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Sammanfattning 
Syftet med denna studie var att undersöka effekterna av partikelstorlek samt typ och dosering 

av kemiska tillsatser på ensilagekvalitet och lagringsstabilitet hos klöverdominerat ensilage och 

gräsensilage vid två torrsubstans (TS)-halter. Partikelstorlekarna var ca 24 cm för långt ensilage 

och ca 5 cm för hackat ensilage. De kemiska tillsatserna som användes var ett saltbaserat 

tillsatsmedel (natriumnitrit, hexametylentetramin, natriumbensoat) och ett syrabaserat 

(myrsyra, propionsyra, salter av organiska syror) och doser rekommenderade antingen (R) från 

tillverkningen eller halva halten rekommenderad dos (H). För klöverdominerat ensilage var 

doserna av tillsatserna för Salt-R 2,5 l / ton, Salt - H 1,25 l / ton, Syra - R 5,0 l / ton och Syra - 

H 2,5 l / ton. För gräsensilage var doseringarna av tillsatser Salt-R 2,0 l / ton, Salt-H 1,0 l / ton, 

Syra-R 3,0 l / ton och Syra-H 1,5 l / ton. Behandlat ensilage jämfördes med ett kontrollensilage 

utan tillsats. Skördat gräs packades i 1,7-l laboratoriesilor och lagrades i 100 dagar, med tre 

replikat per behandling. Den statistiska modellen som användes inkluderade fixa effekter av 

partikelstorlek- och tillsatsbehandlingar samt deras samspel för varje valltyp vid två olika TS-

halter. Analysen gjordes i PROC GLM i SAS (vers 9) och parvis jämförelse gjordes med 

Tukey’s t-test. 

 

Resultaten visade att pH sänktes snabbare i hackat än i långt ensilage, vilket visade sig i en 

högre mjölksyrahalt i hackat än i långt ensilage med en något tydligare effekt i klöver-

gräsensilage än i gräsensilage. Resultaten visade vidare på en förbättrad ensilagekvalitet med 

tillsatsmedel, och en doseringseffekt på protolysen i grödorna. Koncentrationen av mjölksyra 

var lägre i syra behandlingarna, med en doseringseffekt där Syra – R hade lägre koncentration 

än Syra – H. Behandling med saltbaserat medel hade liknande nivå på mjölksyrahalten som 

kontrollensilaget. Syra-R minskade ts-förlusterna i klöver-gräsensilaget vid båda ts-halter 

jämfört med kontrolledet. Lagringsstabiliteten förbättrades i gräsensilage med hög TS-halt när 

syra och salt-baserade medel användes vid rekommenderade doseringar.  

 

Slutsatsen av den här studien är att ensilagekvaliteten påverkas av snittlängden och förbättras 

vid användning av kemiska tillsatsmedel vid rekommenderad dos.  

 

Abstract 
The aim of this study was to examine the effects of particle size and type and dosage of chemical 

additives on silage quality and aerobic stability of clover-grass and grass silages at two dry-

matter (DM) concentrations. The particle sizes were ca 24 cm for long silage and ca 5 cm for 

precision chopped silage. The chemical additives used were a salt-based additive (sodium 

nitrite, hexamethylene tetramine, sodium benzoate) and an acid (formic acid, propionic acid, 

salts of organic acids), and dosages were either recommended (R) from the manufacture or half 

the recommended dose (H). For the clover silages the dosages of the additives were for Salt-R 

2.5 l/ton, Salt – H 1.25 l/ton, Acid – R 5.0 l/ton and Acid – H 2.5 l/ton. For the grass silage 

dosages of additives were Salt – R 2.0 l/ton, Salt-H 1.0 l/ton, Acid-R 3.0 l/ton and Acid – H 1.5 

l/ton. Treated silages were compared to a control silage without additive. Forages were ensiled 

in 1.7 l laboratory silo for 100 days, with three replicates per treatment.  The statistical model 

used included fixed effects of forage particle and additive and their interactions for each forage 

type and DM concentration. Analysis was done in PROC GLM of SAS (vers. 9) and pairwise 

comparison was done with Tukey´s t-test.  

 

Result of the study showed that the pH was lowered more rapidly in the chopped silage than 

in the long silage, which was shown by a higher lactic acid concentration in the chopped than 

in the long silage, with a stronger effect in clover-grass silage than in grass silage. 
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Furthermore, the results showed an improved silage quality by using silage additives, and 

with a dosage effect on proteolysis in the crops. Concentration of lactic acid was decreased by 

acid treatment and Acid-R had lower concentration than Acid-H. The salt-based additive 

treatment had the similar lactic acid concentration as the control silage. Recommended dosage 

of the acid decreased the DM losses in clover-grass silage. Aerobic stability was improved in 

grass silage of high DM content when acid and salt-based additives were used at 

recommended dosages.  

  

In conclusion, chopping of the forage and use of chemical additives at recommended dosage 

improve silage quality. 
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Introduction  
Grass and legume silage and mixtures thereof are used as feed for ruminants and horses. In 

Sweden the most common grass species is timothy (Phleum pratense) and the most common 

legume is red clover (Trifolium pretense; Swedish Board of Agriculture, 2015ab). The process 

of ensiling is based on lactic acid bacteria (LAB) fermentation of water soluble carbohydrates 

(WSC) to organic acids (mostly lactic acid and acetic acid) under anaerobic environment 

(Weinberg & Muck, 1996).  

 

Factors affecting the ensiling process are wilting (increasing dry matter (DM)), particle length 

and sward type (grass or legume; Muck et al., 2003). Clover has lower content of sugars and 

higher buffering capacity compared to grasses which results in a slower drop of pH during the 

ensiling process (Albrecht & Beauchemin, 2003; Harrison et al., 2003). During ensiling 

undesirable secondary fermentation can occur, which will not be detected before the silo (tower 

or bunker silo), tube or bales is opened for feed out (Weinberg and Muck, 1996; Pahlow et al., 

2003). One way to improve the condition for good quality (nutrient, microbial and aerobic 

stability) silage is to use some type of additive (Kung, 2010).  Additives can either be biological 

(i.e. bacterial inoculant) or chemical (i.e. acid or salt based). Chemical additives decrease the 

pH rapidly (acid based) and contain substances against clostridia and fungi (acid and salt based; 

Woolford, 1975; Kung, 2010).  

 

The manufacturers state recommended dosages of the additives to prevent the risks of 

secondary fermentation and aerobic deterioration (Kung, 2010). Correct application rates of 

chemical additives are crucial for improving silage fermentation and aerobic stability, whereas 

application rates of the LAB containing inoculants are not as crucial as the bacteria can populate 

during the normal silage fermentation process. Chemical additives contain substances that can 

inhibit fermentation and malfermentation (Kung et al., 2003; Kung, 2010; Muck et al., 2018). 

Consequently, there is an interest to investigate silage fermentation characteristics and aerobic 

stability at lower than recommended dosage of chemical additives.  

 

The effect of various factors, such as sward type (Bodarski et al., 2003; Rooke & Hatfield, 

2003; Knický, 2005), wilting (Knicky & Lingvall, 2004;), particle length (Nadeau et al., 2012; 

McEniry et al., 2013; Nadeau et al., 2013; Nadeau & Auerbach, 2014) and additive (Knicky & 

Spörndly 2009; Randby,2000) have been investigated to some extent. However, only limited 

information is available on how these factors interact and the importance of each one of these 

factors on silage fermentation characteristics and aerobic stability.  
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Objective 
The aim of this study was to examine the effects of particle size and type and dosage of chemical 

additives on fermentation characteristics and aerobic stability of clover-grass and grass silages 

at two DM concentrations.  

 

Hypothesis 

Proteolysis will be lower in the additive treated silages compared to the untreated control.  

 

In the unchopped silage the pH will decline slower (higher pH3days) compared to the chopped 

silage resulting in differences in fermentation characteristics and aerobic stability. 

 

Fermentation characteristics and aerobic stability will differ between half of recommended 

dosage and recommended dosage of the additives. 

 

Dry matter losses will be greater in the silage treated with half the recommended dosage 

compared to the recommended dosage of the additive.  

 

Aerobic stability will be improved by use of additive.  

 

Literature review   
The ensiling process 
The ensiling process is based on the fermentation patterns of  LAB (Weinberg & Muck, 1996). 

The different processes that occur from the sealing of the silos to the opening of the silos can 

be divided into four phases. These are the aerobic phase, fermentation phase, stable phase and 

feed out phase (Muck & Pitt, 1988; Weinberg & Muck, 1996; Pahlow et al., 2003; Rooke & 

Hatfield, 2003; Oude Elferink et al., 2008). Microorganisms, both desirable and undesirable, 

are present during the ensiling process and they have different desirable environments for 

growth and fermentation pathways (see Table 1).  The ensiling process starts after the silo is 

closed.  

 
Lactic acid bacteria 

Lactic acid bacteria are naturally present on the crop (McDonald et al., 2002; Pahlow et al., 

2003). Water soluble carbohydrates (WSC) are simple sugars and fructans (Longland & Byrd, 

2009) that are metabolized by LAB to produces organic acids (i.e. lactic acid, acetic acid). The 

production of organic acids decreases the pH to 3.8 – 5.0 depending on the dry-matter (DM) 

concentration and sward type (Weinberg & Muck, 1996; Oude Elferink et al., 2008). The 

metabolic patterns of LAB can be divided into three groups; obligate homofermentative, 

facultative heterofermentative and obligate heterofermentative. Obligate fermenters can only 

use one metabolic pathway; in comparison to facultative fermenters can use more than one. 

Homofermentative LAB produces only lactic acid and heterofermentative LAB produce lactic 

acid, acetic acid and ethanol (see table 1). Homofermentative LAB converts WSC to lactic acid 

more efficiently than heterofermentative LAB (McDonald et al., 1991; Weinberg & Muck, 

1996; Pahlow et al., 2003).  
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Ensiling phases 
Aerobic phase 

During filling of the silo and for some time after the silo is closed, oxygen is still present in the 

silo and the plant cells still respire and oxygen is consumed (Muck 1988; Muck et al., 2003). 

During respiration the first thing that happens is a loss of DM, due to the loss of fermentable 

carbohydrates (McDonald et al., 1991). During the aerobic phase the enzymes of the plant 

(proteases and carbohydrases) degrade the plant nutrients when pH is 6.0 – 6.5 (Weinberg & 

Muck, 1996). Starch and hemicellulose are degraded by hydrolysis to monosaccharides (Muck, 

1988; Rooke & Hatfield, 2003). True protein is degraded by the plant proteases to soluble non-

protein nitrogen (NPN), CO2, amines and volatile N (i.e. NH3; Rotz & Muck, 1994; Rooke & 

Hatfield 2003). The rate of proteolysis during ensiling is determined by the DM concentration 

of the crop, pH, and temperature of the silage and presence of proteolysis inhibitors (Slottner 

and Bertilsson, 2006).  

   

Extensive respiration (due to slow silo filling or imperfect sealing, air leakage) causes loss of 

DM, sugars and lack of decrease of pH, which leads to prolonged microbial activity (Shao et 

al., 2005; Kung, 2010). The silage can increase temperature during prolonged respiration, 

leading to deterioration of the silage (McDonald et al., 1991; Pahlow et al., 2003). Thus, DM 

losses correlate negatively to silage density and feed out rate (Köhler et al., 2013). 

 
Fermentation phase 

The next phase starts when all oxygen is consumed in the silo and the environment is anaerobic. 

The monosaccharides are used as easily metabolizable sugar for LAB to produce organic acids 

(i.e. lactic acid, acetic acid; Muck, 1988; Pahlow et al., 2003). Production of organic acids 

inhibits microbial life. The undissociated acids pass by passive diffusion through the cell wall.  

When the acids dissociate inside the cell (i.e. bacteria, yeast) hydrogen ions are released, which 

reduce pH (McDonald et al., 1991; Pahlow et al., 2003). The end-point of the phase is reached 

when the supply of available substrate has been exhausted; microbial growth is inhibited by the 

low pH, or there is a lack of available water (aw). Bacterial growth is affected by a decreased 

aw to a greater degree than yeasts and moulds (Auerbach, 2003; Pahlow et al., 2003; Rooke & 

Hatfield, 2003). During the fermentation phase the population of LAB is growing if the 

fermentation is successful (Weinberg & Muck, 1996; Pahlow et al., 2003).    

 
Storage phase & Feed-out phase 

The storage phase starts when the microorganisms are inhibited by the stable low pH (Weinberg 

& Muck, 1996; Pahlow et al., 2003). When the pH has decreased to a sufficient level (3,8-4,5; 

Duniere et al., 2013) the microbiological activity is inhibited, and the silage is stable for storage 

if anaerobic environment is kept (Weinberg & Muck, 1996).  During this phase the number of 

microorganisms decreases, but acid-tolerant species can survive (Weinberg & Muck, 1996; 

Pahlow et al., 2003). Micro-organisms that are still active in storage phase can become a 

problem when the silo is opened. Yeast and other acid-tolerant micro-organisms can start 

respiring when oxygen is present. Increasing pH proliferate other bacteria and moulds, which 

contributes to an increase in temperature and the silage is spoiled (Muck & Pitt, 1988; Weinberg 

& Muck, 1996; Pahlow et al., 2003). Once the temperature rises above 45 °C the amount of 

yeasts present declines and other microbial organisms (i.e. moulds bacilli, clostridia and 

enterobacteria) begin to accumulate (Vissers et al., 2007; Borreani & Tabacco, 2008).  
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Table 1: The desirable environment and fermentation pathways of microorganisms in silage (Muck, 

1988; McDonald et al., 1991; Driehus and Oude Elferink, 2000; McDonald et al., 2002; Pahlow et al., 

2003; Seglar, 2003; Pedroso et al., 2005; Vissers et al., 2006; Oude Elferink et al., 2008)   

 Desirable environment   Fermentation pathways 

Bacteria    

Lactic acid 

bacteria 

- desirable  

Facultative anaerobe  

Optimal pH 5-6 

Acid tolerant (pH 4-3.8) 

Obligate homofermentative: 

Glucose → 2 Lactic acid + 2 H2O 

Fructose → 2 Lactic acid + 2 H2O 

Facultative heterofermentative: 

Glucose → Lactic acid + ethanol + CO2 

Pentose → Lactic acid + Acetic acid 

Obligate heterofermentative: 

Glucose → 2 Lactic acid  

Enterobacteria 

- undesirable  

Facultative anaerobic  

Optimal pH 7.0 

 

Saccharolytic: (strict anaerobe) 

Glucose →acetic acid + ethanol + 2 CO2 + 2 H2 + 2 

H2O 

Butanediol → acetoin + 2,3-butanediol   

Proteolytic: 

Amino acids → biogenic amines + CO2 

Nitrate → Ammonia + N2O 

Clostridia spp.  

- undesirable  

Most species strict 

anaerobe 

Optimal pH 7.0-7.4 

 Low DM  

High aw  

 

 

Saccharolytic: 

Glucose → butyric acid + 2 CO2 + 2 H2 

2 Lactic acid → butyric acid + 2 CO2 + 2 H2 + H2O 

Proteolytic: 

 Deamination 

Glutamic acid → acetic acid + pyruvic acid + NH3 

Lysine → acetic acid + butyric acid + 2 NH3 

Decarboxylation 

Amino acids → biogenic amines + CO2 

Bacilli 

- undesirable 

Facultative anaerobic 

Acid sensitive 

Carbohydrates → organic acids (i.e. butyrate, acetate, 

lactate) 

Carbohydrates → Ethanol + 2,3-butanediol + glycerol 

Fungi   

Yeasts 

- undesirable 

Anaerobe  

Aerobe 

Acid tolerant  

Anaerobic:  

 Glucose, → Ethanol + 2 CO2 + 2 H2O 

 

Aerobic: 

 Lactic acid → CO2 + H2O 

Moulds 

-  undesirable 

Aerobe 

Optimal pH>4.5 

Various carbohydrate degradation  
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Undesirable microorganisms  
Microorganisms categorised as undesirable for the ensiling process can impair silage 

preservation (Duniere et al., 2013). Undesirable bacteria in grass and legume silage are, for 

example; enterobacteria, bacilli and clostridia and undesirable fungi are yeasts and moulds (see 

table 1).  

 
 
Clostridia  

Clostridia are anaerobic bacteria and can form endospores (Pahlow et al., 2003). Legumes with 

low sugar contents and high protein contents are prone to clostridia activity during ensiling 

(Nadeau and Auerbach, 2013b). Fermentation pathway of clostridia species are divided into 

two categories; saccharolytic (ferments sugars) or proteolytic (ferments proteins; Pahlow et al., 

2003). Silage with extended clostridia fermentation is characterised by high pH (>7) and high 

content of products from lactic acid fermentation. Most growth occurs at pH 7.0-7.4 and growth 

is inhibited by pH 4.2 (Flythe & Russel, 2003; Vissers et al., 2006b). Clostridia have a higher 

optimal aw than LAB and tolerate higher aw (Driehus, 2013). Increasing DM concentration 

(decrease aw) thereby inhibits clostridia growth (Muck & Pitt, 1993; Kung, 2001; Kung, 2010). 

