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Poly- and perfluoroalkyl substances (PFASs) have unique chemical characteristics and are 

used in a wide variety of products. PFASs have been found in wild animals and humans 

and have shown adverse effects. Different remediation methods have been developed to 

remediate PFASs in the environment. Phytoremediation is one of the remediation methods 

with certain advantages, such as being low-cost, energy-efficient, less harmful, flexible and 

effective in removing PFAS. This study aims to evaluate the potential of plant uptake of 

12 different PFAS from mustard (Brassica juncea), sunflower (Helianthus annuus) and 

industrial hemp (Cannabis sativa). In addition, the effect of amendments i.e., fertilizers, 

microbes, and the combination of fertilizers with microbes on the uptake of PFASs was 

evaluated. Pot experiments were performed in a greenhouse at SLU. Four different 

treatments with different amendments (fertilizer and microbial fertilizer) were applied to 

the plants in this experiment. The results indicated that PFASs were mostly transported and 

accumulated in the leaves, as opposed to the other plant compartments. Hemp had the 

highest levels of PFASs in the plant tissue (14.3 μg/plant) in comparison to sunflower (12.9 

μg/plant) and mustard (8.3 μg/plant) in all control samples. Even though the total uptake 

of PFASs by mustard is the lowest, the PFAS concentration in mustard leaf is the highest 

(1.2 μg/g dry weight (dw)) among all plant compartments. The amendment with nutrient 

fertilizer and the amendment with microbe fertilizer decreased the PFAS concentration in 

the plant tissue, due to the sorption between PFASs in the soil and the fertilizer added. In 

conclusion, hemp seems a promising candidate for phytoremediation of PFAS 

contaminated soil. 

 

 

 

Keywords: Phytoremediation, PFAS, mustard, sunflower, industrial hemp. 
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Poly- and perfluoroalkyl substances (PFASs) have been used widely in our daily life and have been 

detected in different environmental compartments (Butt et al., 2010; Banzhaf et al., 2016; Arinaitwe 

et al., 2021). Their bioaccumulation ability in living organisms also attracted the attention from the 

scientists (Martin et al., 2003a; Martin et al., 2003b; Ahrens et al., 2016; Giesy and Kannan., 2001). 

The pathways of human exposure to PFASs include drinking water (Banzhaf et al., 2016; Boiteux 

et al., 2012), food (Clarke et al., 2010), air, and dust (Ericson Jogsten et al., 2012). Accordingly, a 

series of studies conducted on PFASs have revealed that PFASs were detected in the human body 

and have adverse health effects (Ait Bamai et al., 2020; Alexander et al., 2003; CDC, 2017; Cui et 

al., 2020; Kung et al., 2020). 

 

Different environmental remediation methods have been developed, proven and tested for removing 

PFASs in contaminated soil including physical, chemical and biological remediation methods 

(Ahmed et al., 2020; Liu et al., 2013; Lu et al., 2020). Phytoremediation is one of the biological 

methods for removing toxic substances from the environment which has several advantages over 

physical and chemical remediation methods (Mahinroosta and Senevirathna, 2020). 

Phytoremediation of PFASs has been investigated and discussed whether it is a better solution for 

remediating PFASs in many kinds of plants (Ahmad et al., 2016; Bizkarguenaga et al., 2016; Blaine 

et al., 2013; Felizeter et al., 2012; Felizeter et al., 2014; Gobelius et al., 2017; Krippner et al., 2014; 

Lasee et al., 2020; Stahl et al., 2009; Wen et al., 2014; Xiang et al., 2018). Only a few studies have 

examined how different combinations of fertilizer and microbial fertilizer affect the uptake of PFASs 

by plants, which will be studied in this paper. 

 

  

1. Introduction  
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1.1. Aim and hypotheses 

The aim of this study was to examine the phytoextraction efficacy of PFASs by three different plant 

species (i.e., mustard (Brassica juncea), sunflower (Helianthus annuus) and industrial hemp 

(Cannabis sativa)) as a viable PFAS remediation method. The objectives are to: 

 

 Assess the uptake and distribution of PFASs by hemp, sunflower and mustard in different 

tissue compartments. 

 Evaluate the effect of amendments i.e., fertilizers, microbes and the combination of 

fertilizers with microbes on PFAS uptake. 

 Assess the concentration factors and make correlations with PFAS carbon chain length 

and functional groups. 

 Estimate the time of using plants to perform phytoremediation under real conditions. 

 

The following hypotheses were examined in this experiment: 

 

 Hemp and sunflower will take up more PFASs in comparison to mustard due to their 

higher growth rate  

 Short-chain PFASs can be efficiently removed by phytoremediation compared to long-

chain PFASs. 

 The PFAS uptake will increase with fertilizer and/or microbe fertilizer addition. 

 Short-chain PFASs will be more concentrated in the shoots and long-chain PFASs will be 

more distributed in the roots. 
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2.1. PFASs 

2.1.1. What are PFASs 

Per- and Polyfluoroalkyl substances (PFASs) are a group of aliphatic substances that have been 

largely utilized in various products, i.e., adhesives, food packaging, heat-resistant non-stick 

cooking surfaces and firefighting foams (CDC, 2017). PFASs were introduced to the world by 

humans around 1950 (Kissa, 2001; Buck et al., 2011; Zhao et al 2016). The chemical structure of 

perfluoroalkyl substances is mainly aliphatic substances, where all H atoms on the carbon chain 

are replaced by F atoms. However, the H atoms on the functional groups are not included in this. 

On the other hand, if some but not all of the H atoms on the carbon chain are replaced by F atoms, 

and the other conditions remain the same, these substances are reffered to as polyfluoroalkyl 

substances (Buck et al., 2011) 

 

The structure of PFAS chemicals consists of two components, an oil-soluble component and a 

water-soluble component. The water-soluble part is the functional group, whereas the oil-soluble 

part is the fluorinated carbon chain (Buck et al., 2011). This characteristic makes PFASs a perfect 

surfactant with a high surface activity compared to other hydrocarbon analogs (LehmLer, 2005). 

 

The carbon-fluorine bond (C-F bond) is the most important part of PFAS structures, as it is the 

strongest bond in organic chemistry (O'Hagan, 2008). The fluorine ion possesses highest 

electronegativity (close to 4) among all the elements (Ryss, 1960). The bond dissociation energy for 

the C-F bond is the highest among all other covalent bonds, which is 105.4 kcal mol-1. Futhermore, 

the C-F bond length is the shortest in all carbon-halogen bonds (O'Hagan, 2008). Considering the 

reasons outlined above, PFASs are highly stable and persistent (Conder et al., 2008; Cousins et al., 

2020). 

 

Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) belong to the 

perfluoroalkyl acids (PFAAs) and have the general chemical formula CnF2n+1COOH and 

CnF2n+1SO3H, respectively (Buck et al., 2011). PFAAs are important because they were widely used 

in industrial processes and daily necessities. Another reason is that these chemical substances are 

often released directly or indirectly into the environment as degradation byproducts of the precursor 

substances, i.e., perfluoroalkane sulfonyl fluorides (PASFs; CnF2n+1SO2-R) and n:2 fluorotelomer 

raw materials (CnF2n+1CH2CH2-R) (Wang et al., 2015), which make PFAS pollution more different 

to deal with (Buck et al., 2011). PFASs are classified as either long-chain and short-chain. Long-

chain PFASs (including PFSAs (CnF2n+1SO3H, n≥ 6) and PFCAs (CnF2n+1COOH, n≥ 7)) have a 

hydrophilic tendency. On the other hand, short-chain PFASs (including PFSAs (CnF2n+1SO3 H, 4 

≤n< 6) and PFCAs (CnF2n+1COOH, 3 ≤n< 7)) have a water-soluble tendency (Buck et al., 2011).  

 

Octanol-water partition coefficient (Kow) is a factor to determine whether chemicals have a 

hydrophilic or lipophilic property. Zhang et al., (2019) found out that short-chain PFAAs have a 

2. Background 
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relatively small Kow compared to long-chain PFAAs, which means that short-chain PFAAs are more 

hydrophilic and long-chain PFAAs are more lipophilic. 

 

2.1.2. The distribution for PFASs in our environment 

The 3M company began producing PFASs in 1945 using the electrochemical fluorination process 

(ECF) (3M, 1999). The amount of PFASs used increased in the years following this time. The first 

formal regulation of this type of chemical substance, the Stockholm Convention, went into effect in 

2009 and prompted the public to pay attention to PFAS (Overview on PFOS, its salts and PFOSF, 

2009). 

 

PFASs are widely distributed around the world. In Europe, Ahrens et al., (2010) detected low PFAS 

concentration in the North Sea, the Baltic Sea, and the Norwegian Sea, mainly caused by human 

activities. Arinaitwe et al., (2021) detected low concentrations of PFASs in the river and urban 

discharge in Africa. The presence of PFASs in the Arctic can also be attributed to atmospheric 

transport of precursors and direct transport via ocean currents (Butt et al., 2010).  

 

PFASs were detected in China as well, including sea mammals in the south china sea (Lam et al., 

2016), surface water (Lu et al., 2015), soil (Li et al., 2020), and landfills (Xu et al., 2021). According 

to a study conducted in Australia, earthworms contained PFOS due to the usage of aqueous film-

forming foam (AFFF) (Das et al., 2013). 

