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Decision support systems can be used to monitor disease development of apple 

scab. Decision support systems require weather data to function, which in Sweden 

is currently provided by conventional weather stations. Conventional weather 

stations supply reliable weather data if correctly installed and maintained but are 

costly and require continuous error-checking. Virtual weather data is becoming an 

increasingly popular option, where the data is calculated based on a combination of 

observations from local weather stations and weather radar and satellites. In this 

study, virtual weather data was compared with physical weather stations for apple 

scab monitoring, to evaluate the suitability of virtual data as a replacement for 

conventional weather stations. This was done by evaluating differences in predicted 

apple scab infections using the apple scab model in the decision support system 

RIMpro for the 2019 and 2020 seasons. Virtual weather data lacks the leaf wetness 

parameter, which had to be calculated based on other weather parameters. Thus, the 

use of leaf wetness calculations as an alternative to leaf wetness sensors was 

investigated.  

The study showed that virtual weather data correctly predicted the number and 

severity of infections, similar to conventional weather stations, with some margin 

of error especially for low category infections. This indicates that virtual weather 

data could be a suitable replacement for physical weather stations. With respect to 

the discrepancies seen in infection severity, few were due to a difference in leaf 

wetness, demonstrating that leaf wetness calculations may indeed be a suitable 

option for replacing leaf wetness sensors. This study was carried out after the 2020 

apple scab season ended; thus, some crucial aspects were not accounted for, such 

as checking for errors from the weather stations during the seasons studied. Before 

implementation of virtual data can take place in Sweden, the virtual data should be 

evaluated during the growing season. 

 

Keywords: Apple scab, virtual weather stations, grid-data, decision support system, RIMpro, 
integrated pest management, leaf wetness 
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Consumers and retailers want undamaged apples. Therefore, apples found in stores 

are free of apple scab. The reason for this is that apple growers direct a lot of 

attention at preventing this fungal disease from growing on the apples.  

The development of the disease is impacted by multiple factors, where the main 

ones are rain, temperature, and leaf wetness. To monitor the development of 

disease, decision support systems have been developed. Data from meteorological 

weather services and local weather stations are sent to the decision support systems 

which model the disease development. For apple scab in Sweden, the decision 

support system RIMpro is used. RIMpro helps growers identify which rain events 

could potentially lead to disease development, and aids growers in decision making 

around fungicide spraying.  

The weather stations used in the orchards supply reliable weather data if 

correctly installed and properly maintained. However, as they have a limited 

lifetime, require both weekly and yearly maintenance to be reliable, and are costly 

to purchase, another option has started to gain popularity, namely virtual weather 

stations. In Sweden, there is a virtual weather station every 2.5x2.5 km. The weather 

data for each virtual weather station is calculated based on both observations from 

local weather stations and weather radar and satellites. Getting weather data from 

these virtual weather stations instead of physical weather stations in apple orchards 

would be less costly and include less work for growers since no maintenance would 

be required. The question asked in this study was if virtual weather stations in 

southern Sweden can act as a sufficient replacement for physical weather stations 

in orchards for modelling apple scab.   

The results show that virtual weather stations may become a viable option to in-

orchard weather stations. Since multiple fungicide sprayings are usually carried out 

every season to prevent apple scab, further confirmation is needed to make sure 

virtual weather stations supply reliable weather data.  
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1.1. Apple scab 

Apple scab, caused by the fungus Venturia inaequalis (Cke.) Wint. (anamorph 

Spilocea pomi Fr.) is globally the most important disease affecting apples when 

measured by economic loss, the amount of fungicides needed to control scab and 

effort spent by growers to monitor infestations and to time treatments (MacHardy 

1996). Apple scab occurs in all apple growing areas and is especially destructive 

where spring weather is mild and wet. Commercial apple production largely 

depends on fungicides for effective apple scab management.  

