

Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences

Institutionen för energi och teknik

Climate impact of hydrogen as fuel for the heavy road transportation: A time-dependent life cycle methodology based assessment

- Klimatpåverkan av vätgas som bränsle för tunga fordon i vägtrafiken: En tidsberoende livscykelmetod baserad analys

Madeleine Stolpe

Civilingenjörsprogrammet i energisystem

Examensarbete 2021:08 ISSN 1654-9392 Uppsala 2021

Climate impact of hydrogen as fuel for the heavy road transportation: A time-dependent life cycle methodology based assessment

Klimatpåverkan av vätgas som bränsle för tunga fordon i vägtrafiken: En tidsberoende livscykelmetod baserad analys

Madeleine Stolpe

Supervisors: Leandro Janke, institutionen för energi och teknik, SLU Subject reviewer: Niclas Ericsson, institutionen för energi och teknik, SLU Examiner: Åke Nordberg, institutionen för energi och teknik, SLU

Credits: 30 hp Level, depth descriptor and subject: Second cycle, A2E, Technology Course title: Degree Project in Energy Systems Engineering Course code: EX0724 Programme: Energy Systems Engineering 300 hp Course coordination department: Department of energy and technology, SLU

City of publication: Uppsala Year of publication: 2021 Series: Examensarbete (department of energy and technology, SLU) Volume/Sequential designation: 2021:08 ISSN: 1654-9392 Electronic publication: http://stud.epsilon.slu.se

Key words: hydrogen production, steam methane reforming, carbon capture and storage, waterelectrolysis, heavy trucks

Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences

Fakulteten för naturresurser och jordbruksvetenskap Institutionen för energi och teknik

Publicering och arkivering

Godkända självständiga arbeten (examensarbeten) vid SLU publiceras elektroniskt. Som student äger du upphovsrätten till ditt arbete och behöver godkänna publiceringen. Om du kryssar i **JA**, så kommer fulltexten (pdf-filen) och metadata bli synliga och sökbara på internet. Om du kryssar i **NEJ**, kommer endast metadata och sammanfattning bli synliga och sökbara. Fulltexten kommer dock i samband med att dokumentet laddas upp arkiveras digitalt.

Om ni är fler än en person som skrivit arbetet så gäller krysset för alla författare, ni behöver alltså vara överens. Läs om SLU:s publiceringsavtal här: <u>https://www.slu.se/site/bibliotek/publicera-och-analysera/registrera-och-publicera/avtal-for-publicering/</u>.

 \boxtimes JA, jag/vi ger härmed min/vår tillåtelse till att föreliggande arbete publiceras enligt SLU:s avtal om överlåtelse av rätt att publicera verk.

□ NEJ, jag/vi ger inte min/vår tillåtelse att publicera fulltexten av föreliggande arbete. Arbetet laddas dock upp för arkivering och metadata och sammanfattning blir synliga och sökbara.

Abstract

Currently, the transportation sector stands for one third of all greenhouse gas emissions in Sweden. Hydrogen (H₂) could contribute to a decarbonized transportation sector since water is the only direct emission from a fuel cell electric vehicle. The higher energy density of H₂ compared to batteries makes H₂ better in a zero-emission system for heavy truck vehicles and long-distance transportations. Depending on the different production processes, the climate impact of H₂ varies, which encourages a life cycle assessment (LCA) based methodology. The production processes of H₂ are commonly referred to as colours, in which H₂ from steam methane reforming (SMR) with natural gas as feedstock is known as 'grey H₂'. Further, if carbon capture and storage (CCS) is added, it is referred to as 'blue H₂'. There is a possibility to replace natural gas with biomethane as feedstock, which in this study is referred to as 'beige H₂', and with CCS it can be called 'orange H₂'. Another production technology is through water-electrolysis from renewable electricity, which is referred to as 'green H₂'.

The chosen climate metrics for the LCA study are the global warming potential (GWP) and the absolute global temperature potential (AGTP). The GWP of a heavy fuel cell truck is between 2% to 110% lower than for a conventional diesel truck. Grey H₂ contributes with the highest CO₂-equivalent emissions and orange H₂ contributes with the lowest. To assess the AGTP, different future scenarios were elaborated with H₂ implementation as diesel displacement for heavy truck transportation. The future scenarios have different mixes of H₂ colours based on future market trends. Depending on the mix of H₂ colours, the temperature increase varies from 1.6·10⁻¹⁵ to 1.8·10⁻¹⁵ K/tonne-km, which corresponds to a temperature reduction between 9% to 21% compared to heavy truck transport with only diesel. To reach the Swedish national target of net-zero emissions by 2045, a higher share of renewable fuels together with H₂ is most likely necessary.

Keywords: hydrogen production, steam methane reforming, carbon capture and storage, waterelectrolysis, heavy trucks

Executive summary

Currently, the transportation sector stands for one third of all greenhouse gas emissions in Sweden. To reach the Swedish national target of net-zero emissions by 2045, a larger share of renewable fuels must be implemented. In a future decarbonized transportation sector, hydrogen (H_2) has been proposed to play a major role as it can be used for heavy truck transport, where battery electric vehicles are less beneficial.

Even though water is the only direct emission from H_2 , the climate impact from the production processes varies. Hydrogen can be referred to as colours, depending on how it is produced. The most common production process is via steam methane reforming (SMR) with natural gas as feedstock, known as 'grey H_2 '. Further, if carbon capture and storage (CCS) is added, it is referred to as 'blue H_2 '. There is a possibility to replace natural gas with biomethane as feedstock in the SMR process, which is referred to as 'beige H_2 ' in this study, and with CCS it can be called 'orange H_2 '. Another production technology is through water-electrolysis, which is referred to as 'green H_2 '.

A life cycle assessment (LCA) based methodology was performed, in which the greenhouse gas emissions from "well-to-wheel" were investigated for each H_2 colour as fuel for heavy truck transport. The result shows that orange H_2 could provide negative emissions, due to its service of capture CO₂. Beige and green H_2 are close to being climate neutral, while grey and blue H_2 contribute with higher emissions. When H_2 is implemented in the heavy transport sector, a mix of different H_2 colours is most likely necessary, depending on the political and geographical context.

Populärvetenskaplig sammanfattning

Vätgas är ett möjligt bränsle i en framtida transportsektor, och kan bidra till att nå Sveriges nationella miljömål om nettonollutsläpp till 2045. Tunga fordon och långdistanstransport har stora potentialer att använda vätgas som bränsle genom en bränslecell, där elektriska batterifordon inte är optimala. Bränslecellsfordon resulterar endast i vatten som direkta utsläpp vilket gör vätgas fördelaktigt som bränsle i en framtida koldioxidfri transportsektor.

Genom en livscykelanalysbaserad metod har det påvisats att klimatpåverkan från vätgas varierar till stor del beroende på produktionsprocess. Idag är den vanligaste produktionsprocessen för vätgas genom ångmetanreformering med naturgas som råvara, vilket kallas grå vätgas och bidrar enligt studien med 2% lägre klimatgasutsläpp än för en diesellastbil. För att minska utsläppen kan koldioxidavskiljning och lagring (CCS) implementeras där koldioxid (CO₂) fångas in och lagras under havsbotten. Vätgas från ångmetanreformering med CCS kallas blå vätgas, och släpper enligt studien ut 36% mindre växthusgaser än en diesellastbil. Om naturgas byts ut mot biometan som råvara fås beige vätgas, vilket bidrar till att minska utsläppen med 75%. Det är även möjligt att implementera CCS teknik intill anläggningen för ångemetanreformering med biometan, vilket kallas orange vätgas och kan bidra med negativa klimatgasutsläpp. Jämförs en bränsecellsdriven lastbil från orange vätgas med en dieseldriven lastbil kan en utsläppsminskning på 110% ses. Om vätgas istället produceras genom vattenelektrolys med förnybar elektricitet kallas det grön vätgas, och bidrar till nära nettonollutsläpp samt 95% utsläppsminskning jämfört med diesel.

Studien visar på betydelsen av att undersöka hela livscykeln av ett bränsle, eftersom de direkta utsläppen från vätgas som bränsle endast är vatten, medan produktionsprocessen påverkar utsläppen av klimatgaser. Både grå och blå vätgas produceras av fossila bränslen, vilket i Sverige troligtvis endast kommer användas som en kort övergång till hållbara produktionsprocesser. Beige och orange vätgas kan i dagsläget endast produceras småskaligt, och är begränsat av mängden avfall som biogas produceras av. Om negativa utsläpp däremot skulle kunna vara en tjänst som går att sälja i framtiden skulle orange vätgas troligtvis kunna växa genom ökad ekonomisk lönsamhet. Grön vätgas kommer troligtvis öka mest i Sverige, förutsatt fortsatt låga elpriser och hög tillgänglighet på vind-, vatten- eller solkraft.

Hur vätgas produceras kan även anpassas till vilka resurser och politiskt styre som respektive område har. I regioner med låga elpriser och hög tillgänglighet på förnybar el är grön vätgas ett bra val. Om elpriserna istället är höga kan någon av de andra vätgasfärgerna vara bättre. I områden med hög biogasproduktion kan beige och orange vätgas vara ett bra alternativ, och där CCS teknik är högt politiskt accepterat kan blå och orange vätgas istället vara en bra kombination. Grå vätgas kommer troligtvis inte öka mycket mer eftersom utsläppen av växthusgaser är höga och fossila bränslen används.

Vätgas- och eldrivna fordon kan i en framtida transportsektor komplettera varandra då vätgas har stora potentialer att användas i tung fordonstrafik medan eldrivna fordon kan användas för personbilar och lättare fordon. I den här studien har olika framtidsscenarier utformats där vätgas successivt ersätter diesel som bränsle för tunga lastbilar. Vidare har den globala temperaturförändringen använts som en indikator för klimatpåverkan. Resultaten visar att diesel tillsammans med grå vätgas bidrar till högst klimatpåverkan i form av global temperaturhöjning, medan orangeoch grön vätgas bidrar till lägst temperaturförändring. Även om vätgas kan vara ett stort bidrag till att minska utsläppen i en framtida transportsektor krävs även fler förnybara drivmedel för att nå målet om nettonollutsläpp till 2045.

Acknowledgement

This master thesis project is the final work to receive a Master of Science degree in Energy Systems Engineering. It was performed at the Swedish University of Agricultural Sciences, on the Department of Energy and Technology, as a 30 credits course.

I have received lots of help and support throughout the project and I would like to begin to thank my supervisor and subject reviewer for their much-appreciated support. My supervisor Leandro Janke has shared his valuable knowledge about hydrogen and supported me within the area of study. My subject reviewer Niclas Ericsson has guided me within the field of life cycle assessment methodology and encouraged my report writing.

I would like to direct a special thank you to my friends that have had my side throughout the university years. We have supported and encouraged each other through late study sessions, exam preparations and assignments. Further, I would like to thank my family for always being present and supportive no matter where I am in the world.

After six years of university studies, including one exchange year in Spain, it is now time for next chapter!

Madeleine Stolpe June 2021

Abbreviations

H_2	Hydrogen
CO	Carbon monoxide
O ₂	Oxygen
CO ₂	Carbon dioxide
CH ₄	Methane
N_2O	Nitrous oxide
GHG	Greenhouse gases
SMR	Steam methane reforming
WGS	Water gas shift
PSA	Pressure swing adsorption
CCS	Carbon capture and storage
TRL	Technology readiness level
AEL	Alkaline electrolysis
PEM	Proton exchange membrane
AEMEL	Anion exchange membrane electrolysis
SOEL	Solid oxide electrolysis
LCA	Life cycle assessment
GWP	Global warming potential
AGTP	Absolute global temperature change potential
WTW	Well-to-wheel
WTT	Well-to-tank
HHV	Higher heating value
LHV	Lower heating value
FCEV	Fuel cell electric vehicles
BEV	Battery electric vehicles

Table of contents

1.	Introducti	ion	1
2.	Backgrou	ind	3
	2.1. Hy	ydrogen production processes	3
	2.1.1.	Steam methane reforming	3
	2.1.2.	Electrolysis based on renewable energy	6
	2.2. LC	CA methodology and climate impact	7
	2.3. Ge	oal and scope	8
3.	System m	nodel	10
	3.1. Hy	ydrogen colours	10
	3.1.1.	Grey H ₂	10
	3.1.2.	Blue H ₂	11
	3.1.3.	Beige H ₂	12
	3.1.4.	Orange H ₂	13
	3.1.5.	Green H ₂	14
	3.2. Hy	ydrogen in future heavy truck transportation	14
	3.2.1.	Market analysis	14
	3.2.2.	Future scenarios	15
4.	Methodol	ogy	18
	4.1. M	ass- and energy balance	18
	4.2. In	ventory and impact assessment	19
	4.2.1.	Fuelling and driving a FCEV	19
	4.2.2.	Production process inventory calculations	19
	4.2.3.	Production of feedstock	22
	4.2.4.	Transportation of LNG and CO ₂	23
	4.2.5.	Emission summary	24
	4.3. Ti	me-dependent calculations	25
	4.4. Se	ensitivity analysis	25
5.	Results a	nd analysis	26
	5.1. M	ass- and energy balances	26
	5.2. CI	limate impact of H ₂	27
	5.2.1.	Comparison of H ₂ colours	27
	5.2.2.	Future scenarios	
	5.3. Se	ensitivity analysis	32
•	Discussio	n	35

	6.1.	Sources of uncertainty	36
	6.2.	Sustainability aspects	36
	6.3.	Future studies	37
7.	Concl	usion	38
Refe	erences	;	39
Арр	endix I	: LCA calculations	44
Арр	endix I	I: Time dependent climate impact	57
Арр	Appendix III: Future scenarios		60

1. Introduction

The transition of the energy system will require a large amount of renewable energy sources to meet the target of staying well below 2 °C temperature increase from the Paris Agreement. In a future decarbonized energy system, hydrogen (H₂) has been proposed to play a major role as it can be used to replace fossil fuels in the industry, generate electricity for the power grid and be used as a fuel in the transportation sector (Fuel Cells and Hydrogen Joint Undertaking 2019).

The Swedish transportation sector covers one third of the total greenhouse gas (GHG) emissions, where domestic road transport counts for 90% of its total emissions (Trafikverket 2020b). Hydrogen can play a major role in reducing the environmental and climate impacts of the transportation sector. Using H₂ as a fuel in vehicles only results in pure steam emissions from the exhaust pipe. The most common technology for H₂ vehicles is by using a fuel cell in combination with a battery. A fuel cell is an energy converter that can be used to convert the chemical energy of H₂ into electricity, with water and heat as by-products. The efficiency of a fuel cell electric vehicle (FCEV) is around twice as high as for a conventional combustion engine, which can make up for the energy required for the H₂ production process (Vätgas Sverige 2019). Due to the high energy density of H₂, FCEVs are beneficial for long distance and heavy transportations. Battery electric vehicles (BEV) require larger and heavier batteries than FCEVs and are therefore well suited for smaller passenger cars while FCEVs are beneficial for larger passenger cars and heavy trucks. In a future transportation sector, FCEV and BEV will likely complement each other (Fuel Cells and Hydrogen Joint Undertaking [FCH JU] 2019).

However, to meet the transition of a decarbonized transportation sector, the H_2 production processes must become climate neutral. Today, the most common feedstock for H_2 production is from fossil fuels, which contributes to annual emissions of 70 - 100 million tonnes CO₂ within the European Union (EU) (European Commission 2020). The aim of this thesis is to understand how and at what rate H_2 could effectively contribute to a decarbonized transportation sector. This is done by assessing the climate impact of the life cycle of H_2 with different production processes. Further, the temperature response of implementing H_2 as a fuel in heavy truck transportation is assessed, using a time-dependent life cycle assessment (LCA) based methodology. The aim of the thesis will be reached by answering the following questions:

- What climate impact can hydrogen cause when using natural gas as feedstock?
- What climate impact can hydrogen cause when using biomethane as feedstock?
- How much could adding carbon capture and storage help mitigate climate impact from the hydrogen life cycle?
- What climate impact can hydrogen cause when using water-electrolysis as production process?
- What could the technology deployment of different hydrogen production processes look like in a future decarbonized heavy road transport sector?
- What climate impact can future heavy road transport cause- if hydrogen displaces diesel as fuel?

2. Background

In this section, the different H_2 production processes are described, beginning with steam methane reforming (SMR) and the possible feedstocks, followed by carbon capture and storage (CCS) and finishing with water-electrolysis production technologies. After that, the LCA methodology is described, including climate impact metrics, and lastly, the goal and scope of the study is defined.

2.1. Hydrogen production processes

There are a variety of production processes today, often referred to as different colours depending on the production technology (IEA 2019). Currently, the most common technology for large-scale production is SMR, mainly with natural gas as feedstock (Nikolaidis & Poullikkas 2017). This production process is referred to as 'grey H₂' and due to the fossil feedstock, it results in high emissions of greenhouse gases (GHG). However, the emissions of carbon dioxide (CO₂) could reduce by implementing CCS technology in connection with the SMR plant. Hydrogen production via SMR with CCS is referred to as 'blue H₂'. Although grey H₂ is the dominant production process on the market, several blue H₂ production plants are in operation (IEA 2019).

Another upcoming production technology is through water-electrolysis from renewable electricity, called 'green H₂' (Velazquez Abad & Dodds 2017). Although this technology could contribute with fewer emissions than grey and blue H₂, green H₂ faces barriers on the market due to the expensive electrolytic technologies. Currently, green H₂ costs 2–3 times more than blue H₂ (IRENA 2020).

However, if natural gas could be replaced with biogas in the SMR process, it could result in net-zero emissions of CO_2 . Biogas has the advantage of generally being considered carbon neutral as the CO_2 that is emitted from the process and combustion has been taken up by the biomass via photosynthesis during plant growth (Antonini et al. 2020). In addition, if CCS technology is implemented in the SMR plant, it could potentially result in negative emissions of CO_2 (Antonini et al. 2020). In this thesis, H_2 production from biogas via SMR is referred to as 'beige H_2 ', and with CCS implementation it is called 'orange H_2 '.

2.1.1. Steam methane reforming

In the SMR process, methane (CH₄) and water (H₂O) in the form of steam are used to produce syngas, which is further converted into H₂ by a water-gas shift (WGS)

reaction. The conversion is performed in two steps, expressed in equation 1 and 2 (Timmerberg et al. 2020).