 

In the USA, Oliaei et al., (2012) had discovered that a per/polyfluorinated chemical (PFC) 

production plant contaminated the surrounding area and aquatic animals. A study focused on the 

surface soil in the USA and around the world found that the presence of PFASs was evident in all 

sample points (Rankin et al., 2016). Giesy and Kannan (2001) found out that 

perfluorooctanesulfonate (PFOS) can be detected in multiple wildlife species including fish, birds, 

and mammals in North American Great Lakes, Baltic Sea, and the Mediterranean Sea. All the studies 

have indicated that PFASs are a group of contaminants that are present in our surrounding 

environment. 

 

2.1.3. PFAS exposure and the effects to human body 

The use of PFASs in various applications has led to studies demonstrating that PFASs accumulated 

in animals (Martin et al., 2003a; Martin et al., 2003b; Ahrens et al., 2016; Giesy and Kannan., 2001). 

 

The human body can also inhale or intake PFASs via numerous pathways. Food packages and food 

can be one of the major pathways for humans to take up PFASs (Domingo et al., 2012; Domingo, 

2012; Clarke et al., 2010). Another pathway through which humans may acquire PFASs is through 

drinking water (Boiteux et al., 2012; Heo et al., 2014; Schwanz et al., 2016). Last but not the least, 

air pollution and the dust in the air also contaminated with PFASs since PFASs have already been 

released into the environment, and they can last for many years (Karásková et al., 2016; Ericson 

Jogsten et al., 2012; Haug et al., 2011; Fraser et al., 2013). 

 

Recent studies have revealed that PFASs are toxic to humans (Kung et al., 2020), endocrine system 

(Groh et al., 2019), and the surrounding environment (Zheng et al., 2020; Ait Bamai et al., 2020; 

Wu et al., 2020). Futhermore, some studies are more focused on the biota, for example, fish tissue 

(Martin et al., 2003), livestock (Death et al., 2021), and insects (Lan et al., 2020). 

 

Some studies found out that PFASs can accumulate in the human body (Poothong et al., 2017; 

Hansen et al., 2001; Li et al., 2020; De Silva et al., 2021; Suja et al., 2009). Some other studies 

focused on the negative effects of PFASs. Cui et al., (2020 found that exposure to PFASs negatively 

affects male reproductive function. Alexander et al., (2003) discovered that people who worked in 

a perfluorooctanesulphonyl fluoride (POSF) manufacturing facility were more likely to suffer from 

bladder cancer and increased mortality rates. According to Ait Bamai et al., (2020), PFASs with a 
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carbon number above eight are related to allergies and infectious diseases. Kung et al., (2020) found 

that PFASs, in particular PFOS, have a significant impact on children’s lung development. 

 

2.2. PFAS remediation methods 

2.2.1. Remediation methods on PFASs 

Nowadays, many PFAS remediation methods are being developed and applied on various surface 

waters, landfill leachate and contaminated sites to remove the existing PFASs in these mediums. 

They can be categorized into three groups: 1) physical treatment (soil wash, biochar, nanofiltration), 

2) chemical treatment (plasma reactor, thermal, oxidation) and 3) biotreatment (microbial, 

phytoremediation) (Lu et al., 2020; Mahinroosta and Senevirathna, 2020). 

 

Lu et al., (2020) mentioned many different PFAS remediation methods and their combined 

approaches, except for phytoremediation. Some approaches have a high energy demand, low cost-

efficiency, and specific operating conditions (Lu et al., 2020). Soriano et al., (2017) used the 

combination of nanofiltration followed by electrochemical oxidation to remove perfluorohexanoic 

acid (PFHxA) from industrial process waters. Sørmo et al., (2021 published a paper recently 

concerning the use of eight different waste timber biochars to successfully reduce the leachate PFAS 

concentrations from contaminated soils. Kucharzyk et al., (2017) concluded that many conventional 

treatments were inefficieny in removing PFASs. 

 

Phytoremediation is a low-cost, energy-efficient, less harmful, flexible, and effective method to 

remove pollutions (Salt et al., 1998). Bolan et al., (2021) also pointed out another advantage of 

phytoremediation which is its low cost of maintenance. However, the greatest disadvantage of 

phytoremediation is the enormous amount of time needed to remediate the contaminated soil (Bolan 

et al., 2021). 

 

2.2.2. Phytoremediation and the application for PFASs 

Scientists have introduced the concept of phytoremediation to remediate heavy metal contamination 

since the 1980s (Cunningham et al., 1995). Numerous studies have demonstrated the potential of 

phytoremediation as a promising remediation method for contaminated soils since the 1990s (Salt 

et al., 1998). The concept of phytoremediation involves using green plants, plant-related 

microorganisms, and soil amendments to concentrate, remove, and degrade dangerous and toxic 

chemicals in order to reduce the harm to the environment (Salt et al., 1998; Cunningham, 1996; 

Cunningham et al., 1995). Phytoremediation can be divided into the following types: 

phytoextraction, phytodegradation, rhizofiltration, phytostabilization, and phytovolatilization (Salt 

et al., 1998).  

 

Recently, several studies have tested the potential of phytoremediation to remove PFASs (Ghisi et 

al., 2019; Stahl et al., 2009; Zhang et al., 2019). Blaine et al., (2013) used lettuce (Lactuca sativa) 

and tomato (Lycopersicon lycopersicum) to test the uptake of PFAAs. They found that PFBA and 

PFPeA are taken up best in both lettuce and tomato. Felizeter et al., (2012) focused on growing 

lettuce (Lactuca sativa) on PFAS spiked with different nutrient solutions to test the 

phytoremediation potential. According to their findings, long-chain PFAAs have higher root 

concentration factors (RCF) than foliage to root concentration factors (FRCF) while short-chain 

PFAAs have the opposite findings. As a result, long-chain PFAAs are more likely to stay in the roots 

while short-chain PFAAs are likely to be stored in foliage. Gobelius et al., (2017) investigated the 

potential of using phytoremediation to remediate PFASs. In the study, seven plants have been 

sampled and analyzed. The result shows that leaves and twigs have the highest PFAS concentration 

among all selected plants. Plants with high root biomass might not be a good phytoextraction 



15 

 

 

candidate but can be a good option for phytostabilisation. Overall, birch and spruce had the highest 

PFAS uptake among these seven plant species. 

 

2.2.3. Factors affect the uptake of PFASs 

There are few studies focusing on the factors that affect the uptake of PFASs by plants (Blaine et 

al., 2013; Costello and Lee, 2020). 

 

Stahl et al., (2009) found out that the initial concentration of PFASs in the soil affects the PFAS 

uptake by the plant. In this article, the higher the concentration of applied perfluorooctanoic acid 

(PFOA) to the soil, the larger the concentration of PFASs that were absorbed and stored in the plants.  

 

Some studies focused on hydrophobicity and lipophobicity (Felizeter et al., 2012; Xie et al., 2021; 

Krippner et al., 2014; Zhang et al., 2019). By calculating and comparing the root concentration 

factors (RCF) and foliage/root concentration factors (FRCF), Felizeter et al., (2012) concluded that 

long-chain PFAAs tend to be stored in the root due to the long-chain PFAAs’ hydrophobicity 

behavior. A study conducted by Xie et al., (2021) showed a similar result. They pointed out that 

long-chain PFCAs have a strong hydrophobicity that leads to less mobility. Thus, long-chain PFCAs 

are less likely to be transported to the shoot, which results in more long-chain PFCAs staying in the 

roots and soil. As the carbon number in PFASs increases, the property of PFASs becomes more 

lipophilic (Krippner et al., 2014). Zhang et al., (2019) showed that when the number of carbon atoms 

increases in the PFAS carbon chain length, the uptake amount decreases. Zhang et al., (2019) also 

concluded that PFAAs with shorter carbon-chain are more hydrophilic and have smaller Kow. 

Calderón-Preciado et al., (2012) stated that PFASs with a lower molecular weight have a higher 

uptake potential. In other words, short-chain PFASs have a higher uptake potential.  

 

Felizeter et al., (2014) discovered that uptake of PFASs by plants is not only controlled by the carbon 

chain length but by a combination of the chain length and the functional group. PFCAs have a better 

uptake rate compared to PFSAs since plants show a tendency to absorb the carboxylic group rather 

than the other functional group (Ghisi et al., 2019; Felizeter et al., 2012; Gredelj et al., 2020). One 

of the reasons is that plants uptake PFSAs and PFCAs by different pathways (Gredelj et al., 2020). 

 

Plant characteristics can also affect the PFAS uptake. Plants with the following characteristics are 

considered more suitable for phytoremediation: special uptake capabilities in the root, the shoot has 

the ability of translocation of the pollutants, accumulation and degradation of the pollutants (Bauddh 

et al., 2017). The plants which are most suitable for phytoremediation are hyperaccumulators and 

have a high biomass production (Rodriguez et al., 2005).  

 

One major effect on the uptake of the contaminants is the evapotranspiration rate from the plants. 

Manzoor et al., (2018) mentioned that evapotranspiration is a process that is responsible for 

absorbing water, nutrients, and contaminants from a growing media into the plant and transport to 

the shoot. However, this process can be influenced by many factors such as precipitation, irrigation, 

percolation, and changes in soil moisture (Raja and Bishnoi, 1990).  

