
 

Interactions between plant pathogens 

and their implications for crop 

protection. 

 

Ayano Tanaka  

Independent project in Biology (15 hp)  

Swedish University of Agricultural Sciences, SLU  

Department of Forest Mycology and Plant Pathology  

Agronom-mark/växt  

Uppsala 2020  



2 

 

 

 

Ayano Tanaka 

Supervisor:  Salim Bourras, SLU, Department of Forest Mycology and 

Plant Pathology  

Assistant supervisor:   Heriberto Vélëz, SLU, Department of Forest Mycology and Plant 

Pathology 

Assistant supervisor:  Mukesh Dubey, SLU, Department of Forest Mycology and Plant 

Pathology 

Examiner:  Hanna Friberg, SLU, Department of Forest Mycology and Plant 

Pathology 

 

 

 

 

Credits:   15 hp 

Level:  G2E  

Course title:   Independent Project in Biology 

Course code:  EX0894 

Programme/education:  Agriculture Programme – Soil and Plant Sciences 

Course coordinating dept:  Department of Forest Mycology and Plant Pathology 

 

Place of publication:  Uppsala 

Year of publication:  2020 

 

 

 

Keywords: Disease complex, interaction, antagonism, synergism, Fusarium spp. 

   

 

 

 

 

 

 

 

 

 

 

Swedish University of Agricultural Sciences  

Department of Forest Mycology and Plant Pathology 

 

Interactions between plant pathogens and their implications for 
crop protection.  



3 

 

 

Approved students’ theses at SLU are published electronically. As a student, you 

have the copyright to your own work and need to approve the electronic publishing. 

When you have approved, metadata and full text of your thesis will be visible and 

searchable online. When the document is uploaded it is archived as a digital file. 

 

 X      YES, I hereby give permission to publish the present thesis in accordance 

with the SLU agreement regarding the transfer of the right to publish a work.  

https://www.slu.se/en/subweb/library/publish-and-analyse/register-and-

publish/agreement-for-publishing/  

     NO, I do not give permission to publish the present work. The work will still be 

archived and its metadata and abstract will be visible and searchable. 

Archiving and publishing 

https://www.slu.se/en/subweb/library/publish-and-analyse/register-and-publish/agreement-for-publishing/
https://www.slu.se/en/subweb/library/publish-and-analyse/register-and-publish/agreement-for-publishing/


4 

 

 

 

One plant may often be infected by more than one pathogen species. It is assumed that species which 

exploit the same resource have the potential to affect each other. Plant diseases where more than one 

pathogen is involved in the development of infection are usually termed as ¨disease complex¨. 

Different pathogen species causing similar symptoms on a single host plant species may complicate 

diagnosis and subsequent control, and besides, the complex interaction may alter the expression of 

host disease severity. However, the knowledge of multiple-pathogen interactions is still limited, and 

therefore recent epidemiologic studies have begun to focus on this subject. Pathogen-pathogen 

interaction varies due to different interaction mechanisms. For example, antagonism where one 

pathogen has a negative effect on the development of the other. Antagonistic interaction can often 

be divided into three different mechanisms. First, pathogens produce antimicrobial components, and 

therefore the development of the other pathogen is supressed. Second, pathogens induce systemic 

resistance by activating the defence mechanism in the plant-host. Finally, pathogens which out-

compete the other pathogens because they are quicker in consuming nutrients and occupying the 

ecological niches. Another example of multiple-pathogen interactions is synergism, where one 

pathogen promotes the development of another, and thus it may result in more severe disease 

symptoms. 

 

The objective of this study was to learn about pathogen-pathogen interactions in plant diseases via 

literature review and test a method for analysing the interactions in vitro, using plant pathogens from 

the Fusarium genus (F. graminearum, F. culmorum & F. oxysporum). The lab result showed that F. 

oxysporum, in the interaction setup, was quicker in consuming nutrients and occupied most of space 

on PDA at temperature 25°C, whereas F. culmorum seemed to be supressed. Hence, F. oxysporum 

seemed like a better competitor toward F. culmorum under the in vitro conditions tested. Compared 

to the traditional studies where focus is on only one pathogen, the study of multiple-pathogen 

interactions has just begun recently, and it is important to establish the experimental methods to 

understand disease complexes, the synergisms and antagonism in pathogen-pathogen interactions, 

leading to identification of pathogens in relation to the crop production system. This will require a 

holistic understanding of how a host responds to co-infection and how pathogens interact and 

coexist; therefore, this needs to involve the interdisciplinary research collaboration between 

bacteriologists, mycologists and virologists. 

 

 

Keywords: Disease complex, Interaction, Antagonism, Synergism and Fusarium spp. 

Abstract  
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1. Literature review 

1.1. Introduction 

One plant may often be infected by more than one pathogen species(Fitt et al., 

2006). The basic ecological assumption is that species exploiting the same resource 

have the potential to affect each other (Le May et al., 2008). Plant diseases where 

more than one pathogen is involved in the development of infection are usually 

termed as ¨disease complex¨ (Bartoli et al., 2015). disease complexes where 

different pathogen species cause similar symptoms on a single host plant species, 

may complicate diagnosis and subsequent control (Le May et al., 2008; Bartoli et 

al., 2015). However, studies of pathogenic microbes were mostly focused on single 

host-pathogen pairs until recently (Jesus Junior et al., 2014; Bartoli et al., 2015). 

The knowledge of pathogen-pathogen and host-multiple-pathogen interactions is 

scarce, and the combined effects of diseases on crop yield is still poorly understood 

(Jesus Junior et al., 2014; Bartoli et al., 2015). This complex interaction can alter 

the expression of plant disease severity. Thus, recent epidemiologic studies have 

begun to focus on this subject (Abdullah et al., 2017). The structure of disease 

complexes is influenced by interactions between pathogenic species, host plants 

and abiotic and biotic environmental factors and therefore, the dynamics of diseases 

in the field, their severity and effect on yield are also influenced (Fitt et al., 2006; 

Le May et al., 2008). Therefore, understanding the interaction of multiple pathogen 

species/genotypes is crucial to develop effective disease control strategies (Bartoli 

et al., 2015). The objective of this study is to learn about pathogen-pathogen 

interactions in plant diseases via literature review. 

1.2. Material and methods 

A literature survey was conducted by utilizing google scholar. The main search 

terms were 'disease complexes', and `interactions´. To understand the different 

interactions as `competition´, `coexistence´, 'synergism', and ‘antagonism’, I 

studied publications about well-known plant pathogens, for example, Leptoshaeria 

maculans and L. biglobosa, and Fusarium spp. 

 

1.3. Limitation of Koch’s Postulates 

During the late 19th century, a bacteriologist Robert Koch formulated a set of 

rules for confirming that an organism is the cause of a disease, and these rules 

became known as the ¨Kochs postulates¨ (Agrios, 2005). 

 

1) The organism must be consistently associated with the lesions of the disease. 

2) The organism must be isolated from the lesions and grown in pure culture. 



7 

 

 

3) The organism from pure culture must be re-inoculated into the healthy host 

and must cause the same disease as was originally observed. 

4) The organism must be re-isolated into culture and shown to be identical to 

the organism originally isolated. 

 

However, some of these postulates are not valid for multiple microbial infections 

(Bartoli et al., 2015). For example, ¨re-inoculation of the pathogen¨ does not 

automatically causes disease if synergism is absent. Another postulate defined by 

Koch was that the pathogen should be isolated from diseased and not from healthy 

organisms. This is also challenged for plant diseases as for example, Pierce’s 

disease of grapevine, where the bacterial pathogen Xylella fastidiosa can take over 

xylem vessels of plants for a long period of time without showing symptoms. 

Another problem related to his postulates are the nonculturable pathogens for which 

none of the Koch’s criteria can be fulfilled (Bartoli et al., 2015). The identification 

of disease associated with multiple pathogenic organisms and other issues suggests 

that Koch’s postulates cannot be applied to all diseases. 

1.4. Different types of interactions 

1.4.1. Competiton  

Pathogen-pathogen interaction varies due to different interaction mechanisms 

(Jesus Junior et al., 2014; Bartoli et al., 2015). Competition is generally divided 

into either interference or exploitative competition. These competition types are 

based on distinct behavioural traits. In an interference competition, one species 

interacts directly with another species via aggressive behaviour or other 

antagonistic means. In an exploitative competition, one species interacts indirectly 

with other species via competition for the the same resources. One species 

consumes resources more efficiently, thereby depleting the availability of the 

resource for the other species (Abdullah et al., 2017). 

 

For example, competition for space or nutrients, altered host susceptibility via 

induced resistance, or toxin production by one pathogen suppressing the 

development of the other (Le May et al., 2008). Competition under such conditions 

may lead to selection for the more virulent species, or conversely (Abdullah et al., 

2017). Pathogens that can inhibit certain metabolic processes, such as antimicrobial 

toxin production, when the necessary nutrients are greatly reduced, may have a 

greater competitive advantage (Glenn et al., 2008; Abdullah et al., 2017). However, 

these compounds may also provide a competitive benefit to other opportunistic 

pathogens that do not have to carry the energetic costs for their production (Cornelis 

and Dingemans, 2013; Ghoul et al., 2014).  

 

A classic example of more aggressive forms of competition between pathogens 

that includes direct chemical exclusion, is tenuazonic acid secreted by the finger 

millet colonizing endophyte Phoma sp., which supresses growth of several 

pathogens including the toxigenic fungus, Fusarium graminearum (Mousa et al., 



8 

 

 

2015, 2016a). Competition can also occur indirectly, facilitated by the plant host 

through targeted defence mechanism against at least one pathogen (Kamilova et al., 

2008; Abdullah et al., 2017). 

1.4.2. Coexistence  

In contrast to competition, cooperation, whereby pathogens positively interact, 

by providing mutualistic signals that are crucial for pathogenesis, or by functional 

complementation through the exchange of resources, which is obligatory for 

existence. An expected consequence of competition is a localized reduction in 

microbial diversity and simultaneous specialization of pathogenic microorganisms 

to various tissues or host species, which is called niche specialization, whereby 

pathogens can stably coexist through different times, place and resource use (Fitt et 

al., 2006; Abdullah et al., 2017). As an example, differences in disease onset 

resulted in temporal separation and stable coexistence between two related fungal 

pathogens of canola, Leptoshaeria maculans and L. biglobosa (Abdullah et al., 

2017). Niche specialization can reduce the severity of competition between 

pathogens and allowing coexistence (Fitt et al., 2006), although pathogens 

separated by various niches within a plant may interact indirectly by stimulating a 

common host defence response. Nevertheless, on an evolutionary timescale, 

competition may result in exclusion, enabling species to coexist when arriving at 

various times (Fitt et al., 2006). The section below shortly explains different types 

of interaction between pathogens. 

 

 

1. Antagonistic interaction occurs when one pathogen inhibits or reduces the 

development of another.  

2. Synergistic interaction occurs when there is some enhancement in the 

development of one or more interacting pathogens. 

3. Additive interaction occurs when the development of one pathogen is not 

altered in the presence of another and vice versa. 

4. Mutually exclusive interaction occurs when the development of all involved 

pathogens is reduced. 

 

 

In this literature review, antagonistic and synergistic interaction are in focus. 
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1.5. Antagonistic interaction 

Antagonism should make co-occurrence rarer than expected from individual 

species frequencies, where one pathogen has a negative effect on the development 

of the other (Le May et al., 2008). Examples are (i) microorganisms which produce 

antimicrobial components, (ii) microbes which can induce systemic resistance by 

triggering the defence mechanism of the plant host, and (iii) microbes which can 

out-compete pathogens because they are quicker in consuming nutrients secreted 

by the plants and faster in occupying the ecological niches (Kamilova et al., 2008) 

 

Among the most studied endophytes are the antagonistic F. oxysporum strain 

such as Fo47 and CS-20, which are used as a biocontrol agent against several plant 

root pathogens including the pathogenic F. oxysporum (de Lamo and Takken, 

2020). these antagonistic F. oxysporum strains produce antimicrobial compounds 

that enhance plant resistance to pathogenic F. oxysporum (Aimé et al., 2013) 

However, a study of another antagonistic F. oxysporum strain MSA 35 is revealed 

that the presence of a consortium of ectosymbiotic bacteria belonging to Serratia, 

Achromobacter, Bacillus and Stenotrophomonas genera associated with the F. 

oxysporum strain MSA 35, and the association is crucial for the biocontrol 

properties of non-pathogenic F. oxysporum MSA 35 (Minerdi et al., 2008). 

Furthermore, when the antagonistic fungus was cured of the associated bacteria, the 

biocontrol strain became pathogenic. This suggests that the antagonistic effect of 

F. oxysporum seems not a fungal trait, but it is due to the interaction with the 

ectosymbiotic bacteria (Minerdi et al., 2008). 

1.6. Synergistic interaction 

Synergism among pathogens should lead to species co-occurrence (i.e., co-

inoculation) more frequently than predicted, where one pathogen promotes the 

development of another (Le May et al., 2008). Reports of the synergistic interaction 

are relatively rare compared to antagonistic interaction, but it is likely that 

synergism among different pathogens leads to more severe disease symptoms (Le 

May et al., 2008). The synergistic interaction may also alter the occurrence and 

speed of epidemics (Jesus Junior et al., 2014). Moreover, the synergistic 

interactions may increase crop damage, complicate the identification of the primary 

cause of diseases and its control. Therefore, understanding their interactions is 

important because the economic damage threshold for each pest can be significantly 

lowered by the presence of the interacting organism (Johnson 1990).  

 

One example of synergistic diseases interaction is caused by a group of 

Fusarium species.  More than 16 species of the F. graminearum species complex 

have been reported as the causal agent of Fusarium Head Blight (FHB) (Yli-Mattila 

et al., 2009). Studies from Brazil show that the incidence of the species in FHB 

varies from one geographic region to another (Del Ponte et al., 2015), yet the 

current knowledge is very limited regarding mechanisms that explain the 

geographic variation and occurrence of specific pathogens in plants affected by a 

particular disease complex. It is possible that such variations are associated to the 
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ecological preference of these pathogens. Besides, abiotic factors and cultural 

practice might also influence this variation in pathogen prevalence (Del Ponte et 

al., 2015).  

 

Another example of a complex disease caused by a group of Fusarium species 

is foot and crown rot on wheat. According to a study of Kuzdralinski et al. (2014), 

four important species of pathogens, F. graminearum, F. culmorum, F. poae and F. 

sporotrichioides, are associated with the disease, though their occurrence differs 

from one geographic region to another in Poland (Kuzdralinski et al., 2014). It has 

also been reported that most fields in eastern Poland are exposed to the attack of at 

least one or two Fusarium species. The occurrence of F. graminearum was found 

to be correlated to the occurrence of F. culmorum and this result was also 

observable for F. poae and F. sprotrichioides (Kuzdralinski et al., 2014). 

1.7.  New approaches for studies of disease complex 

Metagenomic projects have in the last 10 years been combined with NGS (Next-

Generation Sequencing) technologies and it has created innovative opportunities 

for studying the wide range of pathogens associated with a single host (Bartoli et 

al., 2015; Abdullah et al., 2017) Using these novel OMICs will help to better 

characterize complex diseases. Identification of the disease-causing agents are the 

primary step of management before performing suitable disease control strategies. 

Although the use of a chemical substance is still important, a more sustainable 

disease management can be achieved by the development of more long-term 

strategies (Bartoli et al., 2015). Targeted disease control by using a chemical 

substance becomes limiting when more than one pathogenic organism is present 

and contribute to the disease severity, thus the application of the specific targeted 

substance may not necessarily result in effective disease control (Bartoli et al., 

2015). Therefore, it is important to study disease complexes, the synergisms and 

antagonism in pathogen-pathogen interactions. Disease complexes are also linked 

to abiotic factors, likely weather, climate, cultural practices and geography, thus it 

could be a difficult mission. For that reason, it is important to establish an 

experimental approach leading to identification of pathogens in relation to the crop 

production system. 

 

Finally, a careful evaluation of the roles of all the microorganisms isolated from 

the infection sites needs to be estimated, as multi species interactions and consortia 

can be involved in formation and escalation of the disease. This will require a 

holistic understanding of how a host responds to co-infection and how pathogens 

interact and coexist (Abdullah et al., 2017); therefore, this will need to involve the 

interdisciplinary research collaboration between bacteriologists, mycologists and 

virologists. Understanding the biology and molecular interaction of these inter-

microbial processes may be important in defining new targets and strategies for 

more sustainable disease control (Bartoli et al., 2015)  
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2. Interaction assay 

2.1. Introduction 

The genus Fusarium causes many plant diseases. Fusarium head blight (FHB), 

(also known as ear blight or scab), Fusarium foot rot, and seedling blight and wilt, 

are the most common fungal plant diseases caused by various Fusarium species 

(Brennan et al., 2003). They do have preferences on host and host organs, however 

they are often not highly specialized, thus one species of Fusaria can infect several 

hosts, which results in crop yield losses and lower quality of products. Furthermore, 

they produce secondary metabolites that are toxic for humans and livestock, and 

contaminate cereal-grain products that become unsuitable for food, feed and 

malting (Corina et al., 2013). Since many Fusarium spp. are involved in causing 

disease on a same host, it makes control more complicated (Bartoli et al., 2015). It 

is not possible to confirm which specific fungal species has caused FHB from the 

visual symptoms alone. If there are more than one species, it is difficult to determine 

relationships between individual species in the FHB complex (Xu et al., 2008). 

Environmental factors such as temperature and humidity have significant effect on 

occurrence of diseases associated by Fusarium spp. and the severity of the symptom 

(Brennan et al., 2003; Xu et al., 2008).  

 

Fusarium graminearum is amongst the most frequent pathogenic species of 

Fusaria for cereals which has saprophytic and pathogenic phases, although other 

Fusarium species such as F. poae, F. avanaceum and F. culmorum can be found 

associated with FHB (Vaughan et al., 2016). FHB caused by F. graminearum and 

among other Fusaria lineage is initiated by airborne inoculum of spores on 

flowering spikelets. F. graminearum is more predominant in warmer and humid 

countries (Brennan et al., 2003). F. graminearum might require relatively higher 

temperature and longer periods of wet condition to infect than for subsequent 

colonization (Xu et al., 2008). Studies in vitro showed that F. graminearum has 

optimal growth conditions in the temperature range around 25°C (Corina et al., 

2013; Brennan et al., 2003). Whereas F. culmorum, which is considered as 

secondary important species, is commonly found in cooler maritime regions of 

Europe, and the optimal growth temperature in vitro is between 20°C and 25°C 

(Brennan et al., 2003; Vaughan et al., 2016). Both F. graminearum and F. 

culmorum are reported at temperatures above 25°C and are favoured by humid 

periods longer than 24 hours (Brennan et al., 2003). 

 

Climate change is expected to affect agriculture differently in different places. 

Most European countries have experienced increases in surface air temperature 

today (Olesen et al., 2002). An analysis of General Circulation model (GCM) 

simulations indicates that annual temperatures over Europe warm at a rate of 

between 0,1 and 0,4 per decade (Olesen et al., 2002). Though warmer temperatures 

may contribute to higher crop production in some regions or allow the cultivation 

of new crop species in Europe would be advantageous, it may increase the need of 
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plant protection and the more frequent extreme weather events may cause lower 

harvest yield (Olesen et al., 2002). 

 

F. graminearum is most prevalent in Asia, America and Southern Europe, 

however, it has been recently found to spread toward Northern Europe, such as 

Sweden, Finland and Russia, and it has become a common species (Ferrigo et al., 

2016). Other species, such as F. culmorum, F. avenaceum, F. langsethiae, and F. 

sporotrichioides, are of secondary importance but, nevertheless, they may also take 

an important role in pathogenesis when the climatic condition is not optimal for the 

dominating species (Ferrigo et al., 2016). 

 

According to a field study by Xu et al. (2008), there was a positive correlation 

among six Fusarium spp. including F. graminearum and F. culmorum, which may 

result from indirect association facilitated by microclimatic conditions conducive 

to several species. A study by Kuzdralinski et al. (2014) showed that the presence 

of F. graminearum seemed to be related to the presence of F. culmorum. Interaction 

between F. graminearum and F. culmorum can be explained by their coexistence 

as a complex of main species on the same plant. However, most of interaction 

between species from the genus Fusarium had a character of growth inhibition 

(Kuzdralinski et al., 2014). 

 

F. oxysporum is one of the most represented fungal populations in the 

rhizosphere (Aimé et al., 2013) and well-documented ability to persist without 

recourse to pathogenesis. However, some pathogenic F. oxysporum are very host 

specific attacking only one or a few species of plants, and in many cases, attacking 

only certain cultivars of that plant, which may be an exception as many other 

Fusarium spp. are not host specialized. F. oxysporum is a saprophytic fungus and 

able to grow and survive for long periods on organic matter in soil. It has a 

predominant asexual reproduction phase and invades and penetrates from roots 

(Gordon and Martyn, 1997; Fravel et al., 2003; Michielse and REP, 2009). 

 

It is not completely clear how climate differences affect the distribution of 

Fusarium spp. causing diseases, especially because of the close association with a 

preferred crop host, and how they currently differ in relation to infection efficiency 

and competitiveness mediated by the climate (Vaughan et al., 2016). The objective 

of the experiment was to test a method for analysing the interactions in vitro, using 

three important plant pathogens from the Fusarium spp. lineage. I conducted 

growth competition assays on axenic agar media with three Fusarium species (F. 

graminearum, F. culmorum, F. oxysporum) to study their interactions. Fusarium 

graminearum and Fusarium culmorum are present ecologically in the same niche, 

whereas Fusarium oxysporum is from another niche. Each species was grown alone 

and in pair combinations at different temperatures (4°C, 25°C, and 37°C). Pictures 

were taken and their growth was measured using the image analysis software, 

ImageJ (Schneider, Rasband, and Eliceiri 2012). 
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2.2. Hypotheses 

My hypotheses were that  

 

1) all species on control setups should grow best at 25°C, but since F. 

graminearum is a widespread species and known to be the most abundant 

in several arable plants, it is expected to grow fastest and occupy the most 

area in the agar plates.  

2) Even though F. graminearum is known to grow best at temperature 25°C, 

it may adapt better within a wide range of temperatures than other 

species.  

3) Considering the predominance of F. graminearum, it may have 

antagonistic interactions toward other species.  

4) While F. culmorum favours cooler climate, is considered of secondary 

importance and not the most dominant species, it is expected to grow 

slower than F. graminearum at 25°C.  

5) F. culmorum is expected to grow less in higher temperatures such as 

37°C, and should grow better at 4°C than other species.  

6) F. oxysporum, has a different niche to F. graminearum and F. culmorum, 

(e.g., tomato, melon, bean, banana, cotton, and chickpea; Michielse and 

REP, 2009) and is known to be an aggressive pathogen species because 

of the predominant anamorphic phase. Since F. oxysporum occurs often 

in greenhouse cultured-crops and favours warmer climate, it should grow 

better at 37°C than another Fusarium spp.. 

2.3. Materials and Methods 

Strains of Fusarium graminearum (PH-1), F. culmorum (PV) and F. oxysporum 

(f.sp. radices-lycopersici (isolate ZUM 2407/IPO-DLO)) on agar plates were 

obtained from Mukesh Dubey at the Department of Forest Mycology and Plant 

Pathology at Swedish University of Agricultural Sciences (SLU). These fungal 

cultures were kept on potato dextrose agar (PDA; Full-strength, 39.0 g/L−1; VWR 

International B.V., Amsterdam). To do this, I sub-cultured F. graminearum, F. 

culmorum and F. oxysporum by taking two pieces of agar with mycelium (approx. 

2cm x 1cm) and placing them upside down on to the new plates of full-strength 

PDA. A total of nine petri plates (three plates for each Fusarium spp.) were 

inoculated. After the plates were sealed with parafilm, they were placed into plastic 

bags, which were then incubated at 25°C.  
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I made 2 L of half-strength PDA (19.5 g/L−1) medium and prepared 54 cell 

culture plates (6-well, Sarstedt). Half-strength PDA and 6-well cell culture plates 

was chosen for the following reasons: 

1) All the isolates can grow on half-strength PDA. 

2) It is more transparent than full strength medium, so the growth should 

 be easier to see on the scanned plates. 

3) F. graminearum is a fast grower and makes fluffy mycelium, so hopefully 

the half-strength PDA would keep the “fluffiness” to a minimum to bring 

out the differences between the isolates better. 

4) Using 6-well cell culture plates makes it easier to scan and saves time. 

 

Two plugs (approx. ⌀ 0,2mm) of Fusarium spp. were placed in the same agar 

plate (approx. ⌀ 3,0cm) as shown in Fig. 1, and then the different sets of plates were 

incubated at 4, 25, and 37°C. Each setup had 18 replications at one temperature. 

The interactions were scanned daily for one to two weeks. 

 

Table 1. Pairing scheme used in the experiment 

 FG FC FO 

FG FG×FG(control) FC×FG FO×FG 

FC — FC×FC(control) FO×FC 

FO — — FO×FO(control) 
FG = F. graminearum, FC = F. culmorum, FO = F. oxysporum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1. Set-up of interaction assay petri dishes. The dots represent 

the plugs of mycelium, with arrows indicating the expected direction 

of fungal growth. 
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To measure the area of both F. oxysporum’s and F. culmorum’s mycelium, the 

RGB-colour feature in ImageJ was used. Most of pictures were measured by 

Grayscale channel 1 because it showed the edge of the mycelium most clearly. 

Grayscale channel 3 was used when the interaction zone between F. oxysporum and 

F. culmorum was unclear, because F. culmorum has darker yellow pigmentation. 

The darker yellow pigmentation was shown as black shadow on Grayscale channel 

3, while F. oxysporum could be seen as light grey. The growth of area per day was 

compared within the same species from the control and interaction setups, and 

within two different species at the interaction setups. 

 

2.3.1. Limitation of the experiment 

This work has been done in the laboratory. The assay does not take into account the 

plant-host interaction or response toward the effects of the pathogen-pathogen 

interactions. The laboratory experiment may lead to different results than the field 

experiment, and the setups and microclimate conditions may also give different 

results. Furthermore, PDA has not the same composition as for example dead plant 

material.  

2.4. Results and discussion 

At 25 ℃, both F. culmorum and F. oxysporum grew well on the agar plates (Fig 

2). Experiments with F. graminearum at 25 °C did not show the results as expected. 

Fusarium graminearum was highly branched and tight, which made it difficult to 

determine the interaction with others. Therefore, the focus of the study is on F. 

culmorum and F. oxysporum at 25°C  

 

Fusarium oxysporum produced pigmentation as pink (Fig 2a), and F. culmorum 

produced yellow pigmentation (Fig 2b). At the end of the experiment, F. oxysporum 

on the interaction plates had covered most of the area and seemed to out-compete 

F. culmorum (Fig 2d). Moreover, the pigmentation had become more intense. In 

some of the interaction plates, F. oxysporum showed an intense dark pink 

pigmentation near the interaction zone (Fig 2d). Also, in some of the interaction 

plates, F. culmorum showed a highly branched phenotype as visualized under the 

microscope (data not shown).  
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Grayscale channel 1 filter of the ImageJ which I used to measure the growth area 

per day (Fig 3). The Grayscale channel 1 showed the clearest edge of mycelium. 

Grayscale channel 3 was used when the interaction zone between F. oxysporum and 

F. culmorum was unclear, because F. culmorum has darker yellow pigmentation. 

The darker yellow pigmentation was shown as black shadow on Grayscale channel 

3, while F. oxysporum could be seen as light grey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Scanned image plates for F. oxysporum and F. culmorum at 25°C. Top: Control plates for 

F. oxysporum (a) and F. culmorum (b) at day-three. Bottom: Interaction plates of F. oxysporum and 

F. culmorum at day-four (c). After the sixth day, F. oxysporum occupied most of the area in the 

plates and both species showed more intense pigmentation(d). 

Figure 3. Interaction setup for F. oxysporum and F. culmorum, as shown by the Grayscale channel 

1 filter of the ImageJ software. Because the Grayscale channel 1 filter showed the clearest edge of 

mycelium, it was used during the analysis. 
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Growth area per day were measured by using the ImageJ software, and converted 

to graphs (Fig 4). The growth of both fungi when they were on the interaction plates  

were scored by comparing them to the control plates. The graphs are showing the 

data collected starting from the third day, after the experiment was started.  

Fusarium oxysporum took over more than half area of medium in the interaction 

setups, by the end of the experiment. While F. culmorum grew much less than in 

the control setups (Fig 4). The rapid growth of F oxysporum occurred between the 

third and sixth day after experiment was set up (Fig 4). After the sixth day, F. 

oxysporum had covered most of the area on the plates (Fig 2d). 

 

 
 

 

Figure 4. Top graph: Growth area per day of F. culmorum in control plates and during 

interaction setups.  Bottom graph: Growth area per day of F. oxysporum in control plates and 

during interaction setups. The graphs are showing the data collected starting from the third 

day, after the experiment was started. 
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2.4.1. Interaction between F. culmorum and F. oxysporum at 

25°C 

Both F. culmorum and F. oxysporum on the control plates grew nicely. The 

growth rate of F. culmorum was slightly slower, but mostly the same as F. 

oxysporum. In addition, the control plates showed that F. culmorum and F. 

oxysporum are able to grow on the half-strength PDA on small plates. Both F. 

culmorum and F. oxysporum produced intensive pigmentation as yellow and pink 

respectively, thus it was easy to identify them morphologically. The growth of both 

fungi when they were on the interaction plates were scored by comparing them to 

the control plates. Fusarium oxysporum took over more than 3/4 area of medium in 

the interaction setups, by the end of the experiment, while F. culmorum grew much 

less than in the control setups (Fig 4). The rapid growth occurred between the third 

and sixth day after experiment was set up (Fig 4). After the sixth day, F. oxysporum 

had covered most of the area on the plates and seemed to out-compete F. culmorum. 

Moreover, the pigmentation was more intense (Fig. 2d). Since two plugs were 

placed on every plate, the growth pattern for both F. oxysporum and F. culmorum 

during their interaction would be expected to look similar to the control plates, that 

is, each plug would occupy half the area. However, this was not the case, suggesting 

that F. oxysporum is able to inhibit F. culmorum, but more experiments are needed 

to validate these observations. According to a review of Xu et al. (2007), there 

seems to be no advantage for a competitive pathogen species, which are related to 

FHB, growing together with a weaker pathogenic species. That is, they do not 

colonise particularly well than when it grows alone. However, my interaction assay 

shows the opposite result. Fusarium oxysporum grew faster in the interaction assay 

than the control setups (Fig 4). Although, F. oxysporum is not related to FHB, hence 

that could be the reason to the difference in the results. In some of the interaction 

plates, F. oxysporum showed an intense dark pink pigmentation near the interaction 

zone (Figs 2d & 3). Also, in some of the interaction plates, F. culmorum showed a 

highly branched phenotype as visualized under the microscope (data not shown).  

2.4.2. The growth of F. graminearum at 25°C 

Fusarium graminearum did not grow as expected. With half-strength PDA in 

small petri plates, F. graminearum growth was highly branched and tight, which 

made it difficult to determine the interaction with others. It is difficult to grow 

different fungal species using the same medium because they can grow differently. 

Both, temperature and amount of nutrition in the medium can influence the 

morphology and the thickness of mycelium, and even the branching pattern. 

Nevertheless, it would be interesting to repeat the experiment and observe the 

interaction between F. graminearum and F. culmorum since they have the same 

niche, and since there are reports that their occurrence was correlated (Kuzdralinski 

et al., 2014). In addition, a “tri-interaction” with F. culmorum, F. graminearum and 

F. oxysporum, would be interesting since these last two are known to be aggressive 

pathogens.  
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2.4.3. Growth and interactions at 4°C 

All fungi placed at 4°C grew very slowly, and no interactions could be seen with 

the naked eye until the eleventh day. Fusarium oxysporum did not grow fast at 4°C, 

but upon microscopic examination, germinated conidiospores that had started to 

grow were visible at the third day. Fusarium graminearum and F. culmorum could 

grow even though it was very slow. Both fungi grew at the same speed and growth-

area comparison between the interaction and the control plates looked similar, that 

is, each plug occupied half the area on the interaction and the control plates. 

Interestingly, F. graminearum, which is most dominant in Asia, America and 

Southern Europe, and requires relatively higher temperatures and humidity (Xu et 

al., 2008), could even grow as good as F. culmorum, which is more adapted to 

cooler temperatures. Recently, F. graminearum has been reported to spread toward 

Northern Europe, such as Sweden, Finland and Russia, and it has become well 

common species (Ferrigo et al., 2016). Therefore, it may be able to adapt quickly 

to different abiotic condition. 

 

2.4.4. Growth and interactions at 37°C 

Fusarium oxysporum could grow better at 37°C than at 4°C, even though it was 

slow, while the other species did not grow at all. As stated in the hypotheses (section 

2.5), The pathogenic F. oxysporum is often found in greenhouse cultured-crops (e.g, 

tomato and melon) and crops grown in warmer countries (e.g., banana and cotton) 

(Michielse and REP, 2009). Therefore, F. oxysporum seems to be adapted to a 

warmer environment as shown by its ability to grow at 37°C. Unfortunately, the 

PDA medium dried out after two weeks and all fungi could not grow further. If the 

plates had been stored with a plastic bag so the humidity could be preserved longer, 

the experiment could have continued longer. 

2.5. Remarks and technical limitation 

The range of temperatures could be much narrower than 4°C, 25°C and 37°C, 

since at 4°C and at 37°C, the fungi grew very slowly or not at all. Thus, I could 

repeat the experiment at 8°C and 33°C, instead of 4°C and 37°C. Another drawback 

of using 37°C, was that the PDA medium dried out quickly. If the humidity could 

be preserved longer, the experiment can continue for a longer period. Nevertheless, 

I could still observe some growth for F. graminearum and F. culmorum at 4°C, and 

some for F. oxysporum at 37°C. 
 

As already mentioned, F. graminearum did not grow as I expected at 25°C.  With 

the half-strength PDA and in small petri plates, F. graminearum growth became 

highly branched and tight, which made it difficult to determine the interaction with 

the other species. Fusarium graminearum is known as a fast-growing species, but 

it may need enough space or enough nutrient. In a side experiment to test this, I 

could observe that F. graminearum grew as expected in a bigger petri plate using 

half-strength PDA or in smaller petri plates using full strength PDA. This would 
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suggest that F. graminearum does need either enough space or enough nutrient to 

grow properly. However, more testing is required to confirm this, since CO2 

concentration could also influence fungal growth. 

  

Furthermore, the placement of plugs could give a different result, because F. 

oxysporum is usually a slow growing species and therefore, other species that grow 

faster could compete differently if plugs are placed opposite to each other instead 

of next to each other. Also, it would be interesting to observe the interaction zone 

when they are placed opposite to each other, instead of placing them next to each 

other and let them interact from the start. Using bigger petri plates could also give 

different results, but it would be easier to work during the placement of plugs. With 

bigger plates, the spreading of mycelium during the setup could be avoided, 

ensuring only one starting point. However, cell culture plates with six-wells were 

chosen because they made the scanning easier and the experiment more compact. 

2.6. Conclusion 

Regardless of the selection of methods, F. culmorum and F. oxysporum showed 

interaction at 25°C. Fusarium oxysporum grew fast and occupied more surface area 

on the plates than F. culmorum, which did not grow as in the control plates. Hence, 

F. oxysporum seems like a better competitor toward F. culmorum under the in vitro 

conditions tested. To state their interaction confidently and understand their 

interaction mechanism, more replicates and different experimental methods are 

required.  

 

As mentioned above, the experiment at temperatures 4°C and 37°C did not 

perform as I expected, and the interactions between the species could not be 

observed. However, I could see their adaptability to different temperatures, that is, 

F. oxysporum could grow even at 37°C; whereas, F. culmorum and F. graminearum 

could grow at 4°C. It was surprising to see F. graminearum, which is most 

dominant in warmer countries, grow at cooler temperatures. However, F. 

graminearum has been recently reported to spread toward Northern Europe, 

suggesting that F. graminearum may adapt quickly to different abiotic condition. 

Because of climate change and temperatures increasing, F graminearum may be 

even more common in northern Europe in the near future. 

 

One of my hypotheses could not be tested due to F. graminearum growth-

problems at 25°C; although, it would be interesting to see the interaction between 

F. culmorum and F. graminearum since both occupy the same niche and they are 

often found as associated species causing FHB on cereal crops.  

 

To confirm their interaction in terms of ¨antagonism¨ and ¨synergism¨, further 

experiments are needed. For example, analyses of enzymes, biomass and 

antimicrobial metabolites may give more detail information on how they interact 

with each other. Measuring growth rate and area does not tell the whole story, that 

is, even though it may grow faster, it may not mean is optimal growth. 
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