 $CH_4 + H_2O \rightarrow CO + 3H_2$ $\Delta H = 206.2 \text{ kJ/mol}$ (1)

 $CO + H_2O \rightarrow CO_2 + H_2$ $\Delta H = -41.2 \text{ kJ/mol}$ (2)

The energy conversion efficiency of the SMR plant is typically 74-85% and can operate in both large- and small-scale systems (Nikolaidis & Poullikkas 2017). Before entering the reformer, the feedstock is desulfurized to avoid contaminations. The desulfurized natural gas enters the reformer where CH₄ and H₂O react to produce a H₂ rich syngas with carbon monoxide (CO) as by-product (Soltani et al. 2014), see equation 1. This reaction is highly endothermic and requires high temperatures at 700–1000 °C which is generated by an external furnace (Nikolaidis & Poullikkas 2017). The furnace is fuelled by additional natural gas, which covers 30–40% of the total amount of the natural gas consumed. The additional 60–70% of the natural gas is used as feedstock to produce H₂ (IEA 2020a).

To increase the yield of H_2 , the by-product CO undergoes a WGS reaction (equation 2). Carbon monoxide enters the WGS unit and together with additional steam it produces H_2 and CO₂. The WGS reaction is exothermic and produces a small amount of waste heat (Navas-Anguita et al. 2021). The produced H_2 undergoes a purification step, commonly through pressure swing absorption (PSA) (Timmerberg et al. 2020). Through separation with PSA, H_2 can reach up to 99.999% of purification (Nikolaidis & Poullikkas 2017). A simplified illustration of the SMR process is demonstrated in figure 1.

Figure 1. Illustration of the steam methane reforming process with the units of SMR, WGS, PSA and the external furnace.

Feedstock for the SMR process

Currently, natural gas is the most common feedstock for the SMR process (IEAGHG 2017). Natural gas is a CH₄ rich energy gas and can be used as a gas or a liquid. Since Sweden does not have domestic production, the country is dependent on natural gas imports from Denmark to the west coast pipeline network, and imports of liquified natural gas (LNG) to the gas grid of Stockholm (Energimyndigheten 2020). The CH₄ composition of LNG depends on the geographical location and the CH₄ content can vary from 87–99%. Norwegian produced LNG contains approximately 92% CH₄ (Kuczyński et al. 2020), and can be exported by ship to Sweden via LNG terminals in Lysekil and Nynäshamn (Boëthius 2020).

Biomethane could be a fossil free alternative as feedstock for conventional H_2 production via SMR. It has similar compositions as natural gas with additional benefits, as it is a renewable resource (Braga et al. 2013). Biogas is produced from organic feedstocks processed by anaerobic digestion. It mainly contains CH₄ and CO₂, with a CH₄ quality of 45–75%. To enable its use as vehicle fuel, biogas is upgraded by removing most of the CO₂ content. The near-pure CH₄ gas is known as biomethane and can replace natural gas in the SMR process (IEA 2020b).

Carbon capture and storage

The SMR process has two streams of emissions, approximately 60% of the CO₂ is emitted from the feedstock during the reforming and shift reactions, referred to as pre-combustion. The remaining 40% is emitted from the flue gas during heat generation in the external furnace, known as post-combustion. Thus, the emissions from the SMR plant can be reduced significantly by implementing a CCS unit in connection with the emission streams (Antonini et al. 2020). The capture rate of CO₂ is between 54–90% depending on the technology and location of the CCS unit (Timmerberg et al. 2020). The capture cost of the CCS plant is dependent on the concentration of CO₂. The pre-combustion stream is more concentrated and costs around 50 USD/tCO₂, while the post-combustion stream is more diluted. The costs increase to around 80 USD/t if additional CO₂ is captured from the post-combustion stream (IEA 2020a).

Currently, there is a wide variety of the maturity of CCS technologies. The International Energy Agency (2020a) performed an evaluation of different CCS technologies. It was based on a technology readiness level (TRL) scale, which measures the maturity of a technology, based on the development from the laboratory to the market. The evaluation shows the most mature CO_2 capture technology to be amine based chemical absorption and the most mature CO_2 storage technology to be enhanced oil recovery, followed by saline formations. However, the storage technology depends on the geological conditions (SGU 2020).

Currently, there are CO_2 storage sites in various places in North America and China. Other countries that have CCS projects in commercial operation are Brazil, Australia and Qatar. In Europe, the only commercial storage site is in Norway (SCCS 2021).

Due to the geological formations of saline aquifers in the Norwegian North Sea, Norway has experience with CCS since 1996 (Ringrose 2018). The Norwegian Government's full-scale CCS project is called Northern Lights (Riis 2018), and is used as a reference for this study. Before CO₂ storage, the gas is compressed and liquefied, to be transported from the capture site to an onshore terminal on the west coast of Norway. From the terminal, liquefied CO₂ is transported through pipelines to a deep reservoir in the Norwegian North Sea, located 2600 meters below seabed, where CO₂ can be permanently stored (Northern Lights CCS 2020). In Sweden, an ongoing project named CinfraCap is aiming to reach a mutual solution for logistics and infrastructure of liquified CO₂. CinfraCap completes many ongoing research and demonstration projects and will connect domestic CO₂ capture projects in Sweden with a buffer storage at Gothenburg port. The permanent storage follows the Northern Lights project in Norway (Göteborgs hamn 2021).

2.1.2. Electrolysis based on renewable energy

Another H_2 production technology is via water-electrolysis from renewable electricity. The electrolytic cell has a positively charged anode and a negatively charged cathode in water, which works as a conductive medium. When an electric current is added, the positively charged hydrogen ions are attracted to the cathode and the negatively charged oxygen ions to the anode. Consequently, the process splits water into H_2 and oxygen (O₂) (Velazquez Abad & Dodds 2017). The stoichiometric relation is expressed in equation 3.

$$H_2 0 + energy \rightarrow H_2 + \frac{1}{2}O_2$$
(3)

Hydrogen production from water-electrolysis, with electricity from renewable sources such as wind or solar power is in line with reaching a net-zero carbon energy system. However, H₂ production from electrolysis only accounts for 5% of the global H₂ production today, which is mainly due to the expensive production process (IRENA 2020).

Currently, the most implemented electrolytic technology is alkaline electrolysis (AEL). Proton exchange membrane (PEM) electrolysis is another upcoming technology but not yet as established as AEL (FCH JU 2019). The capital costs differ between the two technologies as PEM requires expensive material like noble metals, however it has a more compact design. Also, the response time is faster with

PEM. The advantages of AEL are the lower costs and the simpler design with cheaper materials. However, for future electrolytic processes, there are possibilities to combine the two technologies to an anion exchange membrane electrolysis (AEMEL). Although the AEMEL technology would achieve lower costs and higher stability, it is not yet largely commercialized. Another electrolytic technology that is developing is solid oxide electrolysis (SOEL), which could contribute to higher efficiencies. Also, this technology allows reverse operations, which could provide services for balancing the grid by converting H₂ back to electricity. Although the SOEL electrolyte has high efficiency and smart solutions for grid balancing, it requires high temperatures which currently leads to low stability and high costs (Formann et al. 2020).

2.2. LCA methodology and climate impact

Life cycle assessment is a method that can be used to assess the environmental impact of a product or process, including impacts throughout the entire life cycle. There are four main steps considered when performing an LCA; goal and scope, life cycle inventory, life cycle impact assessment and interpretation of results (Muralikrishna & Manickam 2017). The environmental impact of a product or process can be measured in various ways including global warming, acidification, water use and biodiversity (Guinée et al. 2011). When performing an LCA, a functional unit is used to compare different systems that achieve the same purpose.

The most common greenhouse gases emitted to the atmosphere by human activities are CO_2 , CH_4 and N_2O . When combusting fossil fuels, solid waste or other biological materials, CO_2 is emitted to the atmosphere. In a balanced biogenic carbon cycle, the same amount of CO_2 that is emitted would be absorbed by the plants. Methane is a GHG that is emitted when producing and distributing coal, natural gas and oil. Also, CH_4 is emitted during agricultural processes and from the organic waste in municipal solid waste. The third most common GHG is N_2O which is emitted when combusting fossil fuels and solid waste as well from agricultural production and processes (US EPA 2015).

The climate impacts from GHG emissions can be compared using different climate metrics. The global warming potential (GWP) is one way of comparing the climate effects of GHG emissions (IPCC 2013). By using the GWP over a 100 year time horizon (GWP₁₀₀), the CO₂-equivalents can be calculated. In the 5th IPCC Assessment Report (2013), the GWP₁₀₀ was determined to 1 for fossil CO₂, 0 for biogenic CO₂, 30 for fossil CH₄, 28 for biogenic CH₄ and 265 for N₂O. Another climate metric that can be used to compare climate impacts from different emissions is the absolute global temperature change potential (AGTP). AGTP is defined as

the surface temperature for a specific point in time, due to an emission impulse expressed in K/kg (Fuglestvedt et al. 2010).

2.3. Goal and scope

The goal of the LCA study in this thesis project was to find the life cycle GHG emissions for grey, blue, beige, orange and green H₂. Further, the temperature response of the heavy truck transportation when displacing diesel with H₂ was found by assessing future scenarios representing different deployment rates of H₂ colours. The only considered environmental impact category was climate impact, which was assessed using the GWP and AGTP. Since H₂ was used as fuel in heavy truck transport, the emissions were compared for transporting one tonne over one kilometer, and the functional unit was set to *tonne-km*.

To perform the study, some assumptions were made. The production plant was assumed to be placed in Uppsala, where the total domestic production of H₂ was produced. The amount of produced H₂ was assumed to cover the entire domestic transportation of heavy diesel trucks in Sweden. Natural gas based H₂ was assumed to be produced from Norwegian LNG. The assumption was based on the Stockholm gas grid, which is fed by LNG through the port of Nynäshamn (Energimyndigheten 2017). Biomethane based H_2 was assumed to be produced in close connection to the H_2 production plant. The organic waste for biogas production was assumed to come from sewage sludge and municipal solid waste, which set limitations for biomethane based H₂ production. Water-electrolysis based H₂ was assumed to be produced by electricity from wind power in Sweden. From this, the feedstocks of natural gas and wind powered electricity were assumed to be unlimited and meet the H_2 demand to cover the diesel share for heavy truck transportation. Biogas on the other hand, was assumed to be limited by the availability of organic waste. Regardless H₂ colour, the production plant was assumed to operate for 30 years, which set the time horizon of the future scenarios. The deployment of the different H₂ colours in the future scenarios was assumed to be based on production costs as well as feedstock availability for H₂ production. The number of heavy trucks and the fuel consumption in the future scenarios were assumed to remain constant for the study time of 30 years.

The system boundaries include the GHG emissions of CO_2 , CH_4 and N_2O , from well-to-wheel (WTW). Emissions from construction and maintenance of the production plants were excluded, and so were the people that contribute to operations. Collection and transport of raw material to the biogas plant were not included. The process tree for the H_2 life cycle is shown in figure 2.

Figure 2. The process tree of the studied system illustrates the scope and limitations of the system as well as the product flow and process steps.

3. System model

In this section, the H_2 models are described, beginning with the colour definitions, followed by H_2 implementation in a future transportation sector. To implement H_2 as a fuel for heavy trucks, future scenarios were developed, in which different mixes of H_2 colours are implemented at different deployment rates. A market analysis is carried out followed by a definition of the different future scenarios for heavy truck transport.

3.1. Hydrogen colours

The H_2 colours are defined by different production processes. In this section, systems are described and flow diagrams are demonstrated for each H_2 colour. Assumptions and data of geographical locations, fuel consumption and electricity sources are explained for each process.

3.1.1. Grey H₂

Hydrogen is produced from an SMR plant in Uppsala, using natural gas as feedstock. Natural gas is assumed to be produced in Norway and compressed and shipped from Risavika port to Nynäshman, as liquefied natural gas (LNG). The ships are assumed to be fuelled with bunker oil. From Nynäshamn, LNG is transported in trucks to Uppsala, fuelled with diesel mixed with 5% RME. As a simplification of the system, no sub-storage of LNG is considered.

The energy conversion efficiency of the SMR plant is 78%, and the electricity consumption is 2.6 kWh/kg H_2 (Valente et al. 2020). The emission factor of the used electricity is 338.52 g CO₂-eq/kWh, which represents the Nordic residual mix for 2019. The residual mix is the electricity that is bought if no specific electricity source or origin-marking is chosen (Energimarknadsinspektionen [Ei] 2020), which is assumed for the electricity consumption in the SMR plant. When H_2 is produced and purified, it is distributed to a fuel station in close connection to the SMR plant. The process is demonstrated in figure 3.

Figure 3. Flow chart of grey H_2 . Horizontal arrows show the flow of products while vertical arrows show exchanges with the environment and upstream systems.

3.1.2. Blue H₂

Blue H₂ follows the same process steps as grey H₂, but with CCS added in connection to the SMR plant. The CCS unit is placed in connection to the precombustion stream, and covers 60% of the total CO₂ emissions (Antonini et al. 2020), with a capture efficiency of 90% (Skagestad et al. 2017). The total energy consumption of the CCS unit is 0.279 kWh/kg CO₂ (IEAGHG 2010), and is assumed to be covered by electricity from the Nordic residual mix. When the CO₂ is captured, it is compressed and liquified. Further, CO₂ is transported in trucks from Uppsala to a buffer storage at Gothenburg port, followed by shipping from Gothenburg to an onshore CO₂ terminal outside Bergen, Norway. From the terminal, the liquefied CO₂ is transported through pipelines to a permanent storage, in deep saline aquifers, 2600 meters below the seabed of the Norwegian North Sea. The assumptions of the CO₂ transportation and storage process are based on the CinfraCap and Northern Lights project. The full process of blue H₂ is demonstrated in figure 4.

Figure 4. Flow chart of blue H_2 . Horizontal arrows show the flow of products while vertical arrows show exchanges with the environment and upstream systems.

3.1.3. Beige H₂

Beige H₂ follows the same process steps as grey H₂, but natural gas is replaced with biomethane, which is upgraded biogas that is derived from anaerobic reactors treating sewage sludge and organic fraction of municipal solid waste. No energy crops such as maize or beets are used in this study. The production rate is 0.62 m^3 bio-CH₄/m³ biogas (Florio et al. 2019) and the CH₄ leakage from the upgrading process is assumed to be 1.4% (Holmgren et al. 2015). The CO₂ emissions from the biogas production and upgrading is 0.58 kg CO₂/m³ (Florio et al. 2019). The electricity consumption is 0.33 kWh/m³ biogas which was calculated as mean value from Zhang et al. (2020) and Florio et al. (2019). Furthermore, the SMR plant and the H₂ fuel station are assumed to be in close connection to the biogas upgrading plant. No transportation between biomethane production, H₂ production and fuel station is assumed. Flow chart of beige H₂ is shown in figure 5.

Figure 5. Flow chart of beige H_2 . Horizontal arrows show the flow of products while vertical arrows show exchanges with the environment and upstream systems.

3.1.4. Orange H₂

Hydrogen is produced through the same process as beige H_2 , but with CCS added. Same feedstock is used as for beige H_2 , and the CCS properties are the same as in blue H_2 . Flow chart is presented in figure 6.

Figure 6. Flow chart of orange H_2 . Horizontal arrows show the flow of products while vertical arrows show exchanges with the environment and upstream systems.

3.1.5. Green H₂

Hydrogen is produced from renewable electricity via water-electrolysis. The electrolytic unit is located in connection to a H_2 fuel station in Uppsala, Sweden. The most established water-electrolysis technology is alkaline electrolysis (FCH JU 2019), which is the chosen electrolytic technology for this study. The required electricity for the electrolysis process is 54.18 kWh/kg H_2 (Valente et al. 2020). Due to the high electricity demand, green H_2 is highly dependent on the electricity source. The electrolytic plant is connected by the grid and for this study, the electricity is assumed to be bought from wind power specifically. The emission factor of wind power is 15 g/kWh (Gode et al. 2011). The flow chart is shown in figure 7.

Figure 7. Flow chart of green H_2 . Horizontal arrows show the flows of H_2 while vertical arrows are emissions and resource inputs for each process.

3.2. Hydrogen in future heavy truck transportation

The major fuel for heavy truck transportation in Sweden is diesel, which covers 92% of the total fuel demand (Trafikverket 2020a). Future scenarios are defined with different deployment rates of H₂ when displacing diesel as a fuel for heavy truck transportation. The future scenarios are based on a market analysis and a hydrogen roadmap for Europe, prepared by Fuel Cells and Hydrogen Joint Undertaken (FCH JU), where a proposal of H₂ implementation in the EU through different future scenarios was presented. FCH JU (2019) claims that an ambitious target is required to achieve the limit of staying well below 2 °C temperature increase, proposed by the Paris Agreement. Within the entire energy sector, H₂ could provide up to 6% of the total energy demand in the EU by 2030, and 24% by 2050. Within the transportation sector in the EU, H₂ could provide 70 TWh by 2030 and 675 TWh by 2050.

3.2.1. Market analysis

Today, the production cost in Europe of H_2 via SMR process is between 1.7 USD/kg H_2 for production without CCS (grey H_2) and 2.4 USD/kg H_2 for production with

CCS (blue H₂) (IEA 2019). Beige and orange H₂ are unlikely to be feasible in largescale plants due to limitations in biogas availability, which may increase its production costs considerably. However, orange H₂ offers the possibility to generate negative emissions, therefore additional payments for this service are expected to improve the feasibility of this process in the future. In the Climate Political Roadmap Report (sv. Klimatpolitiska vägvalsutredningen 2020), a public report from the Swedish Government, it was discussed how to reach negative emissions by 2045. The Swedish Government proposed an auction system as a tool to reach the climate target. This tool would encourage bio-CCS projects by supporting them with reversed auctions that could compensate for the investment costs. If this would be implemented, orange H₂ could compete with grey and blue H₂. However, beige and orange H₂ would be limited by the availability of biogas.

Regarding green H₂, the production costs in 2020 varied between 2.1-5.1 USD/kg H₂, depending on CAPEX and electricity prices. After 2025, green H₂ is expected to be competitive with grey and blue H₂ in countries with cheap electricity and good conditions for wind or solar power, due to new developments and cheaper production costs (IRENA 2020). This will make green H₂ the dominant colour due to its multiple benefits from using renewable energy, lower carbon footprint and its high political acceptance in Sweden. According to the market analysis by FCH JU (2019), H₂ production from electrolysis could account for 20-60% in 2030, and after that, the mix of production technologies is dependent on the economic situation and cost development.