 

The root growth can affect the plant to take up the PFASs. Gredelj et al., (2020) discovered that 

higher root surface in the soil increases the absorption of PFAS by plants. One factor that affects the 

root growth is the application of fertilizer, however, the additional fertilizer can also affect the PFAS 

uptake directly. Higgins and Luthy, (2006) found out that with increasing concentration of Ca2+ in 

the soil, the sorption of PFASs to the soil increased. They also conclude that compared to PFAS 

sorption to minerals, the sorption of PFASs is more driven by organic matter. One method that can 

increase the soil organic matter is to increase the microbe community. Kallenbach et al., (2016) 

stated that the microbe community not only stable the soil organic matter (SOM) but also can 

accumulate SOM. Campos Pereira et al., (2018) found out that PFSAs can have a stronger absorption 

with soil organic matter (SOM) than PFCAs. Long-chain PFASs bind more strongly with the SOM 

compared to short-chain PFASs. 
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The soil organic carbon (SOC) concentration can also affect the plant uptake of PFASs. PFASs have 

the tendency to stick to SOC (Blaine et al., 2014; Milinovic et al., 2015; Lasee et al., 2020). As a 

result, it is difficult for plants to take up PFASs if the SOC concentration is relatively high.  

 

2.2.4. Plant species 

Plants with hyperaccumulating ability and toxic tolerant properties are considered to be potential 

plants for phytoremediation (Bauddh et al., 2017). Additionally, using potential hyperaccumulator 

plants for phytoremediation can not only clean up the contamination but can also result in efficient 

land use (Bauddh et al., 2017).  

 

Since PFASs are hard to degrade, phytodegradation might not be a good option to deal with PFAS 

pollution since phytodegradation is mostly used to degrade organic pollutants (Bauddh et al., 2017). 

On the other hand, phytoextraction can efficiently remediate heavy metal pollution (Bauddh et al., 

2017), which might have the potential to extract PFASs from the soil to the plant’s tissue.  

 

Mustard, hemp, and sunflower are all hyperaccumulator plants and also have a certain degree of 

toxic tolerance (Bauddh et al., 2017). The following paragraph showed the previous study which 

applied phytoremediation to deal with heavy metal pollutions with these plants. 

 

Shi and Cai, (2009) and Shi et al., (2012) tested the tolerance of hemp on cadmium and found out 

hemp has the ability to accumulate the cadmium. Ahmad et al., (2016) not only tested the 

phytoremediation potential on cadmium but also the six other heavy metals from industrial 

emissions. The result showed that copper (Cu), cadmium (Cd), and nickel (Ni) can be accumulated 

in hemp. A recent study by Stonehouse et al., (2020) used hemp to remediate the Selenium (Se) 

contamination in the USA and confirmed hemp can also be one of the candidates for the remediation 

of Se pollution. Ximenez-Embun et al. (2001) states that sunflower is effective in removing lead 

(Pb), chromium (Cr), zinc (Zn), Cd, and Ni from water. Jadia and Fulekar, (2008) also tested the 

absorption of heavy metals by sunflower under the influence of amended soil. The result showed 

that the increase of the biomass of the sunflower plant helps to uptake more heavy metals. Rizwan 

et al., (2016) also confirmed that with the amendments applied to the sunflower plants, the uptake 

of heavy metals will increase. Mustard is a kind of plant used a lot in the phytoremediation of heavy 

metals. They have been well studied for the uptake of Cd (Rizwan et al., 2018; Qadir et al., 2004; 

Goswami and Das, 2015), Pb (Gurajala et al., 2019), aluminum (Al) (Ahmad et al., 2018) and Zn 

(Singh and Fulekar, 2012).  

 

Since mustard, hemp, and sunflower are all hyperaccumulator plants (Bauddh et al., 2017), this 

study aims to test their phytoextraction potential on PFAS. There are few papers focused on using 

mustard, hemp, and sunflower to remediate PFAS pollution, however, several articles already 

investigate the plant uptake of PFASs (Bizkarguenaga et al., 2016; Blaine et al., 2013; Blaine et al., 

2014; Calderón-Preciado et al., 2012; Felizeter et al., 2012; Felizeter et al., 2014; Ghisi et al., 2019; 

Gobelius et al., 2017; Gredelj et al., 2020; Krippner et al., 2014; Wen et al., 2014; Xiang et al., 2018; 

Zhang et al., 2019; Zhao et al., 2017).  

 

According to the findings above, this study investigated whether these three plants would have the 

same tendency to uptake PFASs as they would uptake the heavy metal pollutions  
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3.1. Regents and materials 

In this study, 12 PFASs were analysed including: PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, 

PFDA, PFUnDA, PFDoDA, PFHxS, PFOS. The detailed information can be found in Table A1 in 

the Appendix. An internal standard (IS) was used for internal calibration, see Table A2 (Franke et 

al., 2019).  

 

Methanol (99.9% hyper grade for LC-MS, LiChrosolv®, Merck, Germany) and Millipore 

(Millipak® Express 20, 0.22µm filter, Merk Millipore) were used for the sample cleaning and 

ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) 

analysis. Acetonitrile (99.9% hyper grade for LC-MS, LiChrosolv®, Merck, Germany) was used 

for the solid-phase extraction (SPE) in this study. 

 

Whatman™ Glass Microfiber Filters GF/C™ (47 mm diameter, 1.2 μm) was used for water sample 

filtering. Oasis HLB 6 cc Vac Cartridge (200 mg Sorbent per Cartridge, 30 µm) was used during 

solid-phase extraction.  

 

There are two different clean-up cartridges which were used after the SPE depending on the sample 

types. The Supelclean SPE Tubes (Supelclean™ ENVI-Carb™ SPE Tubes bed wt. 1 g, volume 12 

mL) were used for plant and soil samples. The other Oasis cartridges (Oasis HLB 6 cc Vac Cartridge, 

200 mg Sorbent per Cartridge, 30 µm) were used for water samples (Rehrl et al., 2020). 

 

The fertilizer used in this experiment is provided by Wallco Plant Nutrition 51 10 43+ micro 

fertilizer. The content of the fertilizer is shown in Table 1. 

 

  

3. Material and Methods 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/microfibers
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Table 1. Content of Wallco Växtnäring fertilizer 

Wallco Växtnäring 51 10 43 + micro fertilizer (g of nutrients L-1) 

Nitrogen (N) 51 

Ammonium 20 

Nitrate 31 

Phosphorus (P) 10 

Potassium (K) 43 

Sulfur (S) 4 

Calcium (Ca) 3 

Magnesium (Mg) 4 

Iron (Fe) 0.17 

Manganese (Mn) 0.2 

Boron (B) 0.1 

Zinc (Zn) 0.03 

Copper (Cu) 0.015 

Molybdenum (Mo) 0.0004 
 

The microbe fertilizer used in this experiment is from Tarantula Beneficial Bacteria Liquid, for the 

content see Table 2 and the original content is shown in Figure A 1. 

 

Table 2. Content of Tarantula Beneficial Bacteria Liquid fertilizer. 

Tarantula Beneficial Bacteria Liquid (colony-forming unit (cfu) mL-1) 
Arthrobacter globiformis 25,000 
Bacillus brevis 1,000,000 
Bacillus coagulans 500,000 
Bacillus licheniformis 5,000,000 
Bacillus megaterium 500,000 
Bacillus polymyxa 50,000 
Bacillus pumilus 50,000 
Bacillus subtilis 1,000,000 
Bacillus thuringiensis 100,000 
Bacillus thuringiensis canadiensis 50,000 
Paenibacillus polymyxa 300,000 

 

The soil in this study is S-jord garden soil (provided by the Hasselfors company) and the content of 

the soil is indicated in Table 3 and the original information is shown in Figure A 2. 

 

  



19 

 

 

Table 3. Content of S-jord garden soil. 

S-jord garden soil 

Composition Sifted light peat, black peat, perlite, 

Sand, lime 

Additives Limestone flour, dolomite flour 

Grain size Fine grain 

pH 5.5~6.5 

Nutrients (g m-3)  

Nitrogen (N) 125 

Phosphorus (P) 65 

Potassium (K) 135 

Magnesium (Mg) 225 

Calcium (Ca) 1,800 

Sulfur (S) 70 

Boron (B) 0.3 

Copper (Cu) 1.1 

Iron (Fe) 1.0 

Manganese (Mn) 1.5 

Molybdenum (Mo) 0.5 

Zinc (Zn) 0.4 
 

3.2. Greenhouse pot culture experiment 

3.2.1. Plant species 

In this study, mustard (Brassica juncea), sunflower (Helianthus annuus), and industrial hemp 

(Cannabis sativa) were selected as the subjects in the study.  

 

3.2.2. Preparation of the spiked soil and water treatments 

A PFAS mix (Table. A1) was prepared to achieve a concentration of 1 μg g-1 soil for each individual 

PFASs. First, small portions of the soil (1 kg) were spiked with a PFAS mix and shaken for 1 week 

in an overhead shaker (Heidolph Reax 2 overhead shaker, Germany) to obtain a homogenized 

mixture in the form of sludge. The sludge was then manually mixed using a shovel with the rest of 

the soil (37 kg) by adding 1 kg of unspiked soil to the mixture soil until all the unspiked soil was 

added to the soil mixture to obtain a homogeneous soil mixture with a theoretical concentration 1 

μg of each individual PFASs per gram of soil. The mixed soil was distributed into pots (n = 36) so 

that every pot had 1 kg wet weight (ww) of the soil and left to rest for a day. Finally, the soil was 

aged for two weeks in darkness at 4 degrees in the fridge before the plantation in order to meet the 

equilibrant state. 

