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In this project, regression models based on data from field measurements and spectral information 

extracted from satellite imagery were used to estimate traits of forage grasslands; dry matter yield, 

canopy average height and total leaf chlorophyll. Four fields at SLUs Röbäcksdalen field station 

were sampled on 22 occasions and a total of 198 samples, including measurement of the highest 

plant, canopy height, leaf chlorophyll content, canopy spectral reflectance and biomass were 

collected. Two regression methods, partial least squares (PLS) and support vector machines (SVM), 

were used to build regression models using different subsets of the available spectral information. 

Model calibration was performed with 2/3 of the dataset and model validation was performed with 

the remaining 1/3 of the dataset. It was shown that the models built with SVM outperformed the 

models built with PLS, during both calibration and validation as well as for all different traits and 

subsets of spectral information. Field measurement and regression model results were discussed and 

limitations, their significance and possible improvements were considered. It was concluded that 

using spectral information from satellite images is a promising approach for estimation of traits in 

the field and could be used to build tools as a tool to support farmers’ decision making. 

Keywords: Remote sensing, Forage grasslands, Sentinel-2, Dry matter yield, Canopy average height, 

Total leaf chlorophyll content, Partial least squares, Support vector machines 
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Vall är en viktig del av svenskt lantbruk och produceras på ungefär 45% av den tillgängliga 

åkermarken. Vall används främst för produktion av djurfoder men även som en del av växtföljder 

för att minska trycket från skadegörare eller ogräs och för att främja den biologiska mångfalden. På 

grund av förhållandevis låga vinstmarginaler vid försäljning av djurfoder investerar lantbruksföretag 

inte mycket i optimering av vallproduktion. En mindre kostsam investering kan vara 

precisionsodling, som är ett sätt att optimera växtodling genom att övervaka jordbruksgrödor 

automatiskt och genomföra insatser såsom applicering av gödsel och växtskyddsmedel eller själva 

skörden vid rätt tidpunkt och på rätt plats. Inom lantbruk tillämpas övervakningen, också kallad 

fjärranalys, ofta med sensorer som mäter hur synligt och osynligt ljus av olika våglängder reflekteras 

av en yta. I det här fallet har denna information använts i form av satellitbilder från Sentinel-2 

satelliterna som är tillgängliga varannan dag. Satellitbilderna kan sedan användas för att bygga 

modeller genom att koppla ihop resultat av mätningar i fält med informationen från satellitbilden. 

 

Syftet med detta projekt var att utföra mätningar i fält och bygga modeller baserat på dessa 

mätningar samt informationen från satellitbilderna. Hypotesen var att bilderna från Sentinel-2 

satelliterna gör det möjligt att med hjälp av modellerna uppskatta mätvärden i fält. 

 

Inom projektet genomfördes mätningar av biomassa, planthöjd, klorofyllinnehåll och reflektans på 

4 olika fält med vall vid SLUs Röbäcksdalen forskningsstation i Umeå. Två regressionsmetoder, 

partial least squares (PLS) och support vector machines (SVM), användes för att bygga modellerna. 

Kalibrering och anpassning av modellerna utfördes med 2/3 av satellitbilderna och fältmätningarna, 

kontroll och validering av modellerna utfördes med resterande 1/3 av satellitbilderna och 

fältmätningarna. 

 

Resultaten visade att SVM modellerna fungerade bättre än PLS modellerna vid uppskattning av 

mätvärden i fält. En utvärdering av modellerna på andra fält på annan ort har inte genomförts och 

det är okänt hur modellerna fungerar under olika förhållanden. En intressant aspekt som upptäcktes 

var att modeller byggda med satellitbilderna som motsvarar synligt ljus gav förhållandevis bra 

resultat. Det innebär att kamerabilder, till exempel från en drönare, skulle kunna användas för att 

bygga modeller vilket öppnar för mätningar vid behov. Metoden är lovande och skulle som ett 

verktyg kunna användas av lantbrukare för övervakning av jordbruksgrödor och hjälpa dem att fatta 

beslut kring insatser. 
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1.1. Forage Grasslands 

Forage is an important part of agriculture in Sweden and is estimated to represent 

around 45% of the total arable land use in 2020 (Olsson 2020). Apart from fodder 

crops like maize and certain cereals, forage grasslands are usually composed of a 

mix of grasses and legumes. The crops can be fed to livestock directly through 

grazing or be dried or pre-processed before feeding (Capstaff & Miller 2018). 

Efforts to optimize agricultural systems have often been concentrated on human 

food crops due to higher profit margins. Nevertheless, forage grasslands are gaining 

importance, especially in crop rotations. In organic farming systems they can be 

useful in avoiding or limiting pest prevalence (Bengtsson et al. 2019) or providing 

pre-crop effects (Eriksen et al. 2006). Increased biodiversity and land conservation 

is often a welcome side-effect of having forage grasslands in a crop rotation or 

nearby (Zhou et al. 2019b) but can also be the main purpose. 

