrease in height. This indicates dynamics 

in height that are currently being neglected with the methods implemented here due 

to considering cover in a two-dimensional perspective. 

 
It would also be beneficial to analyze the responses on a finer scale, considering the 

individual species in each group. Beierkuhnlein et al. (2011) looked at resilience to 

warming and drought between species and ecotypes and found variation on both 

levels, and Jonasson (1983) found variations in nutrient concentration and 
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allocation between evergreen and deciduous dwarf shrub species. This goes to show 

that dynamics and responses may not only differ between species groups but also 

within them. This would consider, for example, the different light and nutrient 

requirements of species grouped together and, consequently, shifts in composition 

within species groups along the studied gradients. The same should be considered 

for carbon allocation in each species, as it may go to either woody or herbaceous 

components depending on site conditions, and these have differing turnover rates 

(Moola & Mallik 1998). 

 
As the overstory is the resource most utilized from forests, as well as the larger 

carbon pool compared to the understory (Moore et al. 2007; Burton et al. 2013), 

methods that may improve the carbon sequestration by the understory should not 

be implemented before the impact on the overstory has also been determined. For 

example, extending the age of a stand or decreasing density may allow for more 

carbon in the understory, but it may also lead to a lower number of suitable stems 

for timber harvest (Ahmad et al. 2019). Biodiversity as an ecosystem service should 

also be considered, as trade-offs between understory and overstory carbon pools 

and diversity have also been found (Burton et al. 2013). 
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5. Appendix 1 
 
 

 

5.1. Model Outputs 

 
5.1.1. Partial Regression Plots 

 
 

Figure 10: Partial residual plots for graminoid model 
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Figure 11: Partial residual plots for dwarf shrub model 
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Figure 12: Partial residual plots for forb model 
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Figure 13: Partial residual plots for bryophyte model 
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Figure 14: Partial residual plots for lichen model 
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Figure 15: Partial residual plots for total understory carbon model 
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5.1.2. Model Summaries 

 

 
Total Understory Carbon 

 
Table 1: Model outputs of coefficients and corresponding statistics for the standardized total 

understory carbon response variable. 

Variable Estimate Std. Error T value P value 

Intercept 0.00 0.01 0.00 1.000 

Basal Area -0.16 0.04 -4.07 <.001 

Basal Area 2 -0.13 0.03 -3.81 <.001 

% Spruce 0.02 0.04 0.48 0.632 

% Spruce 2 -0.16 0.04 -4.35 <.001 

Age 0.44 0.04 9.84 <.001 

Age 2 -0.21 0.04 -5.19 <.001 

CN ratio 1.03 0.05 19.45 <.001 

CN ratio 2 -0.70 0.05 -13.30 <.001 

Temperature -0.18 0.01 -14.09 <.001 

Precipitation 0.06 0.01 5.85 <.001 
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Graminoids 

 
Table 2: Binary (Nu) and nonbinary (Mu) model outputs of coefficients and corresponding statistics 

for the standardized carbon proportion in graminoids response variable. 

Variable Estimate Std. Error T value P value 

Mu Coefficients 

Intercept -2.10 0.02 -131.80 <.001 

Basal Area -0.38 0.05 -8.35 <.001 

Basal Area 2 0.24 0.04 6.03 <.001 

% Spruce -0.40 0.05 -8.31 <.001 

% Spruce 2 0.25 0.05 5.24 <.001 

Age -0.59 0.06 -10.56 <.001 

Age 2 0.44 0.05 8.29 <.001 

CN ratio -1.57 0.07 -23.26 <.001 

CN ratio 2 0.92 0.07 12.68 <.001 

Temperature 0.09 0.02 5.31 <.001 

Precipitation -0.00 0.01 -0.01 0.99 

Nu Coefficients 

Intercept -3.82 0.15 -26.21 <.001 

Basal Area 0.63 0.15 4.06 <.001 

% Spruce -0.77 0.15 -5.23 <.001 

Age 1.15 0.14 8.17 <.001 

CN ratio 0.79 0.14 5.57 <.001 

Temperature 0.72 0.16 4.67 <.001 

Precipitation -0.05 0.15 -0.33 0.75 
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Dwarf Shrubs 

 
Table 3: Binary (Nu) and nonbinary (Mu) model outputs of coefficients and corresponding statistics 

for the standardized carbon proportion in dwarf shrubs response variable. 

Variable Estimate Std. Error T value P value 

Mu Coefficients 

Intercept -0.59 0.01 -43.76 <.001 

Basal Area -0.05 0.05 -0.97 0.330 

Basal Area 2 -0.06 0.05 -1.35 0.176 

% Spruce 0.15 0.05 2.98 0.003 

% Spruce 2 -0.41 0.05 -8.11 <.001 

Age 0.28 0.06 4.75 <.001 

Age 2 -0.10 0.05 -1.88 0.061 

CN ratio 1.62 0.08 20.96 <.001 

CN ratio 2 -1.22 0.07 -16.47 <.001 

Temperature -0.11 0.02 -6.89 <.001 

Precipitation 0.06 0.0 4.25 <.001 

Nu Coefficients 

Intercept -7.19 0.42 -17.129 <.001 

Basal Area 0.55 0.22 2.493 0.013 

% Spruce -0.22 0.19 -1.180 0.238 

Age -0.91 0.33 -2.764 0.006 

CN ratio -3.16 0.30 -10.468 <.001 

Temperature 1.01 0.29 3.526 <.001 

Precipitation -0.34 0.19 -1.822 0.069 
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Forbs 

 
Table 4: Binary (Nu) and nonbinary (Mu) model outputs of coefficients and corresponding statistics 

for the standardized carbon proportion in forbs response variable. 