 

Four treatments were studied in this experiment: i) microbes, ii) fertilizer, iii) fertilizer plus microbes 

and iv) tap water as control (no fertilizer and no microbes) (Table 4). i) The microbes were mixed 

with water of a ratio 1 L water plus 2 mL Tarantula Beneficial Bacteria Liquid (Table 2). ii) The 

fertilizer water was made in the greenhouse, which is located at the Biocenter at SLU (Table 1). iii) 

The fertilizer water plus microbes were mixed with fertilizer water of a ratio 1 L water plus 2 mL 

Tarantula Beneficial Bacteria Liquid. iv) Regular tap water from SLU, Uppsala was used. These 

treatments were applied throughout the experiment to irrigate the plants. Both the tap water and 
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fertilizer water were provided by the greenhouse. For each treatment, 5 mL was applied to each pot 

in treatment i-iv twice per week in the beginning to 200 mL twice per day before harvested. 

 

Table 4.Content of different treatment water for each plant type. 

Treatment 1  

(n = 3) 

Treatment 2  

(n = 3) 

Treatment 3 

(n = 3) 

Treatment 4 

(n = 3) 

Tap water  Tap water with 

microbe fertilizer 

(Tarantula Beneficial 

Bacteria Liquid) 

Fertilizer water 

(Wallco Plant 

Nutrition)  

Fertilizer water 

(Wallco Plant 

Nutrition) with 

microbe fertilizer 

(Tarantula Beneficial 

Bacteria Liquid) 

 

3.2.3. Greenhouse pot culture conditions 

All plants (i.e., mustard, sunflower, and industrial hemp) were pregrown in small pots with unspiked 

soil for 6 weeks. The reasons behind this is that 1.) we observed a plant illness due to high 

concentration of contamination in the previous intership task and 2.) the experiment design 

accorading to leterture review (Bizkarguenaga et al., 2016; Felizeter et al., 2012; Gredelj et al., 2020; 

Zhang et al., 2019). Next, the plants were transplanted into 3 L pot (13.7 cm (width) *13.7 cm 

(length) *23 cm (high)) with 1 kg spiked PFAS soil and the pots were placed in the greenhouse, 

which is located at the Biocenter at SLU. One plant was placed in each pot. In total, 12 pots of each 

plant were prepared and triplicate was included for each treatment (i-iv). 

 

The environmental conditions in the greenhouse; the temperature is set to 22°C during the day and 

18°C during the night, the light/dark is set at 16 hours/8 hours, the intensity of light is about 150 

micromoles and humidity is about 50-60%. 

 

3.2.4. Sampling 

After three months, the plants were ready for harvest. The plant samples were weighed (wet weight, 

ww) and classified into root, stem, leaf, and seed categories. Seeds were collected separately only 

for sunflowers as these can produce oil. 

 

For cleaning the plant samples, firstly the samples were washed three times with Millipore water, 

then the samples were cleaned twice with a solution of 50:50 methanol: Millipore water solution. 

The clean samples were frozen overnight at  

-20°C in the freezer then freeze-dried for 72~96 hours depending on the plant biomass. The dried 

samples were weighed to obtain the dry weight and ground, then the samples were ready for further 

solid-phase extraction. 

 

Water samples were collected at the beginning of the experiment and stored in the fridge at 5°C. 

 

The soil samples were collected at two different times. The first soil samples were collected after 

the spiked soil was made to know the original PFAS concentration. The second soil samples were 

collected after harvesting the plant samples to determine the remaining PFAS concentration in the 

soil. Triplicate soil samples were collected both times in each pot for analysis. 
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3.3. Extraction 

Each soil and plant samples were weighed 2 g and placed into a 50 mL PP-tube (tube 1). 50 µL IS 

of 0.05 µg mL-1 concentration was added to all samples for the internal check. All samples were 

dried for 30 minutes before 7.5 mL and 2 mL of acetonitrile were added to the plant samples and to 

the soil samples respectively. Samples were shaken by ultrasonicator for 30 minutes and centrifuged 

for 20 minutes under 3600 rpm. Collecting the supernatant into a 15 mL PP-tube (tube 2) and the 

procedure was repeated twice by adding 3 mL and 2 mL of acetonitrile to the plant and soil samples 

respectively (Ahrens et al., 2016; Dalahmeh et al., 2018).  

 

The water samples were first filtered then extracted by the solid phase extraction (SPE) according 

to the (ISO/DIS 25101:2009) method using Oasis WAX cartridges (Ahrens et al., 2015). Before the 

SPE, water samples were spiked with 100 μm of the IS mixture (0.05 ng mL-1). The cartridges were 

preconditioned with the following liquid: 4 mL 0.1% ammonium hydroxide in methanol, 4 mL 

methanol, and 4 mL of 21illipore water. Adjusting the speed to one drop per-second by using the 

vacuum and stop cock. A washing process was performed by applying 4 mL of 25 mM ammonium 

acetate buffer to the cartridges after the samples were filtered, then the cartridges were dried with a 

centrifuge at 3000 rpm for 2 minutes. The samples were eluted into 15 mL pp-tubes with 4 mL 

methanol and 8 mL 0.5% ammonium hydroxide in methanol and dried under vacuum. The samples 

were concentrated using nitrogen gas to 1 mL and the samples were transferred to a 1 mL glass vial. 

The PP-tube was rinsed three times with methanol and the methanol was transferred to a 1 mL glass 

vial to ensure the remaining PFASs were collected. The final sample amount was concentrated to 

exactly 0.5 mL. Triplicate was performed in this study and two solvent blanks were added in 

between 15 samples.  

 

3.4. Instrumental analysis with LC-MS/MS 

All samples were analyzed by high-performance liquid chromatography coupled with tandem mass 

spectrometry (HPLC-MS/MS) (Thermo Scientific, Waltham, MA, USA). The analysis was done at 

the Milkyway laboratory, Department of Aquatic Sciences and Assessment, SLU (for details see 

Ahrens et al. (2015)). Samples from HPLC-MS/MS were evaluated using Tracefinder version 4.1 

and using Microsoft Office Excel for Mac (Version 16.49). 

 

3.5. Quality Control 

Negative blanks  

Negative blanks ensured that there was no contamination for the extraction water samples. It 

followed the same procedure as the other samples with the only difference that negative blanks were 

not spiked with PFASs.  
 

The concentrations in the negative blanks among all PFASs were: PFBA 0.105 μg/mL, PFPeA 0.013 

μg/mL, PFHxA 0.007 μg/mL, PFHpA 0.007 μg/mL, PFOA 0.004 μg/mL, PFNA 0.002 μg/mL, 

PFDA 0.002 μg/mL, PFUnDA 0.003 μg/mL, PFDoDA 0.003 μg/mL, PFBS 0.004 μg/mL, PFHxS 

0.002 μg/mL, PFOS 0.001 μg/mL.  
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Method Detection Limit (MDL) and Method Quantification Limit (MQL) 

In total, 8 method blanks and two soil blanks were added in the analysis and determined the 

background noise. The method detection limit and method quantification limit were then calculated 

by the blanks shown below: 

 

𝑀𝐷𝐿 = (
𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑠𝑖𝑔𝑛𝑎𝑙
𝑛𝑜𝑖𝑠𝑒

) ∗ 3 

𝑀𝑄𝐿 = (
𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑠𝑖𝑔𝑛𝑎𝑙
𝑛𝑜𝑖𝑠𝑒

) ∗ 10 

where signal and noise are quantified from Tracefinder version 4. For more information (MDL, 

MQL and IS recovery) see Table A 3 and Table A 4. 
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3.6. Data Analysis  

The following factors will be calculated in excel and discussed in this thesis: Root Concentration 

Factor (RCF), Shoot Concentration Factor (SCF), Bioconcentration Factor (BCF), and 

Translocation Factor (TF). The equations are shown below: 

 

𝑅𝐶𝐹 =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑜𝑡)

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑠𝑜𝑖𝑙)
 

 

𝑆𝐶𝐹 =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑠ℎ𝑜𝑜𝑡)

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑠𝑜𝑖𝑙)
 

 

𝐵𝐶𝐹 =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑝𝑙𝑎𝑛𝑡)

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑠𝑜𝑖𝑙)
 

 

𝑇𝐹 =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑠ℎ𝑜𝑜𝑡)

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑜𝑡)
 

where concentration(root), concentration(shoot), concentration(plant), and concentration(soil) are 

the PFAS concentration of root, shoot, whole plant, and the PFAS concentration remains in the soil 

(μg g-1 dry weight), respectively. The concentration of shoot is the mixture of concentration of seed, 

the concentration of leaves, the concentration of stem.  

 

An ANOVA test was performed by R with normalized data from the experiment to test the 

significant between each factor and will present in the result and discussion section. The reason why 

using ANOVA is because we want to know which factors will make an impact on the experiment.  
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4. Results and Discussion 

4.1. PFASs in soil before the treatment 

The majority of PFASs in the soil before the plants’ growth is different with the soil treated by plants 

(Figure 1), with around 70% of PFCAs and 30% of PFSAs. The distribution of PFSAs increases 

from 30% in the soil before treatment to more than 60% after the soil has been remediated. The 

reason for this might be the plants took up more PFCAs than PFSAs. As a result, the PFSAs 

distribution was higher in the soil after plant growth compared to the soil state before the treatment. 

Among all PFSAs, the distribution proportion of PFOS increased the most from 18% in the soil 

before treatment to 40% after the hemp treatment. 
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Figure 1. PFAS distribution proportion in different soil samples before and after 40 days of 

treatment by mustard, hemp, and sunflower. 

 

4.2. PFAS in Plants 

4.2.1. Sunflower 
 

Figure 2 shows the concentration and distribution of PFASs in the different compartments of 

sunflower. Shoots (seed, leaf, and stem) have a total 1.0 μg/g dw of sum PFASs with 74% PFCAs 
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and 26 % PFSAs of sum PFASs. Leaves have the highest sum PFAS concentration (0.78 µg/g dw), 

followed by stem (0.16 µg/g dw), seed (0.09 µg/g dw), root (0.06 µg/g dw). Dominant PFASs were 

short-chain PFASs, such as PFBA, PFPeA, and PFBS, in leaves with a concentration of 0.21, 0.13, 

and 0.15 μg/g dw. The sum of PFAS concentration in the stem (0.16 µg/g dw), roots (0.06 µg/g dw), 

and seeds (0.09 µg/g dw) are all smaller than 0.2 μg/g dw. In the stem and the seeds, the majority of 

the PFAS concentration were PFCAs with 96% and 90% of the sum PFASs. The roots have a higher 

PFSAs (28% of sum PFASs) concentration than the stem (4% of sum PFASs) and seeds (10% of 

sum PFASs).  

 

Figure 2. PFAS concentrations in different sunflower compartments (n =3 for each tissue type) 

irrigated by tap water. 

 

Short-chain PFSAs (i.e., PFBA and PFBS) and PFCAs (i.e., PFBA, PFPeA, PFHxA, and PFHpA) 

account for more than 70% of total PFAS uptake in sunflower (Figure A4). The uptake for PFBA 

and PFPeA in the whole plant was 34% and 28%, respectively, followed by PFHxA and PFBA, both 

11%. This already considered the weight of the different tissue types (total burden). However, long-

chain PFASs do not show a similar result, for example, the uptake ratio for both PFUnDA (0.2%) 

and PFDoDA (0.1%) were less than 1 %, which means sunflower has the tendency to take up short-

chain PFASs (i.e., PFBA and PFBS) but less long-chain PFASs (i.e., PFUnDA and PFDoDA). 

Taking into account that PFCAs represented more than 80% of total PFASs in the plant showing 

that PFCAs are better taken up compared to PFSAs by sunflower. 
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4.2.2. Hemp 

 

Figure 3. PFAS concentrations in different hemp compartments (n =3 for each tissue type) 

irrigated by tap water. 

 

Hemp has a similar trend as sunflower with a higher PFAS concentration in the shoot (leaf and stem) 

rather than in the roots (Figure 3). The leaves have a total 0.75 μg/g dw of PFASs. PFBA, PFPeA, 

and PFBS have the highest concentrations in the leaves with concentrations of 0.15, 0.14, and 0,15 

μg/g dw, respectively. Although PFAS concentration in stem (0.04 µg/g dw) and root (0.08 µg/g 

dw) are all smaller than 0.1 μg/g dw, the majority group of PFASs in these two compartments are 

different. Short-chain PFASs (i.e., PFBA and PFPeA) accounted for the majority in stem while the 

most PFASs in the roots are long-chain PFASs (i.e., PFDA, PFUnDA, and PFOS). 

 

The distribution of PFASs for hemp is shown in Figure A 3. On the one hand, short-chain PFASs, 

i.e., PFBA (19%), PFPeA (19%), and PFBS (19%) are the majority of the total uptake. Followed by 

PFHxA with 13%. On the other hand, the uptake proportion for long-chain PFASs is smaller than 

1% (i.e., PFUnDA 0.6% and PFDoDA 0.1%). Overall, the proportion of PFSAs and PFCAs in hemp 

is about 3:7. 
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4.2.3. Mustard 

 

 

Figure 4. PFAS concentrations in different mustard compartments (n =3 for each tissue type) 

irrigated by tap water. 

 

The leaves have the highest PFAS concentration with a total of 1.15 μg/g dw in mustard shown in 

Figure 4, while the stem has a concentration of 0.17 μg/g dw and the roots have a concentration of 

0.06 μg/g dw. PFAS concentration decreases while the carbon chain length increases in leaves, i.e., 

from PFBA (0.27 μg/g dw) to PFDoDA (not detectable). PFBA has the highest concentration in 

leaves with a concentration of 0.27 μg/g dw, followed by PFPeA with 0.19 μg/g dw. Total PFAS 

concentration in the stem (0.17 μg/g dw) and in the roots (0.06 μg/g dw) are all smaller than 0.1 

μg/g dw. The proportion for long-chain PFASs (i.e., PFDA and PFUnDA) in root is higher than 

50%, however, for the stem, the majority PFAS group is short-chain PFASs (i.e., PFBA and PFPeA). 

 

Figure A 3 shows in mustard, the most PFASs is PFBA, which is 25%. The second is PFPeA with 

19%. PFHxA, PFHpA, and PFBS is 12%, 9%, and 9%, respectively. Short-chain PFASs account for 

more than 50% of the total uptake. 

 

Although the absolute concentrations of different kinds of PFASs are different in different 

references, there are some similar trends that can be observed. Some literature has a similar trend 

that the shorter the carbon chain of PFASs, the higher the PFAS concentration in the shoots, which 

is similar to what we found in all three plants (Krippner et al., 2014; Bizkarguenaga et al., 2016; 

Blaine et al., 2013; Felizeter et al., 2012; Felizeter et al., 2014; Gredelj et al., 2020; Wen et al., 
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2014). On the other hand, long-chain PFASs (i.e., PHUnDA and PFDoDA) in our result showed 

higher concentration in root when the carbon chain increased, this result can also be found in other 

literature (Felizeter et al., 2012; Felizeter et al., 2014; Gredelj et al., 2020), 

 

4.3. Total plant burden  

 

 

Figure 5. Total PFAS burden in control in mustard, hemp, and sunflower (n = 3 for each plant). 

 

The reason for comparing total plant burden is because phytoremediation uses the whole plant to 

remove the contaminants. The total PFAS amount in hemp, which is 14 μg on average, is slightly 

higher than the amount of PFASs in sunflower, which is 13 μg on average, see Figure 5. The amount 

of PFASs in mustard, which is 8.3 μg on average, is about 60% of the PFAS uptake in both hemp 

and sunflower. The reason might be that the biomass for the hemp (47.1g/plant dw) and the 

sunflower (54.4g/plant dw) is about double the biomass of the mustard (23.8g/plant dw). Another 

reason can be the plant evapotranspiration rates; however, evapotranspiration rates can be affected 

by many different factors, i.e., local weather conditions and cropping system such as plant species, 

planting date (Penman, 1948). There were some articles already investigating the evapotranspiration 

rates for mustard, hemp, and sunflower. The evapotranspiration rates for hemp (on average, 470 

mm) and sunflower (on average, 439 mm) are much higher than the one for mustard (on average, 

320 mm) (Echarte et al., 2019; Pejić et al., 2018; Sharma and Singh, 1993). 
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4.4. Effect of fertilized water and microbes  

The following section will discuss the effect of different amendments on PFAS uptake with 

normalized data. 

 

Figure 6 and Figure 7 are showing how the treatments affect the uptake of PFASs. It is important to 

note that PFAS concentration in mustard roots amended with microbes is not included because of 

problems with the analysis. After adding the fertilizer water to all three plants, a clear increase in 

biomass can be observed for mustard (on average, 11% increase), industrial Hemp (on average, 29% 

increase), and sunflower (on average, 1% increase). The total PFAS concentrations in the shoots 

were lower in the treatment with fertilizer water (on average, 0.67 μg for mustard, 0.48 μg for hemp, 

and 0.56 μg for sunflower) and microbes plus fertilizer water (on average, 0.87 μg for mustard, 0.4 

μg for hemp, and 0.49 μg for sunflower) compared to the control with tap water (on average, 1.32 

μg for mustard, 0.79 μg for hemp, and 1.0 μg for sunflower). This indicates that the enhanced plant 

growth due to the addition amendment could have resulted in a dilution of the PFAS concentration. 

Another explanation could be that the fertilizer decreases the uptake of PFASs due to the increased 

interactions of PFASs in the soil by the added ions (Higgins and Luthy, 2006).  

 

 

Figure 6. PFAS concentrations in the shoot for the different treatment options (n = 3 for each 

plant). 
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Figure 7. PFAS concentrations in the root for the different treatment options (n = 3 for each 

plant). It is important to note that PFAS concentration in mustard roots amended with microbes is 

not included because of problems with the analysis. 