1.2. Precision Agriculture 

One promising and possibly inexpensive method to optimize agricultural systems 

is precision agriculture which integrates monitoring of livestock, crops or both and 

the application of location- and time-based inputs (Pierce & Nowak 1999). In crop 

production, pesticide and fertilizer use can for example be limited to where and 

when it is needed which saves time and money and reduces the environmental 

impact (Stafford 2000). Another possible application of precision agriculture is 

harvest management depending on the growth stage and quality of the monitored 

crop including optimized harvesting strategies from a logistics point of view 

(Yagoubi et al. 2018). 

1. Introduction  
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1.3. Remote Sensing 

Remote sensing is a useful tool for monitoring vegetation in general and crops in 

particular. In remote sensing, information about objects is collected from a distance. 

For agricultural purposes, this is often accomplished with sensors that measure 

reflectance of the crops in different parts of the light spectrum. Visible light range, 

for instance, spans from 400 to 700 nm, and carries information on the pigment 

content of the canopy. Near-infrared light, ranging from 700 to 1500 nm, contains 

information about the complexity of the canopy (e.g. its structure and related 

biomass accumulation). The shortwave infrared range, from 1500 to 2500 nm, 

contains information about the water and protein content. Such sensors can be 

mounted on satellites, planes or drones, the choice of the coupled carrier and sensor 

depending on the application and the requirements. A satellite can collect data from 

large areas in a short period of time, but it is limited in spatial resolution due to its 

distance, cannot be used for on-demand applications due to predefined orbital path 

and the line-of-sight from orbit can be obscured by clouds. Similar measurements 

from a drone are time-consuming and the sensor specifications are limited by the 

payload of the drone. They can on the other hand provide a higher spatial resolution, 

measurements can be taken on demand and are less impacted by clouds. Spectral 

information can then be analysed and linked to traits that are directly involved in 

radiative transfer mechanisms (e.g. leaf area index, surface temperature) or are a 

product of the combination of the aforementioned traits (e.g. biomass, nitrogen 

content) (Weiss et al. 2020). 

1.4. Vegetation Indices 

One of the most common indices used to monitor vegetation and build regression 

models for biomass accumulation is the Normalized Difference Vegetation Index 

(NDVI) which was first described in the 70s by Rouse et al. (Rouse J.W. et al. 

1974). It is based on the relationship between the absorption and reflection of light 

in the red and near-infrared (NIR) part of the light spectrum by plants (Boschetti et 

al. 2007). 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

 

Denser vegetation with more biomass absorbs more red light resulting in an NDVI 

closer to 1 while areas with less dense vegetation, absorbing less red light, are closer 

to 0 or negative for highly reflective surfaces like water, snow or clouds resulting 

in one variable to describe the vegetation. 
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Another well-known vegetation index is the Normalized Difference Red Edge 

(NDRE) Index. It is similar to the NDVI but is based on vegetation’s absorption 

and reflection of light in the red and red edge (REDGE) part of the light spectrum 

and is also used to build regression models for chlorophyll content (Boiarskii & 

Hasegawa 2019). 

 

𝑁𝐷𝑅𝐸 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
 

 

While the red light range is absorbed by the canopy’s top layer, using information 

from the REDGE part of the spectrum, which is not absorbed as strongly by the top 

layer, can provide more information from layers below the canopy’s topmost layer. 

This is especially useful in dense vegetation or in the vegetation’s later growth 

stages where the NDVI is rather insensitive and can easily saturate while the NDRE 

still provides useful information (Eitel et al. 2011). 

1.5. Models 

By linking spectral data to traits, or properties connected to traits, models can be 

created which can then be used to estimate these traits and track their changes 

through both time and space. A model is essentially a simplified reproduction of 

the real world and is limited to only portraying certain aspects of interest of reality 

(Smith & Smith 2007). Models can for example be based on regression methods 

defined by mathematical equations that transform input data into output data with 

as little errors as possible. Usually, models are first calibrated, which means that 

they are optimized and trained to transform a set of experimental input data into a 

set of known output data. Then these models are validated in order to determine 

how they perform in predicting output data from input data that has not been used 

during calibration. In other words, an evaluation of how well the defined 

mathematical equations approximate the chosen aspect of the real world in terms 

of errors and uncertainties is performed (Trucano et al. 2006). The process of 

calibration and validation can be repeated with different datasets, e.g. from different 

locations, until the model performs well enough for the chosen application. This 

model can then provide farmers with useful information for monitoring their crops 

and planning inputs accordingly. 
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1.6. Objective and Hypothesis 

The objective of this project was to estimate biomass and chlorophyll content of 

forage grasslands by building regression models based on field measurements and 

spectral information from satellite imagery. 