Dry matter concentration above 300 g/kg restricts clostridia (McDonald et al., 2002). Tabacco 

et al. (2009) showed that clostridia spores can return to a vegetative cell and start proliferating 

in both the fermentation stage and the feed-out phase during aerobic deterioration. The pH value 

inhibiting clostridia activity also depends on aw -value of the silage (McDonald et al., 1991; 

Pahlow et al., 2003).   

 

Nitrate (NO3) occurs naturally in green forage (McDonald et al. 1991), and the content is 

affected by maturity, fertilization and plant species. During the ensiling phase, NO3 is reduced 

with the product of either NH3 or nitrous oxide gas (N2O; Rooke & Hatfield, 2003). This 

reduction inhibits clostridia and other spore forming bacteria (Spoelstra, 1983).  During the pH 

drop in the silage the NO3 is partially reduced and later in lactate degradation (second 

fermentation to butyric acid) reduced further. With NO3 present in the silage, to inhibit 

clostridia, the pH drop is not needed to be as low compared to nitrate-free silages (Kaiser et al. 

2002). The effect of nitrite (NO2) as clostridia inhibitor is used in silage additives (Woolford, 

1975).  

 

Silage with clostridia fermentation has an increased content of butyric acid and amines, which 

due to the reduced palpability decrease the feed intake (McDonald et al., 1991; van Os et al., 

1996; Driehus et al., 2013). Contamination of Clostridia tyrobutyricum spores from silage to 

milk are a problem for cheese production with late blowing cheeses. The spores during cheese 

making proliferate and metabolise lactic acid to H2 and CO2 (Pahlow et al., 2003; Vissers et al., 

2006). Some clostridia species produce toxins that are pathogenic to animals and humans, i.e. 

C. botulinum produce the neurotoxic botulinum toxin (McDonald et al., 1991; Pahlow et al., 

2003; Bok et al., 2012).  

 
Enterobacteria  

Enterobacteria (i.e. Escherichia coli) are facultative anaerobes and compete with LAB for WSC 

as nutrient prior to and during ensiling. Fermentation pathway of enterobacteria can both be 

saccharolytic and proteolytic. The protein degradation of enterobacteria affects the feed value 

and decrease palatability due to the production of biogenic amines and fatty acids (van Os & 

Dulphy, 1996).  Some enterobacteria metabolize glucose to ethanol, acetic acid and hydrogen 

(McDonald et al., 1991).  Some enterobacteria can degrade NO3 to NO2 and NO3 to NH3 and 
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N2O. This ability has been shown to inhibit clostridia (Pahlow et al., 2003; Knický, 2005). 

Rapid drop of pH to a level below 4.5 is efficient to decrease the amount of enterobacteria 

(McDonald et al., 1991; Pahlow et al., 2003).  

 
Bacilli  

Bacilli are endospore forming bacteria and facultative anaerobic (Pahlow et al., 2003).  They 

are found widespread on harvested grass, but inhibited by the fermentation of LAB (Pahlow et 

al., 2003; McDonald et al., 2002; Oude Elferink et al., 2008; Muck, 2010).  Bacilli are unable 

to start aerobic deterioration but continue the deterioration that yeasts have initiated (Driehus 

& Oude Elfrinke, 2000; Pahlow et al., 2003). Bacilli spores are a problem for dairy production, 

such as spoilage of milk and outbreak of foodborne illness.  Silage is an important 

contamination source to milk (Te Giffel et al., 2002).   

 
Yeast and Moulds  

Yeast is facultative anaerobic eukaryotes and the most important group involved in aerobic 

degradation, in the aerobic phase or feeding phase (Driehus and Oude Elferink, 2000; Pedroso 

et al., 2005). Aerobic degradation is often initiated by yeast, because many yeast species are 

acid tolerant, they are able to grow at pH 4-5 (Moon, 1983). Yeast uses lactic acid and thus pH 

increases enabling undesirable bacteria (i.e. bacilli) and mould to proliferate (McDonald et al., 

1991; Kung, 2001, Pahlow et al., 2003).   Yeasts are also saccharolytic, fermenting 

carbohydrates. These yeasts compete with LAB for carbohydrates to ferment in the beginning 

of the fermentation phase (Muck et al. 2003).  

 

If obligate aerobe moulds are present when oxygen is present, such as before anaerobic 

environment occurs in the silo, oxygen leakage in the silo during storage or when the silo is 

opened creates a suitable environment for moulds. (Pahlow et al., 2003). Growth of mould 

occurs in silage when the pH has increased above 4.2 (Seglar, 2003) and thus proliferate after 

yeast fungi have initiated the aerobic deterioration (Driehus and Oude Elferink, 2000). Moulds 

reduce feed value and palatability of the silage, but also health risks with respiratory diseases 

from spores both for animals and humans can occur (Adesogan, 2006) A couple of mould 

species can produce secondary metabolites, mycotoxins (i.e. Aspergillus flavus produce 

aflatoxins; Auerbach, 2003; Driehuis, 2013). Lethal doses of mycotoxins do not often occur in 

grass and legume silages (Muck & Pitt, 1993), but chronic low doses during a long time may 

lead to reduced immune response and imbalance of hormones in the animals (Morgavi & Riley, 

2007). Mycotoxins can transfer to meat and milk and thereby being a potential risk for the 

consumer (Fink – Gremmels, 2008).  

 

Quality parameters for silage 

The quality of grass/legume silage can be distinguished by analyzing the pH value, ash content 

and end-products of microbial fermentation (see Table 2).  
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Table 2: Quality parameters of silage. 
Hygienic parameters Indicator of  

Ethanol Yeast activity  

Ammonia nitrogen  Poor/extensive fermentation  

Clostridia fermentation 

 

 

pH Inhibits bacterial activity  

Silage quality 

 

   

Ash Soil contamination 

DM loss  

Clostridia fermentation 

 

Lactic acid Fermentation quality  

Acetic acid 

Propionic acid 

Fermentation quality, Clostridia fermentation 

Fermentation quality 

 

Butyric acid Clostridia fermentation  

 
pH 

Bacterial activity in the silage can be inhibited by the pH. For storage stability of the silage both 

the pH value and the DM content is to consider. A measurement of stability during storage is 

critical pH (see equation 1; Weissebach, 1996). The critical pH shows the maximum pH value 

for a anaerobically stable silage (Pahlow et al., 2003). 

 

 

 

 

 
Organic acids 

Lactic acid is the most important acid for silage production and is the acid that lowers the pH 

most (Seglar, 2003). The extent of acid dissociation in silage depends on pH and dissociation 

constant (pKa) of the acid. Strong acids have a value of under 1 to 5, where the strongest 

dissociate completely (Bruice, 2006).  Lactic acid has a higher acidification rate than acetic acid 

because of a lower pKa-value (3.86 compared to 4.75; Rooke & Hatfield, 2003; Bruice, 2006). 

Propionic acid and butyric acid have also higher pKa than lactic acid (4.87 and 4.82 

respectively; Bruice, 2006). In silage with high DM concentration, lactic acid cannot be used 

to determine fermentation quality, due to the lower extent of fermentation (Cherney & Cherney, 

2003). Acetic acid in high concentration suppresses the growth of yeast and moulds and 

improves the aerobically stability (Weinberg & Muck, 1996). The concentration of acetic acid 

in grass and legume silage is usually 1-3 % of DM (Kung, 2001) but varies depending on type 

of fermentation. Propionic acid concentration in silage is generally less than 0.1% of DM 

(Seglar, 2003), but often used in chemical additives (Kung et al., 2003). Undissociated 

propionic acid inhibits yeast and moulds and thus increases aerobic stability for the silage (Kung 

et al., 2003; Rooke & Hatfield, 2003).   

 
Butyric acid 

Good quality silage should have a butyric acid concentration of less than 0.1 % on a fresh weight 

basis (Seglar, 2003). High concentration indicates secondary fermentation by clostridia and 

deterioration by proteolytic activity with end-products such as amines and amides. Silage 

containing excessive amounts of butyric acid is undesired but is aerobically stable (McDonald 

et al., 1991; Pahlow et al., 2003; Seglar, 2003). 

 

pH<( DM (%) × 0,0257) + 3.71 

Equation 1: Critical pH 
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Ethanol 

The primary indicator of yeast fermentation is ethanol (Pahlow et al., 2003; Seglar, 2003). For 

good quality silage the ethanol concentration should be below 0.5% of DM (Kung, 2001; 

Seglar, 2003). Enterobacteria can also produce ethanol from glucose (McDonald et al., 1991).      

 
Ammonia Nitrogen 

A measurement on extensive fermentation and proteolytic activity is ammonia nitrogen (Seglar, 

2003). Secondary fermentation by the proteolytic clostridia activity can also increases the 

ammonia concentration (Kung, 2000). Recommended levels are less than 10% of total nitrogen 

(Seglar, 2003).  

 
Ash 

The total mineral content of the feed is in the ash content. A high ash content of the silage may 

indicate soil contamination or dry matter losses from aerobic instability or clostridia 

fermentation during storage (Seglar, 2003; Knický, 2005).  

 

Sward type & ensilability 
Ensilability of the crop is determined by WSC concentration, DM content and buffering 

capacity  (Weissbach, 1996). Buffering capacity is defined as the amount of acids needed to 

change the pH from 6 to 4 (Muck, 1988; Knický, 2005). The ability to buffer is done by the 

content of organic acid salts, nitrate and sulfate.  Legumes have higher buffering capacity than 

grasses, but buffering capacity is also affected by nitrogen fertilization (Tommila et al., 1996). 

For temperate forages the WSC content is determined by the species and stage of maturity 

(Buxton & O’Kiely, 2003; Knický, 2005).  

 

Fermentability coefficient (FC) is a measurement of the crops ensilability and is calculated by 

the formula shown in equation 2. The formula contains DM content, quantity of fermentable 

substrate and buffering capacity of the crop (Pahlow & Weissbach, 1999). As a measurement 

for good fermentation quality the value should be above 45 (Pahlow et al., 2001). One large 

part of the ensilability of the crop is the flora on the crop (Mogodiniyai Kasmaei et al. 2014), 

also the nitrate content of the crop has been reported to increase the fermentation quality 

(Knicky et al., 2017). 

 

 
 
 

Grass 

The content of WSC in temperate grasses (i.e. timothy, perennial ryegrass;) includes 

monosaccharides (i.e. glucose and fructose), disaccharide (i.e. sucrose) and polysaccharides 

(i.e. fructans) (Rooke & Hatfield, 2003; Knický, 2005). The most important WSC for 

ensilability are glucose and fructose, because these are free sugars that provide substrate for 

LAB at the start at the ensiling process. The sucrose and fructans are available later in the 

ensiling process, when they are hydrolyzed to monosaccharides by acid hydrolysis (Rooke & 

Hatfield, 2003). In comparison to legumes, grasses typically contain higher cell-wall 

concentration (Buxton & Martens, 1995), but are more digestible (Nadeau et al., 1996).    

  
Legumes 

Legumes are more difficult to ensile than grasses due to the lower sugar content, higher protein 

and higher buffering capacity (Albrecht & Beauchemin, 2003; Harrison et al., 2003). In contrast 

to grasses, legumes store polysaccharides as starch which is unavailable for LAB metabolism 

FC= DM (%) + 8 WSC BC-1 

Equation 2: Fermentability coefficient 
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(Albrecht & Beauchemin, 2003; Knický, 2005). Protein in red clover degrades to a less extent 

than lucerne during ensiling (Owens et al., 1999; Owens et al., 2002), which is due to the 

content of polyphenol oxidase in red clover (Lee et al., 2008). Polyphenol oxidase inhibits 

enzymatic degradation by proteases by cross-linking protein complex (Kroll & Rawel, 2001).  

 

The harvest time of lucerne and red clover affects the protein degradation (Owens et al.,2002). 

Red clover had significantly lower NPN levels than lucerne regardless of cutting time. The 

study also showed increased preservation and silage quality with afternoon harvest due to a 

lower silage pH and lower sugar concentration from the LAB metabolism (Owens et al., 2002). 

Lucerne silage has higher BC than red clover (McDonald et al., 1991; Pahlow et al, 2001) 

which results in higher final pH (Owens et al., 2002).    

 

Aerobic stability & deterioration  
Aerobic stability is defined as the time which elapses before the silage shows clear evidence of 

aerobic deterioration (Ranjit & Kung, 2000), which is standardized as the time elapsed when 

the temperature of the silage is 2°C above the ambient temperature (O’Kiely 1993). The most 

common symptom of aerobic deterioration is heating, due to the metabolism by microorganisms 

(Muck & Pitt, 1993). Aerobic deterioration occurs when the silo is opened, exposing the silage 

to oxygen, and the end-products of fermentation is used as substrate for microbial growth 

(Pahlow et al., 2003).   

 

Yeast often initiates the deterioration and use lactic acid as substrate and degrading it to carbon 

dioxide, water and heat (Pahlow et al.,2003; Kung, 2010). Spörndly & Persson (2015) found 

that aerobic stability was negatively correlated to the yeast count in the silage. The subsequent 

decrease of organic acids increases the pH. Thus, the inhibition of bacteria and fungi by the 

organic acids ends (Pahlow et al., 2003; Borreani & Tabacco, 2010). The increased pH enables 

both increases in the number of yeast and enable more microorganisms to grow (i.e. clostridia; 

Borreani and Tabacco, 2010). Silage temperature increases during yeast fermentation, which 

may lead to maillard reaction (“browning reaction”), which is a chemical reaction between 

carbohydrates and amino acids. The products of the reaction are larger compounds that are 

slowly digestible i.e. acid detergent fibre (ADF) and acid detergent insoluble nitrogen (ADIN; 

Muck & Pitt, 1993). The ADF is the crude lignin and cellulose fraction, after refluxing the fibre 

with 0.5M sulphuric acid and acetyltrimethyl-ammonium bromide, and ADIN is the nitrogen 

remaining in the acid detergent fibre residue (McDonald et al., 2002). Aerobic activities of 

yeast increase the DM losses and temperature which enables other aerobic microorganisms to 

be active (Weinberg & Muck, 1996). Moulds are the last microorganisms to grow after the pH 

value is increased (Muck, 1988).  

 
Factors affecting aerobic stability  

The stability of the silage in an aerobic environment is affected by biochemical and microbial 

factors, physical factors, management, silo sealing and if used; type of additive (Wilkinson & 

Davies, 2012). Microbial and biochemical factors influencing the stability are the number of 

yeasts, concentrations of organic acids and WSC. Crops with high starch or sugars often have 

a greater amount of yeast, not desirable for aerobic stability (Kung, 2001). Well fermented 

silage with yeast contamination and residual sugars, high lactic acid and low acetic acid can be 

aerobically unstable during aeration (Nadeau & Auerbach, 2013a).  

 

Density, permeability, porosity and temperature are physical and management factors affecting 

the aerobic stability (Savole & Jofriet, 2003). Elevated environmental temperature during silage 

making decreases the aerobic stability of the silage. The increased temperature promotes 
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undesirable microorganisms (enterobacteria, clostridia; Adesogan, 2009). Proper sealing of the 

silo prevents penetration of oxygen into the silage during storage, promoting an anaerobic 

environment (Kung, 2010). Porosity is a measure of the voids between the solid particles 

(Williams, 1994) and is influenced by fresh weight density, DM content and rate of harvest 

(Holmes & Muck, 2007). At an increased DM concentration, by wilting of the crop, the 

fermentation becomes restricted with higher WSC residuals (Wilkinson & Davies, 2012). There 

is no direct relationship with aerobic stability and high WSC residual (Wrobel et al., 2008). At 

high DM content the acidification is lower due to a lower amount of LAB. High DM content in 

the raw material, over 50%, makes the silage more susceptible to self-heating and growth of 

fungi (Purwin et al., 2006). If the porosity is high (low density) the ingress of air is higher, and 

stability of the silage is lowered (Holmes & Muck, 2007). Silage density is lower at the edges 

of the bunker silo (Craig et al., 2009) hence permeability and porosity make it possible for 

oxygen to penetrate the silage (Holmes & Muck, 2007). Additives, especially chemical salts 

(benzoate and sorbate) and organic acids (i.e. propionic acid), have antifungal properties which 

improves aerobic stability (Kung et al., 2003; Kung, 2010; Muck et al., 2018). 

  

 Factors affecting the ensiling process 
The ensiling process is influenced both by plant components (Buxton & O’Kiely, 2003) and by 

harvest conditions and technique (Muck et al., 2003). Applying additives to the crop affect the 

ensiling process, either by inhibiting or stimulating fermentation (Kung et al., 2003; Knický, 

2005; Kung, 2010).   

 
Particle size 

Chopping, decreasing particle length, affects the fermentation quality (McEniry et al., 2008), 

density and effluent production (Muck et al., 2003). Similar chop lengths improve the 

possibility for more uniform silage in the silo. Precision chopping decreases the clostridia 

activity and increases lactic acid concentration. High density of the silage mass reduces 

respiration and aerobic losses (Pauly & Lingvall, 1999).  

 

Chopping the crop releases the nutrients form the cell sap (Pauly & Lingvall, 1999), which can 

be metabolised by LAB. Chopping legumes can lead to a greater loss compared to grasses, with 

a loss of leaves, and thereby valuable protein (Muck et al., 2003). McEniry et al. (2008) 

compared the fermentation characteristic of precision-chopped (19 mm) to unchopped  grass 

silage. The precision-chopped was ensiled in laboratory silos and the unchopped was ensiled in 

either laboratory silos or round bales. The decline in pH was slower in unchopped baled silage 

than in precision chopped, indicating a slower rate of fermentation.  Concentrations of lactic 

and acetic acids were greater in the chopped silage, but the content of WSC was smaller 

(McEniry et al., 2008). 

 

Nadeau et al. (2012a) studied the effect of particle size of the crop and additive use on 

fermentation quality of the silage and aerobic stability. Wilted grass was, after running through 

a baler, either precision chopped (20 mm) or cut (250 mm). The acidification of the long cut 

grass was significantly slower than that of chopped silage Nadeau et al., 2012a). 

 
Effect of wilting  

Wilting increases the DM concentration and affects the microbial population and activity on 

the crop (McDonald et al., 1991). Wilting of the crop improves fermentation by increasing the 

number of LAB (Muck, et al., 2003).  Clostridia activity is decreases by wilting (Knicky & 

Lingwall, 2004) but yeast numbers increased which may decrease the aerobic stability of silages 

(Pahlow et al., 2003). 
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Rainfall during the wilting process of the forage can leak sugar and if the wilting time is 

prolonged can increased respiration result in increased nutrient leaks. The loss of nutrients can 

affect the ensiling process, were fermentation can be limited and the risks for unwanted 

microbiology can increase (McDonald et al., 2002; Muck et al., 2003).   

 

Spörndly et al. (2008) studied the economic aspects and effects on silage quality by different 

wilting techniques; either swaths or wide spreading.  By wilting the cut forage widespread the 

drying was faster and more controlled.  This also led to an increased silage quality, with lower 

loss of DM and a decrease of clostridia spores. By wide spreading the forage the production 

costs were lowered by 10 % compared to swaths spreading. This was due to a higher bale 

density and faster mowing work, even though wide spreading had a higher machinery cost 

(Spörndly et al., 2008).    

 

During the wilting process the plant enzymes contribute to respiration and proteolysis. Wilting 

influences the protein quality, limit protein degradation before ensiling depending on the 

wilting condition (Muck et al., 2003). Edmunds et al (2013) studied the effect on nitrogen 

components by wilting grass forage to 4 different dry matter concentrations (20, 35, 50 and 

65% DM) at either fast or slow rate. The metabolizable protein increased by fast wilting to the 

highest DM concentration. The content of NPN decreased by increased DM concentration, 

which also was reported by Muck et al. (2003).  Wilting at a fast rate was observed to improve 

the protein quality of the grass silage of all DM-concentrations (Edmunds et al., 2013).  

 

Nadeau et al. (2012b) evaluated the effect of wilting and ensiling on protein quality. The grass-

legume silage (77% grass, 18% clover, 5% lucerne) was wide spread and wilted during ~23 h 

to 35 % of DM.  Nadeau et al. (2012b) concluded that wilting grass-legume silage during 

favorable conditions increased the concentration of rumen undegraded protein.  

 
Chemical Additives 

Decreasing pH is a crucial part of the fermentation in silage (Pahlow et al., 2003) and by using 

chemical additives the fermentation can be improved.   Chemical additives, such as acids and 

salts, restrict partly the microbial growth, whereas bacterial inoculants stimulate growth of LAB 

(Kung et al., 2003; Kung, 2010; Muck et al., 2018). Low sugar (< 2% of the green mass fresh 

weight) content in grass can result in a low acid production and impair silage quality. Propionic 

acid partially dissociates and lowers the pH (Kung, 2010). Formic acid is a stronger acid (pKa 

3.8) compared to the organic acids produced by LAB, i.e. lactic acid (3.8), acetic acid (4.7) and 

propionic acid (4.9; Rooke & Hatfield, 2003; Brucie 2006). With a higher dissociation rate the 

pH drops more and faster (Rooke & Hatfield, 2003). The effect of chemical additives can be 

divided into two groups; improving the fermentation quality and improving the aerobic 

stability. Chemical additives to improve the aerobic stability often contain substances that 

inhibit yeast and mould growth (Kung, 2010). At a pH range of 3 to 6 potassium sorbate and 

sodium benzoate inhibit spore-forming bacteria, yeasts and moulds. At low pH levels sodium 

nitrite inhibits growth of spore forming bacteria (Woolford, 1975).  

 

Studying the effect of acid-based additives on grass silage (24 % DM) were done by Rinne et 

al. (2016).  The seven additive mixtures used is described in table 3. The application rate was 

5 l/ton for all additive treatments. Buffering substances, that stabilize the pH, used in the silage 

additive are sodium and ammonium salts. Using the additive mixtures decreased the ammonium 

nitrogen, concentration of lactic acid and acetic acid compared to control. The concentration of 

WSC increased by using additive. Restricting the fermentation was most prominent in the silage 



 

   21 

 

were found in AIV 2 Plus Na and AIV Ässä Na. Aerobic stability was mostly improved by 

using AIV Ässä Na, with a low content of ethanol and yeast count, but all additives improved 

the aerobic stability (Rinne et al., 2016).  

 
Table 3: The content in the additive mixture used in Rinne et al. (2016) 

AIV 2 Plus  Formic acid, ammonium formate 

Blend 1 Formic acid, sodium formate, propionic acid, sodium benzoate 

Blend 2 Formic acid, sodium formate, propionic acid 

AIV 2 Plus Na Formic acid, sodium formate 

AIV Ässä Na  Formic acid, sodium formate, propionic acid, potassium sorbate 

Blend 3 Formic acid, sodium formate, lactic acid 

Blend 4 Formic acid, sodium formate 

 

Prolonging the respiration increase the risk of deterioration of the silage (McDonald et al., 

1991; Pahlow et al., 2003). Randby (2000) examined the effect of acid additives on grass 

silage that either was sealed direct after harvest or sealed 24 hours after. Additives used were 

both formic based commercial additives and acid mixtures included in the manufactured 

additives, both recommended dose (R) and half of the recommended dose (H) were tested (see 

table 4). The acids and  acid mixture used were to test the manufactural additives active 

ingredients to compare the effect with the commercial additive. As control formic acid (85%) 

was used as a negative control and as positive control no additives were added.  Using the 

recommended application dose of the additives the sugar content was higher compared to 

using half the recommended dose.  

 

Sealing the silos 24 h after harvesting increased concentration of butyric acid, ethanol and pH 

value. This indicates that waiting with the sealing of the silo effects the fermentation 

negatively.  The use of additives could not fully stop the fermentation of propionic acid, and 

the application dose of the additive did not affect the ethanol concentration.  Under good 

fermentation conditions lactic acid concentration was negatively correlated with application 

rate, but under bad fermentation conditions the correlation was positive (Randby, 2000). 
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Table 4: The composition in the acid additives and application used by Randby (2000). 

 Additives Composition  Application dose 

R-dose (l/t) 

Application dose 

H - dose(l/t) 

1 Foraform (F) formic acid (645 g/kg), 

ammonia (60 g/kg) 

4.0 2.0  

2 Formic acid 

(85%) 
Formic acid (850 

g/kg) 

3.0  1.5  

3 Ensimax (E) 213 g/kg formic acid, 

200 g/kg acetic acid, 

190 g/kg of DM from 

WPL 

4.0  2.0  

 

4 Acetic acid Acetic acid (1000 g/kg)  0.8  0.4  

5 Formic acid Formic acid (850 g/kg) 1.0  0.5  

6 Acetic acid + 

formic acid 

Acetic acid (1000 g/kg) 

& Formic acid (850 

g/kg) 

0.8 Acetic acid 

1.0 Formic acid 

0.4  Acetic acid 

0.5  Formic acid 

 

7 Wood pulp 

liquor 

Wood pulp liquor (340 

g/kg) 

2.0  1.0  

8 Acetic acid + 

wood pulp 

liquor 

Acetic acid (1000 g/kg) 

& Wood pulp liquor 

(340 g/kg) 

0.8 Acetic acid 

2.0 WPL 

0.4 Acetic acid 

1.0 WPL 

9 Formic acid + 

wood pulp 

liquor 

Formic acid (850 g/kg) 

& Wood pulp liquor 

(340 g/kg) 

0.8 Acetic acid 

2.0 WPL 

0.4 Acetic acid 

1.0 WPL 

10 Ensimax 

modifed (EM) 

360 g/kg formic acid, 

50 g kg, acetic acid, 

190 g kg of DM from 

WPL 

4.0 2.0 

11 Acetic acid + 

formic acid  

Acetic acid (1000 g/kg) 

& Formic acid (850 

g/kg) 

0.2 Acetic acid 

1.7 Formic acid 

0.1 Acetic acid 

1.7 Formic acid 

 

 
 
Combination of the factors   

Studies testing the interaction between the different factors (i.e. DM, particle size, additive) for 

ensiling grass and clover silage have been done.   

 

The effect of DM and particle size was studied by (McEniry et al., 2007), were grass silage 

with different wilting times (0, 24 h and 48 h), particle size (chopped or unchopped), 

compaction and air infiltration (complete or incomplete silo sealing).  Particle size for the 

chopped was 19 mm. Air filtration were achieved by only sealing the laboratory silos bottom 

and top by hand, enabling air to seep in. The chopped silage had a lower concentration of 

ethanol compared to the unchopped, but particle size did not affect microbial composition (i.e. 

LAB, yeast, clostridia). Wilting and particle size affected clostridia activity. Air filtration 

treatment for unwilted silage increased the clostridia activity. Chopping the grass silage 
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decreased the ammonia nitrogen content. Pore space decreased in compacted silage and 

decreased penetration of oxygen in the silage.  In comparison, uncompact silage increased the 

penetration of oxygen, due to high prevalence of air pockets. The DM concentration and air 

infiltration were concluded to affect the silage fermentation to a larger degree than chopping 

and compaction (McEniry et al., 2007). Aerobic stability was not affected by chopping, but 

wilting, compaction and air filtration affected aerobic stability. 

 

The additive effect on fermentation with different DM concentration was studied by Knicky 

and Spörndly (2009) and Knicky & Spörndly (2011).  

 

Knicky and Spörndly (2009) tested the effect of five salt additive mixtures and two 

commercially produced additives (see table 5), on the fermentation and hygienic quality of 

clover-grass silages (ratio 8:92) at high and low DM-concentrations.  The mixtures tested 

contained sodium benzoate, potassium sorbate and sodium nitrite in different ratios. For the 

high DM (46 %) yeast was analysed and clostridia was analysed in the low DM (23%) clover-

grass silages. Dosage of the additives was 5l/ton FM.  The additives inhibitory effect on 

clostridia fermentation was tested by adding a strain of Clostridium tyrobutyricum. In the low 

DM silage, all tested additives reduced significantly the concentration of butyric acid and the 

formation of ammonia-N compared to the control. The treatments that reduced the number of 

clostridia spores in the low DM silage were the commercially additive KU and the study's 

mixture A1 and A5.  The mixtures A1 and A5 did contain no hexamine and lower concentration 

of nitrate than the commercial additive.  For the high DM silage treated with the mixture A1, 

A2 or A5 contained less yeast compared with the control silage and the commercial additive 

PNF. Nitrite –N concentration in all silages decreased during the fermentation. The use of 

additive resulted with aerobically stable silages (Knicky & Spörndly, 2009). 

 
Table 5: Concentrations of the content in the additives and additive mixture used in Knicky & Spröndly (2009) 

Additive name Content (per ton fresh forage) 

Kofasil Ultra 

(KU) 

750 g/kg Sodium benzoate, 600 g/kg sodium nitrate, 400 g/kg 

hexamine, 250 g/kg sodium propionate  

Promyr  NF 

(PNF) 

Formic acid, Propionic acid, Sodium formate  
(authors did not have permission to print the proportions)   

A1 600 g/kg sodium nitrite, 250 g/kg sodium propionate & 750 g/kg sodium 

benzoate  

A2 250 g/kg sodium nitrite, 1000 g/kg sodium benzoate 

A3 500 g/kg potassium sorbate, 250 g/kg sodium nitrite 

A4 1000 g/kg sodium benzoate, 500 g/kg potassium sorbate 

A5 250 g/kg sodium nitrite, 1000 g/kg sodium benzoate, 500 g/kg 

potassium sorbate 

 

The fermentation quality, with focus on yeast and clostridia activity, in various forages treated 

with salt-based additive was studied by Knicky & Spörndly (2011). The study tested 13 crops 

divided into three groups depending in ensilabilty and DM (see Table 6). Additive mixture used 

consisted of sodium benzoate (200 g /kg), potassium sorbate (100 g /kg) and of sodium nitrite 

(50 g /kg).  Application rate of the additive was 3 ml/kg FM for the low DM silage (<35 %) and 

for the high DM (>35 %) silage 5ml/kg FM.   
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Table 6: Crops and DM-content of the three groups in Knicky & Spörndly (2011)  

Group Crops  DM (%) 

Difficult to ensile  Legume dominated  <20 

Easy to ensile with high DM Grass dominated  

Whole – crop barley  

>35 

Easy to ensile with low DM Grass dominated (85 - 90%) 

Maize (100%)  

<35 

Using additive to ensiles the difficult to ensile crop improved the silage quality, decreasing the 

secondary fermentation (measured in ammonia nitrogen content) and increased the 

concentration of lactic acid compared to the untreated control silage of the same ensilability. 

Clostridia spores and butyric acid concentration decreased with additives use. The dry matter 

loss decreased with additive use. Using additive in the easy to ensile corps at low DM 

concentration had similar result as the difficult to ensile group. Yeast count was decreased in 

the high DM-concentration silages with additive use.  All tested silages were aerobically stable, 

and the use of additives improved the stability compared to the untreated control. The study 

concluded that the additive mixture of sodium benzoate, potassium sorbate and sodium nitrate 

effectively decreased the activity of undesirable microorganisms (Knicky & Spörndly, 2011).  

 

The effect on fermentation and particle size have been studied by Nadeau et al. (2012a) & 

Nadeau & Auerbach (2014). The effect of fermentation quality in grass silage by additive use 

and particle size was studied by Nadeau et al. (2012a). Two particle sizes were tested, chopped 

(20 mm) and cut (250 mm). Additive tested were two acid-based additives, three salt-based 

additives and two biological inoculants. See table 7 for the content and application rate of the 

chemical additives used in the study.  

 
Table 7: Content and application rate of the additives used in Nadeau et al. (2012a)  

Additive name Type of 

additive 

Content Application 

rate 

GrasAAT SP Acid-based Formic acid (350 g/kg) propionic acids 

(120 g/kg) sodium formate (255 g/kg), 

sodium benzoate (15 g/kg) 

3 l/ton 

ProMyr NT 570 Acid-based Formic acid (500 g/kg), propionate (171 

g/kg), sodium (56 g/kg) 

3 l/ton  

Kofasil Ultra K Salt- based  Sodium nitrite (65 g/kg), hexamethylene 

tetramine (110 g/kg), potassium sorbate 

(81 g/kg), sodium benzoate (22 g/kg), 

sodium propionate (8 g/kg) 

2 l/ton 

Kofasil LP Salt- based  Sodium nitrite (202 g/kg), 

hexamethylene tetramine (135 g/kg), 

sodium benzoate (50 g/kg) 

2 l/ton  

Safesil Salt- based Sodium benzoate (180 g/kg), potassium 

sorbate (74 g/kg), sodium nitrite (50 g 

/kg) 

3 l/ton 

 

The acidification during ensiling was faster in the chopped compared to the cut, but after 90 

days of ensiling the final pH was low for all treatments. Using salt-based additives decreased 

the concentration of ethanol in both particle size compared to the untreated control (only water 
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added), and average over particle size proteolysis decreased with salt-based additive and 

decreased the DM losses. The silages treated with acid-based additive resulted in lower acetic 

acid concentration compared to the untreated control. Using the acid-based additives the ethanol 

concentration only decreased in the chopped silages. The content of residual WSC was also 

higher in the chopped than the cut silage. As conclusion of the study the additive use may 

improve the fermentation quality, decreasing the undesirable microorganisms and their 

fermentation. By chopping the forage acidification is faster, which improves the fermentation 

quality (Nadeau et al., 2012a). 

 

Soil contamination during harvest increases the risk of clostridia in the silage. Nadeau & 

Auerbach (2014) examined the effect of additive use and particle size on the fermentation of 

clostridia contaminated grass-clover silage (50 % grass and 50% red clover of DM). To achieve 

the contamination clostridia contaminated soil (50 g/kg forage) was added before ensiling. The 

forage was wilted (30 % DM) and either cut (180 mm) or chopped (17 mm). Additive treatments 

in the study were five salt-based and two acid-based additives (see table 8). As untreated control 

the study had one with and one without soil contamination. 

 

 Table 8: Dosages and content of the additives in the study by Nadeau & Auerbach (2014)  

Additive name Type of 

additive 

Content Application 

rate 

Kofasil Liquid 

 

Salt -based Sodium nitrite (245 g/kg), hexamine 

(164 g/kg) 

2.5 mL/kg 

Kofasil Liquid 

plus 

Salt - based Sodium nitrite (245 g/kg), sodium 

benzoate (50 g/kg), potassium sorbate 

(50 g/kg) 

2.5 mL/kg 

Kofasil LP  Salt - based Sodium nitrate (202 g/kg), hexamine 

(135 g/kg), sodium benzoate (50 g/kg) 

2.5 mL/kg 

Kofasil Ultra 

KS 

Salt-based Sodium nitrite (165 g/kg), hexamine 

(110 g/kg), potassium sorbate (81 g/kg), 

sodium benzoate (22 g/kg), sodium 

propionate (8 g/kg) 

2.5 mL/kg 

Safesil Salt-based  Sodium benzoate (180g/kg), potassium 

sorbate (74 g/kg), sodium nitrite (50 

g/kg) 

4.0 mL/kg 

GrasAAT SX Acid-based Formic acid (400 g/kg), sodium formate 

(200 g/kg), propionic acid (200 g/kg), 

benzonic acid (10 g/kg), sorbic acid (10 

g/kg) 

4.0 mL/kg 

Promyr XR680 Acid-based Formic acid (488 g/kg) , propionic acid 

(184 g/kg), sodium (61 g/kg) 

4.0 mL/kg 

 

Treating the silage with the acid-based treatment resulted in a significant decrease in  pH and 

the concentration of acetic acid and ethanol compared to the clostridia contaminated control.  

Butyric acid was not produced in additive treated silages, indicating inhibition of clostridia 

growth. Proteolysis in the additive treated silages was significantly lower compared to the 

untreated control, resulting in lower concentration of ammonia-nitrogen. DM losses decreased 

significantly in additive treated silage, the acid treatment had a lower loss compared to salt and 

control treatments. Average over additive treatment, the aerobic stability was better in the cut 

silage compared to the chopped silage. For fermentation quality the particle size had no effect 
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on lactic acid concentration, but acetic acid concentration was higher in the chopped silage. 

Clostridia contamination impact on silage fermentation can be eased by using chemical 

additives. Aerobic stability and fermentation of the silages were more influenced by usage of 

additives than by particle size. The authors concluded that particle size affect the fermentation 

to a lesser degree than chemical additives. Inhibiting clostridium fermentation can be achieved 

by using chemical additives (Nadeau & Auerbach, 2014). 

 

The effect of DM concentration, particle size and use of additive on fermentation and 

proteolysis of the silage was studied by Slottner & Bertilsson (2004). Grass-clover silage was 

either precision chopped or cut and stored either in bales or steel silos (25 l). The DM 

concentrations used in the study were one low DM (~300 g/kg) and high DM (400 g/kg).  

Four different additives were used, two acid-based additives, one salt-based additives and one 

inoculant (LAB; see table 9).  
 
Table 9: Additive and application rate in Slottner & Bertilsson (2004) 

Additive name Type of 

additive  

Content Application 

rate 

Formic acid Acid-based Formic acid (850 g/kg) 6 l /ton 

Proens 

 

Acid-based Propionic acid (1/3), formic acid 

(2/3) 

4 l/ton  

Kofasil Ultra  Salt-based  Hexamethylenetetraamine (80 

g/kg), sodium propionate (50 

g/kg), sodium nitrite (120 g/kg), 

sodium benzoate (150 g/kg) 

4 l/ton 

The use of chemical additives resulted in a restricted fermentation; the salt-based additive had 

higher pH than the other additives. Additive use decreased the degradation of protein 

significantly. The study concluded that increased DM concentration and additive use reduced 

the protein degradation, which is similar to the results by Nadeau et al., (2012b) were the 

content of NPN in salt-based additives was lower than in untreated silage. The untreated 

chopped silage had greater fermentation than cut material in bales at the same DM concentration 

(Slottner & Bertilsson, 2004) which also was shown by Nadeau and Auerbach (2014). 
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Materials and Methods 
 

Table 10: Outline of the experiment. Dry-matter concentration of the forage, 

average particle size of the forage, type and dosage of  additives used. 

Sward type DM of herbage 

(%) 

Forage  

particle size 

(cm) 

Additive treatments Additive dosage 
(l/ton forage) 

 

 

 

 

 

 

 

 

 

 

Clover dominated 

 

 

 

 

41.4 

 

 

5.7±3.4 

Control treatment 0 

Salt -Half dose1 1.25 

Salt  - Recommended dose2 2.5 

Acid - Half dose 2.5 

Acid - Recommended dose 5.0 

 

 

23.6±9.0 

Control treatment 0 

Salt -Half dose 1.25 

Salt - Recommended dose 2.5 

Acid - Half dose 2.5 

Acid - Recommended dose 5.0 

 

 

 

 

24.8 

 

 

 

4.8±2.9 

Control treatment 0 

Salt -Half dose 1.25 

Salt - Recommended dose 2.5 

Acid - Half dose 2.5 

Acid - Recommended dose 5.0 

 

 

24.8±10.7 

Control treatment 0 

Salt -Half dose 1.25 

Salt - Recommended dose 2.5 

Acid - Half dose 2.5 

Acid - Recommended dose 5.0 

 

 

 

 

 

 

 

 

 

 

Grass 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38.2 

 

 

4.8 ±2.6 

Control treatment 0 

Salt -Half dose 1.0 

Salt - Recommended dose 2.0 

Acid - Half dose 1.5 

Acid - Recommended dose 3.0 

 

 

24.2±11.7 

Control treatment 0 

Salt -Half dose 1.0 

Salt - Recommended dose 2.0 

Acid - Half dose 1.5 

Acid - Recommended dose 3.0 

 

 

 

 

26.2 

 

 

5.3± 2.5 

Control treatment 0 

Salt -Half dose 1.0 

Salt - Recommended dose 2.0 

Acid - Half dose 1.5 

Acid - Recommended dose 3.0 

 

 

24.4± 10.4 

 

 

Control treatment 0 

Salt -Half dose 1.0 

Salt - Recommended dose 2.0 

Acid - Half dose 1.5 

Acid - Recommended dose 3.0 

1 sodium nitrite, hexamine and sodium benzoate 
2formic acid, propionic acid and salts of organic acids 
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Design of the trial  

During 2014 two fields at Överstegården, Norra Lundby, Skara, Västra Götaland, Sweden were 

harvested during the second cut. The fields had different sward types, one clover dominated 

sward and one grass sward. The experiment had the following treatments for each sward type; 

DM concentration, forage particle size and additive type and dosage (See Table 10).  

 

Forage particle size was either long or chopped. Additives used were the acid product Promyr 

NT570 (formic acid, propionic acid and salts of organic acids; Perstorp AB, Perstorp, Sweden 

and the salt-based additive Kofasil LP (sodium nitrite, hexamine and sodium benzoate; Addcon 

Europe GmbH) using two dosages of each additive for each sward type. The application rates 

of the additives were recommended dosage and half of the recommended dosage for each of 

the additives. The experimental unit was the 1.7-litre silos used, which were replicated three 

times. The experiment had a completely randomized design. 
 
Harvest, wilting and particle size  

The botanical compositions of the leys are shown in Table 11. Harvest occurred on 9 – 10 July. 

The swards were harvested with a mower (John Deere 730) and made into swaths by a rotary 

rake (Pöttinger Eurotop 771A).  Half of each forage from the two sward types was passed 

through a baler (John Deere 678) and the other half of the forages were chopped by a precision 

chopper (Sahlströms 40 cubic Torps 480).  

 

Table 11: Proportion (%) of grass and clover in the two sward types 

Sward type Grass Red clover 

Trifolium pretense 

White clover 

Trifolium repens 

Clover dominated 27.5 65.9 6.3 

Grass 96.0 - 3.5 

 

The weather conditions during wilting were sunny and warm (25-27°C) and to extend the 

wilting time the forages were wilted in swaths.   
 

The target DM concentrations were 25 % (low DM) 40% (high DM). High DM grass was 

mowed at 16.30 July 9 and wilted for 18 hours. The next day at 10.00 the harvested grass was 

transported to SLU Skara and packed into mini silos at 11.00. Clover of high DM concentration 

was mowed at 17.15 on the 8th of July, wilted for 17 hours and transported at 10.00 on the 9th 

of July to SLU Skara, wilted for 3 more hours before being packed into 1.7 litre laboratory silos 

at 14.00. The high DM concentrations of the sward types were 41.4 % for the clover and 38.2 

% for the grass. Grass and clover of low DM concentrations were mowed 8.00-9.00 on July the 

10th, wilted in swaths for 2 to 3 hours before being transported to SLU Skara. The low DM 

concentrations were 24.8% for the clover-grass and 26.3% for the grass.  

 

For the study two forage particle sizes were used; long and chopped. The long particle size was 

produced by baling using 14 knives in the baler, and the chopped forage was produced by a 

precision chopper. Transportation of the forage from the fields to SLU Skara was done by car 

and trailer, which was covered by a tarpaulin. To prevent the risks for heating of the forage, ice 

packs were used during transport and during storage until packing into the silos. 
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Ensiling 

The silage experiment was conducted at the Department of Animal Environment and Health, 

Swedish University of Agricultural Sciences, Skara, Sweden.120 laboratory silos (volume of 

1.7 liter glass jar) were used for ensiling the grass and clover/grass forages, which were stored 

for 100 days. The silos were weighed before packing (including lid) and when the silo was 

filled and closed. The water locks on the lid of the laboratory silos enable the air to leave but 

not to enter. To be able to measure pH at day 3 of after harvest, every silo had a corresponding 

smaller silo (500 ml). The amount of additive applied to the forage was mixed with tap water 

to a total volume of 10 ml/kg of forage and sprinkled on the forage with a hand spray to ensure 

an even distribution of the additive to the forage, which was mixed well before filling of the 

silos. In the control treatment 10 ml of tap water/kg forage were added. The 500-ml silos were 

opened after 3 days and pH was measured at SLU Skara. 50 g of silage was mixed with 50 ml 

distilled water and stored in refrigerator (4 °C) overnight.  The pH was measured on the water 

extract by a calibrated pH-meter (TES 1380). DM losses in the silage during 100 days of storage 

were determined by the weight difference at ensiling and at opening of the 1.7-litre silos divided 

by the dry weight of the wilted forage with addition of the factor 2.5 according to Weissbach 

(2005). 

 

Determination of aerobic stability of the silages 

Aerobic stability of the silage after 100 days of storage was analyzed according to Honig (1990). 

350 to 400 g of silage, depending on the DM content, was loosely put in PVC-pipes, with small 

holes in the bottom for air flow.  Wireless temperature loggers (Tinytag Talk 4014, Gemini, 

Chichester, UK) were inserted in the middle of the silage in the PVC pipes, the pipes were put 

into individual Styrofoam boxes that allowed airflow for 14 days in room temperature (20 °C). 

The number of days until the temperature of the silage increased 2 °C above ambient 

temperature of 20 °C was registered.  

 

Determination of dry matter concentrations in wilted forage and silage 

To determine the time of ensiling, to get the wanted DM concentrations, the forage was 

measured by microwave-oven. The method comprised of weighing in 100 g of cut forage from 

the field and drying it in a microwave-oven (700 W) in time-sessions (5 min, 3 min, 2 min, 1 

min etc.) with stirring and weighing of the forage between the time sessions, until the weight 

of the forage did not decrease any more. At packing the DM concentration was determined by 

drying 200 g of forage at 105 °C for 24 h in a forced-air cabinet. The long cut forage was cut 

by scissors in the lab before drying. The DM concentration of the forage was determined by 

drying 100 g of forage at 60 °C for 21h followed by 105°C for 3 h. This DM concentration was 

corrected for volatile losses during fermentation (Weissbach and Strubelt, 2008). 

 

Laboratory analysis  

For microbiological analysis (Eurofins Food & Agro Sweden AB, Jönköping, Sweden) 150 g 

of the unensiled forage was analyzed for pH, and counts of live lactic acid bacteria (NMKL, 

140, 1991), bacillus spores, enterobacteria, Escherichia coli, clostridia spores, total yeast 

(NMKL 98, 2005), and mould (NMKL 98).  Enterobacteria analysis had an over limit of 6.2. 

Table 12 shows the microbiological content of the unensiled forage.    
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Table 12: Microbiological content of the wilted forage for the two sward types with the two different particle 

sizes and dry matter contents. The unit is log cfu/g if nothing else is specified. 

 Clover dominated Grass 

 Chopped Long Chopped Long 

 High DM Low DM High DM Low DM High DM Low DM High DM Low DM 

pH 5.7 7.1 5.9 5.8 6.1 6.0 6.0 6.0 

Lactic acid 

bacteria   

4.4 6.3 4.8 5.8 5.0 6.3 3.4 4.5 

Mould  5.3 5.5 5.4 5.5 5.3 5.2 4.7 5.6 

Yeast  4.6 4.9 4.4 5.2 4.7 4.7 3.0 4.7 

Escherichia coli  2.6 3.0 2.6 2.5 3.6 4.8 3.6 2.7 

Enterobacteria  >6.2 6.2 5.7 5.5 >6.2 6.2 5.8 4.5 

Bacillus spores  3.6 3.3 4.4 4.9 4.3 4.0 4.3 4.7 

Clostridia spores <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 

 

Water-soluble carbohydrates (WSC) and crude protein of wilted forage and WSC, pH, 

ammonia-N, organic acids and alcohols of the silage were analyzed at the Central laboratory, 

Humboldt Universität zu Berlin, Germany. The WSC concentration was determined by the 

colormetric method with anthrone  (Lengerken & Zimmermann, 1991) and the crude protein 

concentration was determined by multiplying the analyzed total nitrogen (Kjeldahl N method) 

by 6.25. Ammonia concentration was determined colorimetrically based on the Berthelot 

reaction by use of a continuous flow analyzer (SKALAR analytical B.V., Breda, Netherlands) 

and pH was determined potentiometrically using a calibrated pH electrode. Volatile fatty acids 

and ethanol were analyzed by gas chromatography according to Weiss (2001) and lactic acid 

was analyzed by HPLC according to Weiss & Kaiser (1995). 
 

Analyses of ash, in vitro organic matter digestibility (IVOMD) and NDF of wilted forages were 

conducted at the research laboratory of the Department of Animal Nutrition and Management, 

SLU Uppsala. Ash was determined at 525oC for 16 hours. The IVOMD was analyzed by the 

VOS method by incubation of 0.5 g sample at 38 oC for 96 hours in 49 ml buffer and 1 ml 

rumen fluid (IVOMD; Lindgren, 1979) and the metabolizable energy was calculated from 

IVOMD (Lindgren, 1983, 1988). To determine the ash content the wilted forage was incinerated 

at 550 °C for 16 h. The NDF content was analyzed according to Chai and Udén (1991) with 

addition of alpha-amylase and sodium sulphite to the ND solution.  The content of nutrients in 

the wilted forage is shown in Table 13. 
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Table 13:  Nutrient content of the wilted forage for the two sward types with the two different particle sizes and dry 

matter contents. The unit is % of DM if nothing else is specified. 

 Clover dominated Grass 

 Chopped Long Chopped Long 

 High DM Low DM High DM Low DM High DM Low DM High DM Low DM 

DM, % 41.2 24.1 39.5 24.3 40.7 27.7 42.1 18.1 

CP1 18.0 19.2 18.6 20.0 18.9 16.2 20.4 17.3 

WSC2  9.1 6.5 8.5 6.8 9.6 9.0 9.9 8.6 

NDF3 39.0 42.8 42.1 41.8 50.7 53.6 49.6 54.0 

IVOMD4, % 79.5 82.0 81.3 83.4 87.3 85.9 86.6 85.2 

Ash 9.0 8.9 9.1 9.1 9.1 7.4 7.4 7.5 

ME5,  

MJ/kg DM  

10.3 10.6 10.5 10.7 11.0 10.9 11.1 10.8 

1 Crude protein  

2 Water soluble carbohydrate 

3 Neutral detergent fibre 

4 In vitro organic matter digestibility 

5 Metabolizable energy 

 

Statistical model  

Data on silage fermentation characteristics and aerobic stability were analyzed by sward type 

and DM content. The statistical model used for analysis of the data included fixed effects of 

forage particle size and additive treatment in PROC GLM of SAS (vers. 9). Three replications 

(=silo) per treatment were used. Main effects of treatment and particle size and their interactions 

were analyzed for the variables studied for each sward type at each DM concentration.   

  
When the F-test was significant (P ≤ 0.05) pairwise comparisons were done between the least 

square means with Tukey´s t-test adjustment.  
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Results 

Tables 12-15 shows the effect of particle length and additive and their interactions on 

fermentation characteristics and aerobic stability in clover-grass and grass silages of high and 

low dry matter contents.  

 

Clover-grass silage of high dry-matter content 
The clover-grass silage classified as high DM silage had DM contents of 40 to 42% (Table 14). 

The content of WSC in the clover-grass silage was lower in the chopped than in the long silage, 

when averaged over additive treatments (5.13 vs. 7.65% of DM, P < 0.001). Silage treated with 

the acid at 5.0 l/t had higher WSC content than the control and salt-treated silages, when 

averaged over particle sizes (P < 0.001). The acid treatment had the lowest lactic acid 

concentrations in both long and chopped clover-grass silage and the effect was dose dependent 

(P < 0.01).  The salt-based additive had similar lactic acid concentrations as the control in the 

chopped silage whereas the additive caused a decrease in the lactic acid content in the long 

clover-grass silage, but the effect was not dose dependent. Concentrations of lactic acid and 

acetic acid were higher in the chopped than in the long silage (5.41 vs. 4.30% of DM and 1.26 

vs. 0.92% of DM, respectively, P < 0.001). Silage treated with the acid at 5.0 l/t had the lowest 

acetic acid content followed by the acid treatment at 2.5 l/t, which had lower acetic acid content 

than the untreated and salt-treated silages, which did not differ (P < 0.001, Table 14) 

 

Clover-grass silage treated with the acid product, contained small amounts of propionic acid, 

which originated from the additive, which contained propionic acid in addition to formic acid 

and salts of acids (Table 12). The ethanol content was similar between treatments. Long silage 

had higher NH3-N content than chopped silage, when averaged over treatments (8.7 vs. 6.8% 

of total N; P < 0.001). Silage treated with the salt-based additive at 2.5 l/t had the lowest NH3-

N concentration whereas the untreated control silage had the highest NH3-N content (P < 

0.001). Silage treated with the salt-based additive at 1.25 l/t had similar NH3-N content as the 

silage treated with the acid at 5.0 l/t. The effect of the additives on silage NH3-N content was 

dose dependent (P < 0.001). The pH after 3 days of ensiling (pH three days) and the pH at the 

opening of the silos (pHfinal) after 100 days of ensiling was lower in the chopped silage 

compared to the long silage (5.34 vs. 5.42 and 4.55 vs. 4.93, respectively, P < 0.001).  Clover-

grass silage treated with the salt-based additive had lower pH at 3 days of ensiling than the 

control, whereas the acid-treated clover-grass silage had similar pH as the control silage. After 

100 days of ensiling, the pH was lower in the control than in both the salt-treated silages and in 

the silage treated with 5.0 l/t of the acid (P < 0.001). Clover-grass silage treated with the acid 

at 5.0 l/t had lower DM losses during storage than the untreated control silage, whereas the 

other additive treatments did not significantly decrease DM losses compared to the control 

silage (P < 0.05). Long silage had lower DM losses than chopped silage (4.7 vs. 5.4%, P < 

0.01). All silages were aerobically stable (Table 14). 
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Table 14: Effects of particle size (S) and additive treatment (T) on fermentation characteristics and aerobic stability of clover-grass silage of high DM 

content. Least-square means are expressed in % of DM unless stated otherwise (n=6). 

 Chopped Long SEM 1 P- value 

S*T 

P-value  

S 

P-value 

T 

 C2 Salt-H3 Salt-R4 Acid-H5 Acid-R6 C Salt-H Salt-R Acid-H Acid-R     

DM, % 41.5ab 41.3abc 41.1abc 41.2abc 41.1abc 40.8bc 42.6a 41.6ab 39.6c 41.4bc 0.36 0.007 NS <0.001 

pH three days 5.48 4.97 5.24 5.59 5.41 5.72 5.11 5.40 5.76 5.70 0.028 0.081 <0.001 <0.001 

pH final 4.48 4.53 4.61 4.54 4.60 4.80 4.98 4.95 4.91 5.01 0.027 NS <0.001 <0.001 

LA7 6.48a 6.52a 6.07ab 4.48cd 3.48e 5.65b 4.85c 4.60c 3.87de 2.54f 0.122 0.001 <0.001 <0.001 

AA8 1.32 1.44 1.38 1.16 0.98 1.13 1.05 1.03 0.85 0.56 0.055 NS <0.001 <0.001 

PA9 0.00c 0.00c 0.01c 0.08b 0.15a 0.00c 0.02c 0.01c 0.08b 0.12a 0.006 0.020 NS <0.001 

BA10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.001 - - - 

Ethanol 0.48 0.67 0.43 0.67 0.55 0.51 0.55 0.42 0.32 0.27 0.20 NS NS NS 

WSC11 4.45 3.67 5.29 4.66 7.58 4.90 6.65 5.85 8.87 11.99 1.05 NS 0.001 <0.001 

ASTA h12 336 307 336 307 336 324 336 336 336 336 13.4 NS NS NS 

ASTA d13 14.0 12.8 14.0 12.8 14.0 13.5 14.0 14.0 14.0 14.0 0.56 NS NS NS 

pH ASTA
14 4.45 5.61 4.55 5.26 4.94 5.22 4.87 4.78 4.76 4.81 0.418 NS NS NS 

Clostridia15 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 0.00 - - - 

NH3-N16 8.0 6.5 5.6 7.3 6.5 9.9 8.5 7.8 9.0 8.0 0.17 NS <0.001 <0.001 

DM loss, % 5.6 6.0 5.1 5.7 4.7 5.8 4.5 4.5 4.6 3.9 0.37 NS 0.008 0.023 
1Standard error of the mean 
2Control 
3 Salt-based (sodium nitrite, hexamine and sodium benzoate) additive half dose  1.25 l/t 
4Salt-based (sodium nitrite, hexamine and sodium benzoate) additive recommended dose, 2.5 l/t 
5 Acid (formic acid, propionic acid and salts of organic acids) half dose, 2.5 l/t 
6 Acid (formic acid, propionic acid and salts of organic acids) recommended dose, 5.0 l/t 
7Lactic acid 
8Acetic acid 
9Propionic acid 
10 Total Butyric acid 
11Water soluble carbohydrates 

 

12 ASTA: Aerobic stability test, hours before temperature increase of 2°C 
13 ASTA: Aerobic stability test, days before temperature increase of 2°C 
14pH after aeration 
15 cfu of Clostridium spores 
16Ammonia nitrogen % of total N 

a,b,c,d,e mean values with different superscripts differ significantly (P < 0.05) 

NS = none significance 
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Table 15: Effects of particle size (S) and additive treatment (T) on fermentation characteristics and aerobic stability of clover-grass silage of low DM 

content. Least-square means are expressed in % of DM unless stated otherwise (n=6). 

 Chopped Long SEM 1 P-Value 

S*T 

P-Value  

S 

P-value 

T 

 C2 Salt-H3 Salt-R4 Acid-H5 Acid-R6 C Salt-H Salt-R Acid-H Acid-R     

DM, %  23.9 23.9 23.0 24.4 24.7 25.6 26.7 26.7 26.0 25.1 0.529 0.058 <0.001 NS 

pH three days 4.57ef 4.76d 4.45f 4.63e 4.55ef 4.97bc 5.03ab 4.95bc 5.12a 4.89c 0.025 0.001 <0.001 <0.001 

pH final 4.26 4.20 4.24 4.25 4.19 4.48 4.44 4.42 4.32 4.28 0.037 0.098 <0.001 NS 

LA7 9.17b 11.71a 9.27b 7.89cd 5.89f 10.69a 8.26bcd 7.47de 7.89cd 6.77ef 0.217 <0.001 <0.0005 <0.001 

AA8 2.48ab 2.09abc 2.26abc 1.54cde 0.96de 2.89a 2.22abc 1.74bcde 0.92e 0.97de 0.170 0.029 NS <0.001 

PA9 0.04 0.00 0.024 0.18 0.27 0.04 0.01 0.02 0.13 0.22 0.013 0.062 0.033 <0.001 

BA10 0.01 0.014 0.10 0.01 0.00 0.03 0.00 0.00 0.08 0.00 0.029 0.099 NS NS 

Ethanol 0.51a 0.19b 0.15bc 0.15bc 0.09c 0.43a 0.21b 0.14bc 0.20b 0.16bc 0.018 0.007 NS <0.001 

WSC11 0.84e 0.85e 0.80e 2.25cd 5.19a 0.61e 0.84e 1.38de 3.21bc 3.66b 0.231 <0.001 NS <0.001 

ASTA h12 168 211 213 191 231 336 336 303 246 336 36.9 NS <0.001 NS 

ASTA d13 7.0 8.8 8.9 8.0 9.6 14.0 14.0 12.6 10.2 14.0 1.54 NS <0.001 NS 

pH ASTA
14 8.55 8.30 7.61 6.72 7.26 4.44 4.49 5.46 5.84 4.21 0.69 NS <0.001 NS 

Clostridia15 <1.0 <1.0 1.2 <1.0 <1.0 <1.0 <1.0 1.1 2.4 <1.0 0.51 NS NS NS 

NH3-N16 9.9 7.7 6.4 8.4 6.9 10.8 8.7 6.5 8.5 7.6 0.35 NS 0.019 <0.001 

DM loss, % 6.4 5.8 6.2 5.6 5.0 6.5 6.6 6.0 5.4 5.0 0.23 NS NS 0.001 
1Standard error of the mean 
2Control 
3 Salt-based (sodium nitrite, hexamine and sodium benzoate) additive half dose  1.25 l/t 
4Salt-based (sodium nitrite, hexamine and sodium benzoate) additive recommended dose, 2.5 l/t 
5 Acid (formic acid, propionic acid and salts of organic acids) half dose, 2.5 l/t 
6 Acid (formic acid, propionic acid and salts of organic acids) recommended dose, 5.0 l/t 
7Lactic acid 
8Acetic acid 
9Propionic acid 
10 Total Butyric acid 
11Water soluble carbohydrates 

 

12 ASTA: Aerobic stability test, hours before temperature increase of 2°C 
13 ASTA: Aerobic stability test, days before temperature increase of 2°C 
14pH after aeration 
15 cfu of Clostridium spores 
16Ammonia nitrogen % of total N 

a,b,c,d,e, f mean values with different superscripts differ significantly (P < 0.05) 

NS = none significance 
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Clover-grass silage of low dry-matter content 
The clover-grass silage classified as low DM silage had DM contents from 23% to 26% (Table 

15). Silage treated with the acid at 5.0 l/t had higher WSC content than the acid treatment at 2.5 

l/ton (P < 0.001), which both had higher WSC concentrations than the salt-treated and the 

untreated clover-grass silages, which did not differ. The acid treatment at 5.0 l/t had the lowest 

lactic acid concentration in chopped clover-grass silage and the effect was dose dependent. 

There also was a lower lactic acid content in the acid-treated long silage at 5.0 l/ton than at 2.5 

l/ton (P < 0.05). The salt-based additive at 2.5 l/t had similar lactic acid concentration as the 

control, whereas the salt treatment at 1.25 l/t had higher lactic acid concentration than the 

control in the chopped silage. The salt-based additive at both dosages resulted in silage with 

lower lactic acid concentrations than in the control, when the silage was long, which also was 

true for the acid-treated silage. When averaged over additive treatments, the lactic acid 

concentration was higher in the chopped than in the long silage (8.79 vs. 8.21% of DM, P < 

0.001), whereas the opposite was true for the DM concentration (24.0 and 26.0%, P < 0.001). 

The acid treated silages had lower acetic acid concentrations than the control silage at both 

particle sizes. The salt-treated silage at 2.5 l/t of long silage had lower acetic acid concentration 

than the long control silage (P < 0.05; Table 15).   

 

Clover-grass silage treated with the acid product, contained small amounts of propionic acid, 

which partly originated from the additive (Table 15). Butyric acid concentration was low in the 

silage. No significant differences in Clostridia spores were found between the treatments 

although there was a numerically higher spore counts in the acid-treated long silage at 2.5 l/t 

compared to the other treatments. All the additive treatments decreased the ethanol content of 

the silage (P < 0.01).  

 

Long silage had higher NH3-N content than chopped silage, when averaged over treatments 

(8.4 vs. 7.8% of total N; P < 0.05).  Treated silages had lower NH3-N concentrations than the 

untreated silages, when averaged over particle sizes, and the decrease was dose dependent for 

both the salt and the acid (P < 0.001). The pH after 3 days of ensiling (pH three days) was higher 

in silages treated with half dosages of the salt and the acid compared to the control silages.  

 

The final pH after 100 days of ensiling was lower in the chopped silage compared to the long 

silage (4.23 vs. 4.39, P < 0.001).  Clover-grass silage treated with the acid at 5.0 l/t had lower 

pH at 100 days of ensiling than the untreated control silage, when averaged over particle sizes 

(P < 0.01). Furthermore, the acid treated silage at 5.0 l/t had lower DM losses than the control 

silage, when averaged over particle sizes (P < 0.001). Long silage was more aerobically stable 

than chopped silage, when averaged over additive treatments (13.0 vs. 8.5 days, P < 0.001). 

This difference in aerobic stability resulted in differences in silage pH after the aeration between 

long and chopped silage (4.89 vs. 7.69, P < 0.001; Table 15).  

  

Grass silage of high dry-matter content 
The high-DM grass silage had DM contents from 36% to 39% (Table 16). Silage treated with 

the acid at 3.0 l/t had higher WSC content than the control silage (P < 0.001) , whereas the 

WSC content of the other treatments did not differ from the control but had a moderate content 

of 4 to 6% of DM. The acid treatment at 3.0 l/t had the lowest lactic acid concentration in 

chopped grass silage and the effect was dose dependent. There also was a lower lactic acid 

content in the acid-treated long silage at 3.0 l/ton compared to 1.5 l/ton (P < 0.001). The salt-

based additive at both dosages had similar lactic acid concentrations as the control silages of 

both particle sizes. The acid treated silage had lower acetic acid concentration than the control 

silage of the chopped particle size and the salt treatment at 2.5 l/t of long silage had a lower 
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acetic acid content than the long control silage (P < 0.05; Table 16). Furthermore, the acetic 

acid content was lower in the chopped than in the long silage, when averaged over additive 

treatments (0.75 vs. 0.94% of DM, P < 0.01; Table 16).  

 

Grass silage treated with the acid product, contained small amounts of propionic acid, which 

partly originated from the additive (Table 16). Chopped grass silage treated with the salt-based 

additive at 2.0 l/t had lower NH3-N content than the chopped control silage (P < 0.001). All 

additive treatments decreased the NH3-N content of long grass silage with the greatest effects 

by the salt and the acid at the highest application rates (P < 0.001). Long silage had higher NH3-

N content than chopped silage, when averaged over treatments (11.6 vs. 9.3% of total N; P < 

0.001).  All the additive treatments, except the acid at 1.5 l/t, decreased pH after 3 days of 

ensiling (pH three days) , when it was chopped (P = 0.001), whereas no effect of the treatments on 

the pH after 3 days of ensiling was found in the long silage. The pH at opening of the silos after 

100 days of storage was not affected by additive treatments. There were small but significant 

differences in pH after 3 days of ensiling and of final pH between particle sizes of the silages. 

Chopped silage had lower pH than long silage, when averaged over additive treatments (pH three 

days: 5.67 vs. 5.78, P < 0.01; pHfinal: 4.35 vs. 4.45, P < 0.01; Table 16). 

 

Chopped control silage contained yeast that was decreased significantly by the acid treatment 

at 3.0 l/t (P < 0.05; Table 16). No differences in ethanol contents and DM losses could be found 

between treatments. Although the chopped grass silage contained more yeast than the long 

silage (2.4 vs. 1.3 cfu/g, P < 0.05), the chopped silage was more aerobically stable than the long 

silage, when averaged over additive treatments (11.3 vs. 7.2 days, P < 0.001). This difference 

in aerobic stability resulted in differences in silage pH after the aeration between chopped and 

long silage (5.67 vs. 8.32, P < 0.001; Table 16). Both the salt at 2.0 l/t and the acid at 3.0 l/t 

improved the aerobic stability of the silages as shown by the significant P-value for treatments 

averaged across particle sizes (10.8 and 10.9 days vs. 7.2 days, P < 0.05; Table 16).  
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Table 16:  Effects of particle size (S) and additive treatment (T) on fermentation characteristics and aerobic stability of grass silage of high DM 

content. Least-square means are expressed in % of DM unless stated otherwise (n=6). 

 Chopped Long SEM 1 P-Value 

S*T 

P-Value  

S 

P-value 

T 

 C2 Salt-H3 Salt-R4 Acid-H5 Acid-R6 C Salt-H Salt-R Acid-H Acid-R     

DM, % 39.4 39.3 39.0 39.0 39.7 36.4 37.9 38.3 36.4 36.7 0.623 NS <0.001 NS 

pH three days 5.94a 5.49d 5.64bcd 5.77abc 5.53cd 5.74abcd 5.71abcd 5.74abcd 5.82ab 5.88ab 0.052 0.001 0.005 0.0013 

pH final 4.37ab 4.19b 4.42a 4.35ab 4.44a 4.39ab 4.52a 4.47a 4.40ab 4.45a 0.044 0.008 0.003 NS 

LA7 6.00abc 6.75a 5.66bcd 6.09abc 5.04d 6.36ab 6.16abc 6.42ab 6.31ab 5.52cd 0.154 0.004 0.021 <0.001 

AA8 0.84abc 0.83abc 1.05ab 0.61bc 0.42c 1.23a 0.85abc 0.89ab 0.93ab 0.80abc 0.088 0.018 0.003 <0.001 

PA9 0.00e 0.01e 0.02cde 0.06bc 0.09a 0.04cd 0.00e 0.01de 0.05bc 0.07ab 0.006 0.001 NS <0.001 

Ethanol 0.29 0.32 0.50 0.39 0.45 0.43 0.23 0.22 0.37 0.29 0.140 NS NS NS 

WSC11 4.68 4.82 4.10 5.84 8.82 3.64 5.97 6.05 6.02 8.37 0.696 NS NS <0.0001 

ASTA h12 188 203 336 289 336 156 170 180 178 185 30.8 NS <0.001 0.025 

ASTA d13 7.8 8.5 14.0 12.1 14.0 6.5 7.1 7.5 7.4 7.7 1.28 NS <0.001 0.025 

pH ASTA
14 7.30 6.62 4.52 5.44 4.47 8.40 8.34 8.25 8.31 8.33 0.656 0.183 <0.001 NS 

Yeast15 4.4a 3.5ab 1.6ab 1.5ab 1.0b 1.0b 1.1b 2.0ab 1.2b 1.4ab 0.61 0.034 0.011 0.033 

NH3-N16 10.3bc 9.3cd 7.6d 10.0c 9.1cd 15.1a 11.7b 9.5c 12.0b 9.8c 0.35 <0.001 <0.001 <0.001 

DM loss 5.2 5.0 6.5 5.2 4.8 5.7 5.5 5.0 5.3 5.0 0.58 NS NS NS 
1Standard error of the mean 
2Control 
3Salt-based additive (sodium nitrite, hexamine and sodium benzoate) half dose, 1.0 l/t 
4Salt-based additive (sodium nitrite, hexamine and sodium benzoate) recommended dose, 2.0 l/t 
5 Acid (formic acid, propionic acid and salts of organic acids)half dose, 1.5 l/t 
6 Acid ( formic acid, propionic acid and salts of organic acids) recommended dose, 3.0 l/t 
7Lactic acid 
8Acetic acid 
9Propionic acid 
10 Total Butyric acid 
11Water soluble carbohydrate 

12 ASTA: Aerobic stability test, hours before temperature increase of 2°C 
13 ASTA: Aerobic stability test, days before temperature increase of 2°C 
14pH after aeration 
15 cfu of yeast 
16Ammonia nitrogen % of total N 

a,b,c,d,e mean values with different superscripts differ significantly (P < 0.05) 

NS = none significance 
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Table 17:  Effects of particle size (S) and additive treatment (T) on fermentation characteristics and aerobic stability of grass silage of low DM 

content.  Least-square means are expressed in % of DM unless stated otherwise (n=6). 

 Chopped Long SEM 1 P-Value 

S*T 

P-Value  

S 

P-value 

T 

 C2 Salt-H3 Salt-R4 Acid-H5 Acid-R6 C Salt-H Salt-R Acid-H Acid-R     

DM % 26.5b 26.5b 27.1ab 26.2b 26.3b 26.7b 25.9b 26.5b 27.9a 26.9ab 0.247 0.0005 NS 0.0386 

pH three days 4.45de 4.35ef 4.32f 4.54d 4.45def 5.03ab 5.10a 5.02ab 4.95b 4.79c 0.025 <0.001 <0.001 0.0002 

pH final 3.92e 3.99d 3.98d 3.88ef 3.83f 4.22a 4.16b 4.18ab 4.15bc 4.09c 0.012 0.001 <0.001 <0.001 

LA7 7.33ef 7.96abcde 7.36cdef 8.46a 7.57bcde 8.35a 7.83abcde 7.57bcde 8.09ab 6.80f 0.140 <0.001 NS <0.001 

AA8 0.85 1.08 1.04 0.83 0.59 1.38 1.43 1.33 0.84 0.74 0.1233 NS 0.0029 0.0004 

PA9 0.00d 0.00d 0.00d 0.09b 0.14a 0.03c 0.00d 0.01cd 0.07b 0.12a 0.0038 <0.001 NS <0.001 

Ethanol 0.45 0.38 0.12 0.44 0.27 0.46 0.47 0.22 0.55 0.60 0.0539 0.0903 0.0011 <0.001 

WSC11 2.01 1.69 2.35 2.72 5.04 1.02 1.26 1.58 2.68 4.20 0.172 0.0835 <0.001 <0.001 

ASTA h12 104ab 87ab 183a 132ab 159ab 158ab 203a 136ab 150ab 33b 27.6 0.003 NS NS 

ASTA d13 4.3ab 3.6ab 7.6a 5.5ab 6.6ab 6.6ab 8.5a 5.7ab 6.2ab 1.4b 1.15 0.003 NS NS 

pH ASTA
14 8.26 7.96 8.05 8.14 8.06 8.44 8.36 8.45 8.17 8.40 0.090 0.210 <0.001 NS 

Yeast15 4.6ab 5.0ab 0.7c 4.5ab 3.8abc 2.3bc 4.0ab 2.2bc 4.7ab 5.8a 0.63 0.017 NS 0.0002 

NH3-N16 11.2 9.93 10.0 10.4 10.1 9.7 10.1 9.1 10.4 10.1 0.39 NS 0.093 NS 

DM loss 5.5 5.8 4.7 5.5 4.8 6.4 6.4 5.4 6.3 6.4 0.28 NS 0.0001 0.023 
1Standard error of the mean 
2Control 
3 Salt-based additive half dose, 1.0 l/t 
4Salt-based additive recommended dose, 2.0 l/t 
5 Acid half dose, 1.5 l/t 
6 Acid recommended dose, 3.0 l/t 
7Lactic acid 
8Acetic acid 
9Propionic acid 
10 Total Butyric acid 
11Water soluble carbohydrates 

 

12 ASTA: Aerobic stability test, hours before temperature increase of 2°C 
13 ASTA: Aerobic stability test, days before temperature increase of 2°C 
14pH after aeration 
15 cfu of yeast 
16Ammonia nitrogen % of total N 

a,b,c,d,e,f mean values with different superscripts differ significantly (P < 0.05) 

NS = none significance 
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Grass silage of low dry-matter content 
The low-DM grass silage had DM contents from 26% to 28% (Table 17). Silage treated with 

the acid had greater WSC content than the control silage, whereas the WSC content of the salt 

treatment did not differ from the control, when averaged across silage particle sizes. Also, the 

WSC content of the acid treated grass silage was higher for the application at 3.0 l/t compared 

to 1.5 l/t (P < 0.001). The acid-treated chopped grass silage had greater lactic acid content than 

the other treatments for chopped silage. For the long silage, all additive treatments, except the 

acid treatment at 1.5 l/t, had lower lactic acid content than the control silage. For both particle 

sizes, the lactic acid content decreased with increased application rate of the acid (P < 0.001).  

The acetic acid content was lowest for the acid-treated silage at the dosage of 3.0 l/t, when 

averaged across silage particle sizes (P < 0.001). When averaged across additive treatments, 

the chopped silage had a greater content of WSC (2.76 vs. 2.15% of DM, P < 0.001) and a 

lower content of acetic acid than the long grass silage (0.88 vs. 1.14% of DM, P < 0.01). 

 

Grass silage treated with the acid product, contained lesser amounts of propionic acid, which 

partly originated from the additive (Table 17). Butyric acid was not present in the silages. No 

differences in NH3-N content were found between additive treatments and silage particle sizes.  

 

Silage pH after 3 days of fermentation was decreased by the salt-based additive at 2.0 l/t when 

the silage was chopped, whereas the acid at 3.0 l/t decreased the pH after 3 days of ensiling of 

the long silage (P < 0.001; Table 17). Silage pH after 100 days of storage was lower for the 

acid treatment at 3.0 l/t than for the control treatment, when the silage was chopped, whereas 

almost all additive treatments decreased the pH of the control silage, when the silage was 

unchopped  (P < 0.001). Chopped silage had lower pH than long silage, when averaged over 

additive treatments (pH three days: 4.42 vs. 4.98, P < 0.001; pHfinal: 3.92 vs. 4.17, P < 0.001) 

 

Chopped control silage contained yeast that was decreased significantly by the salt-based 

additive treatment at 2.0 l/t, whereas the acid treatment at 3.0 l/t increased the yeast content 

compared to the control silage, when the silage was ensiled long (P < 0.05; Table 17). When 

averaged across silage particle sizes, the salt-based additive at 2.0 l/t decreased the ethanol 

content of the control silage (P < 0.001). Furthermore, the ethanol content of the silage was 

lower in chopped than in long silage, when averaged across additive treatments (0.33 vs. 0.46% 

of DM, P < 0.01). The DM losses during storage were less for the grass silage treated with the 

salt-based additive at 2.0 l/t compared to the control silage, when averaged across silage particle 

sizes (5.1 vs. 6.0%, P < 0.05). Also, the DM losses were smaller in the chopped than in the long 

grass silage, when averaged across additive treatments (5.3 vs. 6.2% of DM, P < 0.001). The 

salt-based additive at 1.0 l/t produced a more aerobically stable silage than the acid at 3.0 l/t, 

when the grass was ensiled long (8.5 days vs. 1.4 days, P < 0.01; Table 17). 
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Discussion 
This study aimed to examine the effects of particle size and chemical additives at two dosages 

on fermentation characteristics and aerobic stability of clover-grass and grass silages at low and 

high DM concentrations.   

 

Clover-dominated silage 
High DM content 

By chopping the clover-grass silage, the acidification can be faster due to that WSC is easily 

available for LAB with the leakage of cell sap (Pauly & Lingvall, 1999; McEniry et al., 2008). 

The chopped clover-grass silage had, compared to the long silage, a lower content of WSC, 

higher concentration of lactic and acetic acid and a lower pHthree days and pHfinal. Chopping the 

silage seems to decrease the proteolysis (Pauly & Lingvall, 1999; Pahlow et al., 2003), as 

reflected by the decreased  concentration of ammonia nitrogen in the chopped silage in this 

experiment.  

 

The chopped clover-grass silage had a greater loss of DM than the long silage, which indicate 

that microbial activity was prolonged (Shao et al., 2005; Kung, 2010) during the ensiling phase 

(McDonald et al., 1991; Pahlow et al., 2003). Packing the silage is essential for a low DM loss, 

and the result indicate low DM with air-pockets, which delays the ensiling phase. The easily 

available nutrients for LAB and increased packing density (McEniry et al., 2008) should 

decrease the loss of DM in chopped silage but the high DM content of 40-42% probably made 

the herbage more difficult to pack, leaving air pockets in the silo, resulting in lower density 

(McEniry et al., 2008). This is supported by no differences in DM losses between long and 

chopped silages in clover-grass silage of low DM content.  

 

The acid contains formic acid, which has a direct acidification effect (Kung et al.,2003; Kung 

2010; Knicky & Sprödly, 2009). The acid – R silage had restricted fermentation of WSC to 

lactic acid and acetic acid, resulting in a lower DM loss compared to the control silage. The 

acid  decreased the lactic acid concentration regardless of particle size compared to the control. 

The lowest concentration of lactic acid was observed in the unchopped acid treated silage at 

recommended dose,  

 

The dose of the acid treatment had effect on the concentration of lactic acid. Treatment with 

Acid – R resulted in a lower concentration compared Acid - H. The loss of DM of the silage 

treated with half the dose was on the same level as the control treated silage, suggesting that 

inhibition of LAB was dose dependent. This corresponds with the conclusion by Randby 

(2000), who showed that lactic acid concentration correlated negatively with application rate of 

the acid. Formic acid dissociates to a higher rate compared to the lactic, acetic and propionic 

acid (Brucie, 2006), resulting in a lower pH. As shown in this experiment, the acidification is 

dose dependent with a lower silage pH at recommended compared to half recommended dosage, 

which corresponds with the results by Rinne et al. (2016).     

 

All additive treatments decreased proteolysis, as measured by content of ammonia-N, compared 

to the control. The silage treated with Salt – R had the lowest concentration of ammonia 

nitrogen, and the effect was dose dependent. These results agree with results by Nadeau & 

Auerbach (2014) where the salt treatments had lower ammonia nitrogen than the acid 

treatments. Similarly, Slottner & Bertilsson (2004) concluded that chemical additives (salt and 

acid additives) and high DM concentrations decrease proteolysis in the silage. The effect of 

acid on ammonium nitrogen was also dose dependent. A good fast acidification is important 

for inhibition of microbial growth, thereby decreasing proteolysis (Weinberg & Muck, 1996).  
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The salt treatment had a lower pHthree days compared to the other treatments, but after ensiling 

the pH was higher than the untreated control. Slottner & Bertilsson (2004) showed similar 

results, where the pH was high in the salt-treated silage. The salt treatment contains 

antimicrobial and antifungal substances (Kung et al., 2003) which results in stable conditions 

of the silage despite a somewhat higher pH due to a lower acid production (Woolford, 1975; 

Slottner & Bertilsson, 2004; Kung, 2010).  

 
Low DM-concentration 

The chopped clover-grass silage was of good quality with low pH and high concentration of 

lactic acid compared to the long silage. Nadeau & Auerbach (2014) showed that chopping 

clover-grass silage did not result in increased concentration of lactic acid but increased the 

concentration of acetic acid. The aerobic stability on the other hand was significantly better in 

the long silage compared to the chopped clover-grass silage (8.5 days vs 13.0 days), which 

agree with the results in this experiment. High concentration of acetic acid inhibits yeast 

(Weinberg & Muck, 1996). The pH after aeration in this study was also higher in the chopped 

silage, indicating deterioration of the silage during aeration. Often yeast initiate the 

deterioration (Borreani & Tabacco, 2010), but in this study yeast was not analyzed in the clover-

grass silage, only in the wilted forage before ensiling. The clover-grass herbage before ensiling  

contained yeast, spores of bacillus and enterobacteria. Ethanol concentration, an indicator of 

yeast activity (Pahlow et al., 2003), did not differ between particle sizes, when averaged over 

additive treatments. Residual WSC and lactic acid have been linked to lowered aerobic stability, 

as they are easily available nutrients to yeast (Wrobel et al.,2008; Nadeau and Auerbach, 2013). 

The concentration of WSC in the clover-grass silage did not differ between the particle sizes 

but the concentration of lactic acid was greater in chopped than in long silage. Lactic acid is 

used as substrate for yeast and is degraded to carbon dioxide, water and heat (Pahlow et 

al.,2003; Kung, 2010). The degradation of lactic acid increases the pH enabling other bacteria 

and fungi to grow and proliferate (Borreani & Tabacco, 2010). Silage with high concentration 

of lactic acid and low concentration of acetic acid decrease the aerobic stability, shown in 

Nadeau and Auerbach (2013). Another factor that influences the aerobic stability is density and 

porosity (Savole & Jofriet, 2003), with low density/high porosity, the aerobic stability is 

lowered. The silos in this study were densely packed at filling and air ingress was eliminated 

by use of water locks on the lid. 

 

Additives, both acid and salt, used in the clover-grass silage with low DM had a favorable effect 

on decreasing protein degradation (Slottner & Bertilsson, 2004; Nadeau & Auerbach, 2014) 

and decreased the concentration of ethanol. The additives used in this study contained 

antimicrobial and antifungal substances (Kung, 2001). The effect on protein degradation was 

dose dependent, with less degradation (lower content of NH3-N) in the silages when the 

additives were applied at recommended dosages compared to using half the dose. This supports 

the importance of a fast acidification rate (quick drop in pH) and/or inhibition of the microbial 

growth (Pahlow et al., 2003). 

 

Acid-R decreased the pH more after 100 days of storage compared to the untreated silage. 

Formic acid  has a higher dissociation rate than the organic acids naturally occurring in 

untreated silages  (Rooke & Hartfield, 2003).  The loss of DM during storage decreased with 

acid treatment at recommended dose compared to the other treatments. Nadaeu & Auerbach 

(2014) presented similar results, but the salt treatments had in their study also a lower DM loss 

compared to the control. This effect did not occur in this study.  
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The content of WSC was in the acid treatment dose dependent in the chopped silage, with the 

highest content in the silage, which was treated with the Acid- R. Likewise, Nadeau et al. 

(2012b) reported a higher WSC content when using the same acid product at 3 l/t forage 

compared to untreated silage. The use of Acid - R dose led to the lowest concentration of lactic 

acid. Dosage of the acid influenced the acidification rate at the beginning of the ensiling process, 

treating the clover-grass silage with Salt- H and Acid-H, the pH three days were higher compared 

to the untreated control and the Salt- R and Acid-R. The salt treatment as well as the acid was 

dose dependent for the pH after three days of ensiling and for the extent of fermentation. The 

pH at the silo opening was on the same level for all the additive treatments, indicating that the 

slower acidification in the beginning of the ensiling process but did not affect the pH at opening. 

Randby (2000) reported the similar effects for acids at recommended dose and half the 

recommended dose.   

 

Ethanol concentration decreased in both particle sizes by using additives, which shows that the 

additives (in both dosages) inhibit yeast (Pahlow et al., 2003). This complies with Nadeau & 

Auerbach (2014), were the additive treatment decreased the ethanol concentration.  

 

Grass silage  
High DM-concentration 

Even though the yeast count was higher in the chopped silage, it had a better aerobic stability 

and a lower pH after aeration. The ethanol concentration did not differ between the particle 

sizes, indicating that yeast activity did not differ during the ensiling (Pahlow et al., 2003). 

Acetic acid suppresses the growth of yeast and moulds (Weinberg & Muck, 1996), whereas 

lactic acid stimulates growth of yeast. However, both contents of lactic and acetic acid only 

differed marginally between the silages of different particle sizes. Therefore, it is a combination 

of factors causing the improved aerobic stability of chopped compared to long silage.  

 

By chopping the grass silage, the acidification was improved, lowering the pH, complying with 

the result of McEniry et al. (2007). Proteolysis (reflected by ammonia nitrogen content) was 

lower in the chopped compared to the long silages which probably was due to the more rapid 

drop in pH of chopped silage (Pahlow et al., 2003; Rinne et al., 2016).  

 

The aerobic stability of the high DM grass silage was improved by using Acid- R and Salt -R, 

complying with results by Nadeau et al. (2012a) and Knicky & Spörndly (2009). Treating the 

grass silage with Acid-R decreased the lactic concentration compared to the other treatments, 

and the effect was less when using half the recommended dose. The direct acidification from 

the additive inhibited LAB from fermenting WSC to lactic acid, reflected by the higher residual 

concentration of WSC (Pahlow et al., 2003).    

 

The acidification of the chopped grass silage in the beginning of ensiling was decreased by salt 

treatment (both dosages) and Acid- R compared to the control treatment. By treating the 

chopped silage with Salt –R the pH after ensiling was higher compared to half of the 

recommended dose. These results on pH show that additives containing salts and/or acids 

restricts the fermentation of WSC by LAB(Woolford, 1975; Kung, 2010) .  

 

Lactic acid concentration decreased by a higher dose of acid treatment, complying with results 

by Rinne et al. (2016). The formic and propionic acids have an antimicrobial effect due to the 

fast acidification (Kung, et al., 2003; Kung, 2010). In the chopped silage yeast content was 

decreased by using the Acid – R.  Nadeau et al. (2012a) reported that both salt-based additive 
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(2 l/t) and acid (3 l/t) lowered the ethanol concentration, but only the acid had effect in the 

chopped silage. In this study the protein degradation was decreased by using additives in silages 

of both particle sizes. In the long grass silage, the protein degradation was dosage dependent 

for both additives; ammonia nitrogen concentration decreased by increasing the dose of 

additive. This result corresponds with Slottner & Bertilsson (2004).  

 
Low DM-concentration  

The long grass silage contained a higher concentration of ethanol, compared to the chopped 

silage but the content of yeast did not differ between the particle lengths, indicating that the 

fermentation by yeast was more active in the long silage. McEniry et al. (2008) saw similar 

result with higher concentration of ethanol in the long silage compared to the chopped. The loss 

of DM decreased by chopping the grass silage, suggesting that respiration phase was shorter 

than for the long grass silage (McDonald et al., 1991).  

   

Both particle sizes were similar in aerobic stability but were only stable for 5 days. After 

aeration the pH was high (pH>8) and deterioration occurred in silages of both particle sizes, 

possibly by the yeast initiation (Driehus and Oude Elferink, 2000; Pedroso et al., 2005). Nadeau 

et al. (2013) and Spörndly & Persson (2015) concluded in their study that high yeast count is 

negatively correlated with aerobic stability. 

  

In contrast to McEniry et al. (2008), where chopping decreased the content of WSC, the result 

in this study showed a higher WSC content in the chopped silage compared to the long. The 

lactic acid concentration was not affected by the particle size and the acetic acid concentration 

decreased by chopping, which did not comply with McEniry et al. (2008). High concentration 

of acetic acid has an inhibitory effect on yeast and moulds (Weinberg & Muck, 1996), but in 

this grass silage, the acetic acid concentration was  low to have a strong effect  on yeast growth.     

 

For the grass silage with low DM, pH at the silo opening was lowest in the acid treated silage. 

Furthermore, acid treated long silage with Acid-R had the lowest lactic acid concentration. 

Treating the grass with Acid –H resulted in a higher concentration of lactic acid compared to 

recommended dose, which agree with results by Randby et al. (2001). Knicky & Spörndly 

(2009) showed similar results with salt-based additive and Randby (2000) showed that the lactic 

acid concentration was correlated with dosage of acid treatment. Chemical additives are 

fermentation inhibitors, half of recommended dose inhibit to a lesser degree than using 

recommended dose. Residual WSC was low in the salt treatments and the untreated control. 

Loss of DM was dose dependent for the salt treatment, where Salt-R decreased the loss 

compared to Salt-H but did not differ from the control silage. Nadeau et al. (2012) had similar 

results with the same salt-based additive. The salt-based additive decreased contents of ethanol 

and yeast, which agrees with results by Knicky & Spörndly (2011).  

 

Salt- R inhibited yeast growth more than the Acid-R, resulting in a silage that was more 

aerobically stable. Knicky and Spörndly (2009) found that all their tested additives (both acid 

and salt) improved the aerobic stability, but yeast content was only affected in the high DM 

(46,4%) and the clostridia spore count in the low DM (22,9%).   

 

The long grass silage treated with the Acid-R increased the count of yeast compared to the 

control. Using additive containing formic acid and propionic acid has an antifungal effect and 

decrease the yeast content (Kung et al., 2003; Rooke & Hatfield, 2003). Long silage has a higher 

porosity than chopped, and the compression is less than chopped silage (Pauly & Lingwall, 

1999). A high porosity (Holmes & Muck, 2007), with air pockets, leads to a longer respiration 
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time at the start of the ensiling process (Muck et al., 2003). The aerobic stability did not 

significantly  differ between the control and the acid additive in the long grass silage, but the 

acid at recommended dose had the shortest time before temperature increased, following the 

result by Rinne et al. (2016).   
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Conclusions  
 

To conclude this study, the hypothesis did to some extent correspond with the results.The 

additive-treated silages, except the low-DM grass silage, had lower concentrations of NH3-N 

than the untreated control, indicating reduced proteolysis in the silage. This effect was 

dependent on the additive dose for clover-dominated silage at both DM-concentrations and for 

the grass silage at high DM content, with the recommended dose resulting in the lowest 

proteolysis in the silage.  

  

For the long silage the acidification rate (higher pH3days) was slower compared to the chopped 

silage, which was shown  in lower lactic acid content in the long clover-grass silage compared 

to its chopped counterpart but the differences in lactic acid between the particle sizes were less 

evident in the grass silage. No difference in aerobic stability was found, except for clover-grass 

silage at low DM content, where long silage was more aerobically stable than chopped silage.  

 

Acid treatment decreased the lactic acid concentration in clover-grass silages, whereas no or 

only small effect was found in the grass silages. The decrease of the lactic acid concentration 

was dependent on the additive dose with the recommended dose being most effective in 

reducing the lactic acid concentration. The salt-based additive had often similar lactic acid 

content to the untreated control silage. Furthermore, acid at recommended dose decreased the 

DM losses in clover-grass silage at both DM concentrations compared to the control. The 

aerobic stability of high-DM grass silage was improved by use of salt or acid at recommended 

dosage. 

 

Further studies 

Further studies in this area are needed: 

- The effect of particle size on aerobic stability in clover-dominated silage at lower 

DM.  

- Studying the effect of using half the recommended dose of chemical additives for 

grain silage and maize silage. 

  

Recommended guidelines to improve silage quality: 

- Use the manufacturers recommended dose of the additive. 

- Chopping the silage increases its ensilability. 

 

  



 

   46 

 

References  
Albretcht, K.A. & Beauchemin, K.A. 2003. Alfalfa and other perennial legume silage. In: Buxton, D.R., 

Muck, R.E. and Harrison, J.H (eds). Silage science and technology, pp. 633-664- Madison WI, USA: 

Agronomy Publication No. 42, American Society of Agronomy.     

 

Adesogan A.T. 2009. Challenges of tropical silage production. In: Broderick G.A. (ed.) Proceedings of the 

15th International Silage Conference, Madison, Wisconsin. 139–154. 

 

Adesogan, A.T. 2006. Mycotoxins in ensiled forage. R. Charley (Ed.), Key Silage Management Topics, 

Lallemand Animal Nutrition North America, Milwaukee, WI  44–51 

 

Auerbach, H. 2003. Moulds and mycotoxins in silages. In: Lyons T.P. and Jacques K.A. (eds). Proceedings 

of the 19th Alltech Annual Symposium on Biotechnology in the Feed Industry; 247–266, Alltech, Inc. 

 

Bodarski, R., Stempniewicz, R., Krzywieckski, S., Krzysko-Lupicka, T., & Slupczynska, M. 2003. Quality, 

microbiological status and aerobic stability of wilted grass-alfalfa silages made with different 

(chemical or microbiological) additives. In: XI International scientific symposium, Forage 

conservation; 114-115.  

 

Bok, S., Korampally, V., Darr, C. M., Folk, W. R., Polo-Parada, L., Gangopadhyay, K. S. 2012. Femtogram-

level detection of Clostridium botulinum neurotoxin type A by sandwich immunoassay using 

nanoporous substrate and ultra-bright fluorescent suprananoparticles. Biosensors and Bioelectronics 

(41); 409–416. 

 

Borreani, G. & Tabacco, E. 2008. The relationship of silage temperature with the microbiological status of 

the face of corn silage bunkers. J. Dairy Sci. (93); 2620-2629. 

 

Bruice, P.Y. 2006. Electronic Structure and Bonding- Acids and Bases. In: Organic Chemistry 5th ed.   2-56. 

Prentice Hall. New Jersey USA. 

 

Buxton, D.R., and Mertens, D.R. 1995. Quality-related characteristics of forages. p. 83- 96. In R.F Bames, 

D.A. Miller, and C.J. Nelson (ed.) Forages. Vol. II. The science of grassland agriculture. 5th ed. Iowa 

State University Press, Ames, IA. 

 

Buxton, D.R. & O’Kiely, P. 2003. Preharvest plant factors affecting ensiling. In: Buxton, D.R., Muck, R.E. 

and Harrison, J.H (eds). Silage science and technology, pp. 199-250- Madison WI, USA: Agronomy 

Publication No. 42, American Society of Agronomy. 

 

Chai WH and Uden P 1998. An alternative oven method combined with different detergent strengths in the 

analysis of neutral detergent fibre. Animal Feed Science and Technology 74, 281-288. 

 

Cherney, J.H. & Cherney, D.J.R. 2003. Assessing silage quality. In: Buxton, D.R., Muck, R.E. and Harrison, 

J.H (eds). Silage science and technology, pp. 141-199- Madison WI, USA: Agronomy Publication No. 

42, American Society of Agronomy.     

 

Driehus, F. & Oude Elferink, S.J. 2000. The impact of the silage on animal health and food safty: a review. 

Vet. Q. (22): 212-216. 

 

Driehus, F. 2013. Silage and the safety and quality of dairy foods: a review. Agricultural and food science 

(22); 16-34.  

 

Duniere, L., Sindou, J., Chaucheyras-Durand, F., Chevallier, I., & Thévenot-Sergentet. 2013. Silage 

processing and strategies to prevent persistence of undesirable microorganisms. Animal Feed Sci. and 

Techology (182); 1-15.  

 

Edmunds, B., Spiekers,H., Südekum,K., Nussbaum,H., Schwarz, F. & Bennett,R. 2013. Effect of Extent and 

Rate of Wilting on Nitrogen Components of Grass Silage. Grass and Forage Science (69); 140–152. 
  

Fink-Gremmels, J., 2008. Mycotoxins in cattle feeds and carry-over to dairy milk: a review. Food Addit. 

Contam. (25); 172–180. 



 

   47 

 

 

Flythe, M.D. & Russell, J.B. 2003. The e¡ect of pH and a bacteriocin (bovicin HC5) on Clostridium 

sporogenes MD1, a bacterium that has the ability to degrade amino acids in ensiled plant materials. 

FEMS Microbiology (47); 215-222.  

 

Harrison, J., Huhtanen, P., Collins, M. 2003. Perennial grasses. I: Silage science and technology agronomy 

42 (red. D, Buxton., R, E, Muck., J, H, Harrison), 665-732. American Society of Agronomy, Inc, 

USA. 

 

Honig, H. 1990. Evaluation of aerobic stability. In: S. Lindgren and K. L. Petterson (eds): Pro-ceedings of the 

EUROBAC Conference, Uppsala 1986: Grass and Forage Reports, Special issue 3, 76-82. 

 

Kaiser, E.; Weiß, K. and Polip Iv (2002) : A new concept for the estimation of the ensiling potential of 

forages. 11.09. – 15.09.02. XIII. Internationale Silagekonferenz, Ayr, Schottland; S. 344 – 358 

 

Knicky, M. & Lingvall, P. 2004. Ensiling of high wilted grass-clover mixture by use of different additives to 

improve quality. Acta Agric. Scand., Sect. A, Animal Sci. (54): 197-205.  

 

Knicky, M. 2005. Possibilities to Improve Silage Conservation- Effects of Crop, Ensiling Technology and 

Additives. Diss. Uppsala: Swedish University of Agriculture 

 

Knicky, M & Spörndly, R. 2009. Sodium benzoate, potassium sorbate and sodium nitrite as silage additives. 

J Sci Food Agri (89); 2659–2667. 

 

Knicky, M. & Spörndly, R. 2011. The ensiling capability of a mixture of sodium benzoate, potassium 

sorbate, and sodium nitrite. J. Dairy Sci. (94); 824-831.   

 

 Knicky, M., Spörndly R,., Eide, F. & Gertzell B. 2017. The effect of nitrate content in forage on quality of 

silage fermentation. IN: Proceedings of the 8th Nordic Feed Science Conference 13-14 June; 60-64.  

 

Kung, L. 2001. Silage Fermentation & additives. Direct- Fed Microbial Enzymes & Forage Additive 

Compendium. Miller Publishing Co. Minetonka, MN.  

 

Kung, L. 2010. Aerobic Stability of Silage In: Proceedings California Alfalfa & Forage Symposium and 

Corn/Cereal Silage Conference.  

 

Kung, L., Stokes, M.R. & Lin, C.J. 2003. Silage additives. In: Buxton, D.R., Muck, R.E. and Harrison, J.H 

(eds). Silage science and technology, pp. 305-360- Madison WI, USA: Agronomy Publication No. 42, 

American Society of Agronomy. 

 

Köhler, B., Diepolder,M., Ostertag, J., Thurner, S. & Spikers, H. 2013. Dry matter losses of grass, lucerne 

and maize silages in bunker silos. Agricultural and Food Science (22); 145-155.  

 

Lindgren,E.,1979.The Nutritional Value of Roughages Determined in vivo  

and by Laboratory Methods .Report 45.Dep.Anim.Nutr.Managem., Swed.Univ.Agric.Sci.,Sweden(in 

Swedish with English summary).66p. 

 

Lindgren, E., 1983.Nykalibrering av VOS-metoden förbestämning av energivärde hos vallfoder. 

In:WorkingPaper.Dep.Anim.Nutr. Managem., Swed.Univ.Agric.Sci.,Sweden(in Swedish).4p. 

 

Lindgren, E. 1988. Fodrets energivärde, course paper in Feed Science HNU, Department of Animal Nutrition 

and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden (in Swedish). 

 

Lengerken, J. von & Zimmermann, K. (1991). Handbuch Futtermittelprüfung. 1. ed. Berlin: Deutscher 

Landwirtschaftsverlag. 

 

Lee, M.R.F., Scott, M.B., Tweed, J.K.S., Minchin, F.R. & Davies, D.R. 2008. Effects of polyphenol oxidase 

on lipolysis and proteolysis of red clover silage with and without a silage inoculant (Lactobacillus 

plantarum L54). Animal Feed Science and Technology (144); 125 -136. 

 



 

   48 

 

Longland, A.C. and Byrd, B.M. 2006. Pasture Nonstructural Carbohydrates and Equine Laminitis. Journal of 

Nutrition 7; 2099-2102.   

 

May, J.J. 1993. Respiratory problems associated with work in silos. In: Proc. NRAES National Silage 

Production Conference. Syracuse, USA, 23-28 February 1993: 283-290.   

 

McDonald, P., Henderson, A.R. & Heron, S.J.E. 1991. Biochemistry of Silage 2nd edition. John Wiley and 

Sons., Ltd., Chichester, UK.   

 

McDonald, P., Edwards, R. A., Greenhalg, J. F. D. and Morgan, C. A. 2002. Silage. Animal  

Nutrition.7th edition. 499-502. Longman Scientific & Technical, Harlow Essex, UK.   

 

McEniry, J., O’Keily, P., Clipson, N.J.W., Forristal, P.D. & Doyle, E.M. 2007. The relative impacts of 

wilting, chopping, compaction and air infiltration on the conservations characteristics of ensiled grass. 

Grass and Forage Science (62): 470-484.  

 

McEniry, J., O’Keily, P., Clipson, N.J.W., Forristal, P.D. & Doyle, E.M. 2008. The microbiological and 

chemical composition of silage over the course of fermentation in round bales relative to that of silage 

made from unchopped and precision-chopped herbage in laboratory silos. Grass and Forage Science 

(63);407–420. 

 

Mogravi, D.P. & Riley, R.T. 2007. An historical overview of field disease outbreaks known or suspected to 

be caused by consumption of feeds contaminated with Fusarium toxins. Anim. Feed Sci. Technol. 

(137):201–212. 

 

Mogodiniyai Kasmaei, K., Rustas, B-O., Spörndly, R. and Udén, P. (2013). Prediction models of silage 

fermentation products on crop composition under strict anaerobic conditions: A meta-analysis. Journal 

of Dairy Science 96(10), 6644-6649. 

 

Muck, R.E. 1988. Factors influencing silage quality and their implications for management. J.Dairy Sci.(71): 

2992-3002.  

 

Muck, R.E. 2010. Silage microbiology and its control through additives. R.Bras. Zootec. (39); 183-191. 

 

Muck, R.E. & Pitt, R.E. 1993. Ensiling and its effect on crop quality. IN: Proceedings from the National 

Silage Production Conference, Syracuse, New York. February 23-25, 1993, pp. 57-66. 

 

Muck, R.E., Moser, I.E. & Pitt, R.E. 2003. Postharvest Factors Affecting Ensiling. In: Buxton, D.R., Muck, 

R.E. and Harrison, J.H (eds). Silage science and technology, pp. 251-304- Madison WI, USA: 

Agronomy Publication No. 42, American Society of Agronomy  

 

Muck, R.E., Nadeau, E.M.G, McAllister, T.A., Contreras-Govea, F.E., Santos, M.C. & Kung Jr.II, L.2018. 

Silage review: Recent advances and future uses of silage additives. Journal of Dairy Sci ( 101); 3980–

4000. 

 

Nadeau, E.M.G., Buxton, D.R., Lindgren, E., &  Lingvall, P. 1996. Cell-wall digestion kinetics of 

orchardgrass and alfalfa silages treated with cellulase and formic acid. J. Dairy Sci.(79);2207-2216. 

 

Nadeau, E. & Auerbach, H. 2013. Additive type affects dry matter losses, fermentation pattern, aerobic 

stability and clostridia counts of baled red clover-grass silage. IN: International Symposium on Forage 

Quality and Conservation, 22-23 July 2013.   

 

Nadeau, E., Arnesson, A. & Auerbach, H. 2012a. Effects of additive and particle size on fermentation 

characteristics and aerobic stability of grass silage. IN: Proceedings of the XVI International Silage 

Conference Hämeenlinna, Finland, 2-4 July 2012; 380-381.  

 

Nadeau, E., Hallin, O., Auerbach, H., Jakobsson, J. & Arnesson, A. 2013. Quality of baled grass-clover 

silage as affected by additives and harvest methods. IN: Proceedings of the 22nd International 

Grassland Congress, Sydney, Australia, 15-19, 744-745.   

 



 

   49 

 

Nadeau, E., Richard, W., Murphy, M. & Auerbach, H. 2012b. Protein quality dynamics during wilting and 

preservation of grass-legume forage. IN: Proceedings of the XVI International Silage Conference 

Hämeenlinna, Finland, 2-4 July 2012; 56-57.  

 

Nadeau, E. & Auerbach, H. 2014. Effects of particle size and chemical additives on fermentation and aerobic 

stability of grass-clover silage. IN: Proceeding of the 5th Nordic Feed Science Conference. 10-11 

June, Uppsala, Sweden; 19-24 

 

O’Kiely,P. Influence of a Partially Neutralised Blend of Aliphatic Organic Acids on Fermentation, Effluent 

Production and Aerobic Stability of Autumn Grass Silage. Irish Journal of Agricultural and Food 

Research Vol. 32, No. 1 pp. 13-26. 

 

Oude Elferink, S.J.W.H., Driehuis, F., Gottschal, J.C. and Spoelstra, S.F. 2008. Silage fermentation processes 

and their manipulation. FAO Corporate Document Repository: 

http://www.fao.org/DOCREP/005/X8486E/x8486e09.htm . FAO, Rome. 14 pp 

 

Owens, V.N., Albrecht, K.A. & Muck, R.E. 1999. Protein degradation and ensiling characteristics of red 

clover and alfalfa wilted under varying levels of shade. Canadian Journal of Plant Science (79); 209-

222.  

 

Owens, V.N. Albrecht, K.A. & Muck, R.E. Protein degradation and fermentation characteristics of unwilted 

red clover and alfalfa silage harvested at various times during the day. Grass and Forage Science 

(57); 329-341.  

 

Pahlow, G. & Weissbach, F. 1999. New aspects of evaluation and application of silage additives. 

Landbauforschung Voelkenrode SH (206): 141-158 

 

Pahlow, G., Muck, R.E., Driehus, F., Oude Elferink, S.J.W.H. & Spoelstra, S.F. 2003. Microbiology of 

ensiling. In: Buxton, D.R., Muck, R.E. and Harrison, J.H (eds). Silage science and technology, pp. 95-

139- Madison WI, USA: Agronomy Publication No. 42, American Society of Agronomy.     

 

Pahlow G., Rammer C., Slottner, D. and Tuori ,M. 2001. Ensiling of legumes. In: Wilkins R.J. and Paul 

C.(eds) Legume silages for animal production – LEGSIL, pp. 27–31. Landbauforschung Volkenrode, 

Germany: Sonderheft 234. 

 

Pauly, T.M. & Lingvall, P. 1999. Effects of Mechanical Forage Treatment and Surfactants on fermentation of 

Grass Silage. Acta Agri. Scand.A.Animal Sci. (49): 197-205. 

 

Pedroso, A.F., Nussio, L.G., Paziani, S.F., Loures, D.R.S., Igarasi, M.S., Coelho, R.M., Packer, H.I., Horii, J. 

& Comes, L.H. 2005. Fermentation and epiphytic microflora dynamics in sugar can silage. Sci. Agric. 

(Piracicaba, Braz.) (62); 427-432. 

 

Purwin, C., Laniewska-Trokenheim, L., Warminska-Radyko, I., Tywonczuk, J., 2006. Silage quality: 

microbial health promoting and production aspects. Med. Weter. 62, 865–869. 

 

Randby, Å. 2000. The effect of some acid-based additives applied to wet grass crops under various ensiling 

conditions. Grass and Forage Science (55): 289-299. 

 

Ranjit, N.K. & Kung, L.Jr. 2000. The effects of Lactobaciullus buchnerim, Lactobacillus plantarum or 

chemical preservatives on the fermentation and stability of corn silage. Journal of Dairy Science (83): 

526-535.   

 

Rinne,M., Kuoppala, K., Mäki, M., Seppälä, A., Jalava, T. 2016. Effects of Seven Formic Acid Based 

Additives on Grass Silage Fermentation and Aerobic Stability. IN: Proceedings of the 17th 

International conference forage conservation 27th – 29th September, 2016. Slovak Republic. 115-116.  

 

Rooke, J.A. & Hatfield, R.D. 2003. Biochemistry of Ensiling. In: Buxton, D.R., Muck, R.E. and Harrison, 

J.H (eds). Silage science and technology, pp. 31-93- Madison WI, USA: Agronomy Publication No. 

42, American Society of Agronomy 

 



 

   50 

 

Rotz, C.A., and R.E. Muck. 1994. Changes in forage quality during harvest and storage. p. 828-868. In 

G.C.J. Fahey et al. (ed.) Forage quality, evaluation, and utilization. Am. Soc. Agron., Madison, WI. 

 

Savoie, P. & Jofriet, J.C.  2003. Silage storage. In: Buxton D.R., Muck R.E. and Harrison J.H. (eds) Silage 

science and technology, pp. 405–467. Madison, WI, USA: Agronomy Publication No. 42, American 

Society of Agronomy. 

 

Seglar, B. 2003. Fermentation analysis and silage quality testing. In: Proceedings of the Minnesota Dairy 

Health Conference. 119-136.  

 

Shao, T., Zhang, Z.X., Shimojo, M., Wang, T., Masuda, Y., 2005. Comparison of fermentation 

characteristics of Italian ryegrass (Lolium multiflorum Lam.) and guineagrass (Panicum maximum 

Jacq.) during the early stage of ensiling. Asian-Austr. J. Anim. Sci. (18); 1727–1734. 

 

Slottner D., Bertilsson J., 2004. Effect of ensiling technology on protein degradation during ensilage. Anim. 

Feed Sci. Tech. (127); 101–111 

 

Spörndly R., Knicky M., Pauly T., Lingvall P. 2008. Quality and economics of pre-wilted silage made 
by wide-spreading or by swathing. Grassland science in Europe, volume 13 p. 645-647 

 

Spörndly, R & Persson, A., 2015. Yeast in fresh crop and silage from 15 Swedish farms and its impact on 

silage aerobic stability. IN: Proceedings from 6th Nordic feed science conference, Uppsala, Sweden, 

2015; 66-70 
 

Swedish Board of Agriculture. 2015a.Timothy. [2015-03-23] 

http://www.jordbruksverket.se/amnesomraden/odling/jordbruksgrodor/vall/vallarter/timotej.4.23f35633

14184096e0d7d67.html 

 

Swedish Board of Agriculture. 2015b.Red clover [2015-03-17]  

http://www.jordbruksverket.se/amnesomraden/odling/jordbruksgrodor/vall/vallarter/rodklover.4.38653d

251424e048bcd51b.html 

 

Tabacco, E., Piano, S., Cavallarin, L., Bernardes, T.F. & Borreani, G. 2009. Clostridia spore formation during 

aerobic deterioration of maize and sorghum silages as influenced by Lactobaciullus buchneri and 

Lactobaciullus plantarum inoculants. Journal of Applied Microbiology (107): 1632-1641. 

 

Te Giffel, M.C., Wagendrop, A. Herrewegh, A & Driehuis, F. 2002. Bacterial spores in silage and raw milk. 

Antonie van Leeuwenhoek (81); 625-630.  

 

Tommila, A., Rauramaa, A., Nousiainen, J. & Hahtonen, M. 1996. Buffering capacity 

measurements from silage raw material. In: Proc. 11the Inter. Silage Conference, University 

of Wales, Aberystwyth, UK, pp. 182-183. 

 

van Os, M., & Dulphy, J.P. 1996. Voluntary intake and intake control of grass silage by ruminants. Reprod. 

Nutr. Develop., 36: 113-135. van Os, M., & Dulphy, J.P. 1996. Voluntary intake and intake control of 

grass silage by ruminants. Reprod. Nutr. Develop., (36); 113-135. 

 

van Os, M., Jailler, M., Dulphy, J.P. 1996. The influence of ammonia, biogenic amines and gamma 

aminobutyric acid on grass silage intake in sheep. British Journal of Nutrition (76); 347-358. 

 

Vissers, M. M. M.., Driehuis, F.M. C., Te Giffel, P., De Jong, J. M. G. L. 2006a. Improving farm 

management by modeling the contamination of farm tank milk with butyric acid bacteria american. 

Dairy Science Association (89); 850–858. 

 

Vissers, M.M.M., Driehuis, F.M.C. 2006b. Concentrations of Butyric Acid Bacteria Spores in Silage and 

Relationships with Aerobic Deterioration. J. Dairy Sci.(90); 928-936.  

 

Wienberg, Z.G. & Muck, R.E. 1996. New trends and opportunities in development and use of inoculants for 

silage. FEMS Microbiology reviews (19): 53-68.  

 

http://www.jordbruksverket.se/amnesomraden/odling/jordbruksgrodor/vall/vallarter/timotej.4.23f3563314184096e0d7d67.html
http://www.jordbruksverket.se/amnesomraden/odling/jordbruksgrodor/vall/vallarter/timotej.4.23f3563314184096e0d7d67.html
http://www.jordbruksverket.se/amnesomraden/odling/jordbruksgrodor/vall/vallarter/rodklover.4.38653d251424e048bcd51b.html
http://www.jordbruksverket.se/amnesomraden/odling/jordbruksgrodor/vall/vallarter/rodklover.4.38653d251424e048bcd51b.html


 

   51 

 

Williams, A.G. 1994. The Permeability and Porosity of Grass Silage as Affected by Dry Matter. Journal of 

Agriculture Engineering Research (59); 133-140. 

 

Weiss, K. 2001. Gärungsverlauf und Gärqualität von Silagen aus nitratarmem Grünfutter. Dissertation. 

Berlin: Humboldt University of Berlin, Faculty of Agriculture and Horticulture.  

 

Weiss, K., Kaiser, E., 1995. Milchsäurebestimmung in Silageextrakten mit Hilfe der HPLC. Das 

wirtschaftseigene Futter. 41, 69-80. 

 

Weissbach, F. 1996. New developments in crop conservation. IN: Proc. 11th Inter. Silage Conference, 

University of Wales, Aberystwyth, UK, pp. 11-25.  

 

Weissbach, F., 2005. A simple method for the correction of fermentation losses measured in 

laboratory silos, in: Park, R.S., Stronge, M.D. (Eds.), Silage production and utilization, Proc. 

14th Int. Silage Conf., July, Belfast, Northern Ireland, p. 278. 

 

Weissbach, F. & Strubelt, C., 2008. Correcting the dry matter content of grass silages as substrate for biogas 

production. Landtechnik 63(4), 210-211. 

 

Woolford, M. K. 1975. Microbiological screening of food preservatives. Cold sterilants and specific 

antimicrobial agents as potential silage additives. J Sci Food Agric 26, 229-237. 

 

Wrobel B., Zielinska A.K. and Suterska, A. 2008. Evaluation of quality and aerobic stability of grass silage 

treated with bacterial inoculants containing Lactobacillus buchneri. In: Proceedings, 13th 

International Conference on Forage Conservation, Nitra, Slovak Republic, 2008, pp. 122–123. 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Studentarbete_Malin_Hamberg_2021_framsida.pdf
	MH_2021Silage quality as related to particle size and additive Final 210312.pdf