 

With the application of microbes plus fertilizer water, the concentration of PFASs in hemp (on 

average, 0.4 μg/plant dw) and sunflower shoots (on average, 0.49 μg/plant dw) increased while the 

concentration in mustard (on average, 0.87 μg/plant dw) decreased compared to using only fertilizer 

water (on average, 0.67 μg/plant dw for mustard, 0.48 μg/plant dw for hemp, and 0.49 μg/plant dw 

for sunflower). 

 

An ANOVA test was done to study whether the factors were significant (Table 5). The ANOVA 

used the normalisation data. Three factors are considered in the ANOVA model, which are 

treatments, plant species, and compartments. The treatment factor considers four different 

treatments into ANOVA model: Control, Fertilizer water, Microbe water, and Microbe fertilizer 

water. The plant species factor considers three different plants into ANOVA model: mustard, 

sunflower, and hemp. The compartment factor considers five different compartments into ANOVA 

model: seed, leaf, stem, root, and soil. Residuals are the remaining undescribed variances that can 

affect the result. In the result, all three factors are significant at the significance level set at 0.05 

which means these three factors can affect the result (PFAS concentration) of the experiment. 
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Table 5.ANOVA test (significant codes: <0.0001 = ***). 

 Df Sum Sq Mean Sq F Value P-value 

Treatment 3 0.522 0.174 8.696 2.49*e-5 *** 

Plant species 2 0.570 0.285 14.243 2.34*e-6 *** 

Compartment 4 9.167 2.292 114.437 <2*e-16 *** 

Residuals 140 2.804 0.020  

 

 

Figure 8. PFAS amounts in different treatments for mustard, industrial hemp, and sunflower (n = 

3 for each treatment). 

 

The reason for comparing total plant burden is because phytoremediation uses the whole plant to 

remove the contaminants. In Figure 8, the uptake of the PFASs in each plant combined with different 

treatments were between 5 μg and 15 μg on average. Hemp had the highest average PFAS uptake 

(14.5 μg). Hemp treated with fertilizer water had the highest standard deviation (6.9 μg). The 

additional fertilizer treatment and fertilizer water with microbe treatment increased the PFAS uptake 

in hemp by 0.7 μg and 0.8 μg, respectively, compared to the control sample. A decreased PFAS 

uptake happened when only the microbe water was applied to the hemp (13.7 μg). If we want to 

have a better statistical power, then it will require an up-scale field experiment since the 

physiological difference between plants may influence the PFAS absorption.  
 

Sunflower with the control (12.4 μg) and microbe water treatment (12.5 μg) showed higher PFAS 

uptake compared with the other two treatments (9.3 μg for fertilizer water and 9.5 μg for microbes 

plus fertilizer water). After adding the fertilizer water, average PFAS uptake by sunflower decreased 

by about 3 μg. However, fertilizer water with microbe treatment had a larger standard deviation (3.8 

μg) which can result in a higher PFAS uptake among all treatments. 

 

Mustard had the lowest average PFAS uptake (7.1 μg) of the three selected plants with less than 10 

μg. One of the reasons for this is because the biomass for mustard (23.8g dw) is much smaller than 

hemp (47.1g dw) and sunflower (54.4g dw). Interestingly, after adding different fertilizer treatments, 

the uptake of PFASs declined in all three treatments for mustard (from 8.3 μg to 6.16 μg). 
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Different treatments can influence different kinds of plants differently. Fertilizer increased PFAS 

uptake by the hemp but reduced the PFAS uptake for mustard and sunflower. Water with microbe 

did lower the PFAS uptake in mustard and hemp but enhanced sunflower to take up more PFASs, 

this might be because of the PFASs binding with the microbe instead of being absorbed by the plant 

(Zhao et al., 2014). 
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4.5. Different analysis factors 

Root concentration factor (RCF) describes the absorption of chemicals into the roots (Briggs, 

Bromilow and Evans, 1982). Shoot concentration factor describes the tendency of chemicals to be 

stored in the shoot (Wu et al., 2012). Translocation factor (TF) is an important factor that can access 

the ability of plants to transport the chemicals from the roots to shoot, which is an indication of 

potential phytoremediation purpose (Trotta et al., 2006). Bioconcentration factor is a factor that tells 

the ability of a plant to accumulate chemicals from the media or substrate (Pandey and Bauddh, 

2019). 

 

In Table 6, all three plants have a higher RCF value for PFCAs than PFSAs. In Hemp, there is a 

clear decline in the RCF value for all PFASs when amendments have been applied to Hemp. Mustard 

has the lowest RCF value compared to the other two plants. Mustard and sunflower have a better 

RCF value for PFBA compared to Hemp. Sunflower has an overall good RFC value of the three 

plants especially for the short-chain PFCAs and also for the PFDoDA. However, comparing Table 

6 and Table 7, there is clear evidence that although short-chain PFASs have higher RCF values, 

their SCF values are 10 times or even 100 times higher, which means these short-chain PFASs tend 

to be stored in the shoot, which can refer to TF value. In long-chain PFASs, the story is totally 

opposite. RCF values for long-chain PFASs in Table 6 are obviously larger than the SCF values in 

Table 7, which means the long-chain PFASs are more willing to stay in the roots.  

 

Similar RCFs patterns for the PFCAs have been observed in Wen et al., (2014). The PFBA and 

PFDoDA had a higher value while the PFOA, PFNA, and PFDA had a lower RCF value. Zhang et 

al., (2020) and Felizeter et al., (2014) also found that long-chain PFASs had a higher RCF value. 

The reason for this might be because the transportation of short-chain PFCAs is driven by 

transpiration (Zhao et al., 2017). Another reason might be that sorption to the roots or lipid-rich root 

solids (Felizeter et al., 2012) since long-chain PFASs have hydrophobic characteristics (Zhang et 

al., 2019).  

 

In Table 7, for both PFCAs and PFSAs, as the carbon chain number increases, the value of SCF 

decreases. SCF values range from 3051 to 0, which means shorter chain PFASs tend to be 

transported to the shoot while long-chain PFASs tend to stay in the roots. For hemp, control, irrigated 

with the combination of water, and microbe fertilizer, SCF values for PFHpA, PFOA, PFNA, and 

PFHxS are higher than other combinations. Sunflower irrigated with fertilizer water has overall 

higher SCF values compared to other treatments except for PFBA and PFBS. The highest SCF value 

is 3051 and it is the combination of the sunflower irrigated by tap water with microbes and PFBA. 

Hemp and sunflower have an outstanding SCF value for both PFBA and PFPeA in comparison to 

mustard.  

 

Similar patterns were shown in Wen et al., (2014), where the carbon chain length and SCF were 

negatively correlated. Felizeter et al., (2014) had similar results of the SCF for the short-chain 

PFASs. In their study, the SCF, leaf concentration factor and edible part concentration factors have 

been calculated and discovered that the short-chain PFASs were transported to the edible part of the 

plant while the long-chain PFASs showed no tendency to be transported to the shoot. In our study, 

we compared both RCF and SCF for PFOA, PFNA, PFDA, and PFOS; these compounds might have 

strong sorption to the stem tissue, which was also shown in Felizeter et al., (2014). 

 

Zhao et al., (2017) and Xiang et al., (2018) focused on the uptake of PFOA. Both articles found out 

that the RCF value of PFOA is higher than the SCF value. However, in our result, PFOA had higher 

values on SCF in three plants rather than RCF, which might be a better phytoremediation selection 

plant since PFOA will mostly transport to shoot and be harvested.  

 

TF value can range from 2628 to 0 in Table 8. There is a decrease trend in TF value when the carbon-

chain length increases, which means long-chain PFASs tend to stay in root while the short-chain 
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PFASs tend to stay in shoot (this can refer back to SCF and RCF). Compared with other plants, 

hemp has better TF value among all selected PFAS, followed by mustard, then sunflower. After 

adding amendments to the plants, TF value for short carbon-chain PFASs increases in hemp and 

sunflower but not mustard. This means hemp and sunflower have better phytoextraction effects on 

short-chain PFASs. One thing to consider is that the TF values for short-chain PFCAs (Table 8) is 

one or two orders more than the TF values for short-chain PFCAs, which means the tendency for 

short-chain PFCAs to transport to shoot is greater than them being absorbed in the roots. 

 

The BCF value can range from 3218 to 0.2 and as shown in Table 9. The longer the carbon chain 

length in PFASs, the smaller the BCF value. Hemp and sunflower have better BCF value 

performance than mustard. The additional amendments do not really affect the BCF value for 

mustard and sunflower, however, sunflower irrigated with fertilizer water has the highest BCF value 

3218 for PFBA. Hemp has a higher BCF value when it has been irrigated by tap water and fertilizer 

water except for PFBS. On one hand, short-chain PFASs such as PFBA, PFPeA, and PFBS have a 

better BCF value when the hemp been irrigated by fertilizer water. On the other hand, when the 

number of carbons in the carbon chain is greater than 7, the BCF values are smaller than 10 except 

for hemp irrigated with water, hemp irrigated with microbe water and sunflower irrigated with 

fertilizer water. 

 

The accumulation of PFASs declines while the carbon chain number increases, and these results can 

be found in other articles (Blaine et al., 2013; Bizkarguenaga et al., 2016). One of the reasons for 

this might be the longer the PFASs carbon chain, the heavier molecular weight it becomes. The 

absorption from the roots and transpiration through the plants both involve penetrating the 

membrane (Zhao et al., 2014). This conclusion can also be found in Calderón-Preciado et al., (2012). 
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Table 6. Root concentration factor (RCF) in mustard, industrial hemp, and sunflower for the different treatments 

 

 

 

PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA PFBS PFHxS-

branch&liner 

PFOS-

branch 

PFOS-

liner 

Mustard -Water 10.1 2.3 0.8 0.6 1.2 2.1 4.1 4.7 7.0 0.3 0.3 0.7 0.5 

Mustard -Fertilizer water  10.5 5.4 1.3 0.8 1.9 3.2 3.8 4.0 5.2 0.3 0.4 1.0 0.8 

Mustard -Fertilizer water 

with microbe 

13.7 4.4 1.3 0.9 1.8 3.2 4.6 5.0 5.9 0.4 0.4 1.2 0.7 

Hemp-water 16.5 9.6 2.7 1.3 2.3 4.1 8.0 8.3 8.6 1.5 1.1 1.4 1.0 

Hemp-Water with 

microbe 

2.2 3.7 1.6 1.3 1.8 2.9 5.4 5.6 6.5 0.8 0.8 1.1 0.6 

Hemp-Fertilizer water 1.5 0.7 0.6 0.4 0.8 1.8 3.2 3.3 3.3 0.7 0.4 1.0 0.6 

Hemp-Fertilizer water 

with microbe 

0.6 0.5 0.6 0.6 1.0 2.4 4.0 4.9 6.5 0.6 0.5 1.1 0.6 

Sunflower-Water 34.3 23.2 6.5 1.0 1.4 2.3 4.7 7.2 10.0 0.4 0.3 0.9 0.5 

Sunflower-Water with 

microbe 

67.8 24.0 5.8 1.5 2.1 3.2 5.1 6.7 9.6 1.2 0.7 1.6 1.0 

Sunflower-Fertilizer 

water 

44.1 14.4 5.2 2.5 2.5 2.7 3.3 4.1 5.9 1.2 1.0 0.9 0.7 

Sunflower-Fertilizer 

water with microbe 

18.0 12.1 8.4 4.5 4.0 4.1 4.7 9.0 15.7 1.9 1.1 0.9 0.6 

(red: between 10 and 100, orange: between 5 and 10, yellow: between 1 and 5, light green: between 0.5 and 1, green: between 0.5 and 0.1) 
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Table 7. Shoot concentration factor (SCF) in different kinds of plants with different treatments. 

 

 PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA PFBS PFHxS-

branch&liner 

PFOS-

branch 

PFOS-

liner 

Mustard -Water 527.8 79.8 18.3 10.7 10.8 7.1 2.6 0.8 0.2 3.3 2.2 1.2 1.1 

Mustard -Water with 

microbe 

619.6 113.6 23.5 11.4 9.9 5.1 1.9 0.5 0.1 4.4 2.3 1.1 1.0 

Mustard -Fertilizer water  412.5 73.8 18.8 10.3 9.7 4.7 1.4 0.4 0.1 2.3 1.8 0.8 0.8 

Mustard -Fertilizer water 

with microbe 

347.5 71.6 14.7 9.0 7.6 3.5 1.0 0.3 0.1 2.6 2.0 0.7 0.7 

Hemp-water 2122.9 391.4 58.3 18.3 13.9 9.2 3.6 0.8 0.2 30.3 6.2 1.0 0.6 

Hemp-Water with 

microbe 

1646.8 512.4 102.0 28.8 16.8 6.9 2.5 0.5 0.1 48.5 6.7 0.8 0.4 

Hemp-Fertilizer water 2975.3 431.2 42.2 8.5 3.0 2.3 1.0 0.2 0.0 240.9 4.5 0.6 0.3 

Hemp-Fertilizer water 

with microbe 

1691.6 269.4 36.1 8.8 3.1 2.0 0.9 0.3 0.1 134.0 3.7 0.4 0.2 

Sunflower-Water 1946.8 139.1 18.7 5.7 3.6 2.1 1.2 0.5 0.5 3.9 1.1 0.3 0.2 

Sunflower-Water with 

microbe 

3051.2 143.2 23.1 6.9 4.4 2.7 1.9 1.0 1.1 5.3 1.6 0.5 0.4 

Sunflower-Fertilizer 

water 

2569.6 212.1 44.7 10.7 5.7 2.6 1.3 0.7 0.8 3.1 1.8 0.4 0.4 

Sunflower-Fertilizer 

water with microbe 

1646.9 166.1 24.5 6.1 3.6 2.2 1.3 0.8 0.8 2.6 1.1 0.3 0.2 

(pink: above 1000, dark orange: between 1000 and 100, red: between 100 and 10, orange: between 10 and 5, yellow: between 5 and 1, light green: between 1 and 0.5, 

green: between 0.5 and 0.1, blue: smaller than 0.1) 
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Table 8.Translocation factor (TF) in different kinds of plants with different treatments. 

 

 PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA PFBS PFHxS-

branch&liner 

PFOS-

branch 

PFOS-

liner 

Mustard -Water 52.1 34.6 23.1 16.7 8.7 3.3 0.6 0.2 0.0 12.1 6.6 1.7 2.3 

Mustard -Fertilizer water  39.3 13.6 15.0 12.7 5.2 1.5 0.4 0.1 0.0 6.9 5.1 0.8 1.0 

Mustard -Fertilizer water 

with microbe 

25.4 16.3 11.7 9.7 4.2 1.1 0.2 0.1 0.0 6.7 4.8 0.6 0.9 

Hemp-water 128.4 40.9 21.8 14.2 6.1 2.2 0.5 0.1 0.0 20.4 5.5 0.7 0.6 

Hemp-Water with 

microbe 

760.1 137.0 64.0 21.8 9.1 2.4 0.5 0.1 0.0 59.9 8.3 0.7 0.7 

Hemp-Fertilizer water 1932.7 598.7 72.5 19.2 3.9 1.3 0.3 0.1 0.0 362.7 10.1 0.6 0.6 

Hemp-Fertilizer water 

with microbe 

2628.5 585.4 63.2 14.3 3.1 0.8 0.2 0.1 0.0 210.5 7.1 0.3 0.4 

Sunflower-Water 56.8 6.0 2.9 5.6 2.6 0.9 0.2 0.1 0.0 10.1 3.4 0.4 0.5 

Sunflower-Water with 

microbe 

45.0 6.0 4.0 4.7 2.1 0.9 0.4 0.1 0.1 4.4 2.3 0.3 0.4 

Sunflower-Fertilizer 

water 

58.2 14.8 8.6 4.3 2.3 1.0 0.4 0.2 0.1 2.5 1.9 0.4 0.5 

Sunflower-Fertilizer 

water with microbe 

91.6 13.7 2.9 1.3 0.9 0.5 0.3 0.1 0.1 1.4 1.1 0.3 0.4 

(pink: above 1000, dark orange: between 1000 and 100, red: between 100 and 10, orange: between 10 and 5, yellow: between 5 and 1, light green: between 1 and 0.5, 

green: between 0.5 and 0.1, blue: smaller than 0.1) 
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Table 9.Bioconcentration factor (BCF) in different kinds of plants with different treatments 

 

 PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA PFBS PFHxS-

branch&liner 

PFOS-

branch 

PFOS-

liner 

Mustard -Water 445.7 67.6 15.5 9.1 9.3 6.3 2.8 1.3 1.2 2.8 1.9 1.1 1.0 

Mustard -Fertilizer water  236.0 48.9 10.4 6.7 6.2 3.3 1.6 1.2 1.3 1.5 1.4 0.6 0.6 

Mustard -Fertilizer water 

with microbe 

303.3 62.0 12.6 8.1 7.2 3.9 1.9 1.3 1.3 2.4 2.0 1.0 0.8 

Hemp-water 2020.8 372.6 55.6 17.4 13.3 9.0 3.9 1.2 0.7 28.9 6.0 1.0 0.7 

Hemp-Water with 

microbe 

1493.4 468.2 93.4 26.4 15.4 6.6 2.7 0.8 0.5 44.2 6.2 0.8 0.5 

Hemp-Fertilizer water 2798.7 405.7 39.8 8.0 2.8 2.2 1.1 0.4 0.2 226.7 4.3 0.6 0.3 

Hemp-Fertilizer water 

with microbe 

1584.6 252.3 33.8 8.2 2.9 2.0 1.1 0.6 0.5 125.5 3.4 0.4 0.2 

Sunflower-Water 2525.8 178.0 24.9 8.7 7.1 4.4 2.2 1.2 1.1 4.1 1.4 0.6 0.5 

Sunflower-Water with 

microbe 

3218.8 143.2 18.6 6.2 4.7 2.5 1.4 0.9 0.8 4.0 1.3 0.5 0.4 

Sunflower-Fertilizer 

water 

3125.8 246.8 40.4 10.0 7.0 2.8 1.2 0.7 0.7 2.7 1.6 0.4 0.4 

Sunflower-Fertilizer 

water with microbe 

2189.6 201.4 24.3 7.0 5.3 3.1 1.8 1.8 2.6 2.7 1.3 0.5 0.4 

(pink: above 1000, dark orange: between 1000 and 100, red: between 100 and 10, orange: between 10 and 5, yellow: between 5 and 1, light green: between 1 and 0.5, 

green: between 0.5 and 0.1, blue: smaller than 0.1)
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4.6. Phytoremediation potential 

 

In the following, one remediation scenario was performed to test the potential of using hemp to 

remediate a former firefighting training facility. At the end, the estimated time required was also 

presented in Table 10. 

 

Sørmo et al., (2021) tested the contaminated soil which was a former firefighting training facility in 

Norway. According to their result, the most dominant PFASs were PFOS (1000 ± 60 μg kg-1) and 

PFHxS (110 ± 24 μg kg-1), but they also detected PFBS (3.9 ± 0.7 μg kg-1), PFBA (2.4 ± 0.4 μg 

kg-1), PFHxA (8.2 ± 1.7 μg kg-1), and PFOA (6.4 ± 1.1 μg kg-1) in the soil. The reason why we 

selected this site was because the PFASs investigated in Sørmo et al., (2021) have a high overlap 

with the PFASs in this study. 

 

If the consulting company would like to use phytoremediation to remove the PFASs in soil, based 

on the result from this experiment, hemp might be selected as it had the highest PFAS uptake. 

According to the (Hash et al., 2020) guideline, the recommended spacing for planting hemp is 10 to 

15 cm apart, in this case, we choose 10 cm to maximum the number of the hemp, ending up with 

970,000 hemp/hectare. 

 

Assuming the bulk density is 1.33 g/ cm3 for a medium texture soil according to USDA (Soil Quality 

Indicators, 2008), 1 hectare of soil with a depth of 1 meter will end up with 13,300,000 kg of soil 

(assumed land area). Due to the climate condition in Norway, hemp can only be harvested once per 

year. Using hemp as a phytoremediation method, it was 0.4, 1.0, 2.7, 2.7, 1.8, 0.9 μg absolute/year 

removed of PFOS, PFHxS, PFBS, PFBA, PFHxA, and PFOA, respectively. Using hemp as a 

phytoremediation method, it would take about 31,905 years, 1548 years, 20 years, 13 years, 64 years, 

and 100 years to remediate the PFOS, PFHxS, PFBS, PFBA, PFHxA, and PFOA, respectively, in 

the former firefighting training facility which Sørmo et al., (2021) mentions about (Table 10). The 

equation performed in the calculation is shown below:  

 

Estimated time (year)

=
concentration of PFASs in the training facility ∗ soil weight

(𝑃𝐹𝐴𝑆 𝑟𝑒𝑚𝑜𝑣𝑒 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑒𝑚𝑝𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑖𝑛 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎)
 

 

It seems to be practical for using hemp to remediate the PFBA and PFBS in this site but not for the 

other PFASs simply because it will take a long time for remediating other PFASs. If it is possible to 

double the times for harvesting, the time needed for phytoremediation will be even shorter. To 

conclude, combining different remediation methods is needed if the plants will be applied to 

phytoremediation practice to reduce the remediation time for all the PFAS contaminants.  
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Table 10. Phytoremediation at a PFAS-contaminated site in Norway (Sørmo et al., 2021) 

PFASs Soil 

concentration 

(μg kg-1 of soil) 

Total PFAS 

contamination 

(μg absolute) 

Removal of 

PFASs per 

year (μg 

absolute) 

Esimated time 

needed for 

phytoremediation 

(years) 

PFBA  2.4  1.3*1010 2.7 13 

PFHxA  8.2  1.5*109 1.8 64 

PFOA  6.4  5.2*107 0.9 100 

PFBS  3.9  3.2*107 2.7 20 

PFHxS  110  1.1*108 1.0 1548 

PFOS  1000  8.5*107 0.4 31,905 

 

4.7. Limitations 

There are several limitations in this study.  

 Since the soil was manually mixed, there is a possibility of non-homogeneous PFAS 

distribution in the soil, which results in a different initial PFAS soil condition. 

 The plants were transplanted as seedlings into the PFAS spiked soil which could have 

reduced the phytoextraction period for the plants and reduced the PFAS uptake. 

 The size of the pot limited the root growth in depth which could have resulted in less PFAS 

uptake for the plants.  
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The results from this thesis work confirmed the objectives and hypotheses. Three selected plants 

were observed to have a tendency to take up and accumulate PFASs, especially for the short chain 

PFASs. Among all three plants, hemp took up the most PFASs, followed by sunflower and mustard 

took up the least. The leaves were found to have the highest PFAS amount compared to the other 

plant compartments. The additional amendments to the plant did not seem to have a big impact on 

the PFAS uptake. According to the PFAS distribution graph, short-chain PFASs were as expected, 

absorbed, and stored in the plant. This result is also supported by the TF and BCF values where 

short-chain PFCAs and PFSAs were accumulated and transported to the shoot. 

 

When applying phytoremediation, it is important that the fallen leaves are being collected, which 

has been done in this thesis work, since the leaves stored the most PFASs compared to the other 

plant compartments. 

 

Further research to increase the efficiency of PFAS uptake of the three plants can be done. Such 

studies include examining different amendments at different levels to make correlations with PFAS 

accumulation and combining phytoremediation with other remediation techniques. Microbiome 

analysis should be done to monitor the difference in microbial diversity during the experiment and 

their effects on PFAS uptake. Upscaling and conducting of the study at PFAS containment sites to 

test the phytoremediation potential for these three plants can also be done.  

 

5. Conclusions 
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Table A 1. Analyzed per- and polyfluoroalkyl substances. 

Names Abbreviation Molecular formation 

Perfluorinated carboxylic acids (PFCAs) 

Perfluorobutanoic acid PFBA C3F7CO2
-  

Perfluoropentanoic acid PFPeA C4F9CO2
- 

Perfluorohexanoic acid PFHxA C5F11CO2
- 

Perfluoroheptane acid PFHpA C6F13CO2
- 

Perfluorooctanoic acid PFOA C7F15CO2
- 

Perfluorononanoic acid PFNA C8F17CO2
- 

Perfluorodecanoic acid PFDA C9F19CO2
- 

Perfluoroundecanoic acid PFUnDA C10F21CO2
- 

Perfluorododecanoic acid PFDoDA C11F23CO2
- 

Perfluoroalkane sulfonic acids (PFSAs) 

Perfluorobutane sulfonic acids PFBS C4F9SO3
- 

Perflurohexane sulfonic acid PFHxS C6F13SO3
- 

Perfluorooctane sulfonic acids PFOS C8F17SO3
- 

 

Table A 2. PFAS IS with the corresponding PFAS quantification. 

Internal Standard Corresponding PFAS quantification 

13C2 -PFHxA PFBS, PFPeA, PFHxA  

13C4 -PFOA PFHpA, PFOA  

13C5 -PFNA PFNA  

13C2 -PFDA PFDA  

13C2 -PFUnDA PFUnDA 

18O2 -PFHxS PFHxS, 6:2 FTSA  

13C4 -PFOS PFOS, 8:2 FTSA  
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Table A 3.Quality control for MDLs. 

 

 

Blanks 

Method Blanks Soil Blanks 

Millipore water 

(n=8) 

Soil 

(n=2) 

Blank 

(μg mL-1) 

MDLs 

(μg mL-1) 

MQLs 

(μg mL-1) 

Blank 

(μg g-1) 

MDLs 

(μg g-1) 

MQLs 

(μg mL-1) 

PFBA 0.1051 0.046 0.152 0.0049 0.007 0.024 

PFPeA 0.0131 0.001 0.004 0.0003 ND 0.001 

PFHxA 0.0068 0.001 0.002 0.0294 0.003 0.012 

PFHpA 0.0064 0.001 0.003 0.0362 0.015 0.050 

PFOA 0.0044 ND 0.001 0.0129 0.015 0.050 

PFNA 0.0016 ND 0.001 0.0046 0.003 0.010 

PFDA 0.0018 ND 0.001 0.2303 0.089 0.295 

PFUnDA 0.0029 0.001 0.003 0.0110 0.007 0.023 

PFDoDA 0.0033 0.001 0.002 0.0348 0.010 0.032 

PFBS 0.0037 0.001 0.003 0.0003 ND 0.001 

PFHxS 0.0016 0.001 0.002 0.0004 ND 0.001 

PFOS-branch 0.0009 ND 0.001 0.0000 ND ND 

PFOS-linear 0,0009 ND 0.001 0.0008 ND 0.001 
 

 

Table A 4.IS Recovery 

 

Recovery 

Plant Water Soil 

(n = 117) (n = 4) (n = 36) 

Mean ± SD Mean ± SD Mean ± SD 
13C2 PFHxA 117 30 113 0.2 137 12 
13C4 PFOA 124 25 105 0.1 138 11 
13C5 PFNA 124 22 92 0.1 139 12 
13C2 PFDA 117 22 66 0.1 125 9 

13C2 PFUnDA 108 21 36 0.2 121 10 
18O2 PFHxS 125 24 103 0.1 139 10 
13C4 PFOS 120 17 75 0.1 130 11 
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Figure A 1. Content of microbe fertilizer used irrigation water. 

 



56 

 

 

 

Figure A 2.The content of soil used for plantation. 
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Figure A 3.PFAS distribution in all three plants. 
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