The hypothesis was that the spectral and spatial characteristics of the Sentinel-2 

constellation can provide useful information to estimate the aforementioned traits. 
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The workflow of this project was divided into (i) data collection in the field during 

the growing season, (ii) data analysis and (iii) regression model building.  

2.1. Field Sampling 

Field data were collected on four different forage grassland fields (F1 - F4) at the 

SLU Röbäcksdalen field station (SLU, Umeå, Figure 1). 

 

Figure 1. Overview of sampled fields F1 – F4 around Röbäcksdalen field station. 

The fields contained a mixture of timothy-grass and red clover and were included 

in a 3-harvests cycle over the growing season. Table 1 summarizes the number of 

sampling occasions for each field. 

2. Methods and Materials 

F2 

F1 

F3 
F4 

Field Station 
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Table 1. Overview of number of sampling occasion per cycle and field 

Cycle Field 1 Field 2 Field 3 Field 4 

1 3 2 1 1 

2 2 3 1 0 

3 4 2 1 2 

Total 9 7 3 3 

For each of the sampling occasions, one field was selected and three 10 x 10 m 

areas, called plots, with even plant growth were chosen. Within each of these plots, 

three subplots of 50 x 50 cm were chosen in order to account for potential spatial 

heterogeneity. Sample data was collected and aggregated on the subplot level. 

GPS positions were recorded using a Trimble Geo 7X with a centimetre 

precision (on one occasion an Apple iPhone SE was used instead). Height of the 

tallest plant, average height of the canopy, total leaf chlorophyll content (Cab) and 

reflectance quantities of the canopy were measured. Biomass samples were 

collected using a 50 x 50 cm sampling quadrat. In order to reproduce farming 

conditions, 8 cm of stubble were left uncut. In addition, field conditions (e.g. bare 

ground spots) and environmental conditions that could possibly influence 

measurements (e.g. intermittent overcast or wet grass) were recorded.   

Figure 2 shows an overview of the different field sampling steps. 

 

Figure 2. Overview of field sampling workflow 

Tallest Plant Measurement 

Average Canopy Height Measurement 

Chlorophyll Content Measurement 

Canopy Spectral Reflectance Measurement 

GPS Positioning 

Biomass Harvest 

Biomass Sorting 

Biomass Drying 
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2.1.1. Plant Height Measurement and Biomass Harvest 

In each subplot, the height of the tallest grass plant and the average height of the 

canopy were measured using a ruler. Harvested samples were stored in a cooling 

box. In the laboratory, the samples were measured for their fresh weight and hand 

separated into grass, legumes and weed groups for botanical composition 

determination. Each group was then separately oven-dried for 48 hours at 60 

Celsius. Legume and weed samples below 1g were oven-dried together with the 

grass. Finally, dry-weights were recorded. All data were stored in a Google 

spreadsheet for further analysis. 

2.1.2. Total Leaf Chlorophyll Content Measurement 

In each subplot the average and standard deviation total leaf chlorophyll content of 

9 randomly selected grass and legume leaves (when available) were measured using 

a Dualex DX18093 (Figure 3), which estimates chlorophyll content from measuring 

leaf transmittance in the red region of the light spectrum (Cerovic et al. 2012). 

 

2.1.3. Canopy Spectral Reflectance Measurement 

The spectra for canopy spectral reflectance (CSR) as defined by Schaepman-Strub 

et al. (Schaepman-Strub et al. 2006) were measured with a hand-held Yara-N 

sensor (Figure 4). The Yara N-sensor is a field spectrometer with a field of view of 

25°, measuring the canopy-reflected light in 60 discrete bands from 400 nm to 1000 

nm (visible to near-infrared regions), with a spectral sampling of 10 nm. It consists 

of an incoming light sensor (upward facing) and a reflectivity sensor (downward 

Figure 3. Dualex DX18093 leaf chlorophyll meter. 
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facing). The measurements for each subplot were performed from 4 directions to 

account for variations in the sun-sensor geometry with a zenith viewing angle of 

45°. Acquired spectra were converted to reflectance using a dedicated software 

(Yara FieldSpec, Yara), and the subplot-averaged reflectance spectrum further 

calculated by averaging the four subplots. 

2.2. Satellite Imagery 

Level 2A (bottom of atmosphere reflectance) Sentinel-2 satellite images were used 

for the regression models and downloaded from the Copernicus Open Access Hub 

(ESA 2020). The Sentinel-2 constellation consists of 2 satellites that provide open-

access images with a high spatial resolution (ranging from 10 to 60 m) and a high 

frequency of revisit (approximately every second day at Sweden’s latitudes). 