The overwintering form of the fungus are pseudothecia, fungal fruiting bodies, 

in infected leaves remaining on the orchard ground (MacHardy 1996; Vincent et al. 

2004). When temperatures are increasing in spring, ascospores, the primary 

inoculum, are produced in asci that develop within the pseudothecia (Carisse et al. 

2006). When the ascospores are mature, they discharge during rain events. The 

spores are dispersed by wind, landing on young leaves, fruit, or sepals where 

infections occur given the right conditions (MacHardy 1996; Belete & Boyraz 

2017).  

For ascospores to be released the pseudothecia require wetting (Brook 1969; 

Singh 2019). The overwhelming majority of ascospores are released when wetting 

occurs in daylight. Higher temperatures and humidity before wetting also increase 

the amount of ejected ascospores. The germination of ascospores is dependent on 

the surface of the tissue being wet, usually referred to as leaf wetness. The number 

of hours of leaf wetness required for a germination is dependent on the temperature 

(MacHardy 1996).  

Scab lesions that develop from the ascospores produce conidia (secondary 

inoculum) which can cause further infections on leaves, fruit, and shoots during wet 

weather for the rest of the season (MacHardy 1996; Belete & Boyraz 2017).  

A potential ascospore dose (PAD) is a scab risk assessment for the following 

season, which can be done after harvest but before leaf-fall. A sequential sampling 

technique is used where all leaves on 10 shoots from 10 random trees in the orchard 

are examined for apple scab (Reardon et al. 2005). The number of infected leaves 

1. Introduction  
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can be used to predict the infection risk level for the following season. If the number 

of infected leaves is between the threshold values for high and low risk, it is 

necessary to examine another 100 shoots. In low-risk orchards, fungicide 

applications can be delayed in spring. Sanitation measures during autumn have an 

important effect on threshold values (Cooley et al. 2009).  

The risk for apple scab in spring depends on the susceptibility of the apple 

variety and the level of foliar scab infections at leaf-fall as well as the amount of 

leaf litter remaining on the ground during winter and spring (MacHardy 1996; 

Biggs et al. 2010). Reducing the amount of apple scab inoculum overwintering on 

leaves is therefore an important measure to reduce disease pressure (Creemers et al 

2002). Although this may not necessarily allow for fewer fungicide applications 

during the primary infection period (ascospore infections), applications may 

become more efficient and therefore reduce the need for additional applications 

during the secondary infection period (conidial infections). Measures taken during 

the autumn to reduce the inoculum aim to accelerate leaf decomposition, by 

shredding leaves and spraying urea (Sutton et al. 2000; Vincent et al. 2004).  

Infection risk is highest in spring and early summer since young leaves and fruit 

are particularly susceptible to V. inaequalis infections (Schwabe et al. 1984; Jamar 

2011). Mature leaves and fruits gain resistance as they age, where young leaves are 

most susceptible the first 8 days after emergence (Carisse et al. 2006). Moreover, 

failure to control scab during spring is difficult to amend later in the season (Köhl 

et al. 2015). Thus, to avoid a buildup of scab in the orchard, the timing of fungicide 

application during spring is critical. Using weather-based decision support systems, 

growers can monitor infection risk to properly time fungicide applications. 

Management of apple scab has high priority for growers, since even subtle 

infections reduces fruit quality. In Sweden apples are sorted according to EU’s three 

quality norm classes for apples (Jordbruksverket 2019). The most desirable is Class 

Extra, where the apples must be free of any defects, except for insignificant external 

damage. Second is Class I, where the total surface of apple scab on an apple may 

not exceed 0.25 cm2, and finally Class II, where the total surface of apple scab may 

not exceed 1 cm2. Each class has a quality tolerance of 5-10% for apples that do not 

fulfil the criteria. If none of the quality class requirements are met, the apples are 

sorted as processing fruit (Eneqvist Staflin 2017). 

