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In the present study, the concept of a biological H2 methanation (BHM) system was created for four 

cases of scale which are determined by electrolyser scale. The system design is aimed to upgrade 

existing biogas to vehicle fuel quality, with a concentration of CH4 above 95% and H2S removal. 

The cases of scale and type of electrolyser are: 4.8 kW AEM electrolyser, 20 kW AEL electrolyser, 

100 kWe AEL electrolyser and 550 kWe PEM electrolyser. Each case of scale can upgrade a biogas 

flow of 0.7, 2.4, 14.5 and 73.9 Nm3 respectively. A trickle bed reactor design at thermophilic 

conditions was chosen for the systems methanation process. A MATLAB model was created to 

simulate energy- and mass flows for the system. The simulation also includes economic parameters 

such as OPEX and CAPEX. Results of the simulation are presented as levelized cost of CH4 

production (€/kWh) and specific CAPEX (€/kWe). Simulations of the system show a high upgrading 

performance with an output gas of above 95% CH4 with H2S removal. The system also increases 

CH4 yield of 60%. The system performs comparatively to traditional upgrading method. The 

economic results show that the system has an upgrading cost of 0.37 to 0.089 €/kWh and specific 

CAPEX of 3830 to 22 500 €/kW. The system cannot be considered economically competitive to 

traditional upgrading when no additional cost reductions are applied. The concept of upgrading by 

BHM also reduces carbon emissions from biogas production giving the system a good chance of 

receiving subsidies from greenhouse gas reduction initiatives. Larger scales of the system can then 

reach competitive upgrading costs by utilizing subsidies, electricity price reductions and heat 

recovery.  

Keywords: Biological methanation, Biogas upgrade, Methane, Small-scale methanation 

 

 

Abstract  



 

 

Vid ett cirkulärt system kan biogasproduktion anses vara viktig. Genom att 

producera biogas från avloppsslam, matavfall eller annat organiskt avfall kan energi 

utvinnas samt gödslingsmedel produceras. Biogasen som produceras innehåller en 

hög halt koldioxid (35–40%). Gasen kan uppgraderas genom att avlägsna 

koldioxiden och 2019 producerades 2.1 TWh biogas varav 64 procent av all biogas 

uppgraderas för att användas till fordonsgas. Däremot är uppgradering av biogas 

dyr och är oftast reserverad för större anläggningar. För mindre anläggningar som 

gårdsanläggningar eller mindre reningsverk uppgraderas sällan biogasen och i 

stället används rågas för värme- och elproduktion. Det finns då ett behov att hitta 

nya kostnadseffektiva metoder för uppgradering. 

Biologisk metanisering är en process där mikroorganismer omvandlar koldioxid 

och vätgas till metan och vatten. Processen är en del av den mikrobiologiska 

processkedjan för att producera biogas. Metaniseringsprocessen kan då användas 

till att öka halten och mängden metan ur en biogasprocess genom att injicera vätgas. 

Detta kan göras direkt i rötkammare eller i ett externt kärl med mikroorganismer 

där koldioxid/biogas tillförs. Eftersom metoden kräver vätgas produceras oftast 

vätgasen genom elektrolys, som omvandlar vatten till vätgas när en elektrisk 

spänning tillförs.  

I detta examensarbete utformades ett konceptuellt småskaligt uppgraderingssystem 

som med hjälp av biologisk metanisering och elektrolys kan uppgradera biogas till 

fordonsgas. Metaniseringen utförs i en ”trickle bed” reaktor där mikroorganismerna 

är immobiliserade i en fast bädd där sedan CO2 och H2 injiceras i botten. Systemet 

konstruerades för fyra olika skalor och mättes på installerad kapacitet för 

elektrolysen: 4.8 kW, 20 kW, 100 kW och 550 kW. Dessa skalor kan uppgradera 

ett biogasflöde på 0.7, 2.4, 14.5 respektive 73.9 Nm3 biogas. En modell för 

systemets skalor skapades. Energibalans, massbalans och metanproduktion 

simulerades. En ekonomisk analys utfördes även med mål att jämföra 

uppgraderingskostnaderna gentemot traditionell uppgradering som används i 

Sverige. Beräkningarna baseras på termofila förhållanden (55°C) för 

metaniseringsprocessen. 

Resultaten visade att systemet har potential till att användas för uppgradering. 

Systemet når en producerad gaskvalité för fordonsgas. Kostnader för systemet 

visade sig vara starkt beroende av elektrolys- och elkostnader och detta fenomen 

förstärktes vid högre skalor. Uppgraderingskostnader för systemet nådde 0.4 €/kWh 

till 0.09 €/kWh. Kostnaderna för bassimuleringarna kan inte anses vara tillräckligt 

Populärvetenskaplig sammanfattning 



 

 

låga för att motivera en användning av systemet. Däremot kan högre skalor (100 

kW till 550 kW elektrolyskapacitet) nå en viss ekonomisk konkurrenskraft med 

hjälp av bidrag från initiativ med mål att sänka växthusgasutsläpp.  



 

 

Executive summary 

The present study´s purpose was to create a concept of a biological methanation 

system with the purpose of upgrading biogas at a small scale. The system was 

designed at 4 cases of scale based on electrolyser capacity: 4.8 kWe, 20 kWe, 100 

kWe and 550 kWe which correlates to a biogas flow of 0.7, 2.4, 14.5 and 73.9 Nm3 

respectively. The system was designed to use electrolysis and biological 

methanation through a trickle bed reactor at thermophilic conditions (55 °C). Mass 

flow, energy balance, production rate, specific CAPEX and levelized cost of CH4 

was investigated through simulations in a MATLAB model designed for the 

system. 

 

Results indicate that the system can upgrade biogas to vehicle fuel quality and 

increases the yield of CH4 by 60% for raw biogas of 40%-vol CO2. The system 

cannot be considered economically competitive at any scale. Cost reductions such 

as subsidies, electricity price reductions or heat recovery cases at 100 and 550 kW 

can be competitive. Future developments in electrolysis and biological methanation 

technology are expected to reduce production costs.  
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Biogas is an important part of today’s Swedish energy sector. The scale of biogas 

plants varies from small-scale such as plants located at farms to large-scale 

industrial size plants. Biogas can be used directly as a source of electricity and/or 

heat generation, but a more common option is to upgrade the biogas to high 

concentrations of methane (>95%) to be used as vehicle fuel. In 2019 64% of all 

biogas produced in Sweden is upgraded to be used as fuel or other applications that 

require a high concentration of methane (CH4) (Energigas Sverige 2019). 

Upgrading is however reserved mostly for larger biogas plants due to the high costs 

of upgrading equipment. Few small-scale plants such as farm-based biogas plants 

or municipal wastewater treatment plants use upgrading and most usage of small-

scale produced biogas is used for heat and electricity which is a less lucrative option 

(Eliasson 2015). This creates interest in new technology and methods of upgrading 

biogas that can fit a small-scale system. 

 

Methanation is a process of converting CO2 to CH4 and is a promising method for 

upgrading biogas. With traditional upgrading, the CO2 will be removed from the 

biogas to increase the concentration of CH4. The removed CO2 becomes a by-

product and is vented. Methanation however uses H2 to convert the excess CO2 to 

CH4, effectively raising the concentration and CH4 content of the biogas. Using this 

method in a biogas production process can potentially increase both the yield and 

quality of the biogas produced and can supplement or replace traditional upgrading 

(Lecker et al. 2017). The methanation process can either be biological or catalytic 

but serve the same function.  While catalytic methanation has been proposed more 

often in large-scale applications, biological methanation could be more suitable for 

upgrading biogas from small-scale plants due to its higher tolerance for gas 

impurities (Strübing et 2017).  

 

 

1. Introduction  
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1.1. Purpose 

The project aims to develop concepts for small-scale upgrading of biogas based on 

biological methanation at four different scales.  The systems are aimed to produce 

biogas of vehicle fuel quality, meaning a concentration of 95% CH4 or higher with 

an electrolyser capacity of 4.8 kW, 20 kW, 100 kW and 550 kW. The purpose of 

this is to evaluate the performance and economy of available technologies of 

biological methanation and H2 generation at lower scales and conceptualize a 

system. The following goals for the project are: 

 

 

• Describe a system at four scales that fulfils the aim of producing output gas 

of CH4 concentration up to 95%.  

 

• Simulate energy balance, mass balance and CH4 production of the system. 

 

• For each scale, calculate the specific investment cost (€/kWCH4) and the 

Levelized cost of CH4 production from methanation (€/kWhCH4) 

 

• Analyse the effects of CAPEX, OPEX, and operational hours to investigate 

the effects on economic performance.  
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2.1. Small-scale biogas production in Sweden 

Biogas is produced through the anaerobic digestion of organic material in a unit 

called digester, which can vary in size and type. The organic material also 

varies from crops, slaughter residues to organic waste. Biogas directly produced 

from the digester has a CH4 concentration of 60-75% where the rest is mostly CO2 

(SGC 2012). The CO2 is a by-product of the process, and some biogas plants use 

upgrading methods to remove the by-product. In 2019, 64% of all biogas produced 

in Sweden was upgraded to be used as fuel or for other energy systems that require 

high concentration of CH4 (Energigas Sverige 2019). If the biogas will be used as 

fuel, some conditions must be met. The biogas needs to have a CH4 concentration 

above 95% and have a concentration of hydrogen sulfide (H2S) of 23 ppm or lower 

(SGC 2012).  

 

Upgrading biogas is expensive and is not as commonly used in small-scale biogas 

plants. Farm-based biogas plants usually use raw biogas for combined heat and 

power generation (CHP). In a study from 2015, 31 farm-based biogas plants were 

evaluated where 27 were not upgrading biogas. 24 of the farms are using the biogas 

for CHP. The report also shows that 29% of all energy produced are not used or 

sold, resulting in large losses (Eliasson 2015).  

2.2. Biological methanation 

The biogas production process can take place in an anaerobic environment at either 

mesophilic temperature conditions (37 °C) or thermophilic (55-65 °C). The pH 

requirements of the process are 6.2-8.5 (Rusmanis et al. 2019). The full process is 

a chain of biological processes but for the present study’s purpose, the two most 

important processes are covered. These are hydrogenotrophic methanogenesis or 

so-called biological hydrogen methanation, and acetoclastic methanogenesis which 

2. Background 



4 

 

both takes place at the very end of the chain. The former is done by 

hydrogenotrophic methanogens, which is a type of archaea. With the use CO2 and 

H2 the methanogens form CH4 and H2O which is described in formula 1 (Rusmanis 

et al. 2019). 

 

4𝐻2 + 𝐶𝑂2 → 𝐶𝐻4 + 2𝐻2𝑂          − 167 𝑘𝐽 ∆𝐺°   (Formula 1) 

 

The latter is done by acetoclastic methanogens which converts acetate to CH4 and 

CO2 following the formula (Adnad 2019): 

 

𝐶𝐻3𝐶𝑂𝑂𝐻 → 𝐶𝐻4 + 𝐶𝑂2               − 31 𝑘𝐽 ∆𝐺°                        (Formula 2) 

 

 

Both processes are a crucial last step of biogas production process. Biological H2 

methanation (BHM) works as an extension to the biogas production process. BHM 

purpose is to use biological methanation to convert CO2 to CH4. In BHM, H2 is 

injected into the biogas process to create higher conversion rates from the 

methanogens. The H2 can be directly injected into the digestion chamber, in which 

the BHM will take place. This method is called “in-situ” methanation. 

Alternatively, the H2 can be injected together with biogas or CO2 from the digestion 

chamber into a separate “methanation reactor”. In this reactor hydrogenotrophic 

methanogenesis is done by colonies of methanogens. This method is called “ex-

situ” methanation. Both methods increase the concentration and yield of CH4 of the 

output gas. This means that BHM can be an alternative for upgrading biogas 

(Rusmanis et al. 2019).   

2.2.1. In-situ BHM 

Figure 1 shows the concept of in-situ methanation. H2 produced from an 

electrolyser is injected directly into a digestion chamber, in which common 

anaerobic digestion is taking place. To maximize the contact between methanogens 

and H2 the gas is injected through mixing or by diffusion (Rusmanis et al. 2019). 

While yielding higher production of CH4, in-situ methanation has a limiting factor, 

which is the partial pressure of H2 (Lecker et al. 2017). 

 

 

Figure 1: Concept of in-situ methanation. H2 that is produced by an electrolyser is injected into a 

digester chamber, increasing the H2 gas partial pressure.  
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The partial pressure of H2 and the inhibition of acetogens  

When applying in-situ BHM it is important to control the injection of H2 carefully. 

Raising the concentration of H2 will lead to an increase of hydrogenotrophic 

methanogens, which in turn increases the conversion rate of CO2. However, higher 

concentrations of H2 will inhibit another microorganism group called syntrophic 

acetogens. These microorganisms are responsible for the formation of acetate, 

which is needed for acetoclastic methanogenesis described in formula 2. As 

previously mentioned, this process is a crucial part of the biogas production process 

(Adnad 2019; Benjaminsson et al. 2013). If the inhibition of the syntrophic 

acetogens rises too high, the biogas process suffers inefficiencies and the 

production rate of CH4 will be lowered. Therefore, constant monitoring of H2 

concentration inside the digester is necessary. This results in the in-situ BHM 

having a limitation on how much H2 can be injected, thus, resulting in limiting CH4 

production (Lecker et al. 2017). 

 

2.2.2. Ex-situ BHM 

An ex-situ BHM process is shown in figure 2. By using an external reactor after the 

digestion chamber, the environment can be optimized for hydrogenotrophic 

methanogens in said reactor. This can be achieved without causing inhibition to the 

biogas process which takes place in the digestion chamber. Ex-situ processes are 

generally more effective than in-situ due to the higher concentrations of H2 that can 

be applied to the process (Lecker et al. 2017). Biogas or pure CO2 is injected into 

the reactor for conversion. Due to the stoichiometric conditions of formula 1, a ratio 

between H2 and CO2 of 4:1 needs to be maintained for full CO2 conversion. A 

fraction of the carbon of the injected CO2 will be transformed to biomass and 

practical experiments have shown a ratio of 3.76:1 is optimal (Burkhardt & Busch 

2015).  
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Figure 2: Concept of ex-situ methanation. H2 produced by an electrolyser is injected together with 

biogas/CO2 into an external methanation reactor where BHM take place. Output gas from the 

external reactor has a higher yield of CH4. 

Solubility of H2 

The efficiency of the BHM process increase by maximizing contact between 

methanogens and H2. To do this, H2 needs to be solved in the process liquid. H2 gas 

has lower solubility in liquid than CO2. H2 solubility increases with lower 

temperatures but the methanogens requirement of mesophilic or thermophilic 

makes lowering the temperature impossible. This makes the solubility of H2 a 

limiting factor in BHM reactors.  Therefore, the reactors need to have a high gas-

liquid mass transfer, meaning that the H2 can diffuse into the liquid medium. The 

ability to diffuse the H2 gas for a reactor can be described as the reactors H2 

volumetric gas-liquid mass transfer coefficient (kLa). The kLa can be increased by 

different means, such as mixing of process liquid, diffusion through ceramic 

material, H2 recirculation or other methods for maximizing contact area between 

gas and liquid. Reactors using mechanical mixing such as continuous stirred tank 

reactor (CSTR) increase its kLa through mixing, while trickle bed reactors (TBR) 

increase the surface area of gas and liquid by trickling the liquid through a fixed 

bed and injecting gas at the bottom of the reactor (Rusmanis et al. 2019). 

 

2.2.3. Methanation reactors 

There are many different types of methanation reactors, both in-situ and ex-situ. 

The report from Rusmanis et al. (2019) “Biological hydrogen methanation systems 

– an overview of design and efficiency” summarizes different types of reactors and 

their performances. Due to the purpose of this thesis, only reactors that are reported 

to reach concentrations above 95% in the summary by Rusmanis et al. (2019) will 

be described. Except for CH4 concentration other important performance 

measurements are H2 loading rate (HLR) and CH4 evolution rate (MER). HLR 
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measures the volume of H2 which is injected into the reactor per total reactor 

volume and day (VH2/Vreactor * day). MER measures CH4 production of the 

methanation process (VCH4/Vreactor * day). It can also be noted that output gas from 

reactors needs postprocessing such as drying and H2S removal (Electrochaea 2014). 

CSTR 

As previously mentioned, CSTR stands for continuous stirred tank reactor. 

Commonly used in digesters, it is also used in methanation reactors both ex-situ 

and in-situ. CSTR uses a mechanical stirrer which effectively increases the kLa of 

the reactor. However, for the CSTR to be effective, the mechanical stirrer needs a 

considerable amount of energy. Other problems are the formation of foam in the 

process liquid which inhibits the process (Rusmanis et al. 2019).  

 

Large-scale methanation is present in the CSTR design. The highest performing 

CSTR noted in the summary has a MER-value of 800 at 99% CH4 concentration 

(Electrochaea 2014). The CSTR used is a pilot-scale methanation plant, which is a 

part of the “P2G - biocat project” led by Electrochaea. This project is specialized 

in CSTR methanation. The plant uses a 1 MW electrolyser to support its H2 

injection. Biogas from a wastewater treatment plant is used for CO2 source. The 

operating pressure of the reactor is 4-9 bar and it has a temperature of 60-65 °C 

(Electrochaea 2014). Other authors reported CSTR systems reaching MER values 

of 285-689 (Rachbauer et al. 2016).  

 

TBR 

Trickle bed reactor (TBR) increases its kLa value by maximizing the contact area 

between gas and liquid. TBR uses a fixed bed, in which the microorganisms are 

immobilized. A liquid medium containing nutrients is trickled on top of the bed, 

creating a homogenous distribution of liquid over the bed. H2 and biogas (or CO2) 

are injected at either the bottom or top of the reactor flowing upwards or downwards 

respectively.  The TBR commonly uses a reservoir at the bottom of the reactor 

where the liquid can be collected and recirculated (Rusmanis et al. 2019). While 

CSTR requires higher energy input, the TBR is a rather simple reactor with fewer 

moving parts. Pressure in a TBR can vary, producing high performances in both 

atmospheric and higher pressure (Strübing et al. 2017; Ullrich & Lemmer 2018).  

Output gas from a TBR needs postprocessing of drying and H2S removal 

(Burkhardt et al. 2019).  

 

The highest performing TBR presented in Rusmanis et al. 2019 has an MER value 

of 1.5 and a concentration of 98%. The reactor was created at an experimental level 

and had a packed volume of 5.78 L. The process was done at mesophilic conditions 
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(37 °C) (Rachbauer et al. 2016). Other reports demonstrated higher-performing 

reactors, up to MER of 15.4 with CH4 concentrations above 95% (Strübing et al. 

2017). A collection of reported TBR performances is listed in table 1. An important 

correlation can be noted between MER, HLR and operating conditions. By 

increasing the HLR of the process so does the performance in MER increase. Two 

reports regarding mesophilic temperatures with atmospheric pressure show a 

maximum of 6 HLR. Increasing the HLR would yield a lower concentration of CH4 

(Rachbauer et al. 2016; Burkhardt et al. 2015). However, the HLR can be increased 

by increased pressure or using thermophilic conditions. (Burkhardt et al. 2019; 

Ullrich & Lemmer 2018; Strübing et al. 2017). 

Table 1: Reported MER, HLR and conditions of trickle bed reactors from literature.  

Source MER  HLR Conditions 

Rachbauer et al. 2016 1.5 6.5 Mesophilic, atmospheric 

Burkhardt et al. 2015 1.49 6.0 Mesophilic, atmospheric 

Burkhardt et al. 2019 3.11 13.1 Mesophilic, Pressurized 

Ullrich et al. 2018 4.28 10.7 Mesophilic, Pressurized 

Strübing et al. 2017 15.4* 62 Thermophilic, atmospheric 

Strübing et al. 2018 13.1* 52.5 Thermophilic, atmospheric 

*Based on reactor bed volume. 

 

Bubble column  

Bubble column reactors or diffusion-based reactors use a fully liquid-based medium 

where the microorganisms reside. While CSTR uses a mixer to increase the kLa of 

the reactor, diffusion-based reactors introduce its gas in small microbubbles. A 

diffusion-based reactor that reaches concentration levels up to 96% at an MER 

value of 3.7 was reported (Kougias et al. 2017). The system uses in-situ technology 

at a reactor volume of 2440 m3. However, no other diffusion-based reactors, ex-situ 

nor in-situ reaches sufficient CH4 concentrations as stated by Rusmanis et al 2019. 

Other experimental reactors 

The “minimal liquid reactor”-type has only been done in experiment levels but 

shows high performance. The experiment set up reported in Savvas et al. 2017, used 

a 7-meter-long, 13 mm diameter tube which is hung horizontally in 6 loops. The 

microorganisms are immobilized at the walls of the tube. Gases and liquid were 

introduced and flowed through the tube. The kLa was increased by circulating the 

liquid in intervals giving alternating stages of gas-liquid transfer. By using a thin 

tube, the active surface area could be maximized. The experiment showed results 

of an MER value of 40 (VCH4/Vreactor * day) and a concentration of 98% CH4. Except 
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for CSTR, this is one of the highest performing reactors recorded but has only been 

done at a very low scale with a total reactor volume of 0.75 L (Savvas et al. 2017).  

2.3. H2 production – Electrolysis 

Electrolysis of water is the process of using electricity to split water molecules into 

H2 gas and oxygen. The H2 can be considered renewable if the electricity used is 

from renewable sources. The electrolysis process takes place in an electrolyser cell. 

The cell contains electrolytes, a membrane, an anode, and a cathode. All 

components differ for every type of electrolyser but serve the same functions. When 

an electrical current is introduced, electrons are led through the cathode. At the 

cathode, water molecules are split into ions and H2. The ions created from the split 

are carried over the electrolyte through the membrane to the anode where oxygen 

is formed. The electrons then transfer into the anode, closing the circuit. The 

process results in the creation of H2 gas at the cathode and oxygen at the anode from 

water. The process is described in formula 2 (Benjaminsson et al. 2013). 

 

2 𝐻2𝑂 → 𝑂2 + 2 𝐻2     (Formula 3) 

 

Electrolysers usually operates at higher temperatures because of the three-phase 

boundary. The three-phase boundary is the meeting point of water, gas, and 

electrodes where high temperatures lead to higher number of reactions for water 

molecules. This results in a higher efficiency from electricity to the produced H2 of 

the electrolyser. Except for the temperature the efficiency is dependent on the cell’s 

total electrical resistance from the components of the cell (Benjaminsson et al. 

2013). 

 

The electrical efficiency of an electrolyser cell is measured by the energy content 

of the H2 produced to the amount of electrical input. The efficiency can be either 

measured in HHV (higher heating value) or LHV (lower heating value) which can 

create a difference of 18.2%. For consistency, this study will refer electrolyser 

efficiency to HHV. 

2.3.1. Electrolyser types 

Currently, there are four electrolyser technologies that are close to being used or 

are used commercially: Alkaline (AEL), Polymer electrolyte membrane or Proton 

exchange membrane (PEM), Solid oxide electrolyser (SOEL), and Anion exchange 

membrane electrolyser (AEM). Each technology brings advantages and 

disadvantages and fits different kinds of systems. 
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Alkaline electrolyser 

Alkaline electrolyser or AEL is the oldest and most developed electrolyser type. At 

the cathode side of the cell, water reacts with the electrons provided from an 

electrical current and hydroxyl ion (OH-) and H2 gas is formed. The ions are 

transported in the electrolyte, through a permeable membrane. At the anode side 

OH- ions lose electrons at the anode where it is converted to oxygen and water (Guo 

et al. 2019). Due to waters low conductivity of OH- ions, bases are added. With a 

higher concentration of bases, the alkaline cell gains electrical efficiency but suffers 

a loss of life span due to the impact on the cathode and anode (Benjaminsson et al. 

2013). Commercial alkaline electrolysers usually use 30%-wt potassium hydroxide 

solution (KOH) or 25% wt sodium hydroxide solution (NaOH) as electrolytes. 

Temperatures range typically between 60-100 °C and operating pressure is between 

atmospheric to 30 bar (Lindorfer et al. 2019). The alkaline electrolyte has a simple 

design but lacks structural stability. AEL has no expensive materials and therefore 

has a low production cost (Guo et al. 2019). Electrical efficiency for an AEL is 

around 70-80%HHV (Kumar & Himabindu 2019). The expected lifetime of a PEM 

electrolyser is between 60 000 – 90 000 hours (Schmidt et al. 2017). 

Polymer electrolyte membrane electrolyser 

The polymer electrolyte membrane electrolyser or PEM has a solid membrane 

electrolyte. The electrolyte is usually created out of solid poly sulfonated 

membranes (Shiva Kumar & Himabindu 2019). The anode and cathode are directly 

connected to the solid electrolyte. The electrolyte works both as a separator 

membrane and an electrolyte. Deionized water is supplied at the anode, where the 

water is converted into oxygen gas and releases protons and electrons. The anode 

process is described in formula 3 (Benjaminsson et al. 2013).  

 

2 𝐻2𝑂 → 𝑂2 + 4 𝐻+ +  4 𝑒−   (Formula 3) 

 

The protons together with electrons travel to the cathode through the electrolyte 

resulting in the separation of oxygen and protons. At the cathode side, protons and 

electrons react to create H2 gas, as described in formula 4 (Benjaminsson et al. 

2013).  

 

4 𝐻+ +  4 𝑒− → 2 𝐻2    (Formula 4) 

 

The PEM electrolyser has an operating temperature of 50-80 °C and can have 

operating pressure up to 85 bar (Lindorfer et al. 2019). It has a higher current 

density than its alkaline counterpart and has a high conductivity in its electrolytes, 

which leads to higher efficiency. PEM electrolysers are usually more expensive due 

to their anode and cathode (catalysts) are made of noble metals due to the acidic 
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nature of the nafion membrane (Guo et al. 2019). Electrical efficiency for a PEM is 

80-90%HHV (Kumar & Himabindu 2019). The expected lifetime of a PEM 

electrolyser is between 20 000 – 60 000 hours (Schmidt et al. 2017). 

Solid oxide electrolyser 

Solid oxide electrolyser or SOEC has solid ion-conducting ceramics as electrolyte. 

The electrolyser has operating temperatures of 650-1000 °C and operates up to 25 

bars. SOEC can reach up to 92%HHV efficiency which is the highest performing 

electrolyser. However, it is less developed than both AEL and PEM and is not yet 

used commercially. Stack lifetime of SOEC is up to 10 000 hours (Schmidt et al. 

2017). 

Anion exchange membrane 

Anion exchange membrane electrolyser or AEM is one of the newest types of 

electrolysers. As the name suggests, the electrolyser uses an anion exchange 

membrane as a separator. Water is reduced at the anode side where OH- is formed 

similarly to an alkaline electrolyser. The anode and cathode are in direct contact 

with the separator and OH- is diffused into the membrane. At the anode, H2 is 

produced and OH- transports to the cathode where oxygen is formed. AEM has a 

lower operating temperature at 50-70 °C and operates up to 3 bar. Like PEM, the 

membrane of the AEM is solid making it mechanically stable. While PEM uses 

nafion membrane, creating the need for noble metals as catalysts AEM does not 

have this requirement.  

 

AEM electrolysers have the advantage of both stability and cheaper production 

costs (Vincent 2018). AEM electrolysers are not a mature technology, and the 

technology is only available for small scale uses. The effective lifetime of the AEM 

electrolysers is also uncertain (Nohrstedt & Kristensson n.d.). 

2.3.2. Electrolyser stacks and electrolyser systems 

The type of electrolyser previously mentioned is the different cells or stacks. The 

stack is the core part of an electrolyser, but other systems need to be in place to 

have an effective H2 production. Electricity supply, drying of gas, cell cooling, 

water circulation and gas purifying all need to be in place and be specified to the 

electrolyser stack. Suppliers of electrolysers can offer both singular stacks but also 

a whole electrolyser system. The benefits of stacks are that the user can customize 

the system at a high level. Electrolyser systems do not often bring this sort of 

freedom but bring a simpler solution. Small-scale or even medium-scale 

electrolysers can be positioned virtually anywhere, provided the connection of 

water and electricity supply is available. Larger electrolysers can come as 
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“container solution” meaning all equipment and electrolyser are installed in a 

container that can be positioned and installed at a site. 

2.4. Costs of BHM 

The production costs of H2 and CH4 is a well-documented area. The benefits of H2 

and CH4 for substituting fossil fuels are prevalent and there is a large interest in 

power to gas (P2G). Though studies of small-scale production of CH4 from 

methanation are limited. Production costs for systems with <500 kWe are not well 

investigated and more commonly costs of plants up MW scale are documented. 

Specific investment costs can be estimated following the “six-tenth-factor rule” 

which is presented in equation 1 (Zauner et al. 2019). 

 

𝐶𝑏 =  𝐶𝑎 ∗  
𝑆𝑏

𝑆𝑎

𝑓

                                                                                                            (1)  

   

Where Cb is the cost of the questioned system, Ca is the cost of the same type of 

system but at different scales and Sb and Sa are their respective scales. f is the scale 

factor of the system, which differs for different technologies and systems.  

 

Both electrolysers and methanation systems are still new to the market and when 

investigating the costs of production, it is important to understand the learning 

curve concept to see potential in future investments. Manufacturing processes are 

optimized in a competitive environment. The concept of the learning curve is that 

experience of manufacturing a specific technology will increase over time and in 

turn creating lower costs of the technology (Böhm et al. 2018).  

2.4.1. Production cost of H2 

The production costs of H2 depend on electrolyser type and scale. A study of 

specific CAPEX per capacity of electrolyser (€/kWe) was performed, in which 

PEM, AEL, and SOEC were analysed. A standardized specific CAPEX for a 5 MW 

electrolyser plant was calculated from different sources, and the results of this study 

are shown in table 2 (Zauner et al. 2019). Similar results can be seen in other studies 

(Christensen 2020). Previous literature indicates that PEM has higher material costs 

than AEL (Schmidt et al. 2017). However, Christensen 2020 mentions other 

systems such as compressors are not required for PEM which can reduce the costs 

of the H2 production for that specific type. Specific investment costs from the two 

different studies are shown in table 2. 
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Table 2: Estimated investment costs for different types of electrolysers from literature. Top row costs 

are based on a scale of 5 MWe (Conversion: 1 $ = 0.82 €) 

 AEL PEM SOEC Source 

Production 

cost (€/kWe) 

1060 970 1990 Zauner et al. 

2019. 

Production 

cost ($/kWe) 

988 

(814 €/kW) 

1182  

(973 €/kW) 

1346  

(1108 €/kW) 

Christensen 

2020. 

 

Electrolyser OPEX costs (such as water and operation of necessary equipment) are 

estimated at 1-3% of the CAPEX for the electrolyser. The electrolyser lifetime also 

has a great impact on the production costs of H2. Electrolyser replacements can be 

estimated to 25 - 50% of original electrolyser CAPEX (Christensen 2020; 

McDonagh et al 2018). Future reduction of H2 production costs due to the concept 

the of learning curve is estimated at 2 %/year (Christensen 2020) or 28-35% in the 

year 2030 (Zauner et al. 2019).  

 

Although the studies do not cover many small-scale electrolysers, an average scale 

factor of 0.75 was acknowledged (Zauner et al. 2019). Calculated specific CAPEX 

using for AEL and PEM at lower scales using equation 1 and values presented in 

table 2 can be seen in figure 3. 

 

Figure 3:Calculated specific CAPEX for AEL, PEM and SOEC based on calculation data from 

Zauner et al. 2019.  
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During the present study real CAPEX of electrolysers were gathered for scales 

below 500 kW. These costs are presented in Appendix 1.  

2.4.2. Production cost of CH4  

Investment costs for a biological methanation plant differ on the scale of the plant. 

Investment for a BHM plant includes a reactor, electrolyser, engineering, 

machinery, and commissioning. The relation between these factors, changes 

depending on the scale of the plant. In figure 4 and 5, it can be observed that a 

higher percentage of total CAPEX can be attributed to the electrolyser, as the plant 

increases in scale (Electrochaea 2014).  

 

 

Figure 4: The estimated investment cost factors of a biological methanation plant using a 1 MW 

electrolyser. Methanation (orange) are the machinery and reactor for the methanation. Source: 

Electrochaea 2014. 
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Figure 5: The estimated investment cost factors of a biological methanation plant using a 10 MW 

electrolyser. Methanation (orange) are the machinery and reactor for the methanation 

(Electrochaea 2014). 

 

Reports performed by Zauner et al. 2019 show estimated specific investment costs 

between 90-1800 €/kWSNG for different BHM plants. It is based on different 8 

sources and the scale of the plants ranges from 200 kW to 50 MW. The smallest 

scale investigated at 200 kW production of CH4 have a specific investment cost of 

320 €/kW. The same study also estimated 1 MW production to 120 €/kW while 

other references report up to 1440 or 1800 €/kW for the same rated production of 

CH4. According to the information in 2019, the standardized price of a 5 MW plant 

has the specific investment cost of 600 €/kW with a scale factor of 0.52 which is 

visualized in figure 6 by calculations done with equation 1. 
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Figure 6:Calculated specific investment costs based on 600 €/kW for a 5 MW plant with a scale 

factor 0.52. The figure shows the calculated costs between 0 and 1 MWsng scale. 

  

With the specific investment cost of 600 €/kW for 2019, a potential reduction of 

35% can be expected by the year 2030 (Zauner et al. 2019).  Usually, excess heat 

is generated at both electrolyser and reactor. This creates a potential heat recovery 

that can substitute heating costs which can provide a BHM system with additional 

revenue.  

 

2.4.3. Climate Leap initiative 

Climate Leap initiative (Klimatklivet) is a subsidy program in Sweden to lower 

greenhouse gases. The program is aimed at solutions both locally and regionally. 

The Climate Leap initiative is set to allocate 2.3 billion SEK in 2021 and is led by 

Naturvårdsverket and Länsstyrelserna. Subsidies can be given to different 

organizations such as companies or municipals which provide solutions to reduce 

greenhouse gas emissions in energy, transport, infrastructure, or industry sectors. 

The maximum subsidy in the Climate Step Initiative is 50% of the total investment 

costs of the selected solution (Natruvårdsverket 2021). Biogas production and 

methanation has a large opportunity to gain this subsidy and can help develop 

methanation as a solution to lower greenhouse emissions. 
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To simulate energy balance, mass balance and production costs of a concept BHM 

plant at four scales a system description with boundaries and chosen technology 

was designed. Each case of scale is defined by the installed capacity of electrolyser. 

The cases are 4.8 kWe, 20 kWe, 100 kWe and 550 kWe.  

 

Choice of technology for each case was based on literature and economical study 

performed at the start of the project. A MATLAB model was designed to handle all 

calculations necessary and is based on the system description. The system 

boundaries, motivation to technologies, system description and model breakdown 

is presented in this chapter. 

3.1. System boundaries 

The concept system is assumed to be used in as part of a biogas upgrading process. 

Therefore, the system will only contain the methanation process, H2 generation, 

nutrient supply, and H2S removal process. The following assumptions are made for 

the system: 

  

• Biogas is assumed to be supplied from a digester with 60% CH4 

concentration at 10 °C. 

• A part flow of digestate is supplied to the system at 15 °C from the 

digester. 

• Produced O2 is not considered in the scope of the system. O2 assumed to 

be injected into the digester to lower H2S concentration of output gas 

after methanation is assumed to be 50 ppm.  

• The ambient temperature is assumed to be 20 °C for reactors located 

inside. 

• Excess heat that can be recovered (for electrolysers using liquid cooling) 

is used for preheating substrate for the digester. It is assumed that this 

lowers the temperature of the cooling water to 15 °C.  

3. Method 



18 

 

• The lifetime of the system is estimated to 20 years and 8500 hours of 

yearly operation. Electrolyser lifetime is assumed to be 7 years which 

results in the need of two electrolyser replacements. 

• No degradation of electrolyser is assumed. However, the replacement of 

electrolysers is accounted for. 

• OPEX for nutrient supply was not considered due to missing data. 

 

3.1.1. Digester size 

Because it is hard to understand or visualize the scale of the system by electrolyser 

capacity, it is important to put the cases of scale into to perspective. In table 3, the 

digesters calculated yearly production and biogas flow are shown. The table shows 

the size of a biogas plant which the system can serve with upgrading. The 

calculations are based on equation (2) (which is presented in 3.4.2), the assumed 

concentration of CO2 in the supplied biogas and the H2 production for each case 

(table 4). 

 

Table 3: Calculated biogas flow and production from digester based on electrolyser capacity. 

 4.8 kWe 20 kWe 100 kWe 550 kWe 

Yearly injected biogas 

(MWh/y) 

34 122 738 3760 

Biogas flow (Nm3/h) 0.7 2.4 14.5 73.9 

H2 production (Nm3/h) 1  3.64  22  112  

 

 

For perspective, the yearly biogas production ranges between 300 to 8000 MWh/y 

based on 32 farm-based biogas (Eliasson 2015). It can be noted that cases 4.8 and 

20 kWe has a lower production than the smallest scale of the evaluated biogas 

plants. It is assumed that these scales upgrade a part flow of a biogas plant, while 

100 and 550 kWe cases can upgrade a full flow of biogas.  

3.2. Motivation for choice of technologies 

BHM plants can use different types of reactors, electrolysers, and post-processing 

to achieve the same goal. The choices of these technologies are described with 

motivations as to why and what alternatives could be used. Technology choice may 

also differ for the cases investigated due to scale.  
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3.2.1. Electrolyser 

The choice of electrolyser for the system is AEM, PEM and AEL, depending on the 

case. Different suppliers were contacted for pricing and electrolyser specifics. An 

overview of the electrolysers used is shown in table 4.  

Table 4: Electrolyser specifics for each chosen electrolyser. Specifics are based on spec sheets for 

each electrolyser.  

 4.8 kWe 20 kWe 100 kWe 550 kWe 

Supplier 1 2 2 3 

Electrolyser type AEM AEL AEL PEM 

H2 production  1 Nm3/h 3.64 Nm3/h 22 Nm3/h 112 Nm3/h 

Efficiency %HHV  74% 65% 78% 72% 

Water consumption 0.8 L/h 2.5 L/h 16 L/h 170 L/h 

Cooling type Air Liquid Liquid Liquid 

 

Case 4.8 kWe 

For this scale, the system uses two AEM electrolysers based on supplier 1. Supplier 

1 uses a highly adaptive modular design, where several electrolysers can easily be 

integrated. These electrolysers were chosen before both AEL and PEM due to their 

high efficiency at such a small-scale (74%HHV) and a low investment cost. The 

estimated investment cost for this electrolyser was gathered from supplier 1. 

Another benefit AEM provides is that the system does not need purified water or 

any KOH solution for operation, avoiding extra investment and operational costs. 

The disadvantage of this electrolyser choice is the AEM does not use liquid cooling, 

making it difficult to recycle waste heat which AEL and PEM electrolyser can do. 

However, at this scale, small amounts of heat are released.  

Case 20 kWe and 100 kWe 

For both cases at 20 kWe and 100 kWe, AEL is used and are based on alkaline 

electrolysers from supplier 2. AEL requires both purified water and KOH solution 

to operate, which must be added to the system. AEL is used in these cases because 

of high efficiencies (70-79%HHV). Other PEM electrolysers investigated at this scale 

had lower system efficiency than AEL. Still, PEM may be a good option for this 

scale. AEM was first suggested to be used at 20 kWe due to the highly modular 

design and stacking multiple 2.4 kW AEM electrolysers. However, the AEL is 

liquid-cooled and enables waste heat recovery. It is important to note that the exact 

CAPEX for these two electrolysers is estimated due to a lack of data.  
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Case 550 kWe  

Two 225 kW PEM electrolysers based on supplier 3 were chosen. The electrolysers 

use a container solution. Both AEL and PEM were considered at this scale. Based 

on reports detailed in 2.5.1 AEL and PEM at this scale have similar production 

costs. PEM however has a compact design, shorter start-up and a high system 

efficiency of 74%HHV. The estimated cost for this electrolyser was also gathered 

from supplier 3, giving the estimated investment cost of this electrolyser larger 

accuracy. The electrolysers include purifying, only water and electricity need to be 

added which removes the need for KOH solution if AEL was used.  

3.2.2. BHM reactor 

The chosen reactor for all cases is a trickle bed reactor. Due to the high CH4 

concentration of output gas and considerable high MER values, CSTR was 

considered for the system and could be a good option. However, due to the complex 

nature of high pressure and energy usage from the CSTR mixer, TBR was chosen 

over CSTR. Other reactors such as minimal liquid and diffusion-based reactors 

were also considered but ultimately discarded due to the limited amount of literature 

data on these reactors performing at satisfying levels. Numerous pieces of literature 

on TBR report high performance with a concentration above 95% CH4 (Table 1) 

and the concepts for the reactor follow a similar setup of the reactor reported in 

Strübing et al. 2017. The reactor requires a buffer to keep pH levels from declining. 

The decline of pH is due to high HLR, and irregular flows may disrupt production 

(Strübing et al. 2017). 

3.2.3. Nutrient supply 

The necessary nutrients that need to be supplied for the reactor are assumed to be 

taken from the liquid phase of the digestate exiting the digester. From a dewatering 

process, the reject (water phase) is estimated to contain enough nutrients to supply 

the reactor. The method of extracting the liquid is dependent on scale. For cases at 

the scale of 4.8 kWe and 20 kWe, filtration bags are used. For the larger systems at 

scales of 100 kWe and 550 kWe which have higher nutrient flow, a screw press is 

used for dewatering the digestate. 

3.2.4. H2S removal 

If the output gas is to be considered as fuel it needs to fulfil the requirement of low 

concentrations of H2S. For H2S removal an activated carbon filter module is used 

for all scales. Activated carbon was chosen both for its costs and for its high 

efficiency of removing H2S from product gas.  
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3.3. Concept system description 

The basic description of the system is shared for all four cases. A system overview 

is illustrated in figure 7. The design of the system is based on various literature. 

 

 

Figure 7: Schematic diagram of the system. The illustration details gas, liquid and cooling flow. 

The schematic shows a shut-off valve (1), biogas fan (2), flow meter (3), purifier/KOH setup(4), 

water tank (5), electrolyser (6), injection valve (7), reactor reservoir (8), circulation pipes with 

pump (9), heat exchanger (10), spraying nozzle (11), liquid discharge line (12), measurement 

equipment (13), cooling line to digester (14, 15), filtration system (15), nutrient and buffer 

injection (16), H2S removal with activated carbon (17) and output gas (18).   

Supply of biogas 

As previously mentioned, it is assumed that the system receives a supply of biogas 

from a nearby digester. The biogas is cooled to a ground temperature causing 

vapour in the gas to condense and excess water is discharged before intake. The 

main shut-off valve is installed, where the flow of biogas can be completely stopped 

if necessary (1). After the valve, a gas fan is used to lead the gas to the reactor (2). 

A flowmeter is positioned after the fan to measure the intake of biogas (3). 

H2 generation 

Electrolyser setup is designed similarly to Guo et al. 2019 and is used for AEL 

electrolysers. For cases using AEL, tap water is fed into a purifier (4). The water is 

then supplied into a pressurized water tank (5) for all cases. Subsequently, the water 

is injected into the electrolyser/s. H2 generated at the electrolyser (6) is injected into 

the reactor together with biogas (7). The oxygen is assumed to be injected into the 

digester.  
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Reactor 

The reactor size depends on the case of the system, but operating procedures follow 

the same principle. The TBR is operating at a temperature of 55 °C and close to 

atmospheric pressure. Because of thermophilic conditions, it is assumed that the 

reactor has an HLR of 62 Vh2/(Vreactorbed * day). The TBR has a nutrient reservoir at 

the bottom of the reactor (8). Nutrients are injected into the reservoir. A circulation 

pipeline is connected to the reservoir (9) leading to the top of the reactor. The 

circulation pipe is located at the outside of the reactor where it is connected to a 

heat exchanger (10) which heats the circulation liquid to a higher temperature. The 

liquid medium is then sprayed by a nozzle at the headspace of the reactor (11). The 

circulation liquid is used for heating the reactor and no liquid heating loop is 

installed into the reactor shell. The liquid medium flows down through the bed, 

delivering nutrients to the methanogens. The liquid is then returned to the reservoir 

and is circulated again. The reservoir is designed to discharge the overflowing 

liquid (12). The temperature, pH and pressure of the reactor are measured (13).  

Heat recovery 

The reactor and electrolyser require cooling, and a liquid cooling line is used. The 

cooling liquid used is water. The cooling process begins at the reactor, where the 

circulation pipes of the reactor are connected to a liquid heat exchanger (10). The 

cooling liquid cools the circulation water. The cooling line connects to the 

electrolyser (14), when liquid cooling is applied. If the electrolyser is small, it uses 

air cooling and will not be cooled by liquid. After passing the electrolyser, the 

heated cooling liquid is transported to a substrate holding tank to preheat substrate 

(15). The cooling liquid is assumed to return to the heat exchanger at 15 °C.  

Nutrient supply 

A fraction of used digestate is drawn from the digester outlet. The digestate is 

drained of water through a water drainage process (15). For 4.8 and 20 kWe systems 

the flow of nutrients is so low that simple filters changed every 4 days can support 

the system. For 100 and 550 kWe systems, the flow is larger, and a screw press is 

used to extract the nutrient medium. In either method, the nutrient medium is stored 

in a tank. Periodically nutrients are supplied together with a buffer solution 

(K2HPO4) to the reactor reservoir (16). 

H2S removal 

The output gas from the TBR is then transported to H2S removal. First, the gas will 

be cooled to 8 °C and excess condense will be removed before the H2S removal. 

The gas is then injected into an activated carbon  filter (17). The module will 

remove a large part of the H2S. The gas is then led out of the system (18). The 
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output gas of the system is a high CH4 concentrated biogas with removed H2S but 

it is still water-saturated and a drying process is needed for full vehicle grade biogas. 

 

3.4. Model 

3.4.1. Model inputs 

Inputs for the model are shown in table 5 listing electrolyser specifications and 

reactor operation conditions. Electrolyser inputs are based on real commercial 

electrolysers. Inputs for these are nominal power usage, water consumption, 

specific production, and cooling requirements. All electrolysers are operated at 60 

°C. Reactor operation inputs are the same for all cases and are operating 

temperature, conversion rate, H2/CO2 ratio, HLR and whether the reactor is placed 

outside or inside depending on scale. If the reactor is placed outside, it will have a 

thicker insulation.  

 

Operational parameters of the system such as full load hours (FLH) for one year 

and the total lifetime of the system are set to 8500 h/y and 20 years, respectively. 

The system is designed to operate at full time with the digester. Electrolyser lifetime 

depends on type. However, all electrolysers have an estimated lifetime of 60 000 

hours. At operating conditions, the electrolysers are estimated to operate fully for 7 

years, resulting in electrolyser replacements of 2 for the lifetime of the plant. Biogas 

that will be upgraded is set to have a concentration of 40%-vol CO2 and 50 ppm of 

H2S. The activated carbon filter needs to be refilled, preferably as few times as 

possible. It is estimated to be refilled 2 times per year. 

Table 5: Model inputs for the mass balance, energy balance and production of the simulation.  

Input 4.8 kWe 20 kWe 100 kWe 550 kWe 

Electrolyser specifics* 

Supplier* 1 2 2 3 

Electrolyser type AEM AEL AEL PEM 

H2 production  1.0 Nm3/h 3.6 Nm3/h 22.0 Nm3/h 112 Nm3/h 

Water consumption 0.8 L/h 2.5 L/h 16 L/h 170 L/h 

Cooling method Air Liquid Liquid Liquid 

No. of replacements** 2 2 2 2 

Reactor operation*** 

Operating temperature 55 °C 

HLR 62 (VCH4/Vrb*day). 

H2/CO2 - ratio 3.76 
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Conversion rate 98% 

Placement Inside Inside Outside Outside 

Operation 

FLH per year 8500 h 

Lifetime of system  20 years 

Biogas properties 

Concentration of H2S  50 ppm 

Concentration of CO2  40%-vol 

Activated carbon 

Refills/year 2  

*The inputs of the electrolyser are based on spec sheets for each electrolyser.  

**Estimated lifetime for each electrolyser is 60 000 hours, meaning 2 replacements are needed for 

20 years of service.  

***Reactor operation inputs are based on the set up from Strübing et al. 2017. 

3.4.2. Energy and mass balance calculations 

Constants for gas, liquid and material properties are presented in Appendix 3. The 

estimated production of the system is calculated through several steps. First, the 

estimated amount of CO2 injected into the reactor (𝑛𝐶𝑂2) is calculated by: 

 

𝑛𝐶𝑂2 =
𝑛ℎ2

𝑟𝐻2/𝐶𝑂2
 (𝑚𝑜𝑙/ℎ)                                                                                                 (2) 

 

Where 𝑛ℎ2 is the amount of injected H2 (mol/h) and 𝑟𝐻2/𝐶𝑂2 is the ratio between 

injected H2 and CO2 (3.76). The amount of CH4 generated due to methanation is 

then calculated by:  

 

𝑛𝐶𝐻4 = 𝑛𝐶𝑂2 ∗ 1 − 𝑟𝑏𝑜𝑢𝑛𝑑 ∗ 𝑟𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛                                                                        (3) 

 

Where the 𝑛𝐶𝐻4 is the amount of generated CH4 in mol/h, 𝑟𝑏𝑜𝑢𝑛𝑑 is the amount of 

CO2 that is absorbed by microorganisms (6%) and 𝑟𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 is the conversion rate 

of the methanation process (98%). With equations 2 and 3 and gas attributes such 

as density and LHV, the production of the system can be calculated. 

The volume of the reactor is calculated by: 

 

𝑉𝑟𝑏 =
𝑃𝐻2 ∗ 24

𝐻𝐿𝑅
                                                                                                                  (4) 

 

𝐻𝐿𝑅 is the specific H2 loading rate (62 Nm3 
H2 / m

3
Rb, day), 𝑃𝐻2 is the H2 production 

(Nm3/h) and 𝑉𝑟𝑏 is the volume of the reactor bed (m3). Headspace and reservoir are 
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assumed to be 10% each of the bed volume. The sum of headspace, reservoir and 

bed is the assumed total volume of the reactor. 

For the mass balance, all key figures are based on the small-scale TBR in Strübing 

2017. Key figures of the mass balance are: 

 

• Specific nutrient flow (13 L/(h*m3) - The amount of nutrients needed per 

volume of reactor bed. 

• Specific buffer flow (0.07 mL/(h*m3) – The amount of buffer needed per 

volume of reactor bed. 

• Circulation flow (172 L/(h*m3) – The flow of the liquid circulation in the 

reactor. 

 

By using these key figures and the calculated volume of the reactor, the nutrient, 

buffer, and circulation flows can be calculated. 

The mass balance of water in the reactor is then calculated by:  

 

�̇�𝑤𝑎𝑡𝑒𝑟 =  �̇�𝑏𝑢𝑓𝑓𝑒𝑟 + �̇�𝑛𝑢𝑛𝑡𝑟𝑖𝑒𝑛𝑡  + �̇�𝑔𝑎𝑠 𝑖𝑛  + �̇�𝑚𝑒𝑡ℎ −  �̇�𝑔𝑎𝑠 𝑜𝑢𝑡                               (5) 

 

Where �̇�𝑤𝑎𝑡𝑒𝑟 is the flow of liquid out of the reactor (L/h), �̇�𝑏𝑢𝑓𝑓𝑒𝑟 is the added 

buffer (L/h), �̇�𝑛𝑢𝑛𝑡𝑟𝑖𝑒𝑛𝑡 is the added flow of nutrients (L/h) and �̇�𝑚𝑒𝑡ℎ is the amount 

of water that is generated inside the reactor following formula 1. �̇�𝑔𝑎𝑠 𝑖𝑛and 

�̇�𝑔𝑎𝑠 𝑜𝑢𝑡is the amount of water added or removed in the reactor by gas (L/h) and is 

calculated by gas mass fraction of 1.8% and 8% respectively. 

 

For calculating an estimation of heat transmission losses, the reactor is simplified 

to a cylinder with a height to radius ratio of 5. The reactors heat transmission heat 

losses are then calculated by: 

 

𝑄𝑇 = 𝐴
𝑇1 − 𝑇2

𝑅
                                                                                                                  (6) 

  

Where 𝑄𝑇 is transmission losses (W), 𝐴 is the surface area (m2), 𝑇2 is reactor 

operating temperature (55 °C), 𝑇1 is the ambient temperature (°C) and 𝑅 is the heat 

resistance of the reactors shell. The resistance is calculated by: 

 

𝑅 =
1

ℎ1
+

1

ℎ2
+ ∑

𝐿𝑖

𝑘𝑖
                                                                                                       (7) 

 

Where ℎ1 and ℎ2is the convection of the shell’s surfaces (50 W/m2°K and 500 

W/m2°K respectively), 𝐿𝑖 is the thickness of each layer of the shell (m) and 𝑘𝑖 is 

the heat transfer coefficient of the layer (W/m2°K).  

Heat losses from injected liquid and gases are calculated by: 
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𝑄𝐿 = �̇� 𝑐𝑝 ∆𝑇                                                                                                                     (8)                                     

 

Where 𝑄𝐿  is the amount of energy the gas/liquid is needed to heat up to reactor 

temperature, �̇� is the mass flow of liquid/gas (kg/s), 𝑐𝑝is the specific heat capacity 

of the gas/liquid (W/°K) and ∆𝑇 is the temperature difference between ambient and 

reactor temperatures (°C). The ambient temperature is either set to 20 for systems 

inside (4.8 kW and 20 kW) while varying temperature based on 2019 hourly data 

(SMHI 2021) is used for systems outside (100 kW and 550 kW). H2 gas injected 

provides heat to the reactor by the same equation.  

Due to the methanation reaction is exothermic the heat generated from the 

methanation process is calculated by:  

 

𝑄𝑚 = 𝑛𝐶𝐻4 ∗ 𝐸𝑚                                                                                                           (9)  

 

Where 𝑄𝑚 is the energy amount generated from methanation (kJ/h),  𝑛𝐶𝐻4 is the 

amount of converted CH4 (mol/h) and 𝐸𝑚 is the energy generated per mol from 

formula 1 (167 kJ/mol). It is assumed that all energy generated is heat.  

The amount of heat generated from the electrolyser is calculated by: 

 

𝐸𝑒𝑙ℎ𝑒𝑎𝑡 =  𝑃𝑒𝑙 𝑓ℎ𝑒𝑎𝑡                                                                                                          (10) 

 

Where Eelheat is the excess heat from the electrolyser, Pel is the input electricity of 

the electrolyser and fheat is the fraction of the input energy that is excess heat and is 

set to 17% for operating temperatures of 60 °C (Frank et al. 2018).  

KOH consumption for AEL electrolysers is calculated by (Kuckshinrichs et al. 

2017): 

 

𝑚𝐾𝑂𝐻 =  𝑚𝐻2 ∗ 2.75 ∗ 10−4                                                                                        (11)                                                                         

 

Where 𝑚𝐾𝑂𝐻 is the amount of KOH (kg/h) and 𝑚𝐻2 is the amount of H2 produced 

(kg/h). Estimated electricity need for pumps are calculated by: 

 

𝑃𝑝 =
�̇�𝑉𝑔 ∆𝑝

𝜂
                                                                                                                   (12) 

 

Where 𝑃𝑝 is the power usage of the pump, �̇�𝑉 is the mass flow of liquid (m/s), g is 

the gravity constant (9.81 m/s2), ∆𝑝 is the pressure difference and 𝜂 is the efficiency 

of the pump (90%). Finally, electricity usage of the gas fan is assumed to be 7.5 

W/Nm3 biogas.  
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3.4.3. Economic assessment 

The estimated CAPEX of the system is shown in table 6. Costs for the reactor, 

equipment, installation, ground preparation and commissioning are based on 

discussions with the current study’s project manager at RISE1. Electrolyser costs 

are based on the current study’s economic analysis. The electrolyser replacement 

costs are estimated at 40% of electrolyser CAPEX (McDonagh et al. 2018). Case 

4.8 kWe and 550 kWe uses real CAPEX costs gathered from supplier 1 and 3, 

respectively. Case 20 kWe and 100 kWe have estimated electrolyser costs based on 

costs for AEL electrolysers shown in table 2. OPEX factors of electricity use, water 

use, activated carbon, filter capsules, reparations, staff costs, buffer, and KOH 

solutions are also presented in table 6.  

Table 6: Investment and operational costs for each case.  

CAPEX/OPEX 

factor 

4.8 kWe 20 kWe 100 kWe 550 kWe Source 

CAPEX 

Electrolyser 

(€/kW) 

3600 3500* 2751* 2363** - 

Electrolyser 

replacement cost 

(%) 

40 40 40 40 McDonagh 

et al. 2018 

Reactor (€/m3) 19200 11000 9500 3500 Estimation 

Other equipment 

and installation 

(€) 

85000 100000 150000 200000 RISE 

Ground 

preparation and 

commissioning 

(€) 

20000 20000 40000 50000 RISE 

OPEX 

Electric price 

(€/kWh) 

0.059 Estimation 

Buffer (€/kg) 80 Sigma-

Aldrich 

2021 

KOH (€/kg) 2.5 Kuckshinric

hs et al. 

2017 

 
1 Johan Andersson, Senior project manager, RISE, personal meeting, 2021-5-25 
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Activated carbon 

(€/kg) 

172 RISE 

Purifier capsules 

(€/capsule) 

105 Vattensyste

m  

Water (€/L) 0.0049 Uppsala 

vatten 2021 

Staff cost (€/h) 30 Estimation 

Reparation (% of 

CAPEX) 

2 Estimation 

*Estimated costs. 

**PEM electrolyser includes purifier and other equipment. 

 

 

 

 

Economic results of the simulation are presented as levelized cost of CH4 

production (LCOCH4, €/kWh) and is calculated by:  

 

𝐿𝐶𝑂𝐶𝐻4 =

∑ 𝐶𝐴𝑃𝐸𝑋𝑡 + 𝑂𝑃𝐸𝑋𝑡
𝑛
𝑡=1

(1 + 𝑟)𝑡

∑ 𝐸𝐶𝐻4
𝑛
𝑡=1

(1 + 𝑟)𝑡

                                                                         (13) 

 

Where ECH4 the production of CH4, t is the current year, n is the lifetime of the 

plant, CAPEXt is the investment costs for the year, OPEXt is the operational costs 

for the year, and r is the discount rate (5%). 5% of the total CAPEX is also added 

in OPEX as return of investment and interest on investment loan. Another 

economical parameter is the investment costs per capacity of the plant (COCH4) in 

€/kW and is calculated by: 

 

𝐶𝑂𝐶𝐻4 =
∑ 𝐶𝐴𝑃𝐸𝑋𝑖

𝑃𝐶𝐻4
                                                                                                    (14) 

 

Where PCH4 is the rate of production for the plant (kWCH4) and CAPEXi is the 

investment costs for the plant. This includes all CAPEX presented in table 5. 

 

The model also calculates recovered heat. An additional calculation of LCOCH4 

and COCH4 is calculated for each case to investigate the effects of using the 

recovered heat. Recovered excess heat provided from both reactor and electrolyser 

is assumed to substitute heating from a wood chip pan. This cost is estimated to 

0.04 €/kWh. 
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Upgrading costs and BHM production costs 

Both LCOCH4 and COCH4 depend on the systems production of CH4. However, 

the production of CH4 changes depending on if the CH4 injected by biogas is 

accounted for. Therefore, the results will be presented in two ways:  

- LCOCH4Total and COCH4Total - The levelized cost of CH4 and specific 

investment cost for the total CH4 in the biogas (including injected CH4).  

- LCOCH4Meth and COCH4Meth - The levelized cost of CH4 and specific 

investment cost for the CH4 produced by the BHM process (excluding 

injected CH4). 

LCOCH4Total can then be defined as upgrading costs of the biogas while 

LCOCH4Meth can be defined as the production cost of CH4 as a methanation system. 

Sensitivity analysis 

The sensitivity analysis investigates the effects reduction in CAPEX and different 

operating parameters. A total CAPEX reduction of 35, 50 and 82.5% were 

investigated for the purpose of investigating effects on the system results of a future 

cost reductions in 2030, subsidy, or both, respectively. An electrolyser CAPEX 

reduction of 28 and 45% were performed to investigate the effects of possible 

CAPEX reduction for the year 2030 for AEL and PEM. Operation hours during the 

year and electricity price are also varied to investigate effects on the simulation 

results. 
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The results of the model simulations are presented and discussed in this chapter. 

The system performance, energy balance, mass balance, production costs and 

sensitivity analysis are detailed below.  

4.1. System performance 

The performance of the system is shown in table 7. The production of CH4 due to 

methanation (Pmethanation) and the total production of CH4 (Ptotal) is shown. The plant 

produces an output gas with high concentrations of CH4 (95.7%) with H2S removal. 

Only drying of the gas is required for the output gas to reach vehicle fuel grade. 

The system does also increase the CH4 yield by 60% for all cases. With an estimated 

conversion rate of 98% and an estimated 6% of CO2 bound by biomass the resulting 

MER value is 15.2 for all cases. This is close to the MER value of 15.4 reported by 

Strübing (Strübing et al. 2017), which the present model is based on. The system 

efficiency (kW electricity input/ kW Pmethanation) can be correlated to the efficiency 

of the electrolyser as shown in table 4 and 7. Cases using higher-performing 

electrolyser results in higher system efficiency. Therefore, optimizations of H2 

production are of great importance for the efficiency of the system. This correlation 

can be explained by the high electricity utilization of the electrolyser, as 

demonstrated in the energy balance calculations.  

Table 7: Simulation results of plant performance for each case. The calculated size of the reactor is 

also presented which increases with scale of electrolyser.  

Parameters 4.8 kWe 20 kWe 100 kWe 550 kWe 

Pmethanation (kW) 2.4      8.9       53.6      272.9 

Ptotal (kW) 6.4       23.2   140.5   715.0 

System efficiency (%)* 51 44 54 50 

Reactor bed volume 

(m3) 

0.4       1.4         8.5        43.4 

CH4 (%-vol) 95.7 

MER (VCH4/Vrb*day). 15.2 
*System efficiency is measured by: Power of produced CH4 (kW) devided by total electrical input 

(kW). 

4. Results and discussion 
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The advantages of this type of system are several. TBR’s have been proven to be 

able to start production quickly and effectively which is beneficial at irregular 

biogas production (Strübing et al. 2017). With the use of a TBR, no mixer is 

required which is less energy intensive. With fewer moving parts in the reactor, it 

can also be assumed that there will be less downtime due to maintenance which as 

mentioned in 2.1 is a large economic burden for many small-scale biogas plants 

(Eliasson 2015). Disadvantages are the lower MER value obtained for TBR 

compared to CSTR. Continuous monitoring is necessary for the process to run 

effectively. Fluctuations in biogas, H2 or buffer supply are apparent factors that can 

disrupt the production. 

4.1.1. Energy balance 

An overview of the energy balance of the system is illustrated in figure 8 for case 

20 kWe. All cases follow closely the same energy balance percentagewise except 

case 4.8 kWe, which does not use heat recovery for the electrolyser. Detailed energy 

and mass balance can be found in Appendix 2. It can be noted that close to all 

electricity utilization is attributed to the electrolyser and only 0.1 to 1% is used by 

other equipment. It is important to note that the electricity usage of the plant 

infrastructure is only attributed to pumps and fans. Lighting, measurement, and 

control are not considered in this calculation. Similar electricity usage can be seen 

in a CSTR-based methanation plant, rated at 1 MWe where 97% of the total 

electricity is to support its electrolyser (Lardon et al. 2018). 

Concerning the heat balance both the electrolyser and the reactor generate heat. Due 

to the exothermic nature of methanation (formula 1), after starting up, the reactor 

will heat itself. Cooling is then required for both the electrolyser and the reactor. 

However, some heat losses are prevalent in the reactor. Heating injected 

gas/nutrient medium and transmission losses of the reactors shell are the major 

sources of heat loss of the system.  
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Figure 8: Illustrated representation of the energy balance of the system for case 20 kWe.  

 

4.1.2. Mass flow 

The mass flow of the system is illustrated in figure 9. The electrolyser has a water 

consumption. The injected nutrient and buffer medium increases with reactor size. 

The liquid medium increases after the reactor due to the water that is generated in 

the methanation process (formula 1). Both injected H2 and CH4 is shown. A small 

fraction of H2 remains in the output gas. 

 

 

Figure 9: Illustrated representation of the mass balance of the system for all four cases. Data is 

represented for each case is represented: [4.8 kWe, 20 kWe, 100 kWe, 550 kWe]. 
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4.2. Production costs 

The levelized cost of CH4 production (LCOCH4) and specific investment costs 

(COCH4) is shown in figure 10 for all four cases. The costs are based on both total 

CH4 production including injected CH4 (LCOCH4Total, COCH4Total) and CH4 

produced by BHM excluding injected CH4 (LCOCH4Meth, COCH4Meth). Meaning, 

LCOCH4Total can be considered as the costs of upgrading and production of biogas 

while LCOCH4Meth is the costs of CH4 attributed to BHM. The presented costs do 

not include heat recovery. 

 

Figure 10: Resulting production costs of CH4 and specific CAPEX for each case. LCOCH4Total 

and COCH4Total are based on total CH4 production. LCOCH4Meth and COCH4Meth are based on 

CH4 production from the BHM process. 

 

An expected concept of scale is present, where the most cost-effective case is the 

550-kW plant. A drop of 50% of LCOCH4 can be observed between Case 4.8 kWe 

and Case 20 kWe.  This can be explained by the fact that at lower scales installing 

and most equipment costs are similar, which is shown in table 6. A less pronounced 

difference can be observed between 100 kWe and 550 kWe systems. This curve of 

scale is affected more pronounced between 550 kWe and 4.8 kWe since these cases 

use two electrolysers at the scale of 225 kW and 2.4 kW, respectively. While the 

other two cases use only 1 electrolyser at the necessary capacity, this creates a 

higher difference of costs between 4.8 to 20 and a lower difference between 100 

and 550. 
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Comparing investment costs to literature is difficult due to the lack of data for 

smaller scales of BHM plants. However, a comparison between the result and 

estimated investment costs from calculations based on the studies previously 

mentioned in 2.5.2 can be made. Figure 11 details LCOCH4meth with and without 

electrolyser replacement. To compare, a simulation was run with a calculated total 

CAPEX based on equation 1 with a scale factor of 0.52 and a standardized 

investment cost of 600 €/kWSNG at 5 MW. The figure is used to compare current 

study’s estimated total CAPEX to total CAPEX based on literature (Zauner et al. 

2019). 

 

 

   

Figure 11:System LCOCH4Meth compared to simulations with calculated CAPEX costs based on 

literature for all cases. 

It can be noted that base simulations result in higher production costs when 

compared to literature. One explanation to this is the limitation of equation 1 when 

comparing 5 MW scale to 5-550 kW scales. Other explanations are the high costs 

of electrolyser in the system. While large-scale systems of 1 to 10 MW have 

electrolyser costs of 500 to 1000 €/kW (Electrochaea 2014; McDonagh 2018) the 

current study have more than double these costs. However, this is not unreasonable 

due to the difference in scale. Comparison between the current study’s scale and 
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systems up to a MW scale may be misleading, resulting in difficulty to determine 

if the current study’s results are reasonable or not. 

 

4.3. Dependencies of the electrolyser 

Both CAPEX and OPEX of the system are dependent on the electrolyser. In figure 

12 the factors of OPEX are shown during one year of operation. The figure details 

the costs of electrolyser electricity, maintenance, staff costs and other OPEX. This 

includes chemicals, water, equipment electricity and purifier OPEX. It can be noted 

that the larger the system is, the electrolyser will have a higher impact on OPEX. 

Staff costs are the same for all cases (30 €/h, 207 hours) which is why it increases 

with lower scales.  

 

 

Figure 12: Overview of OPEX during one year of operation. Electrolyser electricity, maintenance, 

staff costs and other are shown. Other includes expenses from chemicals, water, equipment, and 

electricity.  

 

Figure 13 shows the fractions of the total CAPEX. Similar to OPEX, the impact of 

the electrolyser grows larger as the system grows in scale. This is also evident from 

other studies mentioned in 2.5.2 where an increase in plant size follows an increase 

in electrolyser influence in costs (Electrochaea 2014).  
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Figure 13:Overview of CAPEX for the system. Costs of electrolyser replacement are not included. 

The CAPEX factors are reactor, equipment, commissioning, and electrolyser.  

4.4. Potential heat recovery 

As can be seen in the energy balance (figure 8), some heat generated from both 

electrolyser and reactor is recovered. However, as previously stated in 2.1 farms 

using CHP will most likely not require extra heating, as 29% of the energy 

generated is not used or sold. If this system is used to upgrade biogas, it could be 

incentivized to use output gas for fuel instead of CHP. In figure 14 the LCOCH4Total 

from both base simulations and simulations using recovered heat. Cost reductions 

from heat recovery are assumed to substituting 0.04 €/kWh. It can be noted that a 

reduction is evident but does not have a significant impact on the production costs 

and may not be enough for a producer to turn away from CHP. This means that it 

could be more beneficial for the case of 20 kWe, to stack higher efficiency 

electrolysers that do not support heat recovery from supplier 1.  
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Figure 14:Resulting LCOCH4Meth reduction by heat recovery. Base simulation results (blue) are 

compared to simulation results using heat recovery (orange). Heat recovered is assumed to 

substitute 0.04 €/kWh of heat. 

4.5. Sensitivity analysis 

CAPEX 

The results of the sensitivity analysis of CAPEX are shown in figure 15. The bar 

diagram shows the result of LCOCH4Meth where total CAPEX is reduced between 

35%, 50% and 82.5%, and the electrolyser CAPEX is reduced by 28% and 45%. 

Total CAPEX reduction of 35% shows the expected cost reduction of BHM plants 

in 2030 (orange), 50% shows the result of a subsidy of 50% from Climate Leap 

(yellow) and 82.5% reduction shows the effects of both (purple). An electrolyser 

CAPEX reduction of 28% and 45% is the expected cost reduction of AEL and PEM 

electrolysers in 2030, respectively. The figure shows the impact of electrolyser 

CAPEX reductions depends on scale. For smaller scaled systems, the electrolyser 

CAPEX reduction has a smaller impact on LCOCH4Total than for a larger system. 

For case 550 kWe, a reduction of 45% of electrolyser CAPEX almost reaches the 

same impact as for a total CAPEX reduction of 50%. It can also be noted that the 

impact of total CAPEX reduction is larger for smaller scaled systems. In 

conclusion, larger scales of the system benefit more from electrolyser CAPEX 
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reductions, while smaller scales of the system benefits from total CAPEX 

reductions such from subsidies and reductions in BHM related costs.  

 

 

Figure 15:Sensitivity analysis of investment costs. The different CAPEX reductions are shown in 

the bar diagram, as well as the base case of the system with no reductions.  

Electricity price 

The result of the sensitivity analysis of varying electricity price is shown in figure 

16. The resulting impact is the systems upgrading costs (LCOCH4Total). The price 

of electricity in the simulation is set to 0.059 €/kWh which is an estimation of a 

static electric price. The average spot price in the year 2020 for region SE3 is 0.0221 

€/kWh (Nordpool 2020). Applying this price to the simulation (60% electricity 

price reduction) results in a reduced LCOCH4Total by 20% for the largest scale. With 

the increase of scale, the more impact the electricity price will have on the 

LCOCH4. This creates a large potential for cost decrease in production/upgrading 

for the larger scales of the system by reducing electricity costs. Because of the high 

impact of the electricity price, it could be motivated to add renewable electricity 

sources to this system to reduce the average price.  
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Figure 16: Resulting difference in LCOCH4Total from a varying electricity price. X-axis shows the 

variance of electricity price (%). Y-axis show the difference in resulting LCOCH4Total (%). 

 

If the electricity would be available at no costs the LCOCH4Meth would decrease 

from 0.234 €/kWh to 0.114 €/kWh (decrease of 49%) for the 550 kWe system. 

Comparing this to results reported by a 10 MWe system, a similar decrease from 

124 MWh to 55 MWh (decrease of 44%) (McDonagh et al. 2018). 

Operating hours and electrolyser lifetime 

The sensitivity analysis of FLH and electrolyser lifetime is presented in table 8. 

Only case 550 kWe is analysed with results based on LCOCH4Total. FLH has a large 

impact on the resulting LCOCH4Total. Production costs increase by 11.5% at 6800 

operation hours. This simulation shows that it is beneficial to operate the system as 

much as possible. However, the simulation does not include electrolyser 

degradation which can affect the system negatively at higher FLH.  

 

The electrolyser replacement has less impact compared to the other parameters but 

can still be considered important. For each replacement, the LCOCH4 increase by 

7.8%. This could be a benefit if electrolysers with long lifetimes are prioritized. 

However, this could discourage the use of AEM. AEM is still new to the market 

and the effective lifetime is still unknown. Although, since the use of AEM yields 

low CAPEX, this could outweigh the potentially short lifetime and replacements. 
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Table 8: Results of sensitivity analysis of operational parameters. The effects on LCOCH4Meth from 

varying FLH, electricity price and electrolyser lifetime on case 550 kWe are investigated. 

FLH 

Factor - 50% - 20% -15 -10% -5% 

Result +46.1% +11.5% +8.1% +5.1% +2.4% 

Electrolyser lifetime 

Replacements 0 1 Base (2) 3 4 

Result -15.4% -7.8% - +7.8% +15.4% 

 

4.6. Cost optimizations  

The system can compete with traditional upgrading concerning performance. The 

system can achieve an output gas with high concentrations of CH4 and produce 

vehicle fuel. Another advantage of the system is its ability to increase the CH4 yield 

of the biogas plant, which traditional upgrading does not. While the system 

produces high-quality output gas, a considerable investment and operation cost are 

required. As observed in the sensitivity analysis, these costs can be reduced by 

different means.  

 

Traditional upgrading costs for biogas plants in Sweden can be considered at 0.05 

€/kWh upgraded biogas in the year 2014 for small to medium scale (Vestman et al. 

2014). However, the costs change depending on the scale and at lower biogas flows 

the costs increase (Blom et al. 2012). Data of traditional upgrading costs in recent 

years were found difficult to retrieve and costs may be inaccurate for 2021. 

A comparison between cost optimizations of the system and traditional upgrading 

costs are illustrated in figure 17. However, comparing traditional upgrading to 

BHM is not straightforward due to the generated CH4 in the methanation process. 

Therefore, the results shown in figure 16 are the upgrading costs of the system 

(LCOCH4Total) with an added cost of raw biogas production from the digester 

estimated at 0.04 €/kWh (Vestman et al. 2014). This added cost is also added for 

traditional upgrading costs of 0.05 €/kWh giving a total cost of 0.09 €/kWh for 

produced and traditional upgraded biogas, which is illustrated in figure 17 (red 

dotted line). 

 

The systems upgrading potential can also motivate the substitution of diesel. The 

price of diesel in 2021 is estimated at 0.12 €/kWh (excluding VAT). Cases or 

optimizations that have a production cost below this could motivate using BHM as 

upgrading to produce fuel. Figure 17 also includes the price of diesel for 

comparison (black dotted line).  
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The cost optimizations for the system shown in figure 17 are: 

• B – Base cases with no optimizations. 

• O1 – Heat recovery of the system is applied. Heat recovered are assumed 

to substitute 0.04 €/kWh. 

• O2 – Total CAPEX reduction of 50% from subsidy.  

• O3 – The electric price is assumed to be spot price of 2020 at 0.0221 

€/kWh. 

• O4 – Optimizations O1, O2 together. 

• O5 – Optimizations O1, O2, O3 together. 

• O6 – Optimizations O1, O2 ,O3 together in the year 2030.  

• D – Diesel price in Uppsala, Sweden excluding VAT in 2021 (Dieselpriser 

2021). 

• TU - Traditional upgrading costs in 2014 for small to medium scale 

(Vestman et al. 2014). 

 

 

Figure 17: System upgrading costs optimizations of the system compared traditional upgrading 

costs and diesel price.  

 

No base case reach economic competitiveness if compared to traditional upgrading 

of small- to medium-scale. The scale of 4.8 to 100 kWe systems can be considered 

micro scales and a direct comparison is not optimal due to traditional upgrading 

costs can also be expected to increase at smaller scales (Blom et al. 2012). The 

largest scale does reach the same or lower cost compared to traditional upgrading 

with all or some optimizations. By a subsidy of 50% or reducing electricity prices, 

this system can be considered competitive. With all optimizations, both cases of 

100 kWe and 550 kWe can reach competitive upgrading costs. Both cases of 100 
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kWe and 550 kWe reach an upgrading cost below the cost of diesel. These systems 

can be motivated to be used for substituting the use of fossil fuels.  

 

For the 4.8 and 20 kWe systems, neither reaches a competitive level of costs. It is 

important to remember that these systems can be considered micro-scale. As 

explained in 3.1.1, these cases of scale are assumed to upgrade only a part of the 

biogas produced. These systems could be motivated to be used for producing fuel 

for private use only. With all optimizations and with additional future cost 

reductions, the 20 kWe system can reach competitive levels in the year 2030.  

 

This resulting comparison shows that a system at 100 kWe or higher can be a 

competitive option for upgrading in the future. A system at 20 kWe was shown to 

reach competitive levels in 2030 by utilizing all optimizations. However, these 

optimizations can be difficult to apply, and such a small system do need 

significantly more aid from subsidies to be used than at larger scales.  

With further experience and efficiencies developing in the BHM market, a small-

scale BHM upgrading plant can be a viable option for smaller biogas plants over 

100 kWe. 

 

As reported by McDonagh et al. 2018, secondary incomes and incentives are 

essential for P2G (McDonagh et al. 2018). The present study does not consider 

potential revenue from oxygen production or grid services which could improve 

upgrading costs.  

4.7. Uncertainties 

4.7.1. Scalability  

Difficulties may arise at larger scales of the system. While electrolysers are 

commercially available from kW to multi-MW scales the same cannot be said for 

methanation reactors. No TBR in the published literature reaches the required 

volume for the larger scales of the system. 

4.7.2. AEM lifetime 

Due to no degradation of the electrolyser is assumed, the production model of H2 

supplied to the reactor may differ from a real-life plant. Lifetime cycles for AEM 

are still unknown and further study of AEM is necessary to know if the electrolyser 

type can support 8500 hours of operation for 7 years. 
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4.8. Future study 

Future applications and studies in small-scale methanation could be done to 

improve the current market and development of BHM based biogas upgrading. A 

more thorough investment cost analysis could be done to improve the accuracy of 

actual costs. Grid electricity replacement such as localized renewable electricity 

production can be a potential addition to this system concept. Secondary incomes 

from oxygen can be used to further optimize the system. Further study into larger 

scales of TBR and higher HLR will potentially increase the reliability of the system 

to function at higher scales or with higher volumes of injected gases. 
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A concept of a biological methanation system to produce upgraded biogas at near 

vehicle fuel quality was created in the present study. Costs from suppliers were used 

to estimate electrolyser costs. Electrolysers used in the simulation is based on real 

commercially available electrolysers. Electrolyser types used in the four cases are 

AEM, AEL and PEM. The system upgrades biogas by using a TBR. The system 

performed competitively in upgrading performance by producing output gas with 

high CH4 concentration (95.7%) and H2S removal. The system also increases the 

CH4 yield by 60%. However, economically the system cannot be considered 

competitive compared to traditional upgrading. The system, however, can be 

optimized at several ways to achieve higher competitiveness economically. The 

expected cost reduction in H2 and BHM technology in 2030 can potentially reduce 

the CH4 production costs by 20-25%. The concept of upgrading by BHM also 

reduces carbon emissions from biogas production giving the system a good chance 

of receiving subsidies from greenhouse gas reduction initiatives. Larger scales of 

the system can reach competitive upgrading costs by utilizing subsidies, electricity 

price reductions and heat recovery. At the lowest scale of 4.8 kWe, the systems 

upgrading costs are too high to motivate the use of this system at this scale. A 20 

kWe system could be motivated to be used in 2030 but a considerable number of 

improvements and subsidies are needed to make this scale competitive to diesel 

prices. Scales of 100 to 550 kWe can be a competitive option for upgrading in 2021 

with sufficient subsidies and optimizations. With future cost reductions and 

optimizations BHM could be an option for upgrading biogas in small-scale biogas 

plants. 

5. Conclusion 
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Collected electrolyser CAPEX 
Table below shows collected CAPEX costs from electrolyser suppliers. Suppliers 

were contacted by mail and provided ballpark figures of electrolyser price. The 

rated capacity, specific price and electrolyser type is noted. Electrolysers used in 

the current study are marked. 

 

 

Appendix 1     

Rated Capacity 

(kWe)  

CAPEX 

(€/kWe) 

Electrolyser 

type 

Supplier 

62 4024 PEM Supplier 4 

120 2751 PEM Supplier 4 

175 2367 PEM Supplier 4 

225 2363 PEM Supplier 3 

15 7397 PEM Supplier 4 

28 4750 PEM Supplier 4 

41 3873 PEM Supplier 4 

6 9093 PEM Supplier 4 

100 3500 PEM Supplier 6 

2.5 5598 AEL Supplier 5 

2.4 3600 AEM Supplier 1 
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Appendix 2    

Detailed energy and mass balance 
Detailed energy and mass balance are shown in the table below. 

 

Energy balance results. 

 4.8 kW 20 kW 100 kW 550 kW 

 

Energy input (kW) 

Electrolyser rated power 4.8 20 100 550 

Equipment rated power 0.006        0.02      0.13       0.8 

Energy content in injected 

biogas 

3.9       14.4     86.8     442.1 

Energy output (kW) 

Energy content in injected H2 

(HHV) 

3.6       12.9      78.0     397.1 

CH4 energy content in output gas 6.4       23.2      140.5      715.0 

H2 energy content in output gas  0.07       0.3      1.6      7.9 

Heat generated from 

methanation  

0.51             1.8       11.2 56.8 

Heat transmission losses  0.09       0.2      0.4     1.3 

Heat losses from heating liquid 

and gas  

0.3       1.0      5.8       29.4 

Heat generated from electrolyser 0.8       3.4 17.0 93.5 

Heat recovered 0.16       3.7 18.7 101.0 

Liquid input (L/h) 

Total water usage (L/h) 5.6       20.0      121.7      700.3 

Nutrient and buffer input (L/h) 4.8 17.5      105.7      530.3 

H2 input (kg/h) 0.09 0.3 2.0 10.1 

CH4 input (kg/h) 0.3 1.0 6.3 31.8 

Liquid output (L/h) 

Nutrient and buffer output (L/h) 5.7       20.7      125.4      638.2 

H2 output (kg/h) 0.002    0.007     0.04     0.2 

CH4 output (kg/h) 0.45911       1.6712        10.1       51.42 
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Appendix 3    

Gas, liquid and material constants 
In the table below, constants for gases, liquids and materials are detailed. 

 

Constants used in calculations 

Constant Value Source 

Activated carbon density 0.63 kg/l Engineering ToolBox (2001) 

H2S density 1.52 kg/m3 Engineering ToolBox (2001) 

H2 density 0.08988 kg/m3 Engineering ToolBox (2001) 

CO2 density 1.977 kg/m3 Engineering ToolBox (2001) 

H2O density 1000 kg/m3 Engineering ToolBox (2001) 

CH4 LVH 9.97 kJ/kg Engineering ToolBox (2001) 

H2 HHV 142 MJ/kg Engineering ToolBox (2001) 

H2 specific heat capacity 14.32 kJ/kg °K Engineering ToolBox (2001) 

CH4 specific heat capacity 2.232 kJ/kg °K Engineering ToolBox (2001) 

H2O specific heat capacity 4.2 kJ/kg °K Engineering ToolBox (2001) 

Insulation thermal 

conductivity 

0.04 W/m2 °K Decorexpro (n.d.) 

Steel thermal conductivity 17 W/m2 °K Jernkontorets energihandbok 

(n.d) 

Passive convection of air 5 W/m2 °K Kosky et al. (2013) 

Passive convection of 

water 

500 W/m2 °K Kosky et al. (2013) 

 

 