Multispectral images obtained consist of 13 bands ranging from the visible to the 

shortwave infrared regions. These images have been pre-processed by the European 

Space Agency (ESA) to account for geometric distortion and radiometric 

calibration. An automatically created 20 m resolution scene classification map is 

Figure 4. Hand-held Yara-N sensor (field spectrometer) 
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also available for masking clouds and shadows. For this project 11 bands and the 

scene classification map were selected (Table 2). 

Table 2. Details of the Sentinel-2 spectral band chosen for this project (adapted from ESA 2020) 

Band Name Central Wavelength Resolution 

B02 Blue 490 nm 10 m 

B03 Green 560 nm 10 m 

B04 Red 665 nm 10 m 

B05 Red Edge 1 705 nm 20 m 

B06 Red Edge 2 740 nm 20 m 

B07 Red Edge 3 783 nm 20 m 

B08 Near-infrared (NIR) 842 nm 10 m 

B8A Red Edge 4 865 nm 20 m 

B09 Water Vapor 940 nm 60 m 

B11 Shortwave Infrared 1 (SWIR 1) 1610 nm 20 m 

B12 Shortwave Infrared 2 (SWIR 2) 2190 nm 20 m 

SCL Scene Classification Map N/A 20 m 

Satellite images were cropped to the area of the four sampling fields for faster 

processing and the bands in 20 m and 60 m resolution were resampled to 10 m 

resolution. Scene classification maps were used to mask pixels with cloud cover. 

The reflectance values from pixel coordinates corresponding to the respective 

subplot coordinates were extracted from the satellite images. Then a check on 

which satellite image dates coincide with the sampling dates was performed. For 

the sampling dates where no satellite image was available, the reflectance was 

interpolated by calculating the average reflectance between satellite images before 

and after the sampling date. The average was weighed according to the time 

differences between the two satellite image dates and the sampling date. An 

overview of the satellite image processing workflow is shown in Figure 5. 

 

Figure 5. Overview of satellite image processing workflow. 

Satellite Image Resampling 

Satellite Image Cropping 

Cloud Cover Masking 

Extraction of Reflectance 

Interpolation of Missing Values 
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All data processing was performed in R (R Core Team 2013) under macOS Catalina 

except for image downloading, resampling and cropping which was performed in 

R under Windows 10. The source code for this project is available on request. 

Satellite image processing and coordinate conversion from the SWEREF99 

(Trimble Geo 7x) and ESRI:4023 (Apple iPhone SE) formats into the EPSG:32634 

format of the satellite images was performed with the raster R-package (Hijmans 

2020) using standardized format definitions from the EPSG website (MapTiler 

Team 2020). For date and time conversion operations the lubridate R-package was 

used (Grolemund & Wickham 2011). In addition to the built-in plot function, the 

ggplot2 R-package (Wickham 2016) was used for graphs and diagrams. Field limit 

shapefiles were created with QGIS (QGIS Development Team 2009). The sampling 

data from the Google spreadsheet were imported using the googledrive R-package 

(D’Agostino McGowan & Bryan 2020). 

2.3. Regression Models 

The dataset used for building the regression models contained 198 samples. The 

predictor variables consisted of the 11 different bands from the satellite images and 

the NDVI. The NDVI was calculated from the red and NIR bands of the satellite 

images. The initial approach to use a simple linear regression with the NDVI as a 

baseline to evaluate the performance of other regression methods was dropped as 

this approach showed a very weak correlation at best. The NDRE showed a 

similarly weak correlation which is why the NDVI was used as a one-variable 

predictor set for the other regression models. In addition to using all spectral 

information, three different combinations were tested for building regression 

models by (i) adding the NDVI to all bands to investigate how adding a set of 

predictors that is dependent on existing predictors affects the models, (ii) building 

models with the NDVI only to test whether data from commercially available 

instruments that estimate the NDVI (e.g. Trimble GreenSeeker) could be used for 

this purpose and (iii) using the RGB bands to explore whether comparatively 

inexpensive equipment like an RGB camera would achieve similar results (Table 

3). 

Table 3. Spectral bands/NDVI combinations chosen as predictors. 

Combination Bands 

All bands B02, B03, B04, B05, B06, B07, B08, B8A, B09, B11, B12 

All bands + NDVI B02, B03, B04, B05, B06, B07, B08, B8A, B09, B11, B12, NDVI 

NDVI NDVI 

RGB B02, B03, B04 



23 

 

The NDVI was also calculated from the canopy spectral reflectance data collected 

with the Yara-N sensor but the small advantage in performance of the regression 

models using all bands and the Yara-N NDVI and using only the Yara-N NDVI did 

not justify further investigation at that point. 

The response variables dry matter yield, canopy average height and total leaf 

chlorophyll content (primary grass) were selected for analysis due to their practical 

use as indicators for amount and quality of biomass in the field and as a check to 

verify that the correlated dry matter yield and canopy average height showed similar 

trends.  

The regression models were built using partial least square (PLS) regression and 

support vector machines (SVM). They were calibrated with a randomly selected 

subset of the dataset containing 2/3 of the samples. Then the models were validated, 

using the remaining 1/3 of the samples to predict the response variables. Both 

calibration and validation subset were the same for every regression method and 

response variable. Finally, the results of both the calibration and the validation 

(prediction performance) was compared. For the SVM models, a check on whether 

prediction errors coincided with instances where the reflectance information from 

the satellite images had been interpolated was performed as well. An overview of 

the regression model building workflow is shown in Figure 6. 

 

 

2.3.1. Partial Least Squares 

PLS regression is an analysis method for linear relationships between two datasets, 

the predictor variables and response variables. This method is especially useful 

when dealing with large sets of correlated predictor variables (Wold et al. 2001). 

The PLS regression models for this project were created with the pls R-package 

(Mevik et al. 2020), using a leave-one-out cross validation for model calibration. A 

leave-one-out cross validation aims to use all the available samples of a n-size 

dataset to assess the performance of a model, using n-1 samples for calibration and 

Figure 6. Overview of regression model building workflow. 

Data Aggregation (R) 

Building of Models (R) 

Prediction (R) 

Model Comparison (R) 
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the remaining samples for validation and repeating the process until every sample 

has been used for both validation and calibration. 

2.3.2. Support Vector Machines 

SVM is an algorithm for classification and regression purposes developed by 

Vapnik (Vapnik 1982). The principle of SVM regression is based on mapping 

predictor and response variables into a higher dimensional space in order to find a 

relationship between them while maintaining low error rates in the original 

dimension. 

For this project the SVM regression models were created with the liquidSVM R-

package (Steinwart & Thomann 2017a). For building the model, a 10-fold cross 

validation was used for model calibration. A leave-one-out cross validation was 

tested for calibration as well but the models built with a 10-fold cross validation 

performed slightly better. Using a 10-fold cross validation, the dataset is split into 

10 sub-datasets that are iteratively used for calibration and validation. 
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3.1. Field Sampling 

Due to the low sampling frequency, development trends could not be assessed 

properly in fields 3 and 4. These results have therefore been omitted here 

3.1.1. Dry Matter Yield 

Dry matter yield accumulation showed various rates of increase, depending on the 

field and growth/regrowth cycle both at the field level and plot levels (Figure 7). 

The average and maximum dry matter yield did not reach the same quantities in 

the second cycle as in the first cycle and were even lower in the third cycle. The 

extent of spreading in sampling values decreased towards the end of the growing 

season. 

3. Results 
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3.1.2. Canopy Average Height 

The development of the canopy average height followed a similar pattern as the 

development of dry matter yield. An increase in the mean canopy average height 

over the first cycle was followed by a slower increase and reduced height in 

subsequent cycles. The spreading of measurement results decreased over the 

growing season. The development of the average height of the canopy for fields 1 

and 2 are shown in Figure 8. 

Figure 7. Dry Matter Yield (kg/ha) over time in forage grassland fields 1 (left) and 2 (right) 

including means at field level (black dots) and harvest dates (black vertical lines). 
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3.1.3. Total Leaf Chlorophyll Content 

The total leaf chlorophyll content showed high standard deviation for individual 

sampling occasions, especially during the first and third cycle in field 1 and in the 

first cycle in field 2. The mean of the total leaf chlorophyll content decreased during 

the first cycle in both field 1 and field 2 and increased during the second cycle. 

During the third cycle an initial decrease was followed by an increase in the mean 

in field 1 while it increased in field 2. This is illustrated Figure 9. 

Figure 8. Canopy Average Height (cm) over time in forage grassland fields 1 (left) and 2 

(right) including means at field level (black dots) and harvest dates (black vertical lines). 
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3.1.4. Canopy Spectral Reflectance 

The dynamic of CSR is illustrated by measurements taken in field 1. The CSR 

signatures showed a peak in the green part of the visible spectrum (around 550 nm) 

and a sharp increase in the red edge part of the spectrum (680 – 740 nm). This 

increase flattened out in a plateau in the NIR part (740 – 1000 nm) and concluded 

in a decrease in the NIR part (around 970 nm). The green peak decreased in 

intensity during the first and second cycle and increased in the third cycle. The 

reflectance in the NIR part increased over the length of the cycles except for one 

plot in the second cycle and one sampling occasion in the third cycle. The CSR 

signatures for field 1 are illustrated in Figure 10 (first cycle), Figure 11 (second 

cycle), Figure 12 (third cycle, first part) and Figure 13 (third cycle, second part). 

Figure 9. Total Leaf Chlorophyll Content (µg/cm2) over time in forage grassland fields 1 

(left) and 2 (right) including means at field level (black dots) and harvest dates (black vertical 

lines). 



29 

 

 

 

Figure 10. CSR profile, first cycle field 1 (colour groups represent different plots, colour shades 

represent different subplots) 

 

 

Figure 11. CSR profile, second cycle field 1 (colour groups represent different plots, colour shades 

represent different subplots) 
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Figure 12. CSR profile, third cycle (first part) field 1 (colour groups represent different plots, colour 

shades represent different subplots) 

 

 

Figure 13. CSR profile, third cycle (second part) field 1 (colour groups represent different plots, 

colour shades represent different subplots) 
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3.2. Regression Models 

3.2.1. Dry Matter Yield 

The validation of the PLS model for dry matter yield showed a relatively poor 

prediction performance of the model, with high deviations between measured and 

predicted values and slopes and intercepts far from 1 and 0, respectively. The 

accuracy of the regression generally decreased when using less spectral 

information. However, too much spectral information leads to overestimation 

(Figure 14). 

 

 

The SVM model validation for dry matter yield showed good performances. Slopes 

and intercepts of the different models were close to 1 and 0, respectively, but 

variance increases with increasing dry matter yield. Reducing the number of 

Figure 14. PLS Model Evaluation Results - Measured Dry Matter Yield (y-axes) vs. Predicted 

Dry Matter Yield (x-axes) in forage grasslands using different band combinations including 

1:1 lines (black) and regression lines (red). 
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predictors by limiting the number of bands generally increased the errors (Figure 

15). 

 

 

Figure 15. SVM Model Evaluation Results - Measured Dry Matter Yield (y-axes) vs. Predicted Dry 

Matter Yield (x-axes) in forage grasslands using different band combinations including 1:1 lines 

(black) and regression lines (red). 

A direct comparison between R2 and RMSE values for the PLS and SVM model 

calibration and validation for dry matter yield underlined the performance 

difference. The relative performance drop from calibration results to validation 

results was more pronounced for SVM, especially for a limited number of 

predictors. However, the poorest performing SVM model still achieved higher R2 

and lower RMSE scores during validation than the best performing PLS model 

during calibration (Table 4). 
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Table 4. R2 and RMSE for Dry Matter Yield PLS and SVM models for forage grasslands showing 

calibration and validation statistics. 

 Calibration R2 Validation R2 Calibration 

RMSE 

Validation 

RMSE 

 PLS SVM PLS SVM PLS SVM PLS SVM 

All 0.47 0.98 0.42 0.84 654 134 751 403 

All + NDVI 0.51 0.97 0.41 0.88 630 191 854 379 

NDVI 0.06 0.96 0.01 0.63 874 278 989 623 

RGB 0.18 0.97 0.14 0.79 817 207 904 470 

3.2.2. Canopy Average Height 

Similarly to dry matter yield, PLS-based regression models for estimating the 

canopy average height showed poor performance and high dispersion of the sample 

points around the 1:1 line. Scattering increased when limiting the number of bands 

used but overestimation tendencies decreased (Figure 16). 

Figure 16. PLS Model Evaluation Results - Measured Canopy Average Height (y-axes) vs. 

Predicted Canopy Average Height (x-axes) in forage grasslands using different band 

combinations including 1:1 lines (black) and regression lines (red). 
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The SVM model for canopy average height showed lower error rates and scattering 

than the PLS model. Reducing the number of predictors by limiting the number of 

bands generally increased the errors (Figure 17). 

A comparison between R2 and RMSE for the PLS and SVM model calibration and 

validation for canopy average height showed the differences in performance. The 

relative performance drop from calibration results to validation results was more 

pronounced for SVM, especially with a limited number of predictors. Using all 

bands for example, PLS reached the same R2 for validation and calibration while 

SVM showed a 15% drop from calibration to validation. However, SVM performed 

better during validation than PLS during calibration in all scenarios (Table 5). 

 

Figure 17. SVM Model Evaluation Results - Measured Canopy Average Height (y-axes) vs. 

Predicted Canopy Average Height (x-axes) in forage grasslands using different band 

combinations including 1:1 lines (black) and regression lines (red). 
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Table 5. R2 and RMSE for Canopy Average Height PLS and SVM models for forage grasslands 

showing calibration and validation statistics. 

 Calibration R2 Validation R2 Calibration 

RMSE 

Validation 

RMSE 

 PLS SVM PLS SVM PLS SVM PLS SVM 

All 0.38 0.95 0.38 0.81 8.7 3.2 9.2 5.1 

All + NDVI 0.40 0.96 0.37 0.85 8.6 2.3 9.7 4.6 

NDVI 0.05 0.95 0.00 0.52 10.9 3.3 12 8.4 

RGB 0.09 0.92 0.06 0.78 10.6 3.6 11.5 5.6 

3.2.3. Total Leaf Chlorophyll Content 

PLS-estimation for total leaf chlorophyll content showed a similar pattern as for 

dry matter yield and average canopy height, as the model poorly managed to capture 

the variability in the dataset. However, for total leaf chlorophyll content, PLS 

appeared to be less impacted by reducing the number of predictors (Figure 18). 

Figure 18. PLS Model Evaluation Results - Measured Total Leaf Chlorophyll Content (y-

axes) vs. Predicted Total Leaf Chlorophyll Content (x-axes) in forage grasslands using 

different band combinations including 1:1 lines (black) and regression lines (red). 
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The SVM model for total leaf chlorophyll content showed lower error rates and 

scattering than the PLS model. Reducing the number of predictors by limiting the 

number of bands had a higher impact on errors than for dry matter yield and canopy 

average height (Figure 19). 

A comparison between R2 and RMSE for the PLS and SVM model calibration and 

validation for total leaf chlorophyll content showed the differences in performance. 

The relative performance drop from calibration results to validation was almost the 

same for PLS and SVM when looking at R2. Looking at RMSE, the performance 

drop was more pronounced for SVM. However, SVM performed almost equally 

well during validation than PLS during calibration and sometimes better than PLS 

during calibration (Table 6). 

Figure 19. SVM Model Evaluation Results - Measured Total Leaf Chlorophyll Content (y-

axes) vs. Predicted Total Leaf Chlorophyl Content (x-axes) in forage grasslands using 

different band combinations including 1:1 lines (black) and regression lines (red). 
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Table 6. R2 and RMSE for Total Leaf Chlorophyll Content PLS and SVM models for forage 

grasslands showing calibration and validation statistics. 

 Calibration R2 Validation R2 Calibration 

RMSE 

Validation 

RMSE 

 PLS SVM PLS SVM PLS SVM PLS SVM 

All 0.5 0.84 0.29 0.5 2.88 1.73 3.76 3.11 

All + NDVI 0.5 0.85 0.29 0.5 2.87 1.69 3.75 3.09 

NDVI 0.09 0.74 0.03 0.26 3.87 2.51 4.43 3.81 

RGB 0.33 0.68 0.12 0.40 3.32 2.33 4.22 3.37 
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In comparison with previous years there was a lack of legumes in the forage 

grassland fields in Röbäcksdalen in 2020, which is due to the harsh winter of 

2019/2020. 

In general, the growth of the primary grass was not very homogenous, especially 

in the beginning of the growth season. One possible reason for this is the uneven 

topographic of the fields that could have caused water to collect in sinks in autumn. 

During spring, the ice in sinks takes longer to thaw and could have delayed plant 

growth in these locations. 

While weed growth in the fields was negligible during the first growth/regrowth 

cycle, considerable amounts of weed were observed in almost all sampled fields 

after the first harvest. The amount of legumes tends to increase after the first cut 

and the very low amounts of legumes in the second and third cycle could have 

facilitated weed emergence and establishment due to the lack of competition by 

legumes. 

The resulting heterogeneity in the fields had an impact on the initial sampling 

plan. Instead of sampling every field once a week most of the samples were 

collected in fields 1 and 2. For the same reason canopy average height was chosen 

as a trait instead of the height of the tallest plant. While measurement of the tallest 

plant is less subject to operator bias, it does not accurately represent the height of 

the vegetation in the field in the case of a very heterogenous field. 

4.1. Field sampling 

4.1.1. Canopy Average Height and Biomass 

The aforementioned heterogeneity can explain the variability in the dry matter yield 

and canopy average height measurement results at both field level and plot level. 

After the initial variations in soil conditions caused by water in sinks, the impact of 

the topographical differences in the field decreases which could explain the lower 

degree of spreading in cycles 2 and 3. The lower level of dry matter yield and 

canopy average height in cycle 2 and 3 can be explained by the slow rate of 

4. Discussion 
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regrowth in northern timothy varieties (Nissinen et al. 2010), the competition with 

weeds, the decrease in day-length and possibly solar radiation and temperature. 

4.1.2. Total Leaf Chlorophyll Content 

Differences in the stage of growth can partly explain the spreading of the total leaf 

chlorophyll content measurement results in the first cycle in fields 1 and 2 as the 

chlorophyll content and leaf greenness change during different developmental 

stages (Radkowski 2013). 

In the second cycle in both fields and the third cycle in field 2 the results are 

consistent with expectations that the chlorophyll content in the leaves increases 

towards the end of the growth cycle. 

The reason for the excessive variability in the third cycle in field 1 was the 

prevalence of a disease in many locations. Many leaves had yellowish or brownish 

to black spots which suggests chloroses and consequently low total leaf chlorophyll 

content values as these parts of the leaves have lost a portion of their chlorophyll. 

4.1.3. Canopy Spectral Reflectance 

The CSR results are consistent with our expectations, as they show a peak in the 

visible spectrum concentrated around green, the steep incline in the red-edge part 

of the spectrum followed by a plateau in the NIR part. The decrease around 970 nm 

is due to the water content in the leaves (Peñuelas et al. 1993). 

The lower reflectance in the NIR in one plot in the first cycle and one sampling 

day in the third cycle are probably due to the changing overcast conditions that were 

noted on these two days. 

4.2. Regression Models 

The SVM models outperform the PLS models in predicting dry matter yield, 

canopy average height and total leaf chlorophyll content as the graphs and R2- and 

RMSE-values for calibration and validation show. This was expected as PLS is 

aimed to model linear relationships between predictor and response variables and 

the linear relationship between spectral information and traits analysed in this 

project is very weak. In projects estimating DMY (Zhou et al. 2019a) and wheat 

leaf nitrogen concentration (Yao et al. 2015) from spectral information, the 

robustness of SVM and its ability to deal with large sets of predictors has already 

been shown. While SVM in the majority of cases performed better during validation 

than PLS during calibration, the relative performance drop from calibration to 

validation in terms of R2 and RMSE was generally higher for SVM than for PLS. 

With a limited set of predictors, this relative performance drop increased which 
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suggests that in practical applications one would in this case use SVM with all 

bands and the NDVI. 

In general, the more bands SVM used to build the models, the closer the 

predictions were to the measured values. However, using only the RGB bands 

produced better result than expected. The reason for building models with spectral 

information from RGB bands was the question whether RGB drone images could 

be used as a complement or substitute for satellite images in areas with low revisit 

frequencies, frequent cloud cover or for on-demand applications. Common RGB 

cameras have a certain wavelength overlap between the RGB channels while 

sensors used on satellites are recording independent wavebands (Brown et al. 

2016). This suggests that models built with spectral information from RGB images 

will not perform as well as models built with full Sentinel-2 spectral information, 

but more research is required to assess whether these models are accurate enough 

for practical applications. 

One aspect that has to be considered concerning the method for calibration and 

validation of the models in this project is the dependency between the calibration 

and validation set. The choice which samples were used for calibration and which 

for validation was completely random in this project. This means that it is very 

likely that samples that have been collected on the same day and/or at the same 

location ended up in both the calibration and validation dataset. The prediction 

results shown here are therefore possibly better than they would be with completely 

independent calibration and validation datasets. Creating different random 

selections for calibration and validation dataset has been shown to influence the 

results both positively and negatively, depending on the samples chosen for each 

set. However, both regression methods seemed to be influenced in the same 

direction and to a similar extent. 

Another aspect that has to be considered is that solving regression problems with 

SVM involves random elements and that the process is dependent on the computer 

architecture (Steinwart & Thomann 2017b). The solution and therefore the 

calibrated model will be near-optimal and results presented in this report cannot be 

reproduced exactly. A check with the sampling dataset and spectral information 

used in this report showed that different models built consecutively were slightly 

different and produced different predictions. The RMSE and R2 of these models 

were however almost identical. 

One of the issues when building regression is the risk of over-fitting. When this 

happens, the created model will perform well with the dataset used to create it but 

it will be too specific and perform worse with an unknown dataset of the same type 

(Mucherino et al. 2009). Due to the unusual heterogeneity of the fields and a lack 

of comparable sample data from other fields, the models in this project were only 

tested on data from Röbäcksdalen. For further applications, the ability of these 

models to generalize has to be evaluated. 
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Interpolation of reflectance for days with no available satellite image introduces 

an uncertainty which was quantified as the number of days between the images used 

for interpolation. Tests showed that a higher uncertainty did not consistently 

coincide with a higher prediction error. Some of the outliers have however been 

identified as samples where reflectance was interpolated over a harvest but have 

not been investigated further. Removing samples with high uncertainty regarding 

the spectral information before building the models could improve the prediction 

results but has not been thoroughly tested in this project. 
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In this project, spectral information from satellite images has successfully been used 

to build regression models for estimation of dry matter yield, average canopy height 

and total leaf chlorophyll content of forage grassland fields. Two regression 

methods were applied, namely partial least squares and support vector machines, 

and it has been shown that the latter outperformed the former both during 

calibration and validation. 

While the support vector machines models built in this project performed well 

on the dataset built during this project, the question of how well these models can 

be generalized to other fields and locations is subject for further research. 

Estimating field traits using spectral information from satellite images is a 

promising approach for building tools that help farmers monitor their fields and 

help in decision making regarding required inputs. For applications where satellite 

images are not available, using RGB drone images as an inexpensive alternative to 

using multispectral drone images might be sufficient but has to be tested. 

5. Conclusion 
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