
 

Ecological Representativity of 
Marine Protected Areas along the 
Swedish West Coast 
– Evaluating the effectiveness of the existing 

network and identifying expansion opportunities 

in the Skagerrak 

Ekologisk representativitet i marina skyddade områden längs den svenska 

västkusten – En utvärdering av nätverkets effektivitet och förslag på 

expansionsmöjligheter i Skagerrak 

Kimberly Arfwedson 

Master thesis in Biology • 60 hp  

Swedish University of Agricultural Sciences, SLU  

Faculty of Natural Resources and Agricultural Sciences (NJ) 

Department of Aquatic Resources (SLU Aqua) 

Landscape Ecology, Stockholm University 

Stockholm/Öregrund 2021  



2 

 

  



3 

 

Ekologisk representativitet i marina skyddade områden längs den svenska västkusten – 
En utvärdering av nätverkets effektivitet och förslag på expansionsmöjligheter i Skagerrak 

Kimberly Arfwedson 

Supervisor:  Charlotte Berkström, Swedish University of Agricultural Sciences, 

SLU, Department of Aquatic Resources (SLU Aqua) 

Assistant supervisor:   Ulf Bergström, Swedish University of Agricultural Sciences, SLU, 

Department of Aquatic Resources (SLU Aqua) 

Assistant supervisor:  Edmond Sacre, Swedish University of Agricultural Sciences, SLU, 

Department of Aquatic Resources (SLU Aqua) 

Examiner:  Jonas Hentati Sundberg, Swedish University of Agricultural 

Sciences, SLU, Department of Aquatic Resources (SLU Aqua) 

 

 

 

 

Credits:   60 hp 

Level:  A2E  

Course title:   Master thesis in Biology, A2E 

Course code:  EX0900 

Programme/education:  Landscape Ecology, Stockholm University 

Course coordinating dept:  Department of Aquatic Sciences and Assessment 

 

Place of publication:  Stockholm/Öregrund 

Year of publication:  2021 

Cover picture:   Ulf Bergström 

 

 

Keywords:   ecological representativity, ecological coherence, species 

richness, marine protected areas, Marxan, no-take zones 

 

 

 

   

 

 

 

 

Swedish University of Agricultural Sciences  

Faculty of Natural Resources and Agricultural Sciences (NJ) 

Department of Aquatic Resources (SLU Aqua) 

Ecological Representativity of Marine Protected Areas along the 
Swedish West Coast – Evaluating the effectiveness of the 
existing network and identifying expansion opportunities in the 
Skagerrak 



4 

 

 

 

Approved students’ theses at SLU are published electronically. As a student, you 

have the copyright to your own work and need to approve the electronic publishing. 

If you check the box for YES, the full text (pdf file) and metadata will be visible 

and searchable online. If you check the box for NO, only the metadata and the 

abstract will be visible and searchable online. Nevertheless, when the document is 

uploaded it will still be archived as a digital file.  

If you are more than one author you all need to agree on a decision. Read about 

SLU’s publishing agreement here: https://www.slu.se/en/subweb/library/publish-

and-analyse/register-and-publish/agreement-for-publishing/.  

 

☒ YES, I/we hereby give permission to publish the present thesis in accordance 

with the SLU agreement regarding the transfer of the right to publish a work.  

 

☐ NO, I/we do not give permission to publish the present work. The work will still 

be archived and its metadata and abstract will be visible and searchable. 

  

Publishing and archiving 

https://www.slu.se/en/subweb/library/publish-and-analyse/register-and-publish/agreement-for-publishing/
https://www.slu.se/en/subweb/library/publish-and-analyse/register-and-publish/agreement-for-publishing/


5 

 

Marine protected areas (MPAs) are recognised worldwide as an important tool to combat 

biodiversity loss. The European union (EU) has recently adopted a new strategy aiming at protecting 

at least 30% of Europe’s marine environment and inferring strict protection for one third of the 

protected area. Examples of strict protection are no-take zones, a complete ban on commercial 

fishing. This study aimed to evaluate the efficiency of the current MPA network along the Swedish 

west coast and expansion opportunities were identified in the coastal zone of the Skagerrak in Västra 

Götaland county. By using monitoring data from samples of juveniles, habitat distribution for 21 

species of fish and crustaceans were mapped using Esri ArcGIS Pro. The ecological representativity, 

i.e., the proportion of protected habitat (%) for each species, was calculated and compared against 

the goals set by the EU. Anthropogenic disturbances were also mapped to identify overlap of areas 

with high species richness and high anthropogenic pressure, focussing on endangered and 

commercially important species. The pressure data was further used as a cost-matrix to prioritise 

protection of habitats under high pressure, when analysing expansion opportunities using the 

conservation planning tool Marxan. Two target levels (40% and 50% habitat protection, based on 

results from the calculated ecological representativity) and two different scenarios were tested with 

Marxan; one unbiased solution with no spatial constraints, and one biased solution forcing already 

protected habitats to be included and thus focusing on expanding from existing MPAs. Results show 

that the ecological representativity provided by the current MPA network is sufficient in protecting 

≥30% of the species habitat on the west coast, but in the Skagerrak, it fails to provide protection for 

the two-spotted goby (9%). The Marxan-analysis showed that it is possible to enhance protected 

habitat to >50% for all species in the Skagerrak. A best conservation solution was obtained when 

endangered and commercially important species were ranked as more important to protect than other 

species. Additionally, using the biased solution and instructing Marxan to emphasise MPA 

compactness yielded the most cost-efficient conservation solution with 39% less total reserve area 

required compared to 49% for the unbiased solution. Expansion opportunities should focus on the 

coastal area from Gothenburg northward to Orust where a large part of unprotected habitats are 

situated. Even though the ecological representativity is good for most of the species, many are 

endangered and a small frequency of occurrence in the fishing samples, suggests that merely 

establishing MPAs might not be enough. Inferring stricter protection such as no-take zones may be 

required, both from a species-perspective and as a measure to achieve the goal set by the EU. Thus, 

future work should focus on amending regulations in existing MPAs as well as expanding the current 

MPA network and include no-take zones. 

Keywords: ecological representativity, ecological coherence, species richness, marine protected 

areas, Marxan, no-take zones 
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Marina skyddade områden (MPAs) används över hela världen som ett viktigt verktyg för att skydda 

biologisk mångfald. Skyddet kan innebära mer eller mindre strikta restriktioner kring mänskliga 

aktiviteter som påverkar arter och deras livsmiljöer (habitat). På grund av den fortgående förlusten 

av biodiversitet och det effektiva verktyg som MPAs utgör, har Europeiska unionen (EU) nyligen 

antagit ett regelverk med målet om att skydda minst 30% av EUs havsmiljö samt införa ett strikt 

skydd för 10% av havsmiljön. Exempel på strikt skydd är ett fullständigt förbud mot kommersiellt 

fiske. En viktig parameter för att analysera om MPAs är effektiva är att mäta den ekologiska 

representativiteten. Detta görs genom att beräkna hur stor andel av en arts habitat är skyddat sett till 

det totala habitatet i regionen. Denna studie syftar till att utvärdera effektiviteten hos det nuvarande 

MPA-nätverket längs den svenska västkusten, med fokus på kustzonen i Skagerrak i Västra 

Götalands län. Fördelningen av habitat för 21 provfiskade arter (18 fiskar och 3 kräftdjur) 

analyserades med det geografiska informationsverktyget ArcGIS Pro, där den ekologiska 

representativiteten beräknades för varje art och jämfördes med de mål som EU etablerat. Data över 

mänskliga störningar i Skagerrak har använts för att identifiera överlapp med habitat med hög 

artrikedom. Dessa dataset har vidare använts i beslutsstödsverktyget Marxan, där potentiella 

expansionsmöjligheter för MPAs analyserades. Marxan strävar efter att leverera den mest 

kostnadseffektiva lösningen, där kostnaden i denna studie utgjordes av påverkan av mänsklig 

störning. Habitat som utsatts för höga störningar prioriterades genom att tilldelas en låg kostnad och 

vice versa. Två målnivåer (40% och 50% skyddat habitat, baserade på resultat från beräkning av den 

ekologiska representativiteten) infördes för respektive art och två olika scenarier testades; en analys 

utan rumsliga begränsningar och en analys som tvingade redan skyddade habitat att inkluderas i 

lösningen. Utöver detta testades även möjligheten att prioritera skydd för de arter som är hotade 

och/eller kommersiellt viktiga genom två analyser: en där de hotade arterna rankades högst följt av 

de kommersiellt viktiga arterna och lägst de resterande arterna samt en analys där alla arter rankades 

som lika viktiga. Resultatet visar att den ekologiska representativiteten som tillhandahålls av det 

nuvarande MPA-nätverket är tillräckligt för att skydda ≥30% av habitatet för hela västkusten. I 

Skagerrak misslyckas det nuvarande nätverket med att ge tillräckligt skydd för en art (den sjustråliga 

smörbulten), där endast 9% av habitatet är skyddat. Med Marxan påvisades möjligheten att förbättra 

skyddet för den sjustråliga smörbulten (och övriga arter), då båda målnivåerna uppnåddes. Den mest 

kostnadseffektiva lösningen uppnåddes när hotade och kommersiellt viktiga arter rankades som 

viktigare att skydda samt när redan skyddade habitat inkluderas som utgångspunkt för analysen. 

Denna lösning krävde 39% mindre yta än det nuvarande MPA-nätverket. En stor del av oskyddat 

habitat som Marxan anser är viktiga att skydda återfinns i kustområdet mellan Göteborg och Orust. 

Även om den ekologiska representativiteten är bra (jämfört med EUs mål), är ändå många arter 

hotade. En låg förekomst i provfisket kan tyda på att det inte är tillräckligt att enbart bilda MPAs, 

utan att strängare skydd, i form av ett fullständigt förbud mot kommersiellt fiske, behöver införas i 

befintliga och nya MPAs. Detta är viktigt både ur ett artbevaringsperspektiv och som åtgärd för att 

uppnå EU:s mål om skyddad havsmiljö. Därför bör framtida arbeten fokusera på att både utvidga 

det nuvarande MPA-nätverket, för att inkludera viktiga oskyddade habitat, samt att stärka 

existerande restriktioner genom att inkludera zoner med fiskeförbud. 

Nyckelord: ekologisk representativitet, ekologisk koherens, biologisk mångfald, marina skyddade 

område, fiskefria områden, Marxan, fiskefria zoner   

Populärvetenskaplig sammanfattning 



7 

 

List of tables ...................................................................................................................... 9 

List of figures ................................................................................................................... 10 

Abbreviations .................................................................................................................. 11 

1. Introduction ............................................................................................................. 12 

1.1. Aims and objectives ..................................................................................... 16 

2. Background ............................................................................................................. 17 

2.1. Study area ................................................................................................... 17 

2.2. Anthropogenic disturbances ........................................................................ 20 

2.3. Marine Protected Areas ............................................................................... 22 

2.3.1. National park ....................................................................................... 22 

2.3.2. Nature reserve .................................................................................... 23 

2.3.3. Natura 2000 ........................................................................................ 24 

2.3.4. OSPAR ............................................................................................... 24 

2.3.5. Ramsar ............................................................................................... 25 

2.3.6. Shoreline protection ............................................................................ 25 

3. Methods ................................................................................................................... 27 

3.1. Habitat maps ............................................................................................... 27 

3.2. Calculating ecological representativity ........................................................ 30 

3.3. Species richness and pressure maps ......................................................... 32 

3.4. MPA evaluation and identifying areas suited for expansion ........................ 34 

3.4.1. Planning units, conservation features and status ............................... 34 

3.4.2. Pressure as a cost metric ................................................................... 34 

3.4.3. Conservation target, SPF, BLM, and repeated runs ........................... 35 

3.4.4. Conservation solutions ....................................................................... 36 

3.4.5. Evaluating model performance ........................................................... 38 

4. Results ..................................................................................................................... 41 

4.1. Ecological representativity ........................................................................... 41 

4.2. Species richness vs. pressure ..................................................................... 42 

4.3. Best conservation solutions and expansion opportunities .......................... 46 

4.3.1. Best conservation solution .................................................................. 46 

Table of contents 



8 

 

4.3.2. Expansion opportunities ..................................................................... 50 

5. Discussion............................................................................................................... 51 

5.1. Ecological representativity and protection measures .................................. 51 

5.2. Anthropogenic pressure and protection measures ..................................... 53 

5.3. Comparing species richness with anthropogenic pressure ......................... 55 

5.4. Using ecological representativity and Marxan to explore expansion 

opportunities ................................................................................................................. 55 

6. Conclusions ............................................................................................................ 59 

7. References .............................................................................................................. 60 

Acknowledgements......................................................................................................... 69 



9 

 

Table 1. List of species used in the analysis. ......................................................... 28 

Table 2. Results from model calibration to find which settings produce the best 

conservation solution. ................................................................................ 39 

Table 3. Habitat area (km2) and ecological representativity (proportion of protected 

habitats in %) for each species in the Skagerrak and summarized for the 

entire west coast......................................................................................... 41 

Table 4. Habitat area (km2) and ecological representativity (proportion of protected 

habitats (%)) in the Skagerrak for the current MPA network and the 

optimised MPA network proposed by Marxan. ........................................ 49 

 

List of tables 

 



10 

 

Figure 1. Map of the study region. ......................................................................... 19 

Figure 2. Diagram of MPA categories and their sub-types. .................................. 22 

Figure 3. IUCN classification system for assessing extinction risk of species.. .... 27 

Figure 4. Map of juvenile fish and crustacean sampling sites. .............................. 29 

Figure 5. Maps of MPA categories and sites included in the Ramsar and OSPAR 

conventions. ............................................................................................... 31 

Figure 6. A conceptual model visualising the estimation of species representativity 

in MPAs. .................................................................................................... 32 

Figure 7. Flow chart of the two steps taken to evaluate model performance and 

deduce which settings returned the best result. ......................................... 37 

Figure 8. Diagram shows the effect of using different BLM values on total reserve 

boundary length and average cost of solutions, for the unbiased solution.

 ................................................................................................................... 40 

Figure 9. Diagram shows the effect of using different BLM values on total reserve 

boundary length and average cost of solutions, for the biased solution. ... 40 

Figure 10. The left panel shows species richness (n≤18). The right panel shows 

protected and non-protected habitats for the European lobster (Homarus 

Gammarus). ............................................................................................... 43 

Figure 11. Resampled summarised pressure distribution in Västra Götaland county.

 ................................................................................................................... 44 

Figure 12. The summarised pressure experienced in situ for endangered and 

commercially important species, and the proportion of their habitat subject 

to a range of summarised pressure classes using the resampled data (250m 

x 250m). ..................................................................................................... 45 

Figure 13. The resampled summarised pressure experienced in situ for 

commercially important species and the proportion of their habitat subject 

to a range of summarised pressure classes using the resampled data (250m 

x 250m). ..................................................................................................... 46 

Figure 14. Selection frequency of each planning unit when running the unbiased 

solution and the biased solution, using the non-uniform SPF, a BLM of 0 

and a target of 50%. ................................................................................... 47 

Figure 15. The best conservation scenario for the unbiased solution and the biased 

solution, using the non-uniform SPF, a BLM of 0.01 and 50% target. ..... 48 

Figure 16. Proposal for MPA expansion. .............................................................. 50 

List of figures 



11 

 

AIS Automatic Identification System 

AUC Area Under Curve 

BLM Boundary Length Modifier 

CBD Convention on Biological Diversity 

EU European Union 

IUCN International Union for Conservation of Nature and Natural 

Resources 

MPA Marine Protected Area 

SAC Special Areas of Conservation 

SLU Swedish University of Agricultural Sciences 

SPA Special Protection Areas 

SPF Species Penalty Factor 

  

  

  

  

  

  

  

  

Abbreviations 



12 

 

The concept of representativity is often used to determine if a subsample used to 

answer a question is representative of the whole. The idea is applicable across 

multiple disciplines. For example, in sociology, when analysing public opinion on 

national matters (e.g., are Swedish citizens for or against increased immigration?), 

a sample may be considered representative if the variation in the participants reflect 

the demographics of the Swedish population. A similar interpretation of the concept 

is applied in conservation science when designating areas for environmental 

protection. In this context, representativity refers to the proportion of a species or 

habitat that is protected within a reserve network relative to unprotected areas 

(Kukkala and Moilanen, 2013; Almany et al., 2009; Austin and Margules, 1986). 

By estimating the ecological representativity of conservation features (species or 

habitats) in a protected area, suitability and effectiveness of conservation efforts 

can be analysed. Estimating ecological representativity for individual species is 

important but it is also crucial to consider multiple species, in order to maintain a 

wider biodiversity perspective on conservation efforts (Belbin, 1993). 

Biodiversity is defined by the Convention on Biological Diversity (CBD) as the 

variability among living organisms, including intra- and interspecific variability 

(within a species versus between different species) and among ecosystems (United 

Nations, 1992). CBD was formed in 1993 as a response to the accelerating rate of 

global biodiversity loss, threatening both economic and social development and the 

wellbeing of current and future generations. However, biodiversity loss is not a 

recent phenomenon, but something which has occurred continuously since the 

introduction of hominins (Homo sapiens and its forefathers) on Earth (Pace et al., 

1999; Smith et al., 2018). Both terrestrial and marine environments have suffered 

from long-term biodiversity loss, with loss on land being the most severe. During 

the past few centuries, especially since the 1970s, marine biodiversity have also 

experienced rapid declines in species and populations, with overfishing being the 

single largest contributing factor (Jackson et al., 2001). Today, global biodiversity 

loss is occurring at an  alarming rate and combating these losses requires global 

action and cooperation between countries (Ceballos et al., 2015).  

Biodiversity loss does not only affect species individually, but also affects 

species composition when interspecific interactions is altered, changing the 

dynamics of the trophic system, which in turn affects the function and structure of 

1. Introduction  
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ecosystems (Gislason, 1994; Dayton et al., 1995; Baum and Worm, 2009; Ritchie 

and Johnson, 2009). Conservation efforts must therefore target both individual 

species and communities of species. One method incorporating both of these 

objectives is the establishment of protected areas, a measure recognised as a key 

tool to combat biodiversity loss and achieve conservation goals set by the CBD and 

the 2030 Agenda for Sustainable Development (see goal 14 and 15; United Nations, 

2016). A protected area is defined by the International Union for Conservation of 

Nature and Natural Resources (IUCN) as:  

“a geographical space, recognised, dedicated and managed, through legal or 

other effective means, to achieve the long term conservation of nature with 

associated ecosystem services and cultural values” (Dudley and Stolton, 2008)  

There are many categories of protected areas depending on the objectives and the 

spatial scale of protection. To facilitate universal standards for governments 

legislating protected areas, classification of categories has been produced by the 

IUCN (Dudley, Shadie and Stolton, 2013). This system has been recognized by the 

United Nations and other international bodies as the global standard of defining and 

classifying protected areas. The IUCN-categories include protection and 

management objectives for land-/seascapes, species, habitats, landforms, and 

natural resources.  

Using the IUCN-classification, the European Union (EU) has developed the 

Emerald Network, a programme aiming to create an ecological network of 

protected areas where special conservation is required (European Union, 2016). The 

Emerald Network was introduced under the Bern Convention in 1989, aiming to 

create “long term survival of the species and habitats of the Bern Convention 

requiring specific protection measures” (European Union, 2016). The program laid 

the foundation for the Habitats Directive in 1992 followed by the introduction of 

the Natura 2000 network (The Council of the European Communities, 1992; 

Sundseth, 2008). Together with the Birds Directive adopted by the EU in 1979 

(European Union, 2009), these policy instruments constitute an important 

framework on protecting, conserving and sustainably managing species, habitats 

and land-/seascapes in the EU.  

Additionally, EU has adopted two frameworks regarding the marine 

environment: The Marine Strategy Framework Directive (European Union, 2008) 

and the Framework for Maritime Spatial Planning (European Union, 2014). Both 

frameworks aim at protecting the marine environment and streamlining marine 

spatial planning to reduce land- and ocean-based pollution and ease pressures from 

anthropogenic activities. Because the marine environment is shared across 

territorial borders, cooperation between states is important, as measures may be 

unproductive if not all states bordering the targeted area make coordinated 

protection and conservation efforts (Hayashi, 1993; Guerreiro et al., 2010). 
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The same applies to marine species, as many are mobile and migrate long 

distances during their life cycle. Marine vertebrates, such as fish, are examples of 

organisms that require different types of habitat throughout their juvenile state and 

their adult and reproductive state (Jonsson and Jonsson, 1993). Food limitation and 

predation pressure may also affect migration (Jonsson and Jonsson, 1993). 

Furthermore, there is inter- and intraspecific variation in migration distances 

between species and individuals, and their migration routes may cross multiple 

marine territorial borders (Chapman et al., 2011). This emphasizes the need for 

international collaboration when species targeted for conservation plans have a 

wide migration pattern. Creating an ecologically representative network of marine 

protected areas (MPAs), therefore, requires cooperation between states to 

effectively manage and conserve targeted species. 

In 2020, the EU adopted the EU Biodiversity Strategy for 2030 for combating 

biodiversity loss and habitat degradation, with protected areas being a key tool 

(European Commission, 2020a). In this strategy, emphasis is placed on the network 

being ecologically coherent, a term often used to assess the effectiveness of 

protected areas. The definition of “ecologically coherent” varies but often includes 

examining the networks (Davenport et al., 2008; Sciberras et al., 2013): 

 

▪ representativity (the degree to which the various habitat and species 

present in the region are represented and protected, relative to 

unprotected areas) 

▪ connectivity (spatial distribution of protected areas must be close enough 

to facilitate dispersal among separated populations) 

▪ replication (habitats should be represented in multiple protected areas to 

strengthen resilience) 

▪ adequacy (spatial factors including size, shape, and location, to secure 

long-term survival of species and populations) 

 

As the current network of MPAs in Europe is not adequately protecting biodiversity 

(European Commission, 2020a), two objectives in the new strategy are to expand 

the network and implement stricter regulations (European Commission, 2021). The 

goal of the new strategy is to protect at least 30% of Europe’s marine environment 

by the year 2030, of which one third is to be strictly protected (European 

Commission, 2020a). However, the EU has not yet defined the term “strict 

protection”, so it is still unclear what measures the member states must take to reach 

the goal. A goal of protecting a minimum of 30% is also inferred for species and 

habitats (registered in the Birds and Habitat directives), features important for 

conservation as they either suffer from declining populations or are expected to 

decline, due to increased habitat deterioration (European Commission, 2020a).  
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Every coastal member state is expected to contribute to the two goals. For 

Sweden, this requires actions to more than double the coverage of MPAs, as 

currently only 14% of the marine environment, including the economic zone, is 

protected (Statistics Sweden, 2020a). However, some regions have achieved over 

30% coverage, such as in the Swedish west coast, where 32% of the marine 

environment is protected (Statistics Sweden, 2020a). Even though this surpasses 

the 30% goal, Sweden may still be required to increase the proportion of strict 

protection, when the type of regulations and actions needed to implement strict 

regulations is established. 

The Skagerrak is a region where collaboration between states is particularly 

important for creating an ecologically representative network of MPAs. The 

Skagerrak is a straight connecting the Baltic Sea and the North Sea, approximately 

240 km long and between 80 and 140 km wide (Figure 1). The Skagerrak is 

bordered by the Danish north coast, the Swedish west coast, and the southern coast 

of Norway. With water mixing from both the North Sea and the Baltic Sea, the 

Skagerrak is subject to both land and sea-based pollution, as currents carry nutrients 

and pollutants from the extensive Baltic Sea basin, which is bordered by nine 

countries. The strait is also an important maritime shipping route as it connects 

northern Europe with the rest of the world and the route is especially important for 

the Russian oil export (U.S. Energy Information Administration, 2017). In fact, a 

global map displaying cumulative anthropogenic pressures across 20 marine 

ecosystems distinguish the North Sea, including the Skagerrak, as one of the most 

heavily impacted regions in the world (Halpern et al., 2008). Moreover, coastal 

environments are more vulnerable with both sea- and land-based anthropogenic 

activities that direct (development, overfishing, use of destructive fishing 

techniques, pollution) and indirect (eutrophication, enhanced sedimentation, 

acidification) affect ecosystems and biodiversity (Airoldi and Beck, 2007; Halpern 

et al., 2008).   

Ecological representativity of the MPA network in the Skagerrak is poorly 

understood, particularly from a habitat or species distribution perspective. There 

are a few studies analysing ecological coherence of the existing MPA network. 

However, these studies focus on larval connectivity (Moksnes et al., 2014; Nilsson 

and Jonsson, 2011) and multiple species dispersal strategies (Jonsson, Nilsson 

Jacobi and Moksnes, 2016). With biodiversity loss, declining fish stocks, and 

degradation of habitats in the Skagerrak, it is important to include ecological 

representativity as a parameter for measuring the effectiveness and success of the 

MPA network. The rapid rate of biodiversity loss, along with the significant 

knowledge gap, highlight the importance of examining the ecological 

representativity of the MPA network in the Skagerrak. 
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1.1. Aims and objectives 

The aim of this study is to analyse the efficiency of the current network of marine 

protected areas (MPAs) with regard to habitats protected for 21 species in the 

Skagerrak, focusing on the coastal zone of Västra Götaland. This study evaluates 

the representativity of the MPA network and explore possibilities for the 

establishment of new MPAs, expansion of existing MPAs, and discuss the strictness 

of protection within existing network. It is important to ensure that the network of 

MPAs is ecologically representative to promote the conservation of species subject 

to anthropogenic disturbances. It is especially crucial to mitigate cumulative effects 

of anthropogenic activities in coastal areas, as coastal habitats are crucial spawning, 

nursery, and nesting sites for various organisms including the 18 fishes and 3 

crustaceans analysed in this study. The objectives of this study are:  

 

1) Using existing habitat distribution maps, to produce maps of protected 

and non-protected habitats for a specific group of fish and crustaceans.  

2) Combining habitat maps for all species, to produce a species richness 

map to analyse the distribution of high species richness areas.  

3) Analysing the spatial distribution of species richness in relation to the 

spatial distribution of pressures, to identify high species richness areas 

subject to high anthropogenic pressure. 

4) Estimating the ecological representativity of the MPA network using the 

aforementioned habitat maps.   

5) Evaluating the current MPA network and expansion opportunities in the 

Skagerrak using the conservation planning tool Marxan, by creating one 

“biased” solution where existing MPAs are included, and one “unbiased” 

solution where inclusion of existing MPAs are not enforced. A dataset of 

spatial anthropogenic pressure will be used as a cost matrix to produce 

conservation solutions, prioritising habitats under high anthropogenic 

pressure.  

6) Providing suggestions for the expansion of existing MPAs, and where 

new MPAs could be established to include unprotected areas with high 

species richness. 
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2.1. Study area 

The Skagerrak is a brackish strait connecting the Baltic Sea with the North Sea, and 

it is bordered by three countries: Sweden, Norway, and Denmark (Figure 1). The 

physiography of the Swedish coastal landscape of the Skagerrak consists of low-

lying and undulating bedrock with granitic lithologies (SNA, 1992). The region 

houses several fjords, orientated in north-south directions but with varying depth 

and physical properties (SNA, 1992). Fjords are typically long, narrow inlets with 

steep coastal slopes and deep narrow trenches (Fonselius, 1990). Some fjords in the 

Skagerrak have steep coastal slopes (e.g., Gullmarsfjorden,) while others lack steep 

relief above water (e.g., Kosterfjorden; Figure 1; Fonselius, 1990; SNA, 2003). The 

Skagerrak’s rocky coastal seascape provides a wide variety of habitats, from soft, 

shallow beds and rocky reefs to muddy deep-water trenches with depths of up to 

247 m (SNA, 1992; Länsstyrelsen i Västra Götaland län, 2020). It’s rich 

archipelago landscape of 3,000 islands and 4,500 islets and skerries makes the area 

popular for recreational activities and an attractive destination for tourists 

(Nationalencyklopedin, 2021; SNA, 2003). 

There are two major oceanic currents in the Skagerrak, the Jutland stream and 

the Baltic stream (Figure 1). These currents affect water flow and environmental 

conditions, which in turn influences the habitat and species composition in the area. 

The Jutland stream brings low-temperature saline water from the North Sea as it 

runs east along the west coast of Denmark, splitting into two directions at the 

country´s northern tip (SNA, 1992; Fonselius, 1990). One stream continues towards 

the Swedish coast in the Skagerrak where it joins the northbound Baltic stream, the 

other stream rounds Denmark´s northern tip and then continues southward along 

the Danish east coast, towards the sea of the Kattegat (Figure 1; Fonselius, 1990). 

The Baltic stream runs north along the Swedish west coast until reaching the 

southern part of Norway where it continues westward towards the North Sea 

(Figure 1) (Fonselius, 1990). The Baltic stream brings brackish water from the 

Baltic Sea, through the Kattegat and subsequently into the Skagerrak (Figure 1) 

(Fonselius, 1990). 

2. Background 
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The Skagerrak has a stable halocline at a depth of 10-15 meters, with a salinity 

of 25 ‰ in the surface water, increasing to >30 ‰ under the halocline (SNA, 2003; 

Havsmiljöinstitutet, no date). Because of the high salinity and good oxygenation 

(due to the constant water exchange with the North Sea), species richness is 

relatively high, and the strait houses many endangered species including the rare 

cold-water coral Lophelia (Lophelia pertusa) (Swedish Environmental Protection 

Agency, 2014). Along the Swedish coast of the Skagerrak (Figure 1), a large portion 

of the coral reef has died, primarily due to detrimental fishing practices such as 

bottom trawling, but also because of anchoring, acidification, and consequences of 

climate change (increased water temperature, lower salinity due to increased 

precipitation). The remaining living coral is situated in Kosterfjorden, a part of the 

Swedish marine national park Kosterhavet (Figure 1). 

Coral reefs and other important habitat forming species such as mussel reefs 

(Hirst, Clark and Sanderson, 2012), are important for biodiversity as they act as 

nurseries and provide protection from predators for a large number of vertebrates 

and invertebrates. Many of the species found in Kosterhavet are endemic, meaning 

they have not been found elsewhere in Sweden or the rest of the world. Besides the 

unique composition of flora and fauna in Kosterhavet, the Skagerrak is an important 

region for the Swedish fishing industry, because most commercial fisheries are 

located on the Swedish west coast (Waldo and Blomquist, 2020). Due to the great 

ecological and economic importance of productive habitats in the Skagerrak, this 

study focuses on the Swedish coastal and marine environment of the Skagerrak 

(Figure 1). However, the framework developed and used in this study is not 

exclusive to this region but is applicable to other parts of the world and other types 

of species. 

The county administrative board of Västra Götaland is responsible for managing 

the marine environment in the Swedish part of the Skagerrak (Figure 1). Marine 

features with high conservation values have been identified and mapped to some 

extent, enabling a prioritisation of habitats and species with particularly high 

conservation values (Länsstyrelsen i Västra Götaland län, 2019). These include 

Natura 2000 and OSPAR sites, and habitats with rare, threatened, endangered, and 

key species. Some of the species prioritised by Västra Götaland county are included 

in this study: European eel (Anguilla anguilla), Atlantic cod (Gadus morhua) and 

European lobster (Homarus Gammarus). However, there is a knowledge gap 

regarding the distribution of costal habitats and species and what environmental 

conditions they require as well as insufficient data about the presence and extent of 

marine features with high conservation values (Länsstyrelsen i Västra Götaland län, 

2019). 

Västra Götaland county have several ongoing processes regarding expansion of 

the existing MPA network and establishing new MPAs, including habitats in deep 

water and shallow coastal areas important for spawning, and as nursery grounds for 
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many fish species. Furthermore, it has been suggested that a new marine national 

park should be established in Gullmarsfjorden (Figure 1), because the region 

contains unique marine values important to preserve (Länsstyrelsen i Västra 

Götaland län, 2020). In addition to managing and developing the MPA network, 

Västra Götaland county collaborates with the administrative boards of Halland and 

Skåne counties. The three counties have produced a joint “Strategy for protection 

and management of marine environments and species in the North Sea” 

(Länsstyrelsen i Västra Götaland län, 2020). The collaboration recognises the 

importance of common management for marine environments and species, 

including cross-border establishment of MPAs to encompass habitats stretching 

over county borders. 

 

 

Figure 1. Map of the study region. The study area is indicated with dashed lines in red. Panel A 

displays the two major oceanic currents, the Jutland stream (orange arrow) and the Baltic stream 

(green arrow), affecting the environmental conditions in the Skagerrak. The coastal boundaries of 

featured counties are also shown in this panel. The black box in panel A shows the map extent of 

panel B. The marine national park of Kosterhavet is displayed in panel B together with the two 

fjords, Kosterfjorden and Gullmarsfjorden. 
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2.2. Anthropogenic disturbances 

The Skagerrak is susceptible to multiple disturbances sourcing from both marine 

and land-based anthropogenic activities. Some of these disturbances are discussed 

here, including: i) discharge-pollution, ii) fishing pressure, iii) physical disturbance, 

and v) dispersal of pollutants.  

There are many studies investigating effects of anthropogenic disturbances on 

the marine environment  (Jägerbrand et al., 2019). For example, discharge-

pollution, the intentional and unintentional spill of oil and other chemicals, have a 

direct effect on the physiology of fish, such as liver damage, reduced growth, and 

increased mortality (Peterson, 2001; Rogowska and Namieśnik, 2010). Global 

maritime transportation also promotes species dispersal, as species enclosed in the 

ballast water of the ships or attached to the hull, are released in new areas, 

introducing invasive species to local environments (Blakeslee et al., 2010; Seebens, 

Gastner and Blasius, 2013). Consequences for local species include increased 

competition or enhanced predation pressure, leading to changes in the trophic 

system as abundance of organisms in one trophic level decreases, affecting food 

supply for organisms higher up in the food chain (Fleeger, Carman and Nisbet, 

2003). Discharge-pollution can be difficult to mitigate by establishing MPAs, 

because this disturbance can be either unintentional or intentional, meaning MPAs 

have little effect. Instead, a more effective measure is increased environmental 

monitoring. 

Pressure from the fishing industry includes unsustainable yields and detrimental 

fishing methods. Overfishing of top predators induces top-down trophic cascades 

when natural predators decline in abundance, enhancing the survival success for 

species lower in the trophic system (Worm and Myers, 2003; (Frank et al., 2005; 

Moksnes et al., 2008; Baum and Worm, 2009; Östman et al., 2016). One of the 

most destructive fishing methods is bottom trawling which implies scraping the 

bottom for fish (Gislason, 1994; Dayton et al., 1995). Using this aggressive method 

results in not only the fish of interest being caught but also other organisms living 

on the bottom, species that are of no value to the fishing industry (so-called 

bycatch), which is often discarded back to the ocean with variable chances of 

survival (Gislason, 1994; Dayton et al., 1995; Blaber et al., 2000). Besides the 

removal of individuals, habitats are destroyed as the trawled area is left bare and 

unhospitable. Here, MPAs can play a vital role as fishing methods like 

unsustainable bottom trawling may be prohibited and methods that are less harmful 

are promoted. Commercial fishing may be limited to low yields or banned 

(periodically or continuously) from the area, enabling populations to recover, and 

maintain healthy and stable.       

Apart from discharge-pollution and fishing pressure, marine environments are 

also subjected to physical damage. Construction of piers and ports to support 

anthropogenic activities have negative impacts on important habitat forming 
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species such as eelgrass (Zostera marina), which inhibits soft and shallow beds, 

and large brown algae, the primary habitat forming vegetation inhibiting rocky 

seascapes (SNA, 2003). Shading from these constructions impair light penetration 

which in turn affects the species ability to photosynthesise, causing habitat 

degradation (Eriander et al., 2017). Species using these habitats as nursery grounds 

and to hide from predators, is consequently affected by less suitable habitat 

available (Blaber et al., 2000; Sandström et al., 2005; Sundblad and Bergström, 

2014). Furthermore, boating activities in these areas may physically harm species 

and habitats by anchoring, propeller cutting and by prohibiting light penetration as 

propellers stir up sediments (Short and Wyllie-Eciieverria, 1996; Sagerman, 

Hansen and Wikström, 2019). In addition to imposing ship/boat- and fishing-free 

zones, MPAs can protect unexploited areas from future exploitation and prevent 

further development in already exploited areas. This is especially important for 

coastal regions, because habitats in these areas act as nursery grounds for many fish 

species (Blaber et al., 2000; Sandström et al., 2005). 

The previously described disturbances are more severe in coastal and nearshore 

regions than offshore regions because these environments are subject to both 

marine- and land-based disturbances. Major disturbances sourced from land-based 

activities are sediment and nutrient run-off. Deposition of sediment is induced by 

human activities (e.g. deforestation, construction, dredging) and natural phenomena 

(although amplified by human influence) such as coastal erosion and river 

discharge (Airoldi, 2003). Sediment loading in coastal areas deteriorates habitats 

by smothering underlying vegetation or prohibiting light penetration as water 

clarity is reduced (Airoldi, 2003; Thrush et al., 2014). Nutrient run-off mostly 

originates from agriculture, where important fertilisers such as nitrogen and 

phosphorus are added to increase productivity and yields. These nutrients are 

released to the marine environment by leakage from arable fields to nearby water 

streams which carry the nutrients to coastal outlets where it is dispersed (Anderson, 

Glibert and Burkholder, 2002). The excessive nutrient inputs can cause 

eutrophication, a process in which algae growth is amplified, inducing oxygen 

depletion, which in turn affects organisms inhibiting the area as the environmental 

conditions required by the organisms are changed (Rosenberg, Bonsdorff and 

Karlson, 2002). 

Multiple anthropogenic disturbances can occur simultaneously and in some 

cases act synergistically, ranging in spatial and temporal scale, and have 

consequences for the marine environment, such as degradation of habitats and 

decline in species richness and abundance (Dayton et al., 1995; Blaber et al., 2000). 

Coastal regions are known for high species richness and their important function as 

nurseries for a number of marine species (Blaber et al., 2000; Sandström et al., 

2005). Habitat forming species in the Skagerrak’s coastal environments include 

seagrass, mussel reefs and large brown algae, important providers of shelter, and 
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spawning and feeding grounds for fish. Habitat forming vegetation also stabilise 

sea beds, and counteract bed erosion by decreasing the motion of currents (Nyqvist 

et al., 2009). They are especially important for demersal spawners (organisms who 

deposits eggs on substrates), including many fish species which are commercially 

important. Thus, availability and quality of these habitats are highly valuable not 

only from an ecological perspective but also from a socio-economic perspective. 

Finally, as with many other marine species, coral reefs and seagrass distribution 

and abundance are declining due to anthropogenic activities (Pihl et al., 2006). 

2.3. Marine Protected Areas 

There are three main categories of MPAs present on the west coast, including one 

type of national park, and multiple types of nature reserves and Natura 2000 

protected areas. Figure 2 outlines the different categories, their sub-types of 

protection, and the associated international conventions, which include some of the 

MPA types. 

 

 

Figure 2. Diagram of MPA categories and their sub-types. Ramsar and OSPAR are two conventions 

ratified by Sweden and some of the MPAs in the study area are included in their management 

programmes. 

2.3.1. National park 

There is currently only one strictly marine national park in Sweden (Kosterhavet 

national park), located outside the northern coast of Västra Götaland county 

(Swedish Agency for Marine and Water Management, 2018). National parks aim 

to protect large-scale areas of specific landscape types with particularly high 

conservation values, as well as preserving their natural states for future generations 

(Swedish Environmental Protection Agency, 2020a). In a national park, the land is 

owned by the state and active land management is only performed in areas which 
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have been subject to traditional management for a long period of time. Specific 

regulations vary between different national parks because variations are typically 

based on landscape characteristics and conservation values. For national parks that 

include marine or limnic landscapes, regulations may impact fishing activities by 

banning (Swedish Agency for Marine and Water Management, no date): 

 

▪ specific species being fished 

▪ specific fishing gears being used 

▪ fishing in specific areas and/or during specific time periods (periodically 

or continuously) 

▪ admission to specific areas and/or during specific time periods 

(periodically or continuously) 

However, in Kosterhavet national park, the destructive fishing method bottom 

trawling is allowed, causing deprivation of high conservation values (Swedish 

Agency for Marine and Water Management, 2018). The process of establishing a 

national park involves many stakeholders, including government agencies, 

municipalities, county administrative boards, NGOs, residents, and the commercial 

sector (Swedish Environmental Protection Agency, 2015). The process stretches 

over several years with the Swedish parliament making the final decision (Swedish 

Environmental Protection Agency, 2015). 

2.3.2. Nature reserve 

Nature reserves are a more common type of MPA that is less time-consuming to 

establish and can be inferred on smaller spatial scales than national parks. Nature 

reserves can be established to protect both terrestrial and marine environments at a 

wide range of scales. The objectives of nature reserves are often to protect specific 

species or habitats, or preserving biodiversity in areas with special conservation 

values, or to protect, restore and create habitats for species with high conservation 

values (Swedish Environmental Protection Agency, 2010). In Sweden, there are 

over 5,000 nature reserves and 94 of these are marine (Swedish Agency for Marine 

and Water Management, 2017; Statistics Sweden, 2020), of which 32 are located 

on the west coast. Regulations may differ between individual reserves, but like 

national parks, they may include restrictions on fishing and other types of 

anthropogenic activities affecting marine and coastal habitats. Examples of 

restrictions include banning (Swedish Environmental Protection Agency, 2007): 

 

▪ dredging (the process of removing bottom substrate due to e.g., pollution) 

▪ anchoring (may be site-specific in the nature reserve and/or time-restricted 

to specific periods and/or lengths 

▪ boat traffic (speed-limitations or prohibition from passing specific routes) 
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▪ new constructions or modification of existing constructions 

There might be several stakeholders involved in the process of establishing a new 

nature reserve. However, the final decision is made by either a county 

administrative board or a municipality, making the decision-chain shorter and less 

time-consuming than with national parks (Swedish Environmental Protection 

Agency, 2007). 

2.3.3. Natura 2000 

Already established nature reserves can be included in a European network called 

Natura 2000. The network includes sites with species and/or habitats considered to 

have high conservation values, and to be unique to a  particular region within the 

European Union (EU) member state (Mézard, Sundseth and Wegefelt, 2008). 

Depending on the objectives of the protection, there are two types of Natura 2000 

sites: 1) Special Protection Areas (SPAs) are sites pertaining to the Birds Directive 

aiming at protecting breeding and resting habitats important for threatened bird 

species and migratory bird species (European Commission, 2020b); and 2) Special 

Areas of Conservation (SAC) are sites pertaining to the Habitats Directive which 

includes rare habitats, plants, and animal species with high conservation values 

(European Commission, 2020b). Member states continuously propose sites to be 

designated as SPAs and/or SACs. Once a site has been proposed, the member state 

must incorporate a long-term plan for the sustainable management of the site and 

implement measures to preserve and restore ecosystem components, if necessary. 

The proposal is processed by an expert panel during seminars aided by the European 

Environment Agency, with the purpose of ensuring that the member states propose 

sites of adequate conservation value. 

As of 2019 there were 4,539 Natura 2000 sites registered in Sweden (Statistics 

Sweden, 2019). Only 61 of these are located on the west coast of Sweden and 

include marine environments. Earlier mentioned restrictions for national parks and 

nature reserves may also apply for Natura 2000 sites. In addition to national 

regulations, Sweden must adhere to the Birds Directive and the Habitats Directive 

which can imply stricter measures to meet the objectives (European Commission, 

2007). 

2.3.4. OSPAR 

In addition to the EU-lead Natura 2000 network, Sweden has ratified two 

international conventions regarding the protection of marine environments –

OSPAR and Ramsar. Both programs promote cooperation between states to achieve 

sustainable use of our shared marine and aquatic environments and ensure that they 

obtain good environmental status.   
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OSPAR (a fusion of the Oslo-Paris conventions) is a regional convention aiming 

at protecting marine environments in the North-East Atlantic sea, including the 

Skagerrak and parts of the Kattegat (OSPAR Commission, 2006). The work 

programme consists of five schemes of which one focus is to protect valuable 

marine and coastal areas to promote biodiversity and conserve important habitats. 

Marine sites with high conservation values are selected by each nation and then 

enrolled in the program, following monitoring and assessment schemes to track the 

condition of the protected area and ensure that measurements are implemented to 

achieve a good environmental status. There are 10 sites in Sweden enrolled in the 

OSPAR programme (all are Natura 2000 sites located on the west coast); two of 

these are also nature reserves (OSPAR Commission, 2020). Guidelines on how to 

manage the OSPAR sites are undertaken by the OSPAR Commission, who generate 

decisions (legally binding for all member states and must be incorporated into 

national law), recommendations, and agreements (neither legally binding). 

2.3.5. Ramsar 

Ramsar is an international convention aiming at protecting valuable wetlands and 

aquatic environments including shallow marine environments (UNESCO, 1971). 

These areas provide humans with important ecosystem services such as water 

purification, carbon sequestration and regulation of water flows (Ramsar 

Convention Secretariat, 2016). Migratory bird species and many fish species use 

these sites for resting, nesting or as nurseries, signifying their importance for 

biodiversity. As these environments are subject to high anthropogenic disturbance 

due to historical land use change, dredging, and implications of climate change, the 

Ramsar convention is an important tool to enhance the quality of our marine and 

aquatic environments and reassure a sustainable development (Ramsar Convention 

Secretariat, 2016). Climate change induces changed weather patterns with 

increasing droughts in some regions and more frequent events of heavy 

precipitation in others (Ramsar Convention Secretariat, 2002). This will adversely 

affect the ecological attributes and functioning of wetlands and impair sustainable 

use of the services they provide. The contracting parties are obligated to select at 

least one site to enrol in the programme and in the context of global conservation 

efforts, the selected site(s) must be of significant value. Sweden has enrolled 68 

sites and seven of these are marine environments located on the west coast (Ramsar 

Convention Secretariat, 2015). All Ramsar sites are also Natura 2000 sites, 

strengthening the protection of the sites. 

2.3.6. Shoreline protection 

In addition to the above mentioned MPA types, the entire Swedish coastline is 

subject to a national protection called “the shoreline protection” (Boverket and 
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Naturvårdsverket, 2010). It includes the marine and terrestrial environment 

extending 100 m seaward and 100 m landward from the shoreline (the county 

administrative board have the authority to expand the area of protection of up to 

300 m; Boverket and Naturvårdsverket, 2010). The shoreline protection was 

established in the 1950s with the intent to secure long-term public access to coastal 

areas and ensure good environmental conditions for species, both animals and 

plants, inhabiting both terrestrial and marine coastal environments (Boverket and 

Naturvårdsverket, 2010). The shoreline protection prohibits ground excavations, as 

well as establishing new buildings and modifying old ones, in a way that would 

severely deteriorate living conditions for species present in the area (Boverket and 

Naturvårdsverket, 2010).  

However, municipalities and county administrative boards are authorized to 

make exemptions if special reasons are presented and if the purpose of the shoreline 

protection is not impeded (Boverket and Naturvårdsverket, 2010). They can also 

repeal specific areas from the shoreline protection, enabling exploitation in these 

areas without seeking approval of exemption (Boverket and Naturvårdsverket, 

2010). Reports comprising data on granted and rejected applications of exemptions 

from the Shoreline protection  is compiled by the Swedish Environmental 

Protection Agency yearly and show a widespread acceptance of exemptions 

(Swedish Environmental Protection Agency, 2018). During 2019, 568 applications 

were granted by county administrative boards and 5,055 by municipalities (Swedish 

Environmental Protection Agency, 2020b). While the numbers are high for 2019, 

the year is no exception as granted application rates has steadily increased since  

2011 (Swedish Environmental Protection Agency, 2020b), discerning a trend of 

neglecting the very foundation of which the shoreline protection was established 

for – ensuring good environmental conditions for species inhabiting coastal areas.  
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3.1. Habitat maps  

 

For this study, habitat distribution raster data from Fredriksson, Erlandsson and 

Bergström (2020), with a resolution of 250 m x 250 m, was used. Data was provided 

by the Swedish University of Agricultural Sciences (SLU) and consists of predicted 

distributions of nursery habitats for 21 species (18 fishes and 3 crustaceans; Table 

1) in areas with a water depth of <30m. Four of the species: the European eel 

(critically endangered), pollock (critically endangered), Atlantic cod (vulnerable) 

and whiting (vulnerable), are threatened and red listed species in Sweden (SLU 

Artdatabanken, 2020). The red list is a classification system developed by the IUCN 

for assessing conservation status and extinction risk (IUCN Species Survival 

Commission (SSC), 2012) (Figure 3).  

 

 

Figure 3. IUCN classification system for assessing extinction risk of species (IUCN Species Survival 

Commission (SSC), 2012). 

3. Methods 
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The four endangered species, listed above, are also commercially important 

species for the Swedish fishing industry, together with the European lobster, saithe, 

brown crab, European plaice, European flounder, brill, and common sole (SLU, 

2021). This subset of species is thus described in more detail in the subsequent 

analyses and discussion. The other species analysed in this study are common 

species in the Skagerrak, with important roles in the ecosystem, especially in the 

shallow areas. 

Table 1. List of species used in the analysis. Frequency of occurrence refers to the species presence 

in the total fishing samples along the entire west coast. The Atlantic cod and European plaice were 

divided into two classes as there was a distinct age difference in the samples.  

Species Frequency of occurrence (%) 

European shore crab (Carcinus maenas) 89 

Goldsinny wrasse (Ctenolabrus rupestris) 66 

European eel (Anguilla anguilla) 57 

Viviparous eelpout (Zoarces viviparus) 53 

Corkwing wrasse (Symphodus melops) 49 

Atlantic cod (Gadus morhua) >20 cm 44 

Black goby (Gobius niger) 39 

European flounder (Platichthys flesus) 38 

Atlantic cod (Gadus morhua) ≤20 cm 31 

European plaice (Pleuronectes platessa) ≤13 cm 20 

Longspined bullhead (Taurulus bubalis) 16 

Saithe (Pollachius virens) 16 

Common sole (Solea solea) 14 

Whiting (Merlangius merlangus) 14 

Brown crab (Cancer pagurus) 6 

Fivebeard rockling (Ciliata mustela) 5 

European plaice (Pleuronectes platessa) >13 cm 4 

Ballan wrasse (Labris bergylta) 4 

Brill (Scophthalmus rhombus) 3 

Rock cook (Centrolabrus exoletus) 3 

Pollock (Pollachius pollachius) 2 

Two-spotted goby (Gobiusculus flavescens) 2 

European lobster (Homarus gammarus) 1 

 

The habitat distribution raster data are part of the ongoing project “National marine 

mapping”, operated by the Swedish Agency for Marine and Water Management 

(HaV, 2019). The project aims to produce distribution maps of benthic habitats for 

the entire coastal area of Sweden. The habitat data maps of fish and crustaceans 

were produced by SLU during the autumn of 2020 using monitoring data from fish 

samples of juveniles with fyke nets, carried out in May-Sept between 2002-2017. 
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A total of 5,146 samples along the Swedish west coast were obtained, and presence 

and abundance of juveniles were recorded (Figure 4). Of the 5,146 samples, 2,272 

were in the coastal areas of Västra Götaland county.  

 

 

Figure 4. Map of juvenile fish and crustacean sampling sites. Fishing took place in May-Sept 

between 2002-2017. 
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The probability of the presence and distribution of juvenile habitats in areas 

between sampling points were derived by Fredriksson, Erlandsson and Bergström 

(2020), using spatial statistical modelling where the relationship between each 

species and five environmental variables (depth, wave exposure, rugosity, bottom 

temperature, and salinity) were analysed. A suitable habitat does not only require 

certain physical attributes but needs to meet environmental conditions optimal for 

the species. For example, ballan wrasse and corking wrasse (two species belonging 

to the family Labridae) both require habitats in shallow areas with rocky bottoms, 

but their physiological requirements differ. For ballan wrasse, rugosity is the most 

important environmental factor, affecting the distribution of suitable habitats, while 

for corking wrasse, temperature is the most important factor (Fredriksson, 

Erlandsson and Bergström, 2020). 

The statistical modelling resulted in a habitat distribution raster dataset with cell 

values ranging between 0-1000 (probability of presence 0-100%) (Fredriksson, 

Erlandsson and Bergström, 2020). The authors tested model performance by 

evaluating AUC (Area Under Curve; Hosmer and Lemeshow 2013) and by the 

sensitivity and specificity values (the proportion of correctly predicted presences 

and absences). Thereafter, the authors calculated a cut-off value for each species to 

reclassify the habitat distribution into two classes: presence and absence 

(Fredriksson, Erlandsson and Bergström, 2020). They determined the cut-off value 

for each species using the True Skill Statistic (Allouche, Tsoar and Kadmon, 2006), 

where the cut-off value indicates the probability threshold where the sum of 

sensitivity and specificity is greatest. The cut-off values deriving from the work 

done by Fredriksson, Erlandsson and Bergström (2020), was used in this study to 

reclassify the habitat distribution into two classes: suitable and non-suitable habitat, 

using ESRI ArcGIS® ProTM 2.5.0. In total, 23 suitable habitat maps were produced 

for 19 species and for two species with two size classes each, totalling 21 species. 

3.2. Calculating ecological representativity 

Ecological representativity is the proportion (%) of habitat that is protected. The 

suitable habitat data were used to estimate both the representativity of each species 

separately in the MPA network and all species combined. Maps of MPAs on the 

Swedish west coast was provided by the Swedish Agency for Marine and Water 

Management. The data includes MPAs established as of 2019. Thus, MPAs 

implemented during 2020 and later, are not included in the dataset and subsequently 

not analysed. The current MPA network on the west coast and the different MPA 

categories are displayed in Figure 5. The total area along the entire west coast 

currently under protection is ~6,310 km2, of which ~1,375 km2 is in Västra 

Götaland county. No distinction was made between different MPA categories in the 
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subsequent analysis, as the representativity of the combined MPA coverage was 

analysed for each respective species. 

 

 

Figure 5. Maps of MPA categories and sites included in the Ramsar and OSPAR conventions. The 

dashed box indicates the extent of the right map, showing MPAs in Västra Götaland county. 

 

The representativity of each species was calculated by comparing total habitat area 

(km2) with habitat area (km2) protected by MPAs, giving the proportion of 
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protected habitats (%). A conceptual model of the approach is illustrated in Figure 

6. The ecological representativity of the MPA network was estimated by calculating 

the mean representativity of all species. 

 

Figure 6. A conceptual model visualising the estimation of species representativity in MPAs. 

3.3. Species richness and pressure maps 

Using cell statistics, number of overlapping species habitats were calculated, 

producing a species richness map of the sub-set of species selected for this study. 

To identify areas subjected to high anthropogenic pressure and allow comparisons 

with the species richness map, a dataset from Törnqvist et al. (2020) was used. The 

dataset was produced for the Marine Strategy Framework Directive which is 

supervised by the Swedish Agency for Marine and Water Management. The 

framework aims at collecting, processing, and modelling physical disturbances, 

focusing on impact on connectivity, sea floor morphology and the hydrographical 

system, caused by anthropogenic activities in Swedish coastal environments 

(Törnqvist et al., 2020). As part of this framework, Metria AB produced a dataset 

with quantified pressures classified into environmental impact rankings between 1 

and 5 (low to high). The resolution of the dataset was 10 x 10 m and considers a 

vertical water depth limit of 15 m. The input data consisted of historical and 

contemporary orthophotos, registries, AIS (Automatic Identification System) data, 

satellite imagery, available geographical data and metadata retrieved from literature 

studies. The impact scale is, therefore, a compilation of assessments made by 

experts, using remote sensing analysis and datasets from previous studies.  

The process of producing the impact dataset involved three steps (Törnqvist et 

al., 2020). First, different pressures were identified and the feasibility of mapping 

these through a geographical information system were explored. Models of indirect 

pressures from shipping traffic were designed to estimate the extent and degree of 

impact, using information from observed traffic intensity, ship attributes, AIS-

transponder signals and by analysing satellite imagery. Indirect pressures include 

bottom and shoreline erosion due to increased wave activity and deterioration of 

bottom habitat caused by anchoring, dredging, or resuspension from propellers.  
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Second, available datasets of pressures were collected and compiled with 

modelled pressures. Changes in the shoreline were studied by comparing historical 

orthophotos with contemporary orthophotos, focusing on detecting artificial 

landfills, excavations, and clearance of reed. Anthropogenic structures bordering 

the sea (buildings, bridges, piers, jetties etc.) were mapped, and objects absent in 

the available datasets but detected in the orthophotos, were digitalised. Dredged 

areas and dumping sites were mapped by discerning dredging vessels and their 

movement, from AIS data. 

Finally, the pressure on bottom habitats was modelled by including impacts on 

connectivity, sea floor morphology, and the hydrographical system. In this way, the 

sensitivity of the abiotic conditions in the environment were considered and the 

cumulative effects of multiple pressures was identified. Connectivity impacts 

included impeded water exchange and impairment of species abilities to move in 

the area due to altered water flows, noise pollution or physical obstacles. 

Morphological impacts included changes in sediment composition and on the 

physical structure of the seabed. Hydrographic impacts include alteration in 

intensity and velocity of waves and water currents, subsequently affecting the 

habitats wave exposure. Together, these impacts affect habitat suitability for species 

present in the impact area, as the environmental conditions required by the species 

are altered. Furthermore, this may alter species composition and changes in the 

dynamics of the trophic system. The final data included three impact categories, 

based on connectivity, sea floor morphology and the hydrographical system. The 

cell values ranged between 1-5 (low-high) indicating the cumulative environmental 

impact for each category.  

Previous sections describes the production of pressure maps performed by 

Törnqvist et al. (2020). The following section describes how the pressure maps 

have been processed and used in this study. To identify areas subjected to high 

anthropogenic pressure in Västra Götaland and allow comparison with the species 

richness map, the three pressure categories were summarised into one, resulting in 

cell values ranging between 1-15 (low-high). Two different pressure maps were 

produced for comparison with the species richness maps, the first map showed the 

raw summarised pressure data (10 x 10 m resolution), and the second map showed 

the data resampled to the same cell size as the species data (250 x 250 m), using 

block statistics and snapping the cell output to the species richness cells. The 

resampled map allowed for direct comparison between the species richness data 

and the summarised pressure data, while the map showing the raw summarised 

pressure data gave a more accurate picture of the spatial distribution of pressures. 
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3.4. MPA evaluation and identifying areas suited for 

expansion  

Evaluation of the effectiveness of the existing network and identification of 

expansion opportunities in the Skagerrak, was performed using Marxan, a freely 

available conservation planning-tool used by organisations and institutions 

worldwide, to evaluate and design efficient networks of protected areas (Ardron, 

Possingham and Klein, 2010). The software was first developed to address 

terrestrial conservation planning in Australia (Ball, 2000), but has since been 

enhanced and is now used for conversation planning in all types of environments. 

With Marxan, decision makers can solve complex issues targeting multiple features 

and answer questions of where to establish nature reserves at minimum costs. For 

the reserve solution to be efficient, Marxan considers the conservation features 

complementarity meaning protected areas should complement each other in what 

species they protect so that redundancy (the same species being protected in all 

areas) is avoided. The tool can help both in identifying new areas of protection and 

evaluate if an existing network of protected areas is sufficient.  

3.4.1. Planning units, conservation features and status 

Marxan uses planning units to find the best reserve solution. Planning units are 

smaller regions of the total analysed area and are defined by for example, cell-size, 

grids, or ecological features such as water bodies or habitats. All planning units are 

assigned to the conservation features that the user wishes to protect. In this study, 

the conservation features are the 21 species listed in Table 1 and the planning units 

are their modelled habitats represented by individual pixels (250 m x 250 m). The 

total number of planning units (habitat cells) are 26 360. A status can be set to each 

unique planning unit to inform Marxan if the planning unit is inside or outside of 

an existing reserve. This setting is important as it helps to evaluate the existing 

network of protected areas (setting the status “not inside a reserve”) or if planning 

units located inside existing reserves must be included (as it is unrealistic that 

officials will make changes in reserve extent that excludes areas already protected). 

3.4.2. Pressure as a cost metric 

When selecting sites for protection, it is important to take possible pressures into 

consideration. For example, in marine conservation planning, pressures can be 

overfishing or changes in the morphology and/or hydrography (see section 2.2.2). 

In Marxan, the different levels of pressure endured by the habitats can be used as 

weights, enabling prioritising schemes as Marxan strives to deliver the most cost-

effective solution. By using the cost-function in Marxan, the user can set different 

weights to each unique planning unit. The cost can reflect different types of 
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economic, social, or ecological weights. In this study, the cost function was used to 

prioritise habitats with high species richness and high pressure. The resampled 

summarised pressure map was therefore used as a cost matrix, assigning each 

planning unit a cost ranging between 0-15 (low-high). This approach enabled 

Marxan to prioritise planning units according to biodiversity targets and the degree 

of experienced pressure for each planning unit. Species subjected to high pressure 

were considered important to prioritise and the cost was therefore set to 1 for 

planning units where the summarised pressure was 15, 2 for planning units with a 

summarised pressure of 14, and so on. Since Marxan always aim to provide the 

most cost-efficient solution, setting a low cost to planning units under high pressure 

instructs Marxan to prioritise these habitats as they are less costly to protect.  

3.4.3. Conservation target, SPF, BLM, and repeated runs 

A target can be set to instruct Marxan what proportion of the planning units per 

conservation feature must be included in the final reserve solution, for example 40 

%. In addition to this, a Species Penalty Factor (SPF) can be added to different 

conservation feature-types. The SPF informs Marxan that it is more important to 

meet the conservation target for some conservation features than others and the 

model will therefore put greater emphasis on these species when opting for the most 

efficient reserve solution. This enables a prioritisation between conservation 

features which can be useful if, for instance, some of the conservation features are 

threatened, or if they are of greater social or economic significance.  

Another important setting is the Boundary Length Modifier (BLM). It instructs 

Marxan on how much emphasis should be placed on making the network of reserves 

fragmented or compact, for example, “many small reserves” compared to “a few 

large reserves”. A low BLM enables Marxan to put greater emphasis on the cost, 

sacrificing compactness for more fragmented reserves to minimise the total cost. In 

contrast, a high BLM instructs Marxan to put greater emphasis on minimising 

number of reserves irrespective of the cost. Thus, setting the BLM will have a great 

impact on the final reserve solution and much consideration must therefore be given 

to this factor. 

In this study, the BLM was set to 0 during experimental runs when evaluating 

performance of SPF, target levels and status (planning units inside or outside of 

existing reserves). Setting the BLM to 0 enabled Marxan to focus on achieving the 

targets at the lowest cost without consideration of reserve compactness. Originating 

from the best model performance, a method derived from Stewart and Possingham 

(2005) was used to deduce the most cost-efficient BLM. Using the same parameters 

for status, SPF and target, a sequence of twelve BLM values ranging from 0.0001 

up to 1,000,000, using a fixed multiplier of 10, were tested. From each round, total 

boundary length of the reserve system and average cost of all solutions, was derived 

from the solution Marxan considered to be the most cost-efficient. Records of these 
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values for each BLM-test were plotted in a diagram to find the BLM value 

generating minimum amount of reserve area to the lowest cost. This BLM value 

was further used to test model performance. 

For each change in parameter (SPF, target, status, BLM), Marxan was instructed 

to execute 10,000 repeated runs. Each run is a proposed solution, meaning Marxan 

attempts to maximise the objective function using the iterative improvement and 

simulated annealing algorithms, which is then repeated iteratively. The objective 

function considers: 

 

1. The number of conservation features and in which planning unit each 

occur. 

2. The cost of protecting each planning unit. 

3. The SPF and target for each conservation feature. 

4. The pairwise shared boundary length between each planning unit. 

 

After Marxan finished the 10,000 repeated runs, it calculated which of the 10,000 

solutions gave the best conservation configuration. In other words, the most cost-

efficient solution to reach the set conservation targets. Another important output 

Marxan produces is the selection frequency for each planning unit. With this 

information, the user can identify key planning units. The more frequently a 

planning unit is selected (during the 10,000 runs), the more important that planning 

unit is to reach the proposed targets for the reserve network. Planning units with a 

high selection frequency are likely to include multiple species or rare species, 

without which it is difficult to achieve the proposed targets. The combination of 

presenting both the best conservation solution and the selection frequency of 

planning units, is recommended by Ardron, Possingham and Klein, 2010. 

Interpreted individually, the best conservation solution provides the most cost-

efficient configuration to meet the targets but since this solution is only based on 

one of the 10,000 runs, it is highly subjected to error as habitats important to protect 

might be disregarded in this very solution. The selection frequency provides the 

user with information on planning units’ importance for an efficient network of 

protected areas and since the output utilises information from all 10,000 runs, it is 

less sensitive to errors. 

3.4.4. Conservation solutions 

The analysis resulted in two alternative solutions, one “unbiased” and one “biased”. 

In the biased solution, Marxan was forced to include already protected planning 

units in the final solution. With this setting, Marxan presumably used already 

protected planning units as starting points and built on from them. In the unbiased 

solution, the status was set to “not inside a reserve” for all planning units, enabling 

Marxan to choose freely among the planning units, including those inside existing 
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reserves. The analysis was divided into two steps (Figure 7) to evaluate model 

performance and deduce which settings returned the best result: 

 

1) Two different target levels and two different SPF-settings were tested for 

both the unbiased and biased solution. BLM was excluded by setting it to 

zero meaning no emphasis was made on optimising the reserve 

compactness. Model performance was measured by the number of species 

for which targets were successfully met (Table 2). 

2) Assuming from the best target and SPF-setting, a sequence of twelve BLM 

values were tested for both the unbiased and biased solution, to find the 

most cost-efficient BLM (Figure 8 and 9). The best BLM value was the 

turning point, for which after this value, the increase in cost is greater than 

the decrease in total reserve boundary length.  

 

 

Figure 7. Flow chart of the two steps taken to evaluate model performance and deduce which 

settings returned the best result. The figure showing selection frequency is based on a 50% target 

and a non-uniform SPF (2-4-8) with no emphasis on compactness (BLM = 0). The figure showing 

the best solution is based on 50% target, a non-uniform SPF (2-4-8) and a BLM value of 0.01. 

 



38 

 

The different SPF-settings tested were a) a uniform where the SPF was the same 

for all species meaning they are all equally important to protect, b) a non-uniform 

SPF where a fixed multiplier of two was used to rank the importance of the species. 

For the commercially important species (European lobster, saithe, brown crab, 

European plaice, European flounder, brill, and common sole), the SPF was set to 

four and for the endangered species (the European eel, pollock, Atlantic cod, and 

whiting) the SPF was set to eight, the SPF for the remaining species was set to two. 

The motivation for testing two different SPF-settings was that species of 

commercial interest and species at higher risk of extinction should be prioritised.  

Two target levels, 40% and 50%, were used to test conservation capacity and 

evaluate model performance. The target levels were based on results from the 

calculated ecological representativity in section 3.3.2. To deduce which of the two 

alternatives (the unbiased or biased) was the most efficient solution for the MPA 

network in the Skagerrak, a comparison between the total reserve area in each 

solution was measured. The one with the lowest area was considered the most 

efficient, since the least possible area is required to satisfy the protection target of 

the species. Furthermore, the total reserve area in the two conservation solutions 

was compared to the total reserve area in the current MPA network, facilitating an 

evaluation of its effectiveness. Finally, expansion of existing MPAs and 

establishment of new MPAs were proposed by visually identifying clusters of 

planning units in the best conservation solution. 

3.4.5. Evaluating model performance 

For the SPF parameter, the best performance was achieved by using a non-uniform 

SPF (2-4-8; Table 2). There was no difference in model performance for the 

unbiased or biased settings, using non-uniform SPF, as both solutions delivered 

satisfying results for both target levels. There was no problem in satisfying both 

targets for the biased solution, irrespective of SPF. However, the success rate for 

the unbiased solution was inferior with two species (saithe and pollock) missing the 

40% target and three species (the European eel, pollock, and two-spotted goby) 

missing the 50% target. The model performed best using a biased solution with a 

non-uniform SPF. As the model succeeded in reaching the highest target of 50% 

for all species, this target and the non-uniform SPF were used in the forthcoming 

analysis. 

The mean ecological representativity for the Skagerrak was 43% (Table 3) but 

as the aim of this study was to improve the current network of MPAs, the modelling 

exercise aimed for a target of 50%. Several species, including commercially 

important and endangered species, had an ecological representativity of <40%, and 

therefore the feasibility of enhancing their representativity to at least 40% was 

analysed. 
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The most cost-efficient BLM value was 0.01 for both the unbiased and biased 

solution as the turning point, for which after this value, the increase in cost is greater 

than the decrease in total reserve boundary length (Figure 8 and 9). 

Table 2. Results from model calibration to find which settings produced the best conservation 

solution. The BLM was excluded from the analysis by setting it to zero. Yellow boxes indicates when 

Marxan failed to achieve targets for species. 

 Uniform SPF (1) Non-uniform SPF (2-4-8) 

 Target 40% Target 50% Target 40% Target 50% 

Species Unbiased Biased Unbiased Biased Unbiased Biased Unbiased Biased 

European shore crab yes yes yes yes yes yes yes yes 

Goldsinny wrasse  yes yes yes yes yes yes yes yes 

European eel  yes yes no   yes yes yes yes yes 

Viviparous eelpout  yes yes yes yes yes yes yes yes 

Corkwing wrasse  yes yes yes yes yes yes yes yes 

Atlantic cod >20 cm yes yes yes yes yes yes yes yes 

Black goby  yes yes yes yes yes yes yes yes 

European flounder  yes yes yes yes yes yes yes yes 

Atlantic cod ≤20 cm yes yes yes yes yes yes yes yes 

European plaice ≤13 cm yes yes yes yes yes yes yes yes 

Longspined bullhead  yes yes yes yes yes yes yes yes 

Saithe  no yes yes yes yes yes yes yes 

Common sole yes yes yes yes yes yes yes yes 

Whiting  yes yes yes yes yes yes yes yes 

Brown crab  yes yes yes yes yes yes yes yes 

Fivebeard rockling  yes yes yes yes yes yes yes yes 

European plaice >13 cm yes yes yes yes yes yes yes yes 

Ballan wrasse  yes yes yes yes yes yes yes yes 

Brill  yes yes yes yes yes yes yes yes 

Rock cook  yes yes yes yes yes yes yes yes 

Pollock no yes no yes yes yes yes yes 

Two-spotted goby yes  yes no yes yes yes yes yes 

European lobster  yes yes yes yes yes yes yes yes 
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Figure 8. Diagram shows the effect of using different BLM values on total reserve boundary length 

and average cost of solutions, for the unbiased solution. The result from each round is plotted and 

the best BLM is 0.01 since succeeding BLM values results in a larger increase in average cost of 

solutions than decrease in total reserve boundary length. 

 

Figure 9. Diagram shows the effect of using different BLM values on total reserve boundary length 

and average cost of solutions, for the biased solution. The result from each round is plotted and the 

best BLM is 0.01 as the following BLM value results in a larger increase in average cost of solutions 

than decrease in total reserve boundary length. 
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4.1. Ecological representativity 

The two-spotted goby had the least habitat protected (9%) in the Skagerrak while 

the Atlantic cod >20 cm had the most habitat protected (55%; Table 3). Along the 

entire West coast, the longspined bullhead had the most habitat protected (63%) 

while the European lobster had the least (32%; Table 3). Overall, no trend could be 

discerned in number of species having more habitat protected in the Skagerrak 

compared to the entire West coast or vice versa, the share was approximately 50/50. 

However, for those species having higher ecological representativity in the West 

coast than in the Skagerrak, there is a larger difference in representativity (Table 

3). For example, the two-spotted goby (+34%), the viviparous eelpout (+17%) and 

the European plaice (+10%; Table 3). The mean ecological representativity, for all 

species combined, was 45% for the entire west coast and 43% for the Skagerrak. 

With regards to the EU goal of protecting ≥30% of non-prosperous species and 

habitats, the target was met for all species when examining the entire west coast. In 

the Skagerrak, the target was met for all species except for the two-spotted goby 

with only 9% habitat protected (highlighted with yellow in Table 3). 

Table 3. Habitat area (km2) and ecological representativity (proportion of protected habitats in %) 

for each species in the Skagerrak and summarized for the entire west coast. The species are listed 

according to frequency of occurrence in the total sample along the west coast. The yellow box 

highlights the only species with ecological representativity <30%. 

 
Total Habitat (km2) Habitat in MPA (km2) 

Ecological 

representativity (%) 

Species West coast Skagerrak West coast Skagerrak West coast Skagerrak 

European shore crab 1541 749 623 294 40% 39% 

Goldsinny wrasse  909 652 432 288 47% 44% 

European eel  600 297 284 133 47% 45% 

Viviparous eelpout  2189 141 299 51 53% 36% 

Corkwing wrasse  580 334 244 136 40% 41% 

Atlantic cod >20 cm 566 81 873 44 49% 55% 

Black goby  398 238 139 78 35% 33% 

4. Results 
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European flounder  612 241 281 110 48% 46% 

Atlantic cod ≤20 cm 1764 882 957 398 44% 45% 

European plaice ≤13 cm 764 457 318 195 42% 43% 

Longspined bullhead  566 198 359 108 63% 54% 

Saithe  1552 1096 673 503 43% 46% 

Common sole 967 245 1632 126 49% 51% 

Whiting  3348 598 379 248 39% 41% 

Brown crab  2082 1035 844 467 41% 45% 

Fivebeard rockling  753 358 376 172 50% 48% 

European plaice >13 cm 1559 445 808 186 52% 42% 

Ballan wrasse  571 447 281 214 49% 48% 

Brill  639 34 312 18 49% 51% 

Rock cook  1269 547 545 282 43% 52% 

Pollock 1671 996 653 407 39% 41% 

Two-spotted goby 1135 17 491 2 43% 9% 

European lobster  1918 857 607 328 32% 38% 

4.2. Species richness vs. pressure 

The 23 habitat maps were combined to illustrate species richness (Figure 10) of the 

sub-set of species selected for this study. Areas with high species richness were 

found mostly along the coastline and by the fjord inlets near Tjörn and Orust, with 

especially high values found in the Skagerrak (Figure 10). Within the confinement 

of the fjords, species richness was low to medium (Figure 10). There were areas 

found with overall low species richness but of high importance for single species 

like the European lobster (Figure 10). Maximum number of overlapping habitats 

was 18, which indicates that there were no areas containing habitats for all 21 

species. 
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Figure 10. The left panel shows species richness (n≤18). The right panel shows protected and non-

protected habitats for the European lobster (Homarus Gammarus). The black circle indicates a 

region with low species richness but a large extent of non-protected lobster habitat. 
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In general, pressures were concentrated near shorelines and close to the mainland 

coast (Figure 11). Species richness was also generally high close to shorelines but 

tended to concentrate along islands rather than the mainland coastal area (Figure 

10). This was particularly apparent in area A, where there was almost no overlap 

between high species richness and high pressure (Figure 11a). In contrast, area B 

had overlap between high species richness and high pressure (Figure 11b), implying 

harsher living conditions for the many species inhabiting these areas. In area C, 

high species richness was found near islands but mostly along west-facing 

shorelines, while high pressure was mostly concentrated on the south-facing side 

of the islands (Figure 11c). High species richness and pressure did, however, 

overlap around islands located in the north-western part of the area, where a higher 

species richness was concentrated on the east-facing side of the islands (Figure 

11c). Overall, areas where high species richness and the highest pressure 

overlapped were relatively few along the entire West coast. 

 

Figure 11. Resampled summarised pressure distribution in Västra Götaland county. Three example 

areas (box A, B and C) were selected because they exhibit high pressure and medium to high species 

richness. Both the raw summarised pressure (10 x 10m) and the resampled (250 x 250m) 

summarised pressure is shown for each example area. The resampled pressure data enables a direct 

pixel-to-pixel comparison with the species richness data. 

Figure 12 and 13 further plot a pixel-by-pixel comparison between endangered and 

commercially important species and their experienced pressure. Proportion of 

habitat subjected to different pressure intensities differs between the species. 
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Pollock (Figure 12) and brown crab (Figure 13) had a large proportion of habitats 

subjected to low pressure while the European eel (Figure 12) and the European 

flounder (Figure 13) had a small proportion of habitat under low pressure. Both the 

European eel and the European flounder only had ~12% of habitat located in no-

pressure areas (with current pressure data) and ~11% in areas with the second 

highest summarised pressure (Figure 12 & 13). Large specimens of Atlantic cod 

had just over 45% of its habitat in no pressure areas and smaller juveniles just under 

35% (Figure 12). As the summarised pressure increases, proportion of habitat 

decreases for both small and large Atlantic cod, with an exemption for the small 

Atlantic cod where proportion of habitat increases slightly in areas with the second 

highest summarised pressure (Figure 12). In general, all species display a dramatic 

decrease in habitat proportion from zero pressure to areas with the lowest pressure 

class (Figure 12 & 13). Areas with a summarised pressure of three seems to be a 

cluster for high species richness of the sub-set of species selected for this study, as 

almost all species exhibit a temporary peak in habitat proportion (Figure 12 & 13). 

 

 

Figure 12. The summarised pressure experienced in situ for endangered and commercially 

important species, and the proportion of their habitat subject to a range of summarised pressure 

classes using the resampled data (250m x 250m). Zero pressure might not indicate that there are no 

anthropogenic disturbances in these habitats, but that data on potential pressure is missing.   
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Figure 13. The resampled summarised pressure experienced in situ for commercially important 

species and the proportion of their habitat subject to a range of summarised pressure classes using 

the resampled data (250m x 250m). Zero pressure might not indicate that there are no 

anthropogenic disturbances in these habitats, but that data on potential pressure is missing. 

4.3. Best conservation solutions and expansion 

opportunities 

4.3.1. Best conservation solution 

For the unbiased solution (when Marxan choses freely among the planning units), 

a large part of the planning units had a high selection frequency (Figure 14). The 

biased solution (when Marxan was constrained to include already protected 

planning units) delivered a more nuanced solution as the selection frequency was 

streamlined, making deduction of important planning units more distinct (Figure 

14). The coastal areas enclosed by the red circles exemplifies areas with drastic 

differences in distribution of important planning units between the unbiased and 

biased solution (Figure 14). The total reserve area for all planning units selected in 

the unbiased solution was ~1 585 km2 and ~1 427 km2 for all planning units in the 

biased solution. The most cost-efficient solution for the MPA network in the 

Skagerrak was therefore the biased solution, as less protected area was required to 

reach the target. However, this solution required 4% more protected area than the 

current MPA network (~1 375 km2). This was expected as the protection rate for 

most species (see Table 3 in 4.4.1) was less than the target of 50%. 
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Figure 14. Selection frequency of each planning unit when running the unbiased solution (Marxan 

chose freely among the planning units) shown in the left panel, and the biased solution (Marxan had 

to include already protected planning units) shown in the right panel, using the non-uniform SPF, 

a BLM of 0 and a target of 50%. The scale of low–high indicates the importance of a particular 

planning unit for the reserve network. The selection frequency shows how many of the 10,000 

repeated runs, each planning unit was selected. A higher selection number implies the importance 

of that planning unit for the reserve network. Red circles indicates areas with distinct difference in 

distribution of important planning units between the unbiased and biased solution. 

Using the most cost-efficient BLM value of 0.01, the best conservation scenario for 

the unbiased and biased solutions could be displayed (Figure 15). A large part of 

the planning units in the unbiased solution were located outside MPAs while 

planning units in the biased solution was predominantly located inside MPAs 
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(Figure 15). For both solutions, there was a high concentration of unprotected 

planning units along the coast from Gothenburg northward to Orust (Figure 15). 

The calculated reserve area for the unbiased solution was 709 km2 and for the biased 

solution 844 km2. Overall, less reserve area was required when using a BLM value 

than excluding it from the analysis. Comparing with reserve area in the current 

MPA network (~1 375 km2), both solutions required less reserve area (-49% for the 

unbiased and -39% for the biased), suggesting the current reserve network has been 

streamlined. 

 

 

Figure 15. The best conservation scenario for the unbiased solution (left panel) and the biased 

solution (right panel), using the non-uniform SPF, a BLM of 0.01 and 50% target. The green areas 

represent planning units (= habitats) important to protect to achieve the target for all species. 
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If the current MPA network would expand according to the best conservation 

solution proposed by using the biased setting, the mean ecological representativity 

in the Skagerrak would increase from currently 43% to 54% (Table 4). This would 

also entail increased habitat protection for most species including the two-spotted 

goby, which currently only had 9% of its habitat protected (Table 3). However, 

amending the current MPA network to follow the best conservation solution would 

implicate a decrease in protected habitat for the black goby (-5%), pollock (-1%) 

and the European shore crab (-2%; Table 4). 

Table 4. Habitat area (km2) and ecological representativity (proportion of protected habitats (%)) 

in the Skagerrak for the current MPA network and the optimised MPA network proposed by Marxan. 

The species are listed according to frequency of occurrence in the total sample along the west coast. 

 

Total habitat 

(km2) 

Habitat in MPAs 

(km2) 

Ecological 

representativity (%) 

Frequency of 

occurrence (%) 

Species  Current Optimised Current Optimised  

European shore crab 652 293 358 39% 55% 89% 

Goldsinny wrasse  297 141 160 44% 54% 66% 

European eel  141 55 71 45% 50% 57% 

Viviparous eelpout  334 140 175 36% 52% 53% 

Corkwing wrasse  81 44 49 41% 61% 49% 

Atlantic cod >20 cm 238 82 119 55% 50% 44% 

Black goby  241 117 133 33% 55% 39% 

European flounder  882 405 484 46% 55% 38% 

Atlantic cod ≤20 cm 457 203 248 45% 54% 31% 

European plaice ≤13 cm 198 109 123 43% 62% 20% 

Longspined bullhead  1096 510 610 54% 56% 16% 

Saithe  245 126 141 46% 58% 16% 

Common sole 598 255 320 51% 53% 14% 

Whiting  358 173 205 41% 57% 14% 

Brown crab  445 189 228 45% 51% 6% 

Fivebeard rockling  447 216 256 48% 57% 5% 

European plaice >13 cm 34 18 19 42% 55% 4% 

Ballan wrasse  547 282 327 48% 60% 4% 

Brill  996 408 498 51% 50% 3% 

Rock cook  749 304 374 52% 50% 3% 

Pollock 1035 467 545 41% 53% 2% 

Two-spotted goby 857 329 429 9% 50% 2% 

European lobster  17 1 8 38% 50% 1% 
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4.3.2. Expansion opportunities 

Expansion of existing MPAs and the establishment of new MPAs are proposed in 

Figure 16. Clusters of planning units in the best conservation solution (see right 

panel in Figure 15) were visually identified to either be included in an existing MPA 

by extending it, or by establishing a new MPA. Thirteen sites are suggested to be 

included in existing MPAs (marked green in Figure 16) and new MPAs are 

suggested for five sites (marked orange in Figure 16).  

 

Figure 16. Proposal for MPA expansion based on visually delineating major clusters of planning 

units considered conservation worthy by Marxan, the best conservation scenario for the biased 

solution, using the non-uniform SPF, a BLM of 0.01 and 50% target. Clusters of planning units 

important to protect is either proposed to be included in existing MPAs (green) by expanding 

adjacent MPAs, or by establishing new MPAs (orange). The numbers refer to either existing MPAs 

suited for expansion to encompass proposed green sites or refers to a local relevant place name for 

the proposed new MPAs (orange sites). 
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The mean ecological representativity was 45% for the entire west coast and 43% 

for the Skagerrak. For the west coast and the Skagerrak, all individual species had 

an ecological representativity of >30% except for the two-spotted goby which had 

only 9% habitat protected in the Skagerrak. Proportion of habitat subjected to 

different pressure intensities differs between species. For example, the European 

eel, whiting, the European flounder and the European plaice experienced more 

stress as they had the smallest share of habitats located in low pressure areas. 

Examples of species experiencing minor stress were the pollock and brown crab 

which had a high share of habitats located in low pressure areas.  

When excluding BLM from the Marxan analysis, the most cost-efficient solution 

for the MPA network in the Skagerrak was provided by the biased solution, since 

less protected area was required to reach the target. However, this solution, still 

required 4% more protected area than the current MPA network. Including BLM in 

the Marxan analysis yielded solutions (both the unbiased and biased) that required 

less protected area than the current MPA network. From a cost-efficiency 

perspective, the biased solution was preferable as the planning units were 

concentrated within existing MPAs, thus reducing expansion efforts and allocation 

of monetary resources. Thirteen existing MPAs are suggested to be expanded and 

five new MPAs are suggested. Expansion opportunities are mainly suggested for 

habitats along the coasts between Gothenburg and Orust, where there was a high 

concentration of important unprotected planning units (habitats). 

5.1. Ecological representativity and protection 

measures 

This study has shown that the current MPA network provides an ecological 

representativity of >30% for the majority of investigated species in the Skagerrak. 

This suggests that the EU goal of ≥30% protection is already achieved but since 

several of the species in this study are endangered and experiencing a population 

decline, the question of whether it is important to enhance current protection rate is 

important. By comparing ecological representativity in the current MPA network 

with frequency of occurrence in the fish monitoring samples, some conclusions 

5. Discussion 
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regarding the status of populations can be made. For instance, brill and rock cook, 

currently have >50% habitat protected and yet, they were only caught in 3% of the 

fish monitoring samples. This suggests that the populations are small, and that 

concern of their status should be raised. Two main factors might explain low 

occurrence despite high ecological representativity, 1) environmental conditions 

specific to the species are unfavourable in this region and 2) the quality of the 

habitat is poor which can be attributed to anthropogenic disturbances. A low 

frequency of occurrence despite a high proportion of protected habitat, can imply 

that the current protection regime is insufficient and that stricter regulations like 

fishing bans, are imperative. Future protection measures should therefore focus on 

adjusting regulations in current MPAs, rather than expanding them, to include a 

stricter protection. 

Amending current regulations is more cost-effective as all pre-work required 

when investigating where new MPAs should be established, is redundant. Also, 

inferring stricter protection is recognised by the EU as a key tool to combat 

biodiversity loss (European Commission, 2020a). Currently, only 1% of the sea in 

EU is strictly protected and the goal is to increase this to ≥10% by 2030 (European 

Commission, 2020a). The EU has yet to define what strict protection entails but 

presumably so called no-take zones will be included. A no-take zone is an area 

where all or specific activities involving extracting or removing natural features, is 

prohibited (Florin et al., 2013). No-take zones are intrinsically a type of MPA with 

strict fishing regulations but are not included in the MPA network on the Swedish 

west coast. Instead they are considered a complement to MPAs (Bergström et al., 

2016). 

There are currently three no-take zones in the Skagerrak (Vinga, 

Havstensfjorden and Kåvra) of which none are located within any of the existing 

MPAs (Bergström et al., 2016). Several of the no-take zones protect species that 

are analysed in this study including the European lobster, Atlantic cod and the 

European plaice (Bergström et al., 2016). The no-take zones have had positive 

impacts on local populations, individual sizes and spill-over effects of the European 

lobster (Moland et al., 2013; SLU, 2021). For the Atlantic cod and the European 

plaice, there were no significant effects on the populations as of 2016 (Bergström 

et al., 2016). A plausible factor as to why only the European lobster is experiencing 

a positive trend, may be a too short evaluation time, considering the longevity of 

these species, and age at which they reach sexual maturity. Also, the fish stock was 

heavily over-exploited at the time of the establishment of the no-take zones, which 

will affect recovery time. Therefore, no conclusions can be made yet regarding the 

success of the existing no-take zones in the Skagerrak. 

Despite the negative population trends for the Atlantic cod and the European 

plaice, extending the network of no-take zones in the Skagerrak is a robust approach 

as there is an ample supply of studies supporting no-take zones (Pipitone et al., 
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2000; Côté, Mosqueira and Reynolds, 2001; Ecoutin et al., 2014). Prohibiting 

fishing has shown to, even in short-term (<4 years), increase species richness, 

abundance and biomass of fish communities as well as size-augmentation and 

increased populations of apex predators (Pipitone et al., 2000; Côté, Mosqueira and 

Reynolds, 2001; Ecoutin et al., 2014). As populations for high trophic level species 

increases, predation pressure changes in the trophic system accentuating top-down 

effects (Aburto-Oropeza et al., 2011). Furthermore, low level species such as 

phytoplankton will decrease, which in turn has a positive effect on water clarity and 

reduced oxygen depletion as less organic matter is deposited on the bottom (Heck 

and Valentine, 2007; Garpe, 2008).  

5.2. Anthropogenic pressure and protection measures 

In this study, protecting habitats subjected to high anthropogenic pressure in the 

Skagerrak, has been prioritised by setting a low cost in Marxan for these planning 

units (habitats). Appointing a low cost to high pressure areas instructs Marxan to 

prioritise these planning units in the final conservation solution. Prioritising habitats 

in high-pressure areas is not an obvious measure. For example, it can be ineffective 

to protect habitats under high pressure as their deterioration might have proceeded 

during longer time periods and the damage might be too severe or costly to remedy. 

Also, coastal anthropogenic activities such as industries and wastewater treatment 

plants, will most likely continue their operation for an unforeseeable future and 

proceed with effluents into coastal waters. 

As the Swedish population is expected to increase with 7,4% from 2019 to 2030 

(Statistics Sweden, 2020b), this will put more strain on the coastal environment 

with higher visitor rates and increased housing development. In addition to this, a 

revision of the “shoreline protection” was recently proposed (SOU, 2020), 

implicating a weakening of development restrictions which will impact numerous 

species as the coastal area includes crucial spawning, nursery, and nesting sites for 

multiple organisms (Blaber et al., 2000; Sandström et al., 2005). At the same time, 

housing developments in coastal areas can be used as an argument for protecting 

habitats in high-pressure areas as they provide people with recreational values such 

as recreational fishing. Additionally, a healthy coastal environment (no or reduced 

eutrophication) attracts people to take part in leisure activities such as swimming 

and scuba diving. 

On the other hand, it might be more efficient to protect habitats under minor 

anthropogenic pressure as these sites can offer environments with better conditions 

and better prerequisites for a sustainable development of local populations. A study 

by Brander et al. (2020) showed that it is more cost-efficient to focus protection 

measures on high species richness habitats under minor anthropogenic pressure, as 

the expected return is threefold the investment. Furthermore, benefits from the 
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investment can create positive feedbacks spilling over to other non-targeted species 

and populations (Côté, Mosqueira and Reynolds, 2001). Migration of individuals 

in targeted populations can source other populations at risk of extinction, the so-

called rescue effect (Hanski, 1991), and induce geneflow which reduces the risk of 

inbreeding and subsequently extinction (Pérez-Ruzafa et al., 2006). Source 

populations can re-colonize patches formerly inhabited by extinct populations and 

thus increase survival rates of the species (Hanski and Simberloff, 1997). The 

downside with prioritising conservation efforts for populations in low-pressure 

areas is that resources (time, money) is spent on protecting areas that do not need 

protection from anthropogenic activities. Also, vulnerable species inhabiting high-

pressure areas can be neglected, potentially reducing biodiversity as species go 

extinct (Brooks et al., 2006). These species might be predators crucial in sustaining 

a top-down predation pressure in the food web or the populations might be the only 

one left of that species. Hence, a balance of the trade-offs should be made when 

deciding where to focus conservation efforts. 

Regardless of whether low- or high-pressure areas are being targeted for 

protection measures, other spatial aspects must be considered, which will influence 

the success of protection measures. For instance, reserve size has been shown to 

have a positive effect on abundance and species richness (Claudet et al., 2008) 

although there are also studies not showing a strong link (Côté, Mosqueira and 

Reynolds, 2001; Halpern, 2003). Depending on the conservation feature, life 

history traits and habitat requirements, some species benefit from a single large 

reserve while others benefits from several smaller ones (“the SLOSS theory”) 

(Diamond, 1975). Additionally, one of the more widespread theories in ecology is 

the species-area-relationship theory (SAR), which implies a positive correlation 

between conservation area size and species richness (Arrhenius, 1921). Creating 

large reserves is also more economically sound as the cost per unit area decreases 

as the area of an MPA increases (Brander et al., 2020).  

Finally, if the objective is to protect and preserve multiple species from an 

ecological representativity perspective, as is the approach in this study, protecting 

a larger area is preferable as it is more cost-efficient; more of the targeted species 

are included and edge effects are reduced. This leads to less spill-over as there is 

less total habitat edge which leads to a higher degree of conservation features being 

maintained within the MPA (Abesamis and Russ, 2005). However, for the fishing 

industry, several small reserves is preferable as it increases the total habitat edge 

and thus higher spill-over (Halpern, Lester and Kellner, 2009; Gaines et al., 2010).  
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5.3. Comparing species richness with anthropogenic 

pressure 

This study found several spatial patterns in species richness and anthropogenic 

pressure. High species richness, were mostly identified along the coastline of 

islands and by large fjord inlets. High pressure areas are also concentrated near the 

coastal zone as pressure sources such as industries, wastewater treatment plants, 

ports, and jetties, are typically located along the coast. There are some overlaps 

between high pressure- and high species richness areas, primarily by the coastal 

mainland. However, the difference in spatial coverage of the habitat and pressure 

data might emphasise areas of overlap located near shorelines. The mapped 

pressure distribution is predominantly located near the shorelines as the data cover 

depths up to 15 m, while the spatial distribution of the habitat data covers depths 

up to 30 m. This discrepancy in the range of depth will affect the comparison 

between spatial distributions of species richness and pressure, since the applied 

habitat data encompass a larger region. Because the spatial extent of the pressure 

data is limited in comparison to the habitat data, it might be inaccurate to interpret 

a high proportion of habitat experiencing no or low pressure as them being 

undisturbed and thus unworthy of conservation efforts. Also, the lack of pressure 

data at depths >15 m, might cause habitats potentially experiencing higher 

anthropogenic pressure to be overlooked in the Marxan-analysis, as Marxan focuses 

on achieving conservation targets at the lowest cost. Therefore, habitats with high 

species richness experiencing no or low pressure (which were assigned a high cost), 

were likely de-prioritised to favour conservation of low cost-areas with high species 

richness.  

5.4. Using ecological representativity and Marxan to 

explore expansion opportunities 

Total reserve areas for conservation solutions produced by Marxan were used 

together with ecological representativity to explore expansion opportunities. The 

specific settings specified in Marxan affect the results. When BLM (parameter 

instructing Marxan to emphasis reserve compactness) was excluded from the 

analysis, the unbiased (+15%) and the biased solutions (+4%) had a greater total 

reserve area, respectively, than the current MPA network. This does not imply that 

the current MPA network is efficient in protecting minimum 50% of the species 

habitat (assuming the highest target used in the analysis). The results rather indicate 

the importance of including BLM in the analysis because when added, total reserve 

area becomes 49% less for the unbiased solution and 39% less for the biased 

solution, compared to the current MPA network. This suggests that with a 
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streamlining of current MPAs, it is possible to achieve a minimum of 50% 

representativity. Also, less required reserve area for the unbiased solution does not 

mean it was the most efficient solution. With more planning units located outside 

existing MPAs, a vast expansion of the current network would be required which 

in reality is not feasible, thus the unbiased solution was ineffective from a cost-

efficiency perspective.  

The different results gained by excluding or including BLM, demonstrate the 

importance of individual parameter settings in Marxan. The same effect was seen 

with the SPF (a setting ranking the importance of meeting the conservation target 

for all species). When using a uniform SPF (all species had the same value), Marxan 

failed to meet both target levels (40% and 50%) for all species. In contrast, using a 

non-uniform SPF, the conservation target for all species was achieved irrespective 

of target level. When forcing Marxan to include protected planning units and 

specified BLM and SPF values, the system was not only able to achieve both 

targets, but it also provided a solution which is more effective than the current MPA 

network. This suggests that Marxan performs better when given constraints. Thus, 

in terms of expansion opportunities, giving Marxan constraints, provides a more 

realistic and practical result, since governing agencies are more likely to expand 

existing reserves than creating completely new ones (Roberts et al., 2003).  

The best conservation solution was achieved with the biased setting, using a non-

uniform SPF and a BLM of 0.01. Even though a BLM was used, the proposed 

solution of which planning units should be protected, is still fragmented. If greater 

emphasis is placed on compactness, the final solution should be more frugal as a 

more concentrated network is more cost-efficient to manage and expanding already 

existing MPAs is less demanding as regulations and other necessary components 

are already in place. Roberts et al. (2003) also recognises that it is easier to enforce 

larger reserves as allocation of monetary resources is concentrated. Also, fewer (but 

larger) reserves facilitates compliance to boundaries and regulations (Roberts et al., 

2003). The downside of putting more emphasis on compactness is that important 

habitats with high conservation values located far from existing MPAs, might be 

ignored as Marxan prioritises habitats in and within proximity to existing MPAs 

(when using the biased setting). Protecting remote habitats with high conservation 

values may contribute to enhanced connectivity between MPAs, an important factor 

for an ecologically coherent MPA network. 

Because the most cost-efficient solution (the biased one) requires less total 

reserve area (-39%) than the current MPA network, this indicates that a more 

effective network could be developed, even though, three species would suffer a 

decrease in ecological representativity: The black goby (-5%), pollock (-1%) and 

the European shore crab (-2%). This raises an important question: are some species 

more important to protect than others? Different stakeholders would provide 

different answers. The fishing industry would almost certainly agree, as for them 
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some species are truly more valuable, from an economic perspective. However, 

from a conservation science perspective, each species holds an important role in the 

ecosystem. In this study, the investigated species were ranked according to their 

commercial importance, conservation status and risk of extinction. From both a 

commercial and a conservation perspective, all three factors should be considered, 

as many species at risk of extinction are commercially important. Equally, some of 

the commercially important species are top predators (such as the Atlantic cod, the 

European flounder, and saithe), species crucial for asserting top-down pressure in 

the trophic system and maintaining the functional structure of an ecosystem. Thus, 

both commercial and conservation stakeholders benefit from MPAs, although from 

different objectives (Halpern, Lester and Kellner, 2009). 

Even if the most cost-efficient conservation solution results in a decrease in 

protected habitat, the species would still have >50% of their habitat under 

protection. Similar results were obtained by Geange et al. (2017) using the 

conservation planning tool Zonation, where a decrease in ecological 

representativity for some features did not impede an increase on the whole. This 

might seem like a good trade-off but values of ecological representativity must be 

analysed based on their real-life sufficiency. The EU goal of ≥30% protection refers 

to species and habitats registered in the Birds and Habitat directives but by applying 

this goal on the species in this study, the current MPA network is adequate at 

protecting all species except the two-spotted goby. The most cost-efficient 

conservation solution produced by Marxan shows that it is possible to enhance 

habitat protection for the two-spotted goby without implicating a <50% protection 

for the other species.  

By considering the SAR-theory (discussed in section 5.5.2) together with the 

results from this study and the discussion above, the primary objective should be to 

expand the current MPA network by enlarging already existing MPAs, to include 

important habitats. This approach was already mimicked by Marxan, since this is 

the case for the biased solutions, when planning units (habitats) located inside 

existing MPAs are forced to be included in the final conservation solution. This 

setting increased the probability of Marxan using already protected planning units 

as starting points and thus, focusing on expanding existing MPAs rather than 

finding remote areas suited for protection. In order to simplify the Marxan produced 

maps for potential end users, Figure 16 provides examples of potential MPA 

expansion opportunities and the potential for establishing new reserves. The map 

was created by visually delineating major clusters of planning units considered 

conservation worthy by Marxan. In line with the SAR-theory, focus was on 

enlarging existing MPAs as well as providing few larger expansions as opposed to 

several smaller ones. 

Finally, future analyses should include more anthropogenic disturbances in the 

cost-matrix other than those used in the current study (coastal development, 
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dredging and boat traffic), specifically fishing pressure (intensity, gears, methods, 

capacity) and nutrient loadings causing eutrophication, activities known to stress 

species and deteriorate habitats. The estimated success of prioritising habitats under 

high or low pressure must be considered and accounted for when determining 

conservation approach, as protecting habitats under high pressure may be futile. 

Furthermore, it is important to include connectivity and minimum reserve-size as 

they are integrated parts of making MPA networks ecological coherent (Roberts et 

al., 2003). Using conservation planning-tools like Marxan to evaluate and expand 

reserves, enables decision makers to streamline conservation efforts and ensure best 

practice to secure sustainable use of resources.  
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This study reveals that the ecological representativity of the Skagerrak is 

satisfactory for all but one species (the two-spotted goby), if taking the EU goal of 

≥30% protection into consideration. Results from the Marxan analysis shows that 

it is possible to enhance ecological representativity for all species to 50%, focusing 

on expansion of existing MPAs. The best conservation solution, obtained with the 

biased setting, suggests that opportunities for expansion of the MPA network is 

concentrated to sites along the coast from Gothenburg northward to Orust. The 

coastal habitats can be protected by expanding 13 existing MPAs and creating five 

new ones. Since several species already have >30% habitat protected but are 

nonetheless endangered or have a low frequency of occurrence in fish monitoring 

samples (suggesting small populations), establishing MPAs may not be enough. 

Besides expanding the MPA network, amending current regulations to include 

stricter protection such as no-take zones, is suggested in order to achieve the EUs 

goal of strictly protecting one third of the total MPA coverage by the year 2030. 

6. Conclusions 
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