Further, Navas-Anguita et. al. (2020) assessed the investment costs of H_2 in Spanish road transportation. The study shows that for the short-term deployment of FCEV, grey H_2 is most likely to be dominant. However, for the mid- and long-term, green H_2 can be the key production process. The investment costs of different H_2 production processes are shown in table 1.

Tuble 1. Investment costs of apperent 112 production technologies (Navas-Angula et al. 2020)			
	2016	[€/GJ] 2030 [€/GJ]	2050 [€/GJ]
SMR with natural gas	8.75	7.33	7.33
SMR+CCS with natural gas	14.50	11.10	9.44
Electrolysis	36.76	15.86	6.10

Table 1. Investment costs of different H_2 production technologies (Navas-Anguita et al. 2020)

3.2.2. Future scenarios

The future scenarios illustrate the deployment rates of different H_2 colours when displacing diesel as fuel for heavy trucks in Sweden and are illustrated in figure 8. In the reference scenario, the diesel share for heavy truck transport remains constant over the next 30 years. This scenario represents the heavy truck transportation if no

H₂ is implemented, and the fuel consumption of conventional diesel trucks remains the same.

Scenario 1 represents an SMR dominant scenario with natural gas as feedstock, consisting of only grey and blue H₂. This scenario assumes low natural gas prices and high electricity costs. Further, the deployment of electrolytic technologies is low. Grey H₂, which is the cheapest H₂ today, only works as a bridge solution before introducing blue H₂. For scenario 1 it is assumed that the political acceptance of CCS technologies increases with time, which motivates further implementation of blue H₂.

Scenario 2 represents an SMR dominant scenario, where natural gas is replaced with biomethane as beige and orange H_2 are introduced. However, biomethane is limited by biogas production, which in turn is limited by the municipal solid waste. It is assumed that biogas will continue to be produced from co-digestion and wastewater treatment plants throughout the next 30 years, which limits the share of beige and orange H_2 .

Scenario 3 represents a mix of all H₂ colours, with a rapid increase of green H₂ after 2030. This scenario assumes increased technological developments and reduced investment costs of electrolytic processes, while electricity prices are low and renewable electricity production is high.

Two extreme scenarios are included, where extreme scenario 1 shows the H_2 implementation of only grey H_2 , assuming low natural gas prices and low acceptance of CCS. Extreme scenario 2 contains only orange H_2 as displacement for diesel, which assumes increased biogas production and high political acceptance of CCS.

Figure 8. The share of diesel, grey, blue, beige, orange and green H_2 in a future heavy truck transportation. Scenario 1 (a) is SMR dominant with natural gas, scenario 2 (b) is SMR dominant with natural gas and biomethane, scenario 3 (c) is electrolysis dominant with a mix of all H_2 colours. Extreme scenario 1 (d) illustrates diesel displacement with only grey H_2 while extreme scenario 2 (e) represents diesel displacement with orange H_2 .

4. Methodology

In this section, the calculation methodology is described step by step. First, mass and energy balances were calculated for the SMR and electrolytic processes. Second, the WTW emission data was collected, and the inventory was calculated for each process. Third, time-dependent calculations were performed from the future scenarios and finally, a sensitivity analysis was carried out.

4.1. Mass- and energy balance

Mass balances $(x_{H2O}, x_{CO}, x_{H_2}, x_{CO_2})$ were calculated for the SMR and WGS processes using the stoichiometric approach and the molecular masses of m_{CH_4} =16.043 u; m_{H2O} =18.015 u; m_{CO} =28.01 u; m_{H_2} =2.016 u. Calculations of mass balances followed equations in table 2, where 1 kg CH₄ was used (x_{CH_4}) .

SMR reaction	WGS reaction
$CH_4 + H_2O \rightarrow CO + 3H_2$	$CO + H_2O \rightarrow CO_2 + H_2$
$\mathbf{x}_{\text{H2O}} = \mathbf{x}_{\text{CH}_4} \cdot \frac{\mathbf{m}_{\text{H2O}}}{\mathbf{m}_{\text{CH}_4}}$	$x_{CO} = x_{CH_4} \cdot \frac{m_{CO}}{m_{CH_4}}$
$\mathbf{x}_{CO} = \mathbf{x}_{CH_4} \cdot \frac{\mathbf{m}_{CO}}{\mathbf{m}_{CH_4}}$	$x_{H2O} = x_{CO} \cdot \frac{m_{H2O}}{m_{CO}}$
$\mathbf{x}_{3H_2} = \mathbf{x}_{CH_4} \cdot \frac{\mathbf{m}_{3H_2}}{\mathbf{m}_{CH_4}}$	$x_{CO_2} = x_{CO} \cdot \frac{m_{CO_2}}{m_{CO}}$
	$x_{H_2} = x_{CO} \cdot \frac{m_{H_2}}{m_{CO}}$

Table 2. Equations for the mass balance of SMR and WGS processes.

Energy balances were calculated using lower heating values of LHV_{CH_4} =50 MJ/kg, LHV_{H_2} =119.9 MJ/kg (Nikolaidis & Poullikkas 2017) and LHV_{CO} =10.16 MJ/kg (Engineering ToolBox 2005). The SMR process is endothermic and requires a heat supply, whereas the WGS process is slightly exothermic and releases some heat. Calculations of energy balances followed equations in table 3. From the energy balance, the energy conversion efficiency of CH₄ to H₂ was calculated dividing the energy value of the produced H₂ by the energy value of the consumed CH₄.

SMR reaction	WGS reaction
$CH_4 + H_2O + heat \rightarrow CO + 3H_2$	$CO + H_2O \rightarrow CO_2 + H_2 + waste heat$
$E_{CH_A} = x_{CH_A} \cdot LHV_{CH_A}$	$E_{CO} = x_{CO} \cdot LHV_{CO}$
$E_{co} = x_{co} : LHV_{co}$	$E_{H_2} = X_{H_2} \cdot LHV_{H_2}$
$E_{cu} = x_{cu} \cdot LHV_{u}$	$\mathbf{E}_{12} = \mathbf{E}_{22} = \mathbf{E}_{32}$
$E_{\text{host}} = (E_{\text{CO}} \cdot E_{2\text{H}_2}) - E_{\text{CH}_2}$	-waste neat -co -n ₂

Table 3. Equations for energy balances of SMR and WGS processes.

4.2. Inventory and impact assessment

The life cycle of each H₂ colour was divided into fuelling and driving a fuel cell truck, H₂ production processes, production of feedstock and transportations of LNG and CO₂. Calculations were based on GHG emission data for each process. Detailed emission data and sources for each process are included in appendix I.

4.2.1. Fuelling and driving a FCEV

To calculate the AGTP, yearly GHG emissions were calculated for the different H₂ colours. First, the amount of H₂ (x_{H2}) required to cover the daily demand of fuel to replace diesel in heavy truck transportation in Sweden was calculated using equation 4. The fraction of diesel in the heavy truck transport was 92% (n_{diesel}) (Trafikverket 2020a), and the fuel consumption (fc) was calculated from 8 kg H₂/100 km, which was an assumption based on FCH JU & Berger (2017) and Fuel Cells Works (2019). The distance (d) was 4 176 057 770 km/ year and represented the annual distance driven by heavy trucks in Sweden (Trafikanalys 2020a).

 $x_{H2} = (n_{diesel} \cdot fc \cdot d)/365 \quad [kg CO_2/day]$ (4)

4.2.2. Production process inventory calculations

Grey H₂

The daily amount of CH₄ (x_{CH_4}) required to produce H₂ was calculated using equation 5. The input x_{H2} was used from equation 4. The energy conversion efficiency was 78% (n_{SMR}) and the higher heating values were $HHV_{H2} = 141.9$ MJ/kg and $HHV_{CH4} = 55.5$ MJ/kg (Nikolaidis & Poullikkas 2017).

$$x_{CH_4} = \frac{x_{H_2} \cdot HHV_{H_2}}{n_{SMR} \cdot HHV_{CH_4}} \quad [\text{kg CH}_4/\text{day}]$$
(5)

In equation 6, the amount of natural gas required for the SMR process (x_{LNG}) was calculated. The fraction of CH₄ in Norwegian LNG was 92% (n_{LNG}) (Kuczyński et al. 2020).

$$x_{LNG} = \frac{x_{CH4}}{n_{LNG}} \quad [\text{kg LNG/day}] \tag{6}$$

The CO₂ emissions from the SMR process (x_{CO_2}) was calculated using equation 7, multiplying x_{CH_4} with the combustion relation of CO₂ and CH₄, which was calculated by dividing the molecular mass of CO₂ (m_{CO_2}) with the molecular mass of CH₄ (m_{CH_4}) .

$$x_{CO_2} = x_{CH_4} \cdot \frac{m_{CO_2}}{m_{CH_4}} \quad [\text{kg CO}_2/\text{day}]$$
 (7)

Total CO₂ emissions ($x_{CO_2 Grey}$) were calculated using equation 8, adding x_{CO_2} to the emissions from electricity consumption, which was calculated by multiplying the electricity consumption ($E_{el SMR}$) with the emission factor of the Nordic residual mix ($f_{residual}$). The electricity consumption was multiplied with the daily amount of H₂ (x_{H2}).

$$x_{CO_2 Grey} = x_{CO_2} + x_{H2} \cdot E_{el SMR} \cdot f_{residual} \quad [kg CO_2/day]$$
(8)

Blue H₂

Calculations for blue H₂ followed the grey H₂ calculations but included a CCS unit. The captured CO₂ (x_{CCS}) was calculated using equation 9, assuming CO₂ capture from the pre-combustion stream containing 60% of the total CO₂ emissions ($n_{pre-comb}$), with 90% capture efficiency (n_{CCS}). The variable x_{CO_2} was calculated using equation 7.

$$x_{CCS} = n_{CCS} \cdot x_{CO_2} \cdot n_{pre-comb} \quad [\text{kg CO}_2/\text{day}]$$
(9)

Total GHG emissions for blue H₂ were calculated using equation 10, subtracting the captured CO₂ (x_{CCS}) and adding the emissions from heat ($x_{CO_2 heat_{CCS}}$) and electricity ($x_{CO_2 el_{CCS}}$) consumption of the CCS unit. The electricity consumption was 0.196 kWh/kg CO₂ and the thermal energy required was 0.083 kWh/kg H₂ (IEAGHG 2010).

$$x_{CO_2 Blue} = (x_{CO_2 Grey} - x_{CCS}) + x_{CO_2 el_{SMR}} + x_{CO_2 el_{CCS}} + x_{CO_2 heat_{CCS}}$$

[kg CO₂/day] (10)

Beige- and orange H₂

Calculations for beige and orange H₂ followed the grey and blue H₂ calculations but changing the natural gas feedstock to biomethane. The CH₄ composition of biomethane was 97% (n_{bioc}) (Uppsala Vatten 2018) and x_{CH_4} was calculated using equation 5. The required amount of biomethane (x_{bioc}) was calculated using equation 11.

$$x_{bioC} = \frac{x_{CH_4}}{n_{bioCH_4}} \quad [\text{kg bioCH}_4/\text{day}]$$
(11)

Total GHG emissions for beige H_2 were the same as for grey H_2 , calculated using equation 8, and emissions from orange H_2 were the same as for blue H_2 , calculated using equation 10. However, the CO₂ emissions of beige and orange H_2 were considered biogenic, and the CO₂ uptake was accounted for in the biomethane production calculations.

The total share of available beige and orange H₂ (y) was calculated using equation 12. The yearly production of biogas in Sweden was divided by the yearly amount of biogas required to produce H₂ to cover the entire share of diesel in the heavy truck transportation. The annual production volume of biogas was 2044 GWh (V), with 47% produced from co-digestion plants (n_{codig}) and 35% from wastewater treatment plants (n_{WWT}) (Klackenberg 2020).

$$y = \frac{V \cdot (n_{codig} + n_{WWT})}{HHV_{CH_4} \cdot 10^{-6} \cdot 365 \cdot x_{bioCH_4}} \cdot 100 \quad [\%]$$
(12)

Green H₂

Green H₂ has no other GHG emissions than from the electricity production, which was calculated by multiplying the electricity consumption of 54.18 kWh/kg H₂ (E_{el}) (Valente et al. 2020), with the emission factor of wind power which was 15 g CO₂-eq/kWh (f_{wind}) (Gode et al. 2011). For electricity production, CH₄ and N₂O emissions were neglected, and the total CO₂ emissions were calculated using equation 13.

$$x_{CO_2Green} = f_{wind} \cdot E_{el} \cdot x_{H_2} \quad [\text{kg CO}_2/\text{day}]$$
(13)

The energy conversion efficiency (η_{green}) was calculated using equation 14, with HHV_{H_2} = 39.4 kWh/kg H₂ (Engineering ToolBox 2003).

$$\eta_{green} = \frac{HHV_{H_2}}{E_{el}} \cdot 100 \quad [\%] \tag{14}$$

4.2.3. Production of feedstock

Natural gas

The GHG emissions from the natural gas production were based on already existing well-to-tank (WTT) data from an LCA study of Norwegian LNG. The study was performed by Thinkstep (2017), on behalf of the Natural & Biogas Vehicle Association in Europe. The study covers the LNG supply to Central Europe, with Norway as main producer. Data for production, processing and liquefaction were taken from Thinkstep (2017), and calculations for LNG distribution were performed according to the methodology presented in section 4.2.4. Transportation of LNG and CO₂. The GHG emissions from production, processing and liquefaction covered 77% (n_{WTT}) of the total WTT emissions with the emission factors of x_{CO_2} =10.90 g CO₂-eq/MJ_{LHV}, x_{CH_4} =2.30 g CO₂-eq/MJ_{LHV} and x_{N_2O} =0,19 g CO₂-eq/MJ_{LHV} (Thinkstep 2017). The heating value of natural gas was LHV_{NG}=46.5 MJ/kg (Antonini et al. 2020). Calculations for each gas were performed using equation 15.

$$x_{GHG} = x_{(CO_2, CH_4, N_2O)} \cdot LHV_{NG} \cdot n_{WTT} \quad [g \text{ CO}_2 \text{-eq/kg LNG}]$$
(15)

Daily GHG emissions for the WTT process of LNG was calculated by multiplying the emission factors of each gas with the daily amount of LNG used to produce H₂ (x_{LNG}), calculated according to equation 6.

Biomethane

The GHG emissions from biomethane production, including upgrading, were based on an existing LCA study of Florio et. al (2019) and verified with data from Zahng et. al (2020) and Holmgren et. al (2015). The volume of biogas (V_{bioCH}) used to produce the required amount of biomethane for beige and orange H₂ was calculated using equation 16, where x_{bioCH_4} was calculated using equation 11. The lower heating value used was LHV_{bioCH_4} =45.4 MJ/kg (Antonini et al. 2020) and the energy content was E_{bioCH_4} =9.67 kWh/m³ bioCH₄ (Svenskt gastekniskt center 2012). The conversion factor from kWh to MJ is 3.6.

$$V_{bioC} = \frac{x_{bioCH_4}}{(E_{bioC} \quad \cdot 3.6/LHV_{bioC} \quad)} \quad [m^3 \text{ bioCH}_4/\text{day}]$$
(16)

The WTT emissions from biomethane production and upgrading was 0.58 kg/m³ biogas (x_{CO_2WTT}) and the biomethane production rate was 0.62 m³ bioCH4/m³ biogas (η_{bioCH4}) (Florio et al. 2019). Further, the CO₂ emissions from biomethane ($x_{CO_2biomethane}$) were considered biogenic, which was counted for by including negative emissions when bound into the biomass. The negative biomass CO₂ emissions ($x_{biomass}$) were calculated using equation 17, with V_{bioCH4} calculated from equation 16 and x_{CO_2} from equation 7.

 $x_{biomass} = -1 \cdot (V_{bio} \quad \cdot x_{CO_2WTT} / \eta_{bioCH} + x_{CO_2}) \quad [\text{kg CO}_2/\text{day}]$ (17)

The total CO₂ emissions ($x_{CO_2biomethan}$) for biogas production and upgrading was calculated according to equation 18, with an electricity consumption of 0.33 kWh/m³ biogas (E_{biogas}).

 $x_{CO_2 biomethane} = (x_{CO_2 WTT}/\eta_{bioCH}) \cdot V_{bioCH4} + x_{biomass} + (E_{biogas}/\eta_{bioCH4}) \cdot V_{bioCH4} \cdot f_{residual} \quad [kg CO_2/day]$ (18)

The CH₄ emissions were dependent on the leakage rate from production and upgrading of biogas, and was calculated based on an assumed leakage rate of 1.4% (l_{CH4}) (Holmgren et al. 2015) and a CH₄ content (n_{CH4}) of 97% in biomethane (Uppsala Vatten 2018). Total CH₄ emissions $(x_{CH_4biomethan})$ were calculated using equation 19, with x_{bioCH_4} calculated using equation 11.

$$x_{CH_4 biomethan} = n_{CH4} \cdot l_{CH4} \cdot x_{bioCH_4} \quad [kg CH_4/day]$$
(19)

The N_2O emissions from biogas production and upgrading were not included, based on recommendations in Florio et al. (2019) and Ardolino et al. (2020).

4.2.4. Transportation of LNG and CO₂

Transportation of LNG

The number of ships (N_{ships}) required to transport the daily amount of LNG that was needed for H₂ production, was calculated using equation 20. The daily LNG supply (x_{LNG}) was calculated using equation 6, and the ship size was assumed to be 7500 tonne/ship (x_{ship}), based on data from Gode et al. (2011).

$$N_{ships} = \frac{x_{LNG}}{x_{ship}}$$
 [no. ships/day] (20)

The fuel consumption (*fc*) was 0.21 MJ/tonne-km (Gode et al. 2011). The distance (*d*) from Risavika to Nynäshamn on a roundtrip journey was 2626 km (Seadistances 2021). The emission factors from production, distribution and usage of bunker oil were: x_{CO} bunker oil = 85.7 g CO₂/ MJ fuel, x_{CH4} bunker oil = 0.0074 g CH₄/ MJ fuel and x_{N2O} bunker oil = 0.0038 g CH₄/ MJ fuel (Gode et al. 2011). The total GHG emissions for LNG shipping were calculated from equation 21, for CO₂, CH₄ and N₂O respectively.

$$x_{GHG \ ship} = x_{ship} \cdot fc \cdot d \cdot x_{GHG \ bunkeroil} \cdot N_{ships} \quad [kg \ CO_2, CH_4, N_2O/day]$$
(21)

For truck transport from Nynäshamn to Uppsala, the number of trucks (N_{trucks}) required to transport the daily amount of LNG (l_{CH}) was calculated using equation

22, with a truck size assumed to be 60 tonnes/truck (x_{truck}) , based on heavy trucks (Transportstyrelsen 2020).