Variable Estimate Std. Error T value P value 

Mu Coefficients 

Intercept -4.25 0.01 -323.35 <.001 

Basal Area 0.08 0.04 2.08 0.038 

Basal Area 2 0.02 0.03 0.71 0.479 

% Spruce -0.07 0.04 -1.72 0.086 

% Spruce 2 0.04 0.04 0.98 0.329 

Age -0.18 0.05 -3.68 <.001 

Age 2 0.09 0.05 1.99 0.047 

CN ratio -2.03 0.06 -34.59 <.001 

CN ratio 2 1.26 0.07 19.06 <.001 

Temperature 0.19 0.01 14.10 <.001 

Precipitation -0.01 0.01 -0.88 0.379 

Nu Coefficients 

Intercept -2.43 0.09 -28.29 <.001 

Basal Area 0.31 0.10 3.15 0.002 

% Spruce -0.25 0.09 -2.86 0.004 

Age 0.40 0.09 4.31 <.001 

CN ratio 1.11 0.09 11.83 <.001 

Temperature 0.42 0.11 3.91 <.001 

Precipitation 0.52 0.08 6.15 <.001 
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Bryophytes 

 
Table 5: Binary (Nu) and nonbinary (Mu) model outputs of coefficients and corresponding statistics 

for the standardized carbon proportion in bryophytes response variable. 

Variable Estimate Std. Error T value P value 

Mu Coefficients 

Intercept -0.21 0.01 -17.63 <.001 

Basal Area 0.36 0.05 7.88 <.001 

Basal Area 2 -0.16 0.04 -4.00 <.001 

% Spruce 0.16 0.05 3.54 <.001 

% Spruce 2 0.16 0.04 3.68 <.001 

Age 0.04 0.05 0.76 0.447 

Age 2 -0.14 0.05 -2.97 0.003 

CN ratio 0.10 0.06 1.54 0.123 

CN ratio 2 -0.09 0.06 -1.39 0.165 

Temperature 0.02 0.02 1.53 0.126 

Precipitation -0.06 0.01 -4.85 <.001 

Nu Coefficients 

Intercept -69.14 557.99 -0.12 0.901 

Basal Area -17.65 347.19 -0.05 0.959 

% Spruce 2.78 365.32 0.01 0.994 

Age 1.77 419.90 0.00 0.997 

CN ratio -32.66 311.67 -0.11 0.917 

Temperature -3.98 183.28 -0.02 0.983 

Precipitation -0.37 197.76 -0.00 0.999 
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Lichens 

 
Table 6: Binary (Nu) and nonbinary (Mu) model outputs of coefficients and corresponding statistics 

for the standardized carbon proportion in lichens response variable. 

Variable Estimate Std. Error T value P value 

Mu Coefficients 

Intercept -3.46 0.01 -305.37 <.001 

Basal Area -0.19 0.04 -4.85 <.001 

Basal Area 2 0.09 0.04 2.53 0.011 

% Spruce -0.16 0.04 -4.21 <.001 

% Spruce 2 0.03 0.04 0.85 0.396 

Age -0.05 0.04 -1.08 0.281 

Age 2 0.04 0.04 1.03 0.303 

CN ratio -0.26 0.06 -4.58 <.001 

CN ratio 2 0.38 0.05 7.43 <.001 

Temperature -0.04 0.01 -3.32 0.001 

Precipitation -0.06 0.01 -5.17 <.001 

Nu Coefficients 

Intercept -1.37 0.06 -24.60 <.001 

Basal Area 0.10 0.06 1.67 0.096 

% Spruce -0.03 0.05 -0.57 0.567 

Age 0.16 0.07 2.33 0.020 

CN ratio -1.14 0.07 -16.61 <.001 

Temperature 0.27 0.07 4.11 <.001 

Precipitation -0.08 0.05 -1.57 0.117 
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5.2. Morans.I 

Table 7: Results of Morans.I tests for each model to ensure absence of spatial autocorrelation. 

 Statistic Expectation Variance Std. 

Deviate 

P-value 

Total Carbon -0.14 -0.00 0.00 -6.30 1.000 

Graminoids -0.38 -0.00 0.00 -16.61 1.000 

Forbs -0.54 -0.00 0.00 -23.70 1.000 

Dwarf Shrubs -0.12 -0.00 0.00 -5.48 1.000 

Bryophytes -0.06 -0.00 0.00 -2.64 0.996 

Lichens -0.50 -0.00 0.00 -22.06 1.000 

 