 

 

1.2. Decision support systems  

Decision-support systems (DSS) are interactive computer-based systems that help 

growers to make informed management decisions by taking several parameters and 

large amounts of data into account (Shtienberg 2013). DSSs may also act as a bridge 
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between research and growers to facilitate knowledge transfer, which is often a 

decisive point in implementing integrated pest management (IPM) strategies.  

1.3. RIMpro 

RIMpro Cloud Service (www.rimpro.eu) is an interactive DSS for pest and disease 

management in fruit production developed by Marc Trapman (RIMpro B.V., 

Zoelmond, NL). Among some of the pests and diseases it contains models for are 

apple scab, apple sawfly (Hoplocampa testudinea), codling moth (Cydia 

pomonella) and powdery mildew (Podosphaera leucotricha). RIMpro builds on 

algorithms that model the biological development of the pests and diseases 

(RIMpro 2020). The RIMpro simulation models are developed in collaboration 

with experts for the different pests or diseases. RIMpro is continuously developed 

based on user feedback, input from working groups and projects, and gains in 

knowledge of the biology of the respective pests and diseases. To predict the 

development of diseases and pests, the RIMpro models use weather forecasts from 

either the Norwegian world-wide weather service YR (www.yr.no) or the swiss 

meteorological service Meteoblue (www.meteoblue.com). RIMpro also provides a 

historical record of the development of the pests or diseases based on weather data 

from either in-orchard weather stations or virtual weather stations. By using user-

friendly interfaces RIMpro aids growers and advisers to decide upon and to time 

applications of pesticides. However, the apple scab model does not calculate an 

absolute risk since it cannot account for the ascospore potential in the orchard or 

the susceptibility of apple varieties to apple scab (Trapman 2013). To gain a better 

understanding of the actual risk level and how to interpret the model output, 

growers and advisers should first establish the general risk for each specific 

orchard, before the growing season. 

Several other decision support systems have been developed for apple scab, such 

as Fruitweb, Ag-Radar, NEWA and Skybit (Wallhead & Zhu 2017). 

1.3.1. RIMpro Model 

The RIMpro apple scab model computes a RIM value which indicates the number 

of spores germinated. The RIM value increases proportionally with infection risk, 

where the number of the RIM value can be considered as the percentage of 

ascospores in an orchard that are likely to cause an infection – divided by 100 (as 

the number of ascospores are set to 10 000 at the start of the season). For example, 

a RIM value of 500 indicates that 5% of the ascospores are likely to cause an 

infection at that given moment.  If the orchard was relatively free of scab infections 

the previous season, fungicide applications for RIM infection values below 300 can 

possibly be avoided (Trapman 2013). However, at RIM values above 600 it is 

http://www.rimpro.eu/
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recommended to spray twice, usually with an application before the predicted 

infection and one either during the infection or immediately after.  

Several factors are of importance for an apple scab infection. Some of the key 

factors the RIMpro apple scab model takes into account include: 

• The impact of rain and leaf wetness on the maturation of ascospores, and 

delayed maturation of ascospores during dry intervals. 

• Rain requirements for discharge of ascospores. 

• The effect of light and humidity on ascospore discharge, as adequate 

humidity and the light condition prior to a rain event increases the amount 

of dischargeable ascospores. On the other hand, low light and humidity 

levels, have an opposite effect.  

• Leaf wetness requirements for germination of ascospores. 

• The effect of temperature on the germination of ascospores, using the 

“revised mills infection curve” by MacHardy and Gadoury (1989) with 

some improvement from Stensvand et al. (1997) for lower temperatures.  

• Survival of ascospores during dry conditions. 

Weather data is sent to the RIMpro server where the apple scab model produces 

new outputs every 30 minutes. The user must provide a starting date, a biofix, when 

the first ascospores are ready to be discharged (RIMpro user manual, 2013). There 

are four options in RIMpro for setting a biofix. The preferred approach is petri-plate 

assay to observe discharge of first ascospores. The second option is to use spore 

traps in the orchard for detection of the first discharged ascospores. If these methods 

cannot be used, for lack of time or expertise, it is instead possible to use the date of 

when the first morphologically mature ascospores under microscope can be seen, 

or to use the phenological stage green tip.  