 $N_{trucks} = \frac{x_{LNG}}{x_{truck}} \quad [\text{no. trucks/day}]$ (22)

The fuel consumption for a diesel truck was 33.2 l/100 km (fc_{diesel}) (Trafikverket 2020a) and the density of diesel was 0.8 kg/l (ρ_{diesel}) (Neste Corporation 2020). The emission factors from production, distribution and usage of diesel with 5% RME were $x_{CO2 \ diesel} = 75.92$ g CO₂/MJ fuel, $x_{CH4 \ diesel} = 0.030$ g CH₄/MJ fuel and $x_{N20 \ diesel} = 0.0022$ g CH₄/MJ fuel. The heating value was $LHV_{diesel} = 43.1$ MJ/ kg fuel (Gode et al. 2011) and d = 260 km was the road distance of a roundtrip journey from Nynäshamn to Uppsala. The total GHG emissions for LNG truck transport ($x_{GHG \ truck}$) were calculated from equation 23, for CO₂, CH₄ and N₂O respectively.

 $x_{GHG\ truck} = fc_{diesel} \cdot \rho_{diesel} \cdot LHV_{diesel} \cdot d \cdot x_{diesel} \cdot N_{trucks}$ [kg CO₂, CH₄, N₂O/day] (23)

Transportation of CO₂

The number of trucks required to transport the daily captured CO₂ (x_{CCS}) was calculated using equation 22, but with x_{CCS} (equation 9) instead of x_{LNG} . Further, the GHG emissions of truck transport of CO₂ were calculated using equation 23, with $d = 912 \ km$.

The number of ships required to transport the CO₂ captured each day (x_{CCS}) was calculated from equation 20, but with x_{CCS} (equation 9) replacing x_{LNG} . Moreover, the GHG emissions from shipping the captured CO₂ were calculated from equation 21, with $d = 1296 \ km$.

4.2.5. Emission summary

When the daily GHG emissions were calculated for each colour, it was divided by the yearly road performance of heavy trucks in Sweden in 2019, which was 410 180 000 000 tonne-km/year (Trafikanalys 2020a).

Additionally, diesel was used as a reference fuel for a heavy truck and was calculated using equation 24, with $d = 4\,176\,057\,550$ km, representing the yearly distance driven by heavy trucks in Sweden.

 $x_{GHG\ truck} = fc_{diesel} \cdot \rho_{diesel} \cdot LHV_{diesel} \cdot d \cdot x_{diesel} \quad [kg\ CO_2, CH_4, N_2O/day] \quad (24)$
4.3. Time-dependent calculations

Future scenarios were created for different H_2 production deployments over 30 years. The scenarios were based on a literature review of the transportation sector and a market analysis of H_2 deployment, which is included in 3.2. *Hydrogen in future heavy truck transportation*. The daily GHG emissions calculated in 4.2.5. *Emission summary*, were multiplied with 365 to get annual emissions for CO₂, CH₄ and N₂O. The annual GHG emissions of each colour were used to form the future scenarios, with different deployment rates of the H₂ colours.

The future scenarios were illustrating the diesel displacement with H_2 for heavy trucks. The deployment rate of H_2 was based on a market analysis with assumptions based on FCH JU (2019), IRENA (2020) and Navas-Anguita et al. (2020). When the future scenarios were formed, the impact on the global mean surface temperature change from the emissions were calculated and evaluated over a period of 100 years. The theory behind time-dependent calculations is included in appendix II, and future emission scenario vectors are included in appendix III.

4.4. Sensitivity analysis

A sensitivity analysis was performed to test the impact of different assumptions made in the thesis by changing one parameter at a time. The sensitivity parameters were chosen based on the results in table 4. First, the electricity source for H_2 production was changed, from the Nordic residual mix to hydro and wind power. Second, the CH₄ leakage rate was changed to half, double, and four times the leakage rate. Third, the CO₂ capture rate was changed from pre-combustion capture to post-combustion capture, and for both pre- and post-combustion capture.

5. Results and analysis

In this section, the mass and energy balances are presented, followed by the climate impact of different H_2 production processes. Further, the time-dependent results of implementing H_2 in the transportation sector are shown, and finally, the results of the sensitivity analysis are illustrated and explained.

5.1. Mass- and energy balances

The mass balances for the SMR and WGS processes are shown in figure 9, assuming 1 kg of CH₄ entering the reformer. The SMR process requires similar amounts of CH₄ and H₂O. However, the mass conversion of H₂ is only 19% whereas 81% is converted to CO. For the WGS process, H₂O is needed again to convert CO into H₂. For this process, only 4% becomes H₂ while 96% is converted into CO₂. If considering the total SMR and WGS process, H₂ only represents 16% of the total mass output from the system. The remaining output is composed of 84% CO₂, which illustrates the carbon intensity of the process.

Figure 9. Theoretical mass balance of the SMR-WGS process

The theoretical energy balances for the SMR and WGS processes are illustrated in figure 10. The SMR process is an endothermic reaction and requires a relatively high amount of external heat. The WGS process is slightly exothermic with some waste heat as by-product from the reaction. The energy content of H₂ in the SMR process is 72% of the energy input, and 28% is found in the CO. For the WGS process, 86% is converted into H₂ while 14% becomes waste heat. Considering the total SMR and WGS system, H₂ represents 96% of the total energy input, and only 4% becomes waste heat. Such characteristics illustrate the energy efficiency of the SMR-WGS process.

Figure 10. Theoretical energy balance of the SMR-WGS process

For AEL water-electrolysis, the theoretical mass balance is shown in figure 11, assuming 1 kg of H₂O as input. Only 10% of the mass input becomes H₂ while 90% becomes O₂. However, the theoretical electricity conversion efficiency is shown in the energy balance (figure 12) in which H₂ has an energy conversion efficiency of 72% while 28% becomes heat. Here, the high energy content of H₂ is illustrated.

H2O: 1.0 kg AEL: 1.0 kg	O2: 0.9 kg	El: 6.1 kWh	AEL: 6.1 kWh	H2: 4.4 kWh
	H2: 0.1 kg			heat: 1.7 kWh

Figure 11. Mass balance for green H₂.

Figure 12. Energy balance for green H₂.

5.2. Climate impact of H₂

Here, the climate impact of the H_2 colours and future scenarios are presented. The different fuels are compared to a diesel reference, based on their GWP₁₀₀. Further, the climate impact due to AGTP for different H_2 colours and the future scenarios are presented.

5.2.1. Comparison of H₂ colours

The carbon footprint of the different H₂ colours are presented in table 4. The values represent WTT emissions per produced kg H₂ before it has been used as fuel for the heavy truck transport. Grey H₂ contributes with most emissions due to using natural gas as feedstock. The sub processes show that the SMR process contributes with 84% to total emissions. The feedstock production of natural gas consists of 14% and transportation of LNG between Norway and Sweden only consists of 2% of the total CO₂-equivalents for grey H₂. Blue H₂ contributes with lower emissions than grey H₂ due to CCS implementation. For blue H₂, the SMR process contributes with 72% to total emissions, which is a result of the captured CO₂. For beige and orange

 H_2 , the GHG emissions are biogenic which is shown as negative emissions from the feedstock production and positive emissions from the SMR process. It is shown that both the biogas production and SMR process have large impacts on the total GWP for beige and orange H_2 . For green H_2 , the electricity source is shown to contribute with 100% of the impact. The impact that the different sub processes have on the total impact for each H_2 colour was used as a base to choose parameters for the sensitivity analysis.

[g CO ₂ -eq/kg H ₂]	Grey H ₂	Blue H ₂	Beige H ₂	Orange H ₂	Green H ₂
Total emissions	11.77	7.65	2.96	-1.16	0.83
Feedstock production	1.70	1.70	-6.91	-6.91	0.83
Transportations	0.18	0.46	-	0.28	-
SMR/ electrolysis	9.87	5.48	9.87	5.48	-

Table 4. Carbon footprints in CO_2 -equivalents from different H_2 colours. The total CO_2 -equivalents are first presented, followed by the emissions from the different processes.

The climate impact of the GHG emissions, using GWP₁₀₀ to convert gases to CO₂equivalents, is presented in figure 13. Data for WTW values and sources are included in appendix I. Heavy fuel cell (FC) trucks that are fuelled with grey H₂ have the highest GHG emissions of the assessed H₂ colours, with only 2% lower emissions than a conventional internal combustion (IC) diesel truck. Even though FCEVs result in large improvements for air quality due to their zero emissions characteristic in terms of climate impact, their benefits are marginal compared to IC diesel trucks. Larger improvements can be seen when adding CCS to the system. Heavy FC trucks fuelled with blue H₂ contributes with 36% lower emissions than a conventional diesel truck. If natural gas is replaced with biomethane, the emissions are reduced further, as beige H₂ emits approximately 75% less than a conventional diesel truck. Orange H₂ generates net-negative emissions and contributes to an emission reduction of approximately 110% compared to a diesel truck. This means that heavy FC trucks provide a service of removing CO₂ from the atmosphere while being on the road. Heavy FC trucks that are fuelled with green H₂ are close to being climate neutral with an emission reduction of approximately 95% compared to diesel trucks. However, this result is only valid for wind power as electric source in the green H₂ production. Even though heavy FC trucks have higher efficiencies than a conventional IC diesel truck, the production process of H₂ has a large influence on the overall climate impact.

Figure 13. GWP₁₀₀ values of diesel as reference fuel, compared to the different H₂ colours.

The temperature change for the assessed H₂ colours is illustrated in figure 14, for 30 years of H₂ production and evaluated over a 100 year time period. Both grey and blue H₂ contribute to a temperature increase that does not reach back to the initial temperature after 100 years. This is due to the additional carbon that grey and blue H_2 contribute with to the atmosphere. The temperature response from beige H_2 increases over the first 30 years and after that it decreases back to almost reach the initial temperature state. The temperature change from beige H₂ has a different behaviour than grey and blue H₂ which is a consequence of the high leakages of CH₄ from the biogas upgrading process. After 30 years, when the H₂ production process ends, the CH₄ emissions decompose relatively fast and do not affect the climate anymore. The temperature then begins to decrease back towards its initial temperature. Since orange H₂ is also affected by CH₄ leakages, the temperature response follows a similar pattern as for beige H_2 . However, the temperature decreases below its initial state after 30 years, which is a result of removing CO₂ from the atmosphere. For green H₂, the temperature response is only slightly affected due to small emissions from wind power production. Again, this result of climate neutrality that green H₂ provides is only valid when wind power is used as the electricity source.

Figure 14. Temperature responses for grey, blue, beige, orange and green H₂.

5.2.2. Future scenarios

The temperature changes of the future scenarios with H_2 implementation in the heavy truck transport are illustrated in figure 15. The temperature changes are evaluated over a 100 year time horizon, which is the response to the GHG emissions from H_2 during a 30 years operation period.

Figure 15. Temperature responses of the reference scenario and for five different future scenarios, including two extreme scenarios.

The reference scenario includes heavy conventional IC trucks fuelled with diesel only, while extreme scenario 1 shows grey H_2 implementation. The reference scenario and extreme scenario 1 show similar temperature responses throughout the 100 year period. It is not surprising that these two scenarios follow the same pattern as the carbon footprint of heavy IC diesel trucks and heavy FC trucks from grey H_2 are marginal, as seen in figure 13. From this result, extreme scenario 1 seems to be the worst-case scenario for H_2 implementation for heavy truck transportation.

Further, scenario 1 represents a natural gas dominant scenario, where diesel is displaced with grey and blue H₂. The temperature response is reduced with approximately 10% after 40 years and follows the same reduction throughout the 100 years period, compared to the reference scenario. The reduction is a consequence of the captured CO_2 that blue H_2 provides. The reduction in scenario 2 is larger compared to the reference scenario, which is due to beige and orange H_2 implementation. However, the highest share of beige and orange H₂ was calculated to cover only 10% of the total diesel share for heavy trucks in Sweden, which does not affect the temperature response significantly. After 40 years, the temperature increase starts to decline and after 100 years the temperature increase is approximately 12% lower than in the reference scenario. Scenario 3 represents a mix of all H₂ colours and could be the most likely case in Sweden. The share of green H₂ increases while blue H₂ decreases which results in a 21% temperature reduction compared to the reference scenario. The same pattern of temperature response follows throughout the 100 years period. When comparing scenario 2 and scenario 3 it is shown that a high share of green H₂ in combination with beige and orange H₂ contributes to lower climate impact than for H₂ production through SMR with natural gas.

Extreme scenario 2 represents diesel displacement with orange H_2 and the temperature response is seen to behave differently from the other scenarios. The first 30 years, the temperature increases rapidly and reaches a reduction of 22% compared to the reference scenario. However, after 38 years, the temperature begins to decline in a faster rate than the other scenarios and after 100 years it has reached a 30% reduction in temperature increase compared to the reference scenario. The behaviour of the temperature response for extreme scenario 2 is similar to orange H_2 in figure 14. The high CH_4 leakage that biogas production and upgrading emits decomposes relatively fast and does not impact on the climate anymore. That is when the temperature starts to decrease and move towards its initial temperature state. Extreme scenario 2 can be seen as the best-case scenario for H_2 implementation, due to the lowest AGTP. Although orange H_2 itself could contribute with negative temperature changes due to the bio-CCS technology, it does not reach negative emissions when it is implemented in combination with

diesel. This result shows the importance of combining H_2 implementation with other renewable fuels to phase out fossil diesel in a faster rate.

5.3. Sensitivity analysis

The results in table 4 show that feedstock production, including biomethane, natural gas and electricity, combined with the SMR process have large impacts on total emissions. The sensitivity of the system was calculated and represented in figure 16, 17 and 18, by changing electricity source, methane leakage for natural gas and biomethane production as well as CO₂ capture rate for the SMR process with CCS.

The thesis assumption of the electricity source represents the Nordic residual mix in the SMR process for grey, blue, beige and orange H_2 while the electrolytic process for green H_2 is produced from wind powered electricity. When changing the electricity source to the Nordic residual mix even for the electrolytic process, it shows to have an extremely high impact on green H_2 . A heavy FC truck fuelled with green H_2 from the Nordic residual electricity mix reaches emissions that are 53% higher than what a conventional diesel truck would emit. This parameter shows that the system of green H_2 is highly sensitive to the electricity source. However, the choice of electricity source used in the SMR process of grey, blue, beige and orange H_2 has a smaller impact.

Figure 16. The system's sensitivity of the electricity source, due to changes between the thesis assumption, the Nordic residual mix, and hydro power. Diesel is used as a reference parameter when comparing the emission output of the H_2 colours.

The sensitivity of the system due to CH₄ leakages in feedstock production of natural gas and biomethane is presented in figure 17. The most sensitive systems are beige and orange H₂ due to biomethane production. The negative emissions of orange H₂ increases when reducing the CH₄ leakages to 0.7%. If the CH₄ leakage rate approaches 3%, orange H₂ does no longer generate negative emissions. This consideration is important when promoting orange H₂ as a fuel that provides a service of negative emissions.

Figure 17. The system's sensitivity of CH_4 leakages in natural gas and biomethane production, due to changes between the thesis assumption of 1.4% leakage to 0.70% and 2.8%. Diesel is used as a reference when comparing the emission output of the H_2 colours.

The sensitivity of the system due to the performance of the CCS unit in connection to the SMR plant is shown in figure 18, where blue and orange H₂ are the only colours that are affected by this parameter. The thesis assumption represents CO₂ capture at the pre-combustion stream which covers 54% of the entire CO₂ emissions. However, if the CO₂ capture site is located at the post-combustion stream, the capture rate covers 36% of the total CO₂ emissions and orange H₂ does no longer generate negative emissions. If the CCS unit instead would cover CO₂ capture from both the pre- and post-combustion streams, 90% of the total CO₂ could be captured and the net-negative emissions will drop three times lower than for only pre-combustion capture. Even though blue and orange H₂ improve their climate impact when expanding the CO₂ capture rate, the economic costs increase with a more diluted CO₂ stream as well as with multiple CO₂ capture sites.

Figure 18. The system's sensitivity of CO_2 capture rate in the CCS process, due to changes between the thesis assumption to post-combustion capture and to pre- and post-combustion capture. Diesel is used as a reference when comparing the emission output of the H_2 colours.

6. Discussion

As a new energy market is about to develop due to H_2 implementation, the supply and demand must go hand in hand. The transportation sector faces challenges reducing its climate impact. Hydrogen as a fuel in FCEVs could potentially displace fossil fuels, with water as the only direct emission. However, there are only a few FCEVs on the market today, and the demand remains low. The low demand could be a result of low supply combined with poor infrastructure for fuel stations, which could contribute to an increased demand for BEVs instead. However, if the demand for FCEVs remains low, the supply will most likely remain low as well, which makes it challenging for H_2 to be implemented on the market.

The technology of producing H_2 is already developed, and as seen in this study, the climate impact varies a lot depending on production technology. However, the technology costs increase as the climate impact decreases, which is another challenge of implementing H_2 on the market. Grey H_2 is already at the state of commercialization and is the cheapest H_2 on the market, although it contributes with the highest emissions. If adding CCS to the H_2 production process, emissions decrease while prices increase. However, both grey and blue H_2 could work as bridge solutions to implement H_2 on the market. When the demand increases, the technology and investment prices will likely fall which could give space to more sustainable technologies such as beige, orange and green H_2 .

The most climate beneficial H₂ colours are orange and green H₂. Orange H₂ that are produced from biomethane meets limitations due to the biogas production. Also, biogas vehicles are already in commercial use, commonly as trucks or city buses, which makes biomethane based H₂ competitive with other biogas vehicles. However, the European commission has proposed a requirement of zero-emissions from the exhaust pipe of all cars by 2026 (Avfall Sverige 2021), which would threaten the development of biogas vehicles. If this proposal would go through, FCEVs fuelled with beige and orange H₂ could be a solution to continue the usage of the biogas that is available in Sweden. Another motivation for orange H_2 implementation could be if aid schemes for bio-CCS would be regulated. The Swedish Energy Agency (sv. Energimyndigheten) has proposed a framework of a reversed auction aid for bio-CCS. In the proposal, the reversed auction is planned to be implemented in 2022 and would work as an economic support for investments and operations of bio-CCS (Energimyndigheten 2021). If orange H_2 could expect to receive payments for its service of generating negative emissions, implementations could be motivated.

Green H_2 from renewable electricity was shown to be a climate neutral alternative as a fuel for the transportation sector. Although it is highly sensitive to the electricity source that is used, green H_2 can have further advantages of being connected to an intermittent power production plant. If green H_2 is connected to wind or solar power plants, it could produce H_2 from excess electricity and work as an energy storage to balance the electric grid. However, the expensive investment and operational costs of green H_2 challenge its implementation and support schemes are crucial for green H_2 development as well.

6.1. Sources of uncertainty

Several assumptions were made in this study which can cause uncertainties in the results. In the future scenarios, the total amount of H_2 was assumed to be produced in Uppsala, due to the transportation distances. Also, the truck transportation of LNG and captured CO₂ was calculated to be between 50-70 trucks per day. This result is not realistic and if multiple production sites as well as buffer storages would have been considered, the result would probably be more realistic. Another reason for the high number of daily trucks is because they were calculated to cover 100% of the diesel displacement in this study. Diesel displacement reaches 82% as the highest H_2 implementation rate. However, according to table 4, transportations do not have a large effect on the result which shows that this parameter does not have a major impact on uncertainty. Another source of uncertainty could come from the future scenarios, where no renewable diesel is considered. If fossil diesel would be mixed with other renewable fuels, the AGTP of the heavy truck transport from the different future scenarios would likely decrease.

6.2. Sustainability aspects

Biogas is considered a renewable energy source, and the CO_2 emissions are biogenic, being part of the fast carbon cycle. In this study, biogenic CO_2 emissions are calculated with GWP_{100} as zero. However, aspects such as growth time of a forest and the nutrition in the soil are affected by biogas production. Also, the CH₄ leakage from the biogas upgrading unit has been shown to have major impacts on the climate. The environmental sustainability of biogas production can vary a lot depending on the control of the CH₄ leakage that the biogas plants have.

Another sustainability consideration is the production capacity of the feedstock. The lowest climate impacts were seen from H_2 with biomethane as feedstock and wind powered electricity as energy source. Currently, the biogas production is limited by the organic waste which means that if all upgraded biogas is used for H_2

production, other processes that are fuelled with biogas would have to use other fuels. The sustainability aspect of beige and orange H_2 is therefore dependent on how other processes in the energy system will be affected by using biomethane as feedstock. Additionally, when displacing heavy diesel trucks in Sweden with a high share of green H_2 , the demand of renewable electricity increases. The increasing demand of electricity will require extensions of the current power grid and perhaps also new constructions of wind power, which can affect the sustainability of green H_2 .

The sustainability of CCS implementation is debated. While IEA (2021) expresses CCS as an important technology to reduce emissions and meet the global climate targets, Greenpeace claims that CCS cannot save the climate (Ash et al. 2015). Even though the debate is ongoing however CCS is seen as a sustainable solution or not, the technology can remove CO_2 from the atmosphere, which is crucial to reach the climate goals. On the other hand, CCS does not solve the problem itself, but only the consequences of it. However, we are currently at a point where urgent solutions must develop to counteract the climate changes and reach the climate goals, where CCS can be a key solution.

6.3. Future studies

This study provides a picture of how H_2 could contribute to a low-carbon transportation sector for heavy trucks. A suggestion for further investigations is to develop the future scenarios and include other renewable fuels such as FAME and HVO, and further assess the feasibility of electric roads for heavy trucks. If the diesel would be replaced with renewable fuels more rapidly, the emission profiles in the future scenarios could approach the net-zero target faster. Furthermore, it would be interesting to expand the scope and cover a larger part of the transportation sector, such as aviation and maritime transport.

Another suggestion of continuous studies is to assess the integration of CCS from the biogas upgrading unit, in combination with CO_2 capture from the SMR process. If CO_2 could be captured from both the biogas upgrading process and the H_2 production process, it could possibly result in a larger reduction of CO_2 from the atmosphere while net-negative emissions increase.

7. Conclusion

Hydrogen is a promising fuel for a future decarbonized transportation sector. Due to the high energy density of H₂, FCEVs do not require a heavy battery as for BEV, which makes H₂ a beneficial fuel for heavy truck transport. However, the production process can have a major impact on the environmental footprint of H₂. The CO₂-equivalent footprints due to the GWP₁₀₀ for grey H₂ is only 2% lower than for a conventional diesel truck. If CCS is implemented to the SMR unit, as for blue H₂, the GWP₁₀₀ is reduced by 36% compared to a diesel truck. When replacing natural gas with biomethane as feedstock, the emissions are reduced by 75%, as for beige H₂. If implementing CCS to the SMR process with biomethane as feedstock it becomes orange H₂ which results in net-negative emissions with a reduction of approximately 110% compared to a conventional diesel truck.

Grey and blue H_2 , which are fossil based, can be used in regions with low natural gas prices, or act as a bridge solution to implement H_2 on the market. Beige and orange H_2 are good alternatives in regions with high biogas production and high political acceptance of CCS. In Sweden, beige and orange H_2 can cover a maximum share of 10% within heavy truck transport, due to the limited biogas production. In regions with low electricity costs and high availability of wind or solar power, green H_2 is a good alternative. However, in a future energy system with H_2 implementation, it will most likely require a mix between SMR based and water-electrolysis production.

The temperature change on Earth can increase between $1.6 \cdot 10^{-15}$ to $1.8 \cdot 10^{-15}$ K/tonne-km depending on the mix of H₂ colours that are implemented in a future heavy truck sector. The future scenarios with H₂ implementation contribute to a reduction in the temperature increase between 9% to 21% depending on the mix of H₂ colours, compared to diesel trucks. The highest temperature increase comes from diesel displacement with grey and blue H₂ while the lowest temperature increase results from a mix between all H₂ colours, but with a high share of green H₂. Although H₂ implementation in the heavy truck transport can contribute to a reduced climate impact, it is necessary to combine H₂ with other renewable fuels, as the predicted H₂ capacity looks today. To reach the Swedish national target of net-zero emissions by 2045, a higher share of renewable fuels, together with H₂, is most likely necessary. Hydrogen will be a good alternative in combination with other renewable fuels.

References

- Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C. & Mazzotti, M. (2020). Hydrogen production from natural gas and biomethane with carbon capture and storage A techno-environmental analysis. *Sustainable Energy & Fuels*, 4 (6), 2967–2986. https://doi.org/10.1039/D0SE00222D
- Ardolino, F., Cardamone, G.F., Parrillo, F. & Arena, U. (2020). Biogas-tobiomethane upgrading: A comparative review and assessment in a life cycle perspective. *Elsevier Ltd.*, https://doi.org/10.1016/j.rser.2020.110588
- Ash, K., Rochon, E., Cheng, I., Cray, C., Wheeler, P. & Šmyth, J. (2015). Carbon Capture SCAM (CCS). Washington DC.
- Avfall Sverige (2021). *Taxonomin kan stoppa biogasfordon*. https://www.avfallsverige.se/aktuellt/nyhetsarkiv/artikel/taxonomin-kanstoppa-biogasfordon/ [2021-06-01]
- Barnett, P.J. (2010). Life Cycle Assessment (LCA) of Liquefied Natural Gas (LNG) and its environmental impact as a low carbon energy source. University of Southern Queensland: Faculty of Engineering and Surveying.
- Boëthius, G. (2020). Energimyndigheten. Övriga nät, tankställen och LNGterminaler. https://www.energimyndigheten.se/tryggenergiforsorjning/naturgas/ovriga-nat-tankstallen-och-lng-terminaler/ [2021-03-24]
- Boucher, O. & Reddy, M.S. (2008). Climate trade-off between black carbon and carbon dioxide emissions. *Energy Policy*, 36 (1), 193–200. https://doi.org/10.1016/j.enpol.2007.08.039
- Braga, L.B., Silveira, J.L., da Silva, M.E., Tuna, C.E., Machin, E.B. & Pedroso, D.T. (2013). Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis. *Renewable and Sustainable Energy Reviews*, 28, 166–173. https://doi.org/10.1016/j.rser.2013.07.060
- Collins, W.J., Fry, M.M., Yu, H., Fuglestvedt, J.S., Shindell, D.T. & West, J.J. (2013). Global and regional temperature-change potentials for near-term climate forcers. *Atmospheric Chemistry and Physics*, 13 (5), 2471–2485. https://doi.org/10.5194/acp-13-2471-2013
- Ecoinvent 3.7.1 (2020). Bbiogas purification to biomethane by pressure swing adsorption CH. [2021-04-28]
- Energimarknadsinspektionen (2020). *Residualmix 2019*. [text]. https://www.ei.se/bransch/ursprungsmarkning-av-el/residualmix [2021-05-03]
- Energimyndigheten (2017-09-02). *Naturgasnätet i Stockholmsområdet*. https://www.energimyndigheten.se/tryggenergiforsorjning/naturgas/naturgasnatet-i-stockholmsomradet/ [2021-02-19]
- Energimyndigheten (2020-02-05). Naturgas. https://www.energimyndigheten.se/trygg-energiforsorjning/naturgas/ [2021-02-23]
- Energimyndigheten (2021). Förslag på utformning av ett system för driftstöd, i form av omvänd auktionering eller fast lagringspeng, för avskiljning, infångning och lagring av koldioxid från förnybara källor (bio-CCS) Delredovisning. Delredovisning till Regeringskansliet (Miljödepartmentet), 54

- Engineering ToolBox (2003). Gases Densities. https://www.engineeringtoolbox.com/gas-density-d_158.html [2021-03-28]
- Engineering ToolBox (2005). *Fuel Gases Heating Values*. https://www.engineeringtoolbox.com/heating-values-fuel-gasesd 823.html [2021-04-12]
- Ericsson, N. (2014). TempCalc. Version: 1.1. Octave Software, Uppsala.
- European Commission (2020). A hydrogen strategy for a climate-neutral Europe. Brussels: COM(2020) 301 final. https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:52020DC0301&from=EN [2021-02-03]
- FCH2 JU & Berger, R. (2017). Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities. Brussels.
- Florio, C., Fiorentino, G., Corcelli, F., Ulgiati, S., Dumontet, S., Güsewell, J. & Eltrop, L. (2019). A Life Cycle Assessment of Biomethane Production from Waste Feedstock Through Different Upgrading Technologies. *Energies*, 12, 718. https://doi.org/10.3390/en12040718
- Formann, S., Hahn, A., Janke, L., Stinner, W., Sträuber, H., Logroño, W. & Nikolausz, M. (2020). Beyond Sugar and Ethanol Production: Value Generation Opportunities Through Sugarcane Residues. *Frontiers in Energy Research*, 8. https://doi.org/10.3389/fenrg.2020.579577
- Fuel Cells and Hydrogen Joint Undertaking (2019). Hydrogen Roadmap Europe: A sustainable pathway for the European Energy Transition. (doi:10.2843/341510). Luxembourg: Publication Office of the European Union.

https://www.fch.europa.eu/sites/default/files/Hydrogen%20Roadmap%20 Europe_Report.pdf [2021-02-03]

- Fuel Cells Works (2019). Fuel Cell Heavy Duty Trucks Already In Service And Providing Many CO2 Emission-Free Kilometers - Fuel Cells Works. https://fuelcellsworks.com/news/fuel-cell-heavy-duty-trucks-already-inservice-and-providing-many-co2-emission-free-kilometers/ [2021-05-03]
- Fuglestvedt, J.S., Shine, K.P., Berntsen, T., Cook, J., Lee, D.S., Stenke, A., Skeie, R.B., Velders, G.J.M. & Waitz, I.A. (2010). Transport impacts on atmosphere and climate: Metrics. *Atmospheric Environment*, 44 (37), 4648– 4677. https://doi.org/10.1016/j.atmosenv.2009.04.044
- Gode, J., Martinsson, F., Hagberg, L., Öman, A., Höglund, J. & Palm, D. (2011). Uppskattade emissionsfaktorer för bränslen, el, värme och transporter. Värmeforsk, 165
- Guinée, J.B., Heijungs, R., Huppes, G., Zamagni, A., Masoni, P., Buonamici, R., Ekvall, T. & Rydberg, T. (2011). Life Cycle Assessment: Past, Present, and Future. *Environmental Science & Technology*, 45 (1), 90–96. https://doi.org/10.1021/es101316v
- Göteborgs hamn (2021). Stora vinster med samverkan kring CCS. Pressmeddelande, https://www.goteborgshamn.se/press/pressmeddelanden/stora-vinster-

med-samverkan-kring-ccs/ [2021-05-30]

- Holmgren, M.A., Norregaard Hansen, M., Reinelt, T., Westerkamp, T., Jorgensen, L., Scheutz, C. & Delre, A. (2015). *Measurements of Methane Emissions* from Biogas Production. (158). Energiforsk.
- IEA (2019). *The Future of Hydrogen*. (Report prepared by the IEA for the G20, Japan). IEA Publications.
- IEA (2020a). *CCUS in clean energy transitions*. (Energy Technology Perspectives 2020). IEA Publications.
- IEA (2020b). *Outlook for biogas and biomethane*. IEA Publications. https://webstore.iea.org/outlook-for-biogas-and-biomethane [2021-02-11]

IEA (2021). Carbon capture, utilisation and storage - Fuels & Technologies. IEA. https://www.iea.org/fuels-and-technologies/carbon-capture-utilisationand-storage [2021-06-01]

IEAGHG (2010). Environmental evaluation of CCS using life cycle assessment (LCA). (2010/TR2). Cheltenham, UK: Orchard Business Centre.

IEAGHG (2017). Techno-Economic Evaluation of SMR Based Standalone (Merchant) Plant with CCS. Cheltenham, UK.

- IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. (Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. can der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://www.jstor.org/stable/10.2307/20033020?origin=crossref [2021-03-22]
- IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M Midgley (eds.)). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
- IRENA (2020). Green hydrogen: A guide to policy making. Abu Dhabi: International Renewable Energy Agency.
- Klackenberg, L. (2020). Biomethane in Sweden market overview & policies. Swedish Gas Association.
- Klimatpolitiska vägvalsutredningen (2020). Vägen till en klimatpositiv framtid. (SOU 2020:4). Stockholm: Statens offentliga utredningar.
- Kuczyński, S., Łaciak, M., Szurlej, A. & Włodek, T. (2020). Impact of Liquefied Natural Gas Composition Changes on Methane Number as a Fuel Quality Requirement. *Energies*, 13 (19), 5060. https://doi.org/10.3390/en13195060
- Laugen, L. (2013). An Environmental Life Cycle Assessment of LNG and HFO as Marine Fuels. Trondheim: Norwegian University of Science and Technology.
- Muralikrishna, I.V. & Manickam, V. (2017). Chapter Five Life Cycle Assessment. I: Muralikrishna, I.V. & Manickam, V. (red.) *Environmental Management*. Butterworth-Heinemann, 57–75. https://doi.org/10.1016/B978-0-12-811989-1.00005-1
- Navas-Anguita, Z., García-Gusano, D., Dufour, J. & Iribarren, D. (2020). Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport. *Applied Energy*, 259, 114121. https://doi.org/10.1016/j.apenergy.2019.114121
- Navas-Anguita, Z., García-Gusano, D., Dufour, J. & Iribarren, D. (2021). Revisiting the role of steam methane reforming with CO2 capture and storage for long-term hydrogen production. *Science of The Total Environment*, 771, 145432. https://doi.org/10.1016/j.scitotenv.2021.145432

Neste Corporation (2020). Neste Renewable Diesel Handbook. Espoo.

- Nikolaidis, P. & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. *Renewable and Sustainable Energy Reviews*, 67, 597–611. https://doi.org/10.1016/j.rser.2016.09.044
- Northern Lights CCS (2020). About the Longship project. Northern Lights. https://northernlightsccs.com/about-the-longship-project/ [2021-04-11]
- Pacific Northwest National Laboratory (n.d.). *Basic Hydrogen Properties* | *Hydrogen Tools*. https://h2tools.org/hyarc/hydrogen-data/basic-hydrogenproperties [2021-03-28]

- Riis, F. (2018). Norway CCS Demonstration Project: Evaluation Of Jurassic Reservoirs For Safe CO2 Injection And Storage. *Proceedings of Fifth CO2 Geological Storage Workshop*, Utrecht, Netherlands, november 21 2018. Utrecht, Netherlands. https://doi.org/10.3997/2214-4609.201802954
- Ringrose, P.S. (2018). The CCS hub in Norway: some insights from 22 years of saline aquifer storage. *Energy Procedia*, 146, 177–172. https://doi.org/10.1016/j.egypro.2018.07.021
- SCB, S. (2021). Utsläpp av växthusgaser från inrikes transporter efter växthusgas och transportslag. År 1990 - 2019. Statistikdatabasen. http://www.statistikdatabasen.scb.se/pxweb/sv/ssd/START_MI_MI010 7/MI0107InTransp/ [2021-04-13]
- SCCS (2021). *Global CCS Map*. https://www.sccs.org.uk/expertise/global-ccs-map [2021-03-30]
- Sea-distances (2021). SEA-DISTANCES.ORG Port Distances. https://seadistances.org/ [2021-04-29]
- SGU (2020-09-21). Carbon capture and storage (CCS). https://www.sgu.se/en/physical-planning/carbon-capture-and-storage-ccs/ [2021-03-30]
- Skagestad, R., Normann, F., Garðarsdóttir, S.Ó., Sundqvist, M., Anheden, M., Eldrup, N.H., Ali, H., Haugen, H.A. & Mathisen, A. (2017). CO2stCap -Cutting Cost of CO2 Capture in Process Industry. *Energy Procedia*, 114, 6303–6315. https://doi.org/10.1016/j.egypro.2017.03.1767
- Soltani, R., Rosen, M.A. & Dincer, I. (2014). Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production. *International Journal of Hydrogen Energy*, 39 (35), 20266–20275. https://doi.org/10.1016/j.ijhydene.2014.09.161
- Svenskt gastekniskt center (2012). Basdata om biogas. Malmö: Svenskt gastekniskt center.
- Thinkstep (2017). *Greenhouse Gas Intensity of Natural Gas.* (v. 1.0). Client: NGVA Europe.
- Timmerberg, S., Kaltschmitt, M. & Finkbeiner, M. (2020). Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas – GHG emissions and costs. *Energy Conversion and Management: X*, 7, 100043. https://doi.org/10.1016/j.ecmx.2020.100043
- Trafikanalys (2020a). Körsträckor 2019. Sveriges officiella statistik. https://www.trafa.se/globalassets/statistik/vagtrafik/korstrackor/2020/korst rackor_2019.pdf [2021-04-29]
- Trafikanalys (2020b). Transportarbete i Sverige 2000-2019. https://www.trafa.se/globalassets/statistik/transportarbete/transportarbete-2019.pdf? [2021-04-29]
- Trafikverket (2019). Handbok för vägtrafikens luftföroreningar. https://www.trafikverket.se/contentassets/3c85ef29f30b4f58aa895dc52efb b14a/handbok-for-vagtrafikens-luftfororeningar/kapitel-6-bilagoremissionsfaktorer-2017-2020-2030.pdf
- Trafikverket (2020a). PM Vägtrafikens utsläpp. https://www.trafikverket.se/contentassets/4d7dc2a6448e408e8a45a7a468e fff54/pm-vagtrafikens-utslapp-200224.pdf [2021-04-10]
- Trafikverket (2020-11-13). *Transportsektorns utsläpp*. *Trafikverket*. [text]. https://www.trafikverket.se/for-dig-i-branschen/miljo---for-dig-i-branschen/energi-och-klimat/Transportsektorns-utslapp/ [2021-04-10]
- Transportstyrelsen (2020). Bruttoviktstabeller Transportstyrelsen. https://www.transportstyrelsen.se/sv/vagtrafik/Yrkestrafik/Gods-ochbuss/Matt-och-vikt/Bruttoviktstabeller/ [2021-05-08]

- Trenberth, K.E. & Smith, L. (2005). The Mass of the Atmosphere: A Constraint on Global Analyses. *Journal of Climate*, 18 (6), 864–875. https://doi.org/10.1175/JCLI-3299.1
- Uppsala Vatten (2018). *Miljörapport 2018 Biogasanläggningen vid Kungsängens* gård. Uppsala. https://www.uppsalavatten.se/globalassets/dokument/omoss/rapporter-och-exjobb/miljorapporter/miljorapport-biogas-2018.pdf [2021-02-11]
- US EPA (2015-12-23). Overview of Greenhouse Gases. US EPA. [Overviews and Factsheets]. https://www.epa.gov/ghgemissions/overview-greenhouse-gases [2021-05-03]
- Valente, A., Iribarren, D. & Dufour, J. (2020). Prospective carbon footprint comparison of hydrogen options. *Science of The Total Environment*, 728, 138212. https://doi.org/10.1016/j.scitotenv.2020.138212
- Velazquez Abad, A. & Dodds, P.E. (2017). Production of Hydrogen. I: Abraham, M.A. (red.) *Encyclopedia of Sustainable Technologies*. Oxford: Elsevier, 293–304. https://doi.org/10.1016/B978-0-12-409548-9.10117-4
- Vätgas Sverige (2019-09-11). Vätgas inom transport. Vätgas Sverige. https://www.vatgas.se/faktabank/vatgas-som-fordonsbransle/ [2021-04-10]
- Zhang, X., Witte, J., Schildhauer, T. & Bauer, C. (2020). Life cycle assessment of power-to-gas with biogas as the carbon source. *Sustainable Energy & Fuels*, 2020 (4). https://doi.org/10.1039/c9se00986h

Appendix I: LCA calculations

The emission data and LCA calculations are presented in this section. Each process step in the hydrogen lifecycle is defined and GHG emissions are described.

Natural gas production

Properties					
Value	Unit	Description	Source		
46.5	MJ/kg	LHV natural gas (LNG)	Antonini 2020		
28	CO ₂ -eq	GWP CH ₄	IPCC 2013		
265	CO ₂ -eq	GWP N ₂ O	IPCC 2013		
Production data	1				
Value	Unit	Description	Source		
10.90	g CO ₂ -eq/MJ (LHV) g CO ₂ -eq/MJ	EU Central: CO ₂ emissions	Thinkstep 2017		
2.30	(LHV)	EU Central: CH ₄ emissions	Thinkstep 2017		
0.10	g CO ₂ -eq/MJ (LHV)	EU Central: N ₂ O emissions	Thinkstep 2017		
77%	-	GHG results of production, processing and liquefaction	Thinkstep 2017		
Emissions natur	ral gas productio	n			
Value	Unit	Description	Source		
0.39	kg CO ₂ -eq/kg	CO ₂ emissions from production, processing and liquefaction CH ₄ emissions from production, processing and	Calculation		
0.082	kg CO ₂ -eq/kg	liquefaction	Calculation		
0.0036	kg CO ₂ -eq/kg	liquefaction	Calculation		
Output natural gas					
Value	Unit	Description	Source		
			C-11-ti1		
3009059	kg NG/ d	Natural gas required for H2 production per day	Calculation		
3009059 1174359	kg NG∕ d kg CO₂⁄ d	CO ₂ emissions per day	Calculation ²		
3009059 1174359 8550	kg NG/ d kg CO ₂ / d kg CH ₄ / d	CO ₂ emissions per day CH4 emissions per day	Calculation ² Calculation ³		

⁴ ibid

 $^{^1}$ Calculation input for grey and blue H_2

² Calculated values are verified with Gode et al. (2011) and Barnett (2010)

³ ibid

Biogas production

Properites bioga	15		
Value	Unit	Description	Source
45.4	MJ/kg	LHV biomethane	Antonini 2020
97%	-	Fraction of CH4 in upgraded biogas	Uppsala Vatten 2018
1.4%	-	CH4 leakage rate	Holmgren et al. 2015
Biogas producti	on + upgrading		
Value	Unit	Description	Source
0.33	kWh/m ³ biogas	Mean value electricity consumption (PSA)	Calculation ⁵
0.00	kWh/m ³ biogas	Heat consumption (PSA)	ibid
1228653	m ³ biogas/d	Biogas needed to produce bioCH4	Calculation
1981698	kWh/d	Electricity consumption per day	Calculation
0.62	kg bioCH4/m ³ biogas	Biomethane produced	Florio et al. 2019
-11079873	kg CO ₂ /d	CO ₂ binded in biomass	Calculation, OrangeH2
Well-to-tank em	iissions		
Value	Unit	Description	Source
0.58	kg/m ³ biogas	CO2 emissions PSA upgrading	Florio et al. 2019 ⁶
0.015	kg/m ³ biogas	CH4 emissions PSA upgrading	ibid ⁷
0.00	kg/m ³ biogas	N ₂ O emissions PSA upgrading	ibid ⁸
38769	kg CH4/d	CH4 leakage	Calculation ⁹
Output biometh	ane		
Value	Unit	Description	Source
2854883	kg/d	Biomethane required for H ₂ production	Calculation ¹⁰
-6926044	kg CO ₂ /d	CO ₂ emissions per day	Calculation ¹¹
38769	kg CH4/d	CH4 emissions per day	Calculation ¹²
0.00	kg N ₂ O/d	N ₂ O emissions per day	Calculation ¹³

⁵ Calculation verified with Zhang et al. (2020) and Florio et al. (2019)

⁷ ibid

⁶ Data verified with Ecoinvent 3.7.1

⁸ Data verified with (Ardolino et al. 2020)

⁹ Calculation verified with Florio et al. (2019)

 $^{^{10}}$ Calculation input for beige and orange H_2

¹¹ Calculation verified with Gode et al. (2011) and Ecoinvent 3.7.1 (2020)

¹² Calculation verified with Gode et al. (2011) and (Ardolino et al. 2020)

¹³ ibid

Grey H₂

Properties				
Value	Unit	Description	Source	
16.043	u	Molecular mass CH ₄	Periodic table	
44.011	u	Molecular mass CO ₂	Periodic table	
55.50	MJ/kg	HHV CH4	Nikolaidis & Poullikkas (2017)	
141.90	MJ/kg	HHV H ₂	Nikolaidis & Poullikkas (2017) Pacific Northwest National	
0.084	kg/m ³	Density H ₂ at NTP	Laboratory (n.d.)	
1.84	kg/m ³	Density CO ₂ at NTP	Engineering ToolBox (2003)	

Inflow SMR

Value	Unit	Description	Source
78%	-	SMR conversion efficiency	Valente et al. (2020)
2769237	kg CH ₄ / d	CH4 required for x kg H ₂ /d	Calculation
3.3	kg CH4/ kg H2	CH ₄ / H ₂ ratio	Calculation
40	%	Fraction of natural gas to fuel	IEA (2019), Nikoaldis (2017)
60	%	Fraction of natural gas to feedstock	IEA (2019), Nikoaldis (2017)
3009059	kg NG/ d	Total amount of natural gas	Calculation
1203624	kg NG/ d	Amount of natural gas used as fuel	Calculation
1805435	kg NG/ d	Amount of natural gas used as feedstock	Calculation
92%	-	Fraction of methane in Norwegian LNG	Kucynski (2020)
2.6	kWh/kg H ₂	Electricity consumption	Valente (2020)

Outflow SMR

Value	Unit	Description	Source
844822.16	kg H ₂ / d	H ₂ production hypthetical plant	Assumption input (calculation)
60	%	Fraction of CO ₂ by feedstock	Antonini (2020)
40	%	Fraction of CO ₂ by fuel	Antonini (2020)
2.74	-	Combustion relation of CO2 from CH4	Calculation
7596888.66	kg CO ₂ / d	Total CO ₂ emissions from CH ₄	Calculation
4558133.19	kg CO ₂ / d	CO ₂ emissions from feedstock	Calculation
3038755.46	kg CO ₂ / d	CO ₂ emissions from fuel	Calculation
0.41	$m^3 \ CO_2/m^3 \ H_2$	Total CO ₂ emissions	Calculation
8.99	kg CO ₂ / kg H ₂	Total amount of CO2 per kg H2	Calculation
5.40	kg CO ₂ / kg H ₂	Post-combustion CO ₂ emissions	Calculation
3.60	$kg \; CO_2 \! / \; kg \; H_2$	Pre-combustion CO ₂ emissions	Calculation Energimarknadsinspektionen
0.34	kg CO ₂ -eq/ kWh	Emission factor residual mix 2019	(2020)

Total inflow

Value		Unit	Description	Source
	3009059	kg NG/ d	Total amount of natural gas	Calculation
	2196538	kWh/ d	Total electricity needed for SMR	Calculation

Total outflow

Value	Unit	Description	Source
844822	kg H ₂ / d	Produced H ₂	Calculation
8340461	kg CO ₂ / d	CO ₂ emissions	Calculation ¹⁴
0.00	kg CH4/ d	CH4 emissions	Calculation
0.00	kg N ₂ O/d	N ₂ O emissions	Calculation

Blue H₂

Same values as for grey H_2 are used but additionally, blue H_2 includes CO_2 capture. Data and calculations are provided in this section.

CCS inflo	W			
Value		Unit	Description	Source
	90	%	Fraction of CO ₂ captured by the plant	Skagestad et al. (2017)
	0.083	kWh/kg CO ₂	Thermal energy required	IEAGHG (2010)
	0.196	kWh/kg CO ₂	Electricity for CO ₂ capture and compression	ibid
45	58133	kg CO ₂ /d	CO ₂ emissions from feedstock	Calculation
CCS outfl	low			
Value		Unit	Description	Source
41	02320	$kg \ CO_2 \! / \ d$	Amount of CO ₂ captured per day	Calculation
	4.86	kg CO ₂ /kg H ₂	Amount of CO ₂ captured per kg H ₂	Calculation
	54	%	Fraction of CO ₂ captured related to total CO ₂ production	Calculation ¹⁵
Total inflo	DW			
Value		Unit	Description	Source
30	09059	kg NG/ d	Total amount of natural gas	Calculation
33	341085	kWh/ d	Total electricity needed for SMR + CCS	Calculation
Total outf	low			
Value		Unit	Description	Source
8	344822	$kg H_2/d$	Produced H ₂	Calculation
46	25593	kg CO ₂ / d	CO_2 emissions	Calculation
	0.00	kg CH4/ d	CH ₄ emissions	Calculation
	0.00	kg N ₂ O/d	N ₂ O emissions	Calculation

¹⁴ Calculation verified with Valente et al. (2020) and Nikolaidis & Poullikkas (2017)

¹⁵ Calculation verified with Antonini et al. (2020)

Beige and orange H₂

This section provides data and calculations for beige and orange H_2 , which follows the same calculations except that orange H_2 includes a CCS step.

Properties			
Value	Unit	Description	Source
16.043	u	Molecular mass CH ₄	Periodic table
44.011	u	Molecular mass CO ₂	Periodic table Nikolaidis & Poullikkas
55.50	MJ/kg	HHV CH4	(2017) Nikolaidis & Poullikkas
141.90	MJ/kg	HHV H ₂	(2017) Pacific Northwest National
0.084	kg/m ³	Density H ₂ at NTP	Laboratory (n.d.)
1.84	kg/m ³	Density CO ₂ at NTP	Engineering ToolBox (2003)
0.657	kg/m ³	Density CH ₄	Engineering ToolBox (2003)
0.2777777778	-	Conversion MJ -> kWh	
Share of beige/	orange H ₂		
Value	Unit	Description	Source
47%	-	Codigestion plants biogas Sweden	Klackenberg (2020)
35%	-	Wastewater treatment plants	ibid
2044	GWh	Produced biogas in Sweden per year	ibid
1676	GWh/year	Biogas available from codigestion + WWT	Calculation
108718703	kg/year	Available biogas per year	Calculation
297860	kg/d	Available biogas per day	Calculation
10	%	Share of beige/ orange H_2 to cover heavy truck Amount of H_2 required to cover diesel heavy	s Calculation
844822	kg H ₂ /d	trucks	Calculation
Inflow SMR			
Value	Unit	Description	Source
78	%	SMR conversion efficiency	Valente et al. (2020)
2769237	kg CH ₄ / d	CH4 required for x kg H2/d	Calculation
3.28	kg CH4/ kg H2	CH ₄ / H ₂ ratio	Calculation
40	%	Fraction of natural gas to fuel	IEA (2019), Nikoaldis (2017)
60	%	Fraction of natural gas to feedstock	IEA (2019), Nikoaldis (2017)
2854883	kg/ d	Total amount of biomethane	Calculation
1141953	kg/ d	Amount of biomethane used as fuel	Calculation
1712930	kg/ d	Amount of biomethane used as feedstock	Calculation
97	%	Fraction of methane in biomethane	Uppsala Vatten (2018)
2.6	kWh/kg H ₂	Electricity consumption	Valente (2020)

Outflow SMR			
Value	Unit	Description	Source
844822	kg H ₂ / d	Hydrogen production hypthetical plant	Assumption input
60	%	Fraction of CO ₂ by feedstock	Antonini (2020)
40	%	Fraction of CO ₂ by fuel	Antonini (2020)
2.74	-	Combustion relation of CO ₂ from CH ₄	Calculation
7596888.66	kg CO ₂ / d	Total CO ₂ emissions from CH ₄	Calculation
4558133.19	$kg \; CO_2 \! / \; d$	CO ₂ emissions from feedstock	Calculation
3038755.46	kg CO ₂ / d	CO ₂ emissions from fuel	Calculation
0.41	$m^3 \ CO_2\!/m^3 \ H_2$	Total CO ₂ emissions	Calculation
8.99	kg CO ₂ / kg H ₂	Total amount of CO2 per kg H2	Calculation
5.40	$kg \ CO_2 \! / \ kg \ H_2$	Post-combustion CO ₂ emissions	Calculation
3.60	kg CO ₂ / kg H ₂	Pre-combustion CO ₂ emissions	Calculation
0.34	kg CO ₂ -eq/ kWh	Emission factor residual mix 2019	Energimarknadsinspektionen (2020)
CCS inflow			
Value	Unit	Description	Source
90	%	Fraction of CO ₂ captured by the plant	Skagestad et al. (2017)
0.083	kWh/kg CO ₂	Thermal energy required	IEAGHG (2010)
0.196	kWh/kg CO ₂	Electricity for CO ₂ capture and compression	ibid
CCS outflow			
Value	Unit	Description	Source
4102320	kg CO ₂ / d	Amount of CO ₂ captured per day	Calculation
4.86	kg CO ₂ /kg H ₂	Amountt of CO ₂ captured per kg H ₂	Calculation
54	%	Fraction of CO ₂ captured related to total CO ₂ production	Calculated ¹⁶
Total inflow	T T 1 .		
Value		Description	Source
2854883	kg/ d	Total amount of biomethane	Calculation
3341085	kWh/d	l otal energy needed for SMR + CCS	Calculation
Total outflow			
Value	Unit	Description	Source
844877	kg Ha/ d	Produced H ₂	Calculation
4625503	$k_{\sigma} CO_{2}/d$	$CO_2 \text{ emissions}$	Calculation
025595	kg CH4/ d	CH ₄ emissions	Calculation
0.00	$k_{\rm g} = 0.114/{\rm d}$	NoQ emissions	Calculation
0.00	ng 1120/ u	1120 01115510115	

¹⁶ Calculation verified with Antonini et al. (2020)

Green H₂

Properties				
Value	Unit	Description	Source	
141.9	MJ/kg	HHV H ₂	Nikolaidis & Poullikkas (2017)	
39.4	kWh/kg H ₂	HHV H ₂	Engineering ToolBox (2003) Pacific Northwest National	
0.084	kg/m ³	Density H ₂ at NTP	Laboratory (n.d.)	
15.0	g/kWh el	CO ₂ emissions to air from wind power. WTT	Gode et al. (2011)	
0.00340	g/kWh el	CH4 emissions to air from wind power. WTT	ibid	
0.000500	g/kWh el	N ₂ O emissions to air from wind power. WTT	ibid	
5.70	g/kWh	CO2 emissions to air from hydropower. WTT	ibid	
0.00400	g/kWh	CH4 emissions to air from hydropower. WTT	ibid	
0.0000920	g/kWh g CO ₂ -eq/	N ₂ O emissions to air from hydropower. WTT	ibid	
338.52	kWh	Emission factor residual mix 2019	Energimarknadsinspektionen (2020)	

Inflow electrolyser

Value	Unit	Description	Source
54.18	kWh/kg H ₂	Electricity consumption	Valente et al. (2020)
45772465	kWh/d	Electricity required per day	Calculation
73	%	Electrolyser conversion efficiency	Calculation ¹⁷

Outflow electrolyser

Value	Unit	Description	Source
844822	kg H ₂ / d	Produced H ₂	Calculation
686587	kg CO ₂ / d	CO ₂ emissions	Calculation
156	kg CH4/ d	CH ₄ emissions	Calculation
23	kg N ₂ O/d	N ₂ O emissions	Calculation

¹⁷ Calculation verified with Valente et al. (2020)

Transportation

This section provides data and calculations for LNG and CO₂ transport on a round-way journey.

Value	Unit	Description	Source
6.7	g/MJ fuel	Bunker oil: CO ₂ emissions WWT	Gode et al. (2011)
0.073	g/MJ fuel	Bunker oil: CH4 emissions WWT	ibid
0.00015	g/MJ fuel	Bunker oil: N2O emissions WWT	ibid
79	g/MJ fuel	Bunker oil: CO2 emissions. TTW	ibid
0.00046	g/MJ fuel	Bunker oil: CH4 emissions. TTW	ibid
0.0036	g/MJ fuel	Bunker oil: N2O emissions. TTW	ibid
40.4	MJ/kg	LHV bunker oil	ibid
0.657	kg/m ³	Density CH ₄	Engineering ToolBox (2003)
7500	ton/ship	Size of ship	Gode et al. (2011)
0.205	MJ/ton-km	Fuel consumption	ibid
1418	nautical miles	Sea distance Risavika – Nynäshamn roundtrip	Sea-distances (2021)
19.5	knots	Average speed	Laugen (2013)
4037684	MJ fuel/ship	Fuel consumption	Calculation
3009059	kg LNG/d	LNG required for daily H ₂ production	Natural gas calculations
0.40	ships/d	Share of ships filled with LNG per day	Calculation
138830	kg/d	CO ₂ emissions per day (roundtrip)	Calculation
119	kg/d	CH4 emissions per day (roundtrip)	Calculation
6.1	kg/d	N ₂ O emissions per day (roundtrip)	Calculation

LNG: Ship Risavika port – Nynäshamn port

LNG: Truck Risavika port – Nynäshamn port

Value	Unit	Description	Source
6.32	g/MJ fuel	Diesel (5% RME): CO ₂ emissions WWT	Gode et al. (2011)
0.0328	g/MJ fuel	Diesel (5% RME): CH4 emissions WWT	ibid
0.00104	g/MJ fuel	Diesel (5% RME): N ₂ O emissions WWT	ibid
69.6	g/MJ fuel	Diesel (5% RME): CO ₂ emissions TTW	ibid
0.00050	g/MJ fuel	Diesel (5% RME): CH ₄ emissions TTW	ibid
0.0012	g/MJ fuel	Diesel (5% RME): N ₂ O emissions TTW	ibid
33.2	l/100 km	Fuel consumption diesel heavy truck	Trafikverket (2019)
43.1	MJ/kg fuel	LHV diesel (5% RME)	Gode et al. (2011)
0.85	kg/l	Density diesel	Neste Corporation (2020)
11.45	MJ/km	Fuel consumption	Calculation
225.96	kg CO ₂ /truck	CO ₂ emissions per truck	Calculation
0.099	kg CH4/truck	CH4 emissions per truck	Calculation
0.0067	kg N ₂ O/truck	N ₂ O emissions per truck	Calculation
260	km	Road distance Nynäshamn – Uppsala (roundtrip)	Google maps
60	tons/truck	Size of truck	Assumption
3009059	kg LNG/d	Amount of LNG transported per day	Natural gas calculations
50.2	trucks/d	Number of trucks per day	Calculation
11332	kg CO ₂ /d	CO2 emissions per day (roundtrip)	Calculation

4.97 kg CH ₄ /d	CH ₄ emissions per day (roundtrip)	Calculation
0.33 kg N ₂ O/d	N ₂ O emissions per day (roundtrip)	Calculation

CO2 transportation: Truck Uppsala - Gothenburg

Value	Unit	Description	Source
0.87	kg CO ₂ /km	CO ₂ emissions/ truck-km	Calculation based on LNG truck transport Calculation based on LNG truck
0.00038	kg CH4/km	CH4 emissions/ truck-km	transport Calculation based on LNG truck
0.000026	kg N ₂ O/km	N2O emissions/ truck-km	transport
912	km	Road distance Uppsala – Gothenburg (roundtrip)	Calculation
60	tons/truck	Size of truck	Assumption
4102320	kg CO ₂ / d	Amount of CO ₂ captured per day	Calculation
68	trucks/d	Number of trucks per day	Calculation
54191.93	kg CO ₂ /d	CO2 emissions per day (roundtrip)	Calculation
23.77	kg CH ₄ /d	CH4 emissions per day (roundtrip)	Calculation
1.60	kg N ₂ O/d	N2O emissions per day (roundtrip)	Calculation

CO2 transportation: Ship Gothenburg - Bergen

Value	Unit	Description	Source
700	nautical miles	Sea distance (roundtrip)	Sea-distances (2021)
6.7	g/MJ fuel	Bunker oil: CO2 emissions to air WTT	Gode et al. (2011)
0.073	g/MJ fuel	Bunker oil: CH4 emissions to air WTT	ibid
0.00015	g/MJ fuel	Bunker oil: N2O emissions to air WTT	ibid
79	g/MJ fuel	Bunker oil: CO2 emissions to air TTW	ibid
0.00046	g/MJ fuel	Bunker oil: CH4 emissions to air TTW	ibid
0.0036	g/MJ fuel	Bunker oil: N2O emission to air TTW	ibid
1993215	MJ fuel/ship	Fuel consumption per ship (roundtrip)	Calculation
170818	kg CO ₂ /d	CO ₂ emissions per day (roundtrip)	Calculation
146	kg CH4/d	CH4 emissions per day (roundtrip)	Calculation
7.5	kg N ₂ O/d	N ₂ O emissions per day (roundtrip)	Calculation

Summary

In this section, all emissions from the previous sections are summarized.

Grey H2			
Value	Unit	Description	Source
1174359	kg CO ₂ /d	CO2 emissions from natural gas production	Natural Gas production
150162	kg CO ₂ /d	CO2 emissions from LNG transport	Transportation
8340461	kg CO ₂ /d	CO ₂ emissions from SMR process	Grey H ₂
9664982	kg CO ₂ /d	Total CO ₂ emissions per day	Calculation
11.44	kg CO ₂ /kg H ₂	CO ₂ emissions per produced kg H ₂	Calculation
8850	kg CH4/d	CH4 emissions from natural gas production	Natural Gas production
124	kg CH ₄ /d	CH4 emissions from LNG transport	Transportation
0.00	kg CH4/d	CH4 emissions from SMR process	Grey H ₂
8974	kg CH ₄ /d	Total CH ₄ emissions per day	Calculation
0.011	kg CH4/kg H2	CH4 emissions per produced kg H2	Calculation
40.66	kg N ₂ O/d	N2O emissions from natural gas production	Natural Gas production
6.4	kg N ₂ O/d	N ₂ O emissions from LNG transport	Transportation
0.00	kg N ₂ O/d	N ₂ O emissions from SMR process	Grey H ₂
47	kg N ₂ O/d	Total N ₂ O emissions per day	Calculation
0.000056	kg N ₂ O/kg H ₂	N2O emissions per produced kg H2	Calculation
9946674	kg CO ₂ -eq/d	GWP for grey H ₂ per day	Calculation
12	kg CO ₂ -eq/kg H ₂	GWP for grey H ₂ per kg H ₂	Calculation
Blue H2			
Value	Unit	Description	Source
1174359	kg CO ₂ /d	CO2 emissions from natural gas production	Natural Gas production
150162	kg CO ₂ /d	CO2 emissions of LNG transport	Transportation
4625593	kg CO ₂ /d	CO ₂ emissions from SMR + CCS process	Blue H2
225011	kg CO ₂ /d	CO2 emissions of CO2 transport	Transportation
6175124	kg CO ₂ /d	Total CO ₂ emissions per day	Calculation
7.3	kg CO ₂ /kg H ₂	CO_2 emissions per produced kg H ₂	Calculation
8850	kg CH4/d	CH4 emissions from natural gas production	Natural Gas production
124	kg CH4/d	CH4 emissions from LNG transport	Transportation
0.00	kg CH4/d	CH ₄ emissions from SMR + CCS process	Blue H ₂
170	kg CH4/d	CH4 emissions of CO2 transport	Transportation
9144	kg CH4/d	Total CH4 emissions per day	Calculation
0.0011	kg CH4/kg H2	CH4 emissions per produced kg H2	Calculation
41	kg N ₂ O/d	N2O emissions from natural gas production	Natural Gas production
6.4	kg N ₂ O/d	N ₂ O emissions from LNG transport	Transportation
0.00	kg N ₂ O/d	N ₂ O emissions from SMR + CCS process	Blue H ₂

 9.1	kg N ₂ O/d	N ₂ O emissions of CO2 transpor	Transportation
47	kg N ₂ O/d	Total N ₂ O emissions per day	Calculation
0.000056	kg N ₂ O/kg H ₂	N ₂ O emissions per produced kg H ₂	Calculation
6443634	kg CO ₂ -eq/d	GWP for blue H ₂ per day	Calculation
7.7	kg CO ₂ -eq/kg H ₂	GWP for blue H ₂ per kg H ₂	Calculation

Beige H2

Value	Unit	Value	Source
-6926044	kg CO ₂ /d	CO2 emissions from biogas production	Biogas production
8340461	kg CO ₂ /d	CO ₂ emissions from SMR process	Beige H ₂
1414416	kg CO ₂ /d	Total CO ₂ emissions per day	Calculation
1.7	kg CO ₂ /kg H ₂	CO ₂ emissions per produced kg H ₂	Calculation
38769	kg CH4/d	CH4 emissions from natural gas production	Biogas production
0.00	kg CH4/d	CH ₄ emissions from SMR process	Beige H ₂
38769	kg CH4/d	Total CH4 emissions per day	Calculation
0.046	kg CH4/kg H2	CH4 emissions per produced kg H2	Calculation
0.00	kg N ₂ O/d	N2O emissions from natural gas production	Biogas production
0.00	kg N ₂ O/d	N ₂ O emissions from SMR process	Beige H ₂
0.00	kg N ₂ O/d	Total N ₂ O emissions per day	Calculation
0.00	kg N2O/kg H2	N ₂ O emissions per produced kg H ₂	Calculation
2499957	kg CO ₂ -eq/d	GWP for beige H ₂ per day	Calculation
3.0	kg CO ₂ -eq/kg H ₂	GWP for beige H ₂ per kg H ₂	Calculation

Orange H2

Value	Unit	Value	Unit
-6926044	kg CO ₂ /d	CO2 emissions from biogas production	Biogas production
4625593	kg CO ₂ /d	CO ₂ emissions from SMR + CCS process	Orange H ₂
225011	kg CO ₂ /d	CO ₂ emissions of CO ₂ transport	Transportation
-2075441	kg CO ₂ /d	Total CO ₂ emissions per day	Calculation
-2.5	kg CO ₂ /kg H ₂	CO ₂ emissions per produced kg H ₂	Calculation
38769	kg CH4/d	CH4 emissions from natural gas production	Biogas production
0.00	kg CH4/d	CH4 emissions from SMR + CCS process	Orange H ₂
170	kg CH ₄ /d	CH ₄ emissions of CO ₂ transport	Transportation
38940	kg CH4/d	Total CH4 emissions per day	Calculation
0.046	kg CH4/kg H2	CH4 emissions per produced kg H2	Calculation
0.00	kg N ₂ O/d	N ₂ O emissions from biogas production	Biogas production
0.00	kg N ₂ O/d	N ₂ O emissions from SMR + CCS process	Orange H ₂
9.1	kg N ₂ O/d	N2O emissions of CO2 transport	Transportation
9.1	kg N ₂ O/d	Total N ₂ O emissions per day	Calculation
0.000011	kg N ₂ O/kg H ₂	N ₂ O emissions per produced kg H ₂	Calculation

-982730	kg CO ₂ -eq/d	GWP for Orange H ₂ per day	Calculation
-1.2	kg CO ₂ -eq/kg H ₂	GWP for Orange H ₂ per kg H2	Calculation

Value	Unit	Value	Unit
686587	kg CO ₂ /d	CO ₂ emissions from required electricity	Green H ₂
686587	kg CO ₂ /d	Total CO ₂ emissions per day	Calculation
0.81	kg CO ₂ /kg H ₂	CO ₂ emissions per produced kg H ₂	Calculation
156	kg CH4/d	CH4 emissions from required electricity	Green H ₂
156	kg CH4/d	Total CH4 emissions per day	Calculation
0.00018	kg CH4/kg H2	CH ₄ emissions per produced kg H ₂	Calculation
23	kg N ₂ O/d	N2O emissions from required electricity	Green H ₂
23	kg N ₂ O/d	Total N ₂ O emissions per day	Calculation
0.000027	kg N ₂ O/kg H ₂	N ₂ O emissions per produced kg H ₂	Calculation
697009	kg CO ₂ -eq/d	GWP for Green H ₂ per day	Calculation
0.83	kg CO ₂ -eq/kg H ₂	GWP for Green H ₂ per kg H ₂	Calculation

Fuelling and driving vehicles

In this section, data and calculations for the usage of H_2 as a fuel in heavy FC trucks are presented. A conventional IC diesel truck is used as a reference.

Heavy truck				
Value	Unit	Description	Source	
8.0	kg H ₂ /100 km	Fuel consumption heavy-duty FC truck	Assumption ¹⁸	
33.2	l/ 100 km	Fuel consumption heavy-duty diesel truck	Trafikverket (2019)	
4 176 057 550	km/ year	Distance driven heavy trucks, Sweden 2019	Trafikanalys (2020a)	
334 084 604	kg H ₂ / year	Annual fuel consumption FC heavy trucks	Calculation	
915 300	kg H ₂ / day	Daily fuel consumption FC heavy trucks	Calculation	
92.3	%	Share of diesel withing heavy truck sector	Trafikverket (2020a)	
40 108 000 000	tonne-km/year	Traffic performance by heavy truck, 2019	Trafikanalys (2020b)	
844 822	kg H ₂ / day	kg H2 to cover diesel share of heavy trucks	Calculation <- input for H2 production	
Emission diesel				
Value	Unit	Value	Unit	
6.32	g/MJ fuel	Diesel (5% RME): CO ₂ emissions to air WTT	(Gode et al. 2011)	
0.0328	g/MJ fuel	Diesel (5% RME): CH4 emissions to air WTT	ibid	
0.00104	g/MJ fuel	Diesel (5% RME): N ₂ O emissions to air WTT	ibid	
69.6	g/MJ fuel	Diesel (5% RME): CO ₂ emissions to air TTW	ibid	
0.000500	g/MJ fuel	Diesel (5% RME): CH4 emissions to air TTW	ibid	
0.00120	g/MJ fuel	Diesel (5% RME): N ₂ O emissions to air TTW	ibid	
3137.7	kt CO ₂ /year	Diesel: CO ₂ emissions heavy truck	SCB (2021)	
4.1	ton CH ₄ /year	Diesel: CH4 emissions heavy truck	ibid	
220.2	ton N ₂ O/year	Diesel: N2O emissions heavy truck	ibid	
3629343009	kg CO ₂ /year	CO ₂ emissions diesel WTW	Calculation ¹⁹	
1591901	kg CH4/year	CH4 emissions diesel WTW	Calculation ²⁰	
107083	kg N ₂ O/year	N ₂ O emissions diesel WTW	Calculations ²¹	
3702293186	kg CO ₂ -eq/year	GWP for diesel emissions	Calculation	
GWP for different fuels				
Value	Unit	Description	Source	
0.000	1 60 / 1	$\mathbf{D}' = 1 + 1$	G 1 1 C	

Unit	Description	Source
kg CO ₂ -eq/tonne-km	Diesel truck	Calculation
kg CO ₂ -eq/tonne-km	Grey H ₂ fuel cell truck	Calculation
kg CO ₂ -eq/tonne-km	Blue H ₂ fuel cell truck	Calculation
kg CO ₂ -eq/tonne-km	Beige H ₂ fuel cell truck	Calculation
kg CO ₂ -eq/tonne-km	Orange H ₂ fuel cell truck	Calculation
kg CO ₂ -eq/tonne-km	Green H ₂ fuel cell truck	Calculation
	Unit kg CO ₂ -eq/tonne-km kg CO ₂ -eq/tonne-km kg CO ₂ -eq/tonne-km kg CO ₂ -eq/tonne-km kg CO ₂ -eq/tonne-km	UnitDescriptionkg CO2-eq/tonne-kmDiesel truckkg CO2-eq/tonne-kmGrey H2 fuel cell truckkg CO2-eq/tonne-kmBlue H2 fuel cell truckkg CO2-eq/tonne-kmBeige H2 fuel cell truckkg CO2-eq/tonne-kmOrange H2 fuel cell truckkg CO2-eq/tonne-kmGreen H2 fuel cell truck

¹⁸ Assumption is based on data from sources FCH2 JU & Berger (2017) and Fuel Cells Works (2019)

- ²⁰ ibid
- ²¹ ibid

¹⁹ Calculations based on data from Gode et al. (2011), verified with SCB (2021)

Appendix II: Time dependent climate impact

In this section, calculations and simulations for the time dependent LCA are presented. These are the equations implemented in the Octave Software, as well as the relevant variables and coefficients.

Absolute Temperature Change Potential (AGTP)

The following equations express the absolute global temperature change potential (AGTP) of the greenhouse gases CO₂, CH₄ and N₂O. The following equations were calculated in Octave Software, in a script by Ericsson (2014). The AGTPs for CO₂, CH₄ and N₂O were expressed in [K/kg] and calculated through equations 25, 26 and 27 (Collins et al. 2013).

$$AGTP^{CO2}(t) = RE^{CO2} \sum_{j=1}^{2} \left\{ a_0 c_j \left(1 - e^{-\frac{t}{d_j}} \right) + \sum_{i=1}^{3} \frac{a_i \alpha_i^{CO_2} c_j}{\alpha_i^{CO_2} - d_j} \left(e^{-\frac{t}{\alpha_i^{CO_2}}} - e^{-\frac{t}{d_j}} \right) \right\}$$
(25)

$$AGTP^{CH}(t) = RE^{CH4} \sum_{j=1}^{2} \left\{ \frac{\alpha^{CH_4} c_j}{\alpha^{CH_4} - d_j} \left(e^{-\frac{t}{\alpha^{CH_4}}} - e^{-\frac{t}{d_j}} \right) \right\}$$
(26)

$$AGTP^{N20}(t) = RE^{N20} \sum_{j=1}^{2} \left\{ \frac{\alpha^{N_20} c_j}{\alpha^{N_20} - d_j} \left(e^{-\frac{t}{\alpha^{N_20}}} - e^{-\frac{t}{d_j}} \right) \right\}$$
(27)

Coefficients of c_j and d_j are parameters of the impulse response functions (Boucher & Reddy 2008). Coefficients of a_{0-3} are unitless and α_{1-3}^{CO2} , α^{CH4} and α^{N20} represent the emission response timescales in years (Collins et al. 2013). Response coefficients are shown in table 4.

parameter	j, i = 0	j, i = 1	j, i = 2	j, i = 3	unit	source
ai	0.2173	0.2240	0.2824	0.2763	-	(IPCC 2013)
Cj	-	0.631	0.429	-	K/Wm ²	(Boucher & Reddy 2008)
dj	-	8.4	409.5	-	years	(Boucher & Reddy 2008)
α_{1-3}^{CO2}	-	394.4	36.54	4.304	years	(IPCC 2013)
α^{CH4}	-	12.4	12.4	-	years	(IPCC 2013)
α^{N2O}	-	121.0	121.0	-	years	(IPCC 2013:2)

Table 5. Response coefficients

The time horizon is expressed as a vector t, representing the evaluated time interval which is 100 years for this study. The radiative efficiencies of CO₂, CH₄ and N₂O respectively, are expressed as RE^{CO2} , RE^{CH4} and RE^{N2O} , equations 28, 29 and 30 (Ericsson 2014).

$$RE^{CO2} = \frac{\Delta F^{CO2}}{f_{co}} \quad [W/m^2 kg]$$
⁽²⁸⁾

$$RE^{CH4} = \Delta F^{CH4} \cdot \frac{1 + f_1 + f_2}{f_{CH_4}} \quad [W/m^2 kg]$$
(29)

$$RE^{N20} = \frac{\Delta F^{N20}}{f_{N20}} \quad [W/m^2 kg]$$
(30)

Methane affects the ozone and stratospheric water, which is expressed in parameters of f_1 and f_2 , table 5. ΔF^{CO2} , ΔF^{CH4} and ΔF^{N2O} are the emission volumes of CO₂, CH₄ and N₂O respectively, expressed in equations 31, 32 and 33 (IPCC 2001).

$$\Delta F^{CO2} = \alpha_C \cdot \ln \frac{c}{c_0} \quad [W/m^2] \tag{31}$$

$$\Delta F^{CH4} = \alpha_m \cdot \left(\sqrt{M} - \sqrt{M_0}\right) - \left(f(M, N_0) - f(M_0, N_0)\right) \quad [W/m^2]$$
(32)

$$\Delta F^{N20} = \alpha_n \cdot \left(\sqrt{N} - \sqrt{N_0}\right) - \left(f(M_0, N) - f(M_0, N_0)\right) \quad [W/m^2]$$
(33)

Following function (34) represents the function of CH_4 and N_2O concentrations (IPCC 2001), and values from table 5 are used.

$$f(M,N) = 0.47 \cdot \ln\left[1 + 2.01 \cdot 10^{-5} (MN)^{0.75} + 5.31 \cdot 10^{-15} M (MN)^{1.52}\right] \quad (34)$$

To convert volume to kg gas, the following help functions are needed for f_{CO2} , f_{CH4} and f_{N2O} respectively, equations 35, 36 and 37 (Ericsson 2014), with values from table 5.

$$f_{CO} = \frac{T_m / 1000000}{M_{air} \cdot M_{CO} \cdot (C - C_0)}$$
(35)

$$f_{CH4} = \frac{T_m/1000000}{M_{air} \cdot M_{CH} \cdot (M - M_0)}$$
(36)

$$f_{N20} = \frac{T_m/1000000}{M_{air} \cdot M_{N20} \cdot (N - N_0)}$$
(37)

Table 6. Parameters for time-dependent calculations.

parameter	value	unit	description	source
\mathbf{f}_1	0.5	-	CH ₄ effect on ozone	(IPCC 2013)
\mathbf{f}_2	0.15	-	CH ₄ effect on stratospheric water	(IPCC 2013)
C ₀	391	ppm	CO ₂ concentration	(IPCC 2013)
С	392	ppm	New CO ₂ concentration	(IPCC 2013)
\mathbf{M}_{0}	1803	ppb	CH ₄ concentration	(IPCC 2013)
Μ	1804	ppb	New CH ₄ concentration	(IPCC 2013)
No	324	ppb	N ₂ O concentration	(IPCC
				2013:2)
Ν	325	ppb	New N ₂ O concentration	(IPCC 2013)
ac	5.35	unitless	Constant for CO ₂	(IPCC 2001)
$\alpha_{\rm m}$	0.036	unitless	Constant for CH ₄	(IPCC 2001)
α _n	0.12	unitless	Constant for N ₂ O	(IPCC
				2001:20)
Mco2	44.0098	g/mol	Molecular weight of CO ₂	
M _{CH4}	16.0428	g/mol	Molecular weight of CH ₄	
M _{N2O}	44.0129	g/mol	Molecular weight of N ₂ O	
Mair	28.97	g/mol	Molecular weight of air	
T _m	5.1352·10 ¹⁸	kg	Mean dry mass value of	(Trenberth &
			atmosphere	Smith 2005)

Appendix III: Future scenarios

Emission vectors for the reference scenario, scenario 1, scenario 2, scenario 3, extreme 1 and extreme 2 are demonstrated in this section. For the reference scenario, only diesel fuel with 5% RME is used to cover the diesel share of the domestic heavy truck transport.

	Reference scenario				
Year	kg CO2/tonne-km	kg CH4/tonne-km	kg N2O/tonne-km	Diesel share	
2020	0.090	0.000040	0.0000027	100%	
2021	0.090	0.000040	0.0000027	100%	
2022	0.090	0.000040	0.0000027	100%	
2023	0.090	0.000040	0.0000027	100%	
2024	0.090	0.000040	0.0000027	100%	
2025	0.090	0.000040	0.0000027	100%	
2026	0.090	0.000040	0.0000027	100%	
2027	0.090	0.000040	0.0000027	100%	
2028	0.090	0.000040	0.0000027	100%	
2029	0.090	0.000040	0.0000027	100%	
2030	0.090	0.000040	0.0000027	100%	
2031	0.090	0.000040	0.0000027	100%	
2032	0.090	0.000040	0.0000027	100%	
2033	0.090	0.000040	0.0000027	100%	
2034	0.090	0.000040	0.0000027	100%	
2035	0.090	0.000040	0.0000027	100%	
2036	0.090	0.000040	0.0000027	100%	
2037	0.090	0.000040	0.0000027	100%	
2038	0.090	0.000040	0.0000027	100%	
2039	0.090	0.000040	0.0000027	100%	
2040	0.090	0.000040	0.0000027	100%	
2041	0.090	0.000040	0.0000027	100%	
2042	0.090	0.000040	0.0000027	100%	
2043	0.090	0.000040	0.0000027	100%	
2044	0.090	0.000040	0.0000027	100%	
2045	0.090	0.000040	0.0000027	100%	
2046	0.090	0.000040	0.0000027	100%	
2047	0.090	0.000040	0.0000027	100%	
2048	0.090	0.000040	0.0000027	100%	
2049	0.090	0.000040	0.0000027	100%	
2050	0.090	0.000040	0.0000027	100%	
	Scenario 1				
------	-----------------	-----------------	-----------------	---------------------	---------------------
Year	kg CO2/tonne-km	kg CH4/tonne-km	kg N2O/tonne-km	Grey H ₂	Blue H ₂
2020	0.090	0.000040	0.0000027	100%	0%
2021	0.090	0.000040	0.0000027	100%	0%
2022	0.090	0.000040	0.0000026	100%	0%
2023	0.090	0.000041	0.0000026	90%	10%
2024	0.090	0.000041	0.0000026	80%	20%
2025	0.090	0.000042	0.0000026	70%	30%
2026	0.090	0.000042	0.0000026	60%	40%
2027	0.089	0.000042	0.0000025	50%	50%
2028	0.089	0.000043	0.0000025	40%	60%
2029	0.089	0.000043	0.0000025	30%	70%
2030	0.088	0.000043	0.0000025	20%	80%
2031	0.088	0.000044	0.0000025	10%	90%
2032	0.087	0.000044	0.0000024	0%	100%
2033	0.086	0.000045	0.0000024	0%	100%
2034	0.086	0.000046	0.0000024	0%	100%
2035	0.085	0.000046	0.0000023	0%	100%
2036	0.085	0.000047	0.0000023	0%	100%
2037	0.084	0.000048	0.0000022	0%	100%
2038	0.083	0.000049	0.0000022	0%	100%
2039	0.082	0.000050	0.0000021	0%	100%
2040	0.081	0.000051	0.0000021	0%	100%
2041	0.080	0.000053	0.0000020	0%	100%
2042	0.079	0.000054	0.0000019	0%	100%
2043	0.078	0.000056	0.0000018	0%	100%
2044	0.076	0.000058	0.0000017	0%	100%
2045	0.074	0.000060	0.0000016	0%	100%
2046	0.073	0.000062	0.0000015	0%	100%
2047	0.070	0.000065	0.0000014	0%	100%
2048	0.068	0.000068	0.0000012	0%	100%
2049	0.065	0.000072	0.0000010	0%	100%
2050	0.062	0.000075	0.0000083	0%	100%

	Scenario 2						
Year	kg CO ₂ /tonne-	kg CH ₄ /tonne-	kg N ₂ O/tonne-	Grey	Blue	Beige	Orange
	km	km	km				
2020	0.090	0.000040	0.0000027	90%	0%	10%	0%
2021	0.090	0.000040	0.0000027	90%	0%	10%	0%
2022	0.090	0.000041	0.0000026	90%	0%	10%	0%
2023	0.090	0.000041	0.0000026	80%	10%	5%	5%
2024	0.090	0.000042	0.0000026	60%	30%	5%	5%
2025	0.089	0.000043	0.0000026	20%	70%	5%	5%
2026	0.088	0.000043	0.0000026	0%	90%	0%	10%
2027	0.088	0.000044	0.0000025	0%	90%	0%	10%
2028	0.088	0.000045	0.0000025	0%	90%	0%	10%
2029	0.087	0.000045	0.0000025	0%	90%	0%	10%
2030	0.087	0.000046	0.0000025	0%	90%	0%	10%
2031	0.086	0.000046	0.0000025	0%	90%	0%	10%
2032	0.086	0.000047	0.0000024	0%	90%	0%	10%
2033	0.085	0.000048	0.0000024	0%	90%	0%	10%
2034	0.085	0.000049	0.0000024	0%	90%	0%	10%
2035	0.084	0.000050	0.0000023	0%	90%	0%	10%
2036	0.083	0.000052	0.0000023	0%	90%	0%	10%
2037	0.083	0.000053	0.0000022	0%	90%	0%	10%
2038	0.082	0.000055	0.0000022	0%	90%	0%	10%
2039	0.081	0.000056	0.0000021	0%	90%	0%	10%
2040	0.079	0.000058	0.0000021	0%	90%	0%	10%
2041	0.078	0.000061	0.0000020	0%	90%	0%	10%
2042	0.077	0.000063	0.0000019	0%	90%	0%	10%
2043	0.075	0.000066	0.0000018	0%	90%	0%	10%
2044	0.073	0.000069	0.0000017	0%	90%	0%	10%
2045	0.071	0.000073	0.0000016	0%	90%	0%	10%
2046	0.069	0.000077	0.0000015	0%	90%	0%	10%
2047	0.066	0.000081	0.0000013	0%	90%	0%	10%
2048	0.063	0.000086	0.0000012	0%	90%	0%	10%
2049	0.060	0.000092	0.0000010	0%	90%	0%	10%
2050	0.056	0.000098	0.00000080	0%	90%	0%	10%

	Scenario 3							
Year	kg	kg	kg	Grey	Blue	Beige	Orange	Green
	CO ₂ /tonne-	CH ₄ /tonne-	N ₂ O/tonne-					
	km	km	km					
2020	0.090	0.000040	0.0000027	90%	0%	10%	0%	0%
2021	0.090	0.000040	0.0000027	90%	0%	10%	0%	0%
2022	0.090	0.000041	0.0000026	90%	0%	10%	0%	0%
2023	0.090	0.000041	0.0000026	75%	10%	5%	5%	5%
2024	0.090	0.000042	0.0000026	55%	30%	5%	5%	5%
2025	0.089	0.000043	0.0000026	15%	70%	5%	5%	5%
2026	0.088	0.000043	0.0000026	0%	80%	0%	10%	10%
2027	0.088	0.000043	0.0000025	0%	75%	0%	10%	15%
2028	0.087	0.000043	0.0000025	0%	70%	0%	10%	20%
2029	0.086	0.000043	0.0000025	0%	60%	0%	10%	30%
2030	0.085	0.000043	0.0000025	0%	50%	0%	10%	40%
2031	0.084	0.000043	0.0000024	0%	48%	0%	10%	42%
2032	0.084	0.000043	0.0000024	0%	46%	0%	10%	44%
2033	0.083	0.000044	0.0000024	0%	44%	0%	10%	46%
2034	0.082	0.000044	0.0000023	0%	42%	0%	10%	48%
2035	0.080	0.000044	0.0000023	0%	40%	0%	10%	50%
2036	0.079	0.000044	0.0000022	0%	38%	0%	10%	52%
2037	0.078	0.000045	0.0000022	0%	36%	0%	10%	54%
2038	0.076	0.000045	0.0000021	0%	34%	0%	10%	56%
2039	0.074	0.000045	0.0000021	0%	32%	0%	10%	58%
2040	0.071	0.000045	0.0000020	0%	30%	0%	10%	60%
2041	0.068	0.000045	0.0000019	0%	25%	0%	10%	65%
2042	0.065	0.000044	0.0000018	0%	20%	0%	10%	70%
2043	0.061	0.000043	0.0000017	0%	15%	0%	10%	75%
2044	0.055	0.000040	0.0000016	0%	5%	0%	10%	85%
2045	0.050	0.000038	0.0000014	0%	0%	0%	10%	90%
2046	0.045	0.000037	0.0000013	0%	0%	0%	10%	90%
2047	0.040	0.000037	0.0000011	0%	0%	0%	10%	90%
2048	0.034	0.000037	0.00000092	0%	0%	0%	10%	90%
2049	0.027	0.000037	0.00000071	0%	0%	0%	10%	90%
2050	0.019	0.000036	0.00000048	0%	0%	0%	10%	90%

	Extreme scenario	01		
Year	kg CO ₂ /tonne-km	kg CH ₄ /tonne-km	kg N ₂ O/tonne-km	Grey H ₂
2020	0.090	0.000040	0.0000027	100%
2021	0.090	0.000040	0.0000027	100%
2022	0.090	0.000040	0.0000026	100%
2023	0.090	0.000041	0.0000026	100%
2024	0.090	0.000041	0.0000026	100%
2025	0.090	0.000041	0.0000026	100%
2026	0.090	0.000042	0.0000026	100%
2027	0.090	0.000042	0.0000025	100%
2028	0.090	0.000043	0.0000025	100%
2029	0.090	0.000043	0.0000025	100%
2030	0.090	0.000043	0.0000025	100%
2031	0.090	0.000044	0.0000025	100%
2032	0.090	0.000044	0.0000024	100%
2033	0.090	0.000045	0.0000024	100%
2034	0.090	0.000045	0.0000024	100%
2035	0.090	0.000046	0.0000023	100%
2036	0.090	0.000047	0.0000023	100%
2037	0.090	0.000048	0.0000022	100%
2038	0.090	0.000049	0.0000022	100%
2039	0.090	0.000050	0.0000021	100%
2040	0.090	0.000051	0.0000021	100%
2041	0.090	0.000052	0.0000020	100%
2042	0.090	0.000054	0.0000019	100%
2043	0.090	0.000055	0.0000018	100%
2044	0.089	0.000057	0.0000017	100%
2045	0.089	0.000059	0.0000016	100%
2046	0.089	0.000062	0.0000015	100%
2047	0.089	0.000064	0.0000014	100%
2048	0.089	0.000067	0.0000012	100%
2049	0.089	0.000071	0.0000010	100%
2050	0.088	0.000074	0.0000083	100%

	Extreme scenario	0.2		
Year	kg CO ₂ /tonne-km	kg CH ₄ /tonne-km	kg N ₂ O/tonne-km	Orange H ₂
2020	0.090	0.000040	0.0000027	100%
2021	0.090	0.000042	0.0000026	100%
2022	0.089	0.000045	0.0000026	100%
2023	0.088	0.000048	0.0000026	100%
2024	0.087	0.000050	0.0000026	100%
2025	0.086	0.000053	0.0000026	100%
2026	0.085	0.000056	0.0000025	100%
2027	0.084	0.000058	0.0000025	100%
2028	0.083	0.000061	0.0000025	100%
2029	0.082	0.000064	0.0000025	100%
2030	0.081	0.000067	0.0000024	100%
2031	0.080	0.000070	0.0000024	100%
2032	0.079	0.000073	0.0000024	100%
2033	0.077	0.000077	0.0000024	100%
2034	0.076	0.000082	0.0000023	100%
2035	0.074	0.000087	0.0000023	100%
2036	0.072	0.000093	0.0000022	100%
2037	0.070	0.000099	0.0000022	100%
2038	0.067	0.00011	0.0000021	100%
2039	0.065	0.00011	0.0000021	100%
2040	0.062	0.00012	0.0000020	100%
2041	0.058	0.00013	0.0000019	100%
2042	0.054	0.00014	0.0000018	100%
2043	0.050	0.00016	0.0000017	100%
2044	0.045	0.00017	0.0000016	100%
2045	0.039	0.00019	0.0000015	100%
2046	0.033	0.00020	0.0000013	100%
2047	0.026	0.00022	0.0000012	100%
2048	0.019	0.00025	0.0000010	100%
2049	0.010	0.00027	0.00000077	100%
2050	0.00051	0.00030	0.00000054	100%

SLU Institutionen för energi och teknik Box 7032 750 07 UPPSALA Tel. 018-67 10 00 pdf.fil: www.slu.se/energiochteknik SLU Department of Energy and Technology P. O. Box 7032 SE-750 07 UPPSALA SWEDEN Phone +46 18 671000