RIMpro contains another feature in which fungicide applications can be 

simulated. The apple scab model estimates the coverage and degradation of the 

fungicide, where the decline of the fungicide cover is estimated based on wash-off 

by rain and dilution by leaf growth (Wallhead & Zhu 2017). This means growers 

can verify the timing and efficacy of fungicide applications, and for how long the 

fungicide residue from a previous application may provide sufficient coverage for 

the next infection.  
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1.4. Weather data 

1.4.1. Grid data model background 

In Sweden, the Swedish Board of Agriculture (SJV) uses RIMpro. Currently, 

weather data is obtained from in-orchard weather stations at 35 locations. However, 

SJV is considering to obtain weather data from grid-data instead. Grid-data has a 

resolution of 2.5x2.5 km in Sweden and is calculated by the Swedish 

Meteorological and Hydrological Institute (SMHI). The current weather data is 

calculated for every grid-point by combining weather data from local weather 

stations and data from weather radar and satellites (SMHI 2019). This is done by 

the real time analysis model Mesoscale Analysis (MESAN) (Häggmark et al. 2000; 

SMHI 2019). As a starting value, MESAN uses a weather forecast from a numerical 

weather prediction model called AROME (Applications of Research to Operations 

at Mesoscale). This forecast is then modified by using observations from local 

weather stations and data from weather radar and satellites to get a better 

representation of the actual weather for a grid-point. A method called Optimal 

Interpolation is used to evaluate how the information given in the observations vary 

with the distance between the grid-point and the place of the observation. If SJV 

would eventually switch to using grid-data, LantMet, a database that collects and 

stores weather data from SMHI and local weather stations, would be used as a 

provider of the grid-data (Swedish University of Agricultural Sciences 2020b). The 

LantMet database is managed by Fältforsk, Swedish University of Agricultural 

Sciences (SLU), and is financed jointly by SLU, SJV and Hushållningssällskapet 

(Swedish University of Agricultural Sciences 2020a). Due to the large amount of 

processing power required to store data from all SMHI’s grid-points, LantMet has 

restricted its grid-points to only include those in areas with at least 37% open 

ground (T. Leuchovius 2020, personal communication, 11 September). 

1.4.2. Weather stations 

In Swedish apple orchards, Davis’ weather stations (Davis Instruments 

Corporation, Hayward, California) are currently used to collect weather data. For a 

successful disease and pest warning system weather data needs to be reliable. To 

attain reliable weather data using weather stations, it is critical to properly install 

and maintain the equipment and to continuously check for errors (Gleason et al. 

2008). Physical weather stations require constant maintenance for accurate weather 

data to be collected (Karlsson et al. 2016). As the scab model is highly dependent 

on rain, humidity, leaf wetness and temperature data, weather stations that are not 

providing correct data can impact the disease development in the model. For 

example, the entry hole of the rain bucket funnel is sometimes covered by debris – 

impacting the amount of water measured by the rain gauge (Hernebring 2008; 
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Karlsson et al. 2016). Other problems concern calibration of the temperature 

humidity sensor or that the rain gauge is not being leveled. A rain gauge tilted by 

more than a few degrees may not work properly since it affects the calibration of 

the rain gauge mechanism (Campell Scientific 2015). In addition, the amount of 

rain collected from a tilted rain bucket varies with wind direction. Therefore, rain 

gauge, temperature and humidity sensors need to be checked weekly. A yearly 

service comprising all parts of the weather station and calibrations is also required 

(Karlsson et al. 2016). 

 

1.4.3. Leaf wetness  

The presence of free water on the surface of a crop canopy is defined as leaf wetness 

(Rowlandson et al. 2015). As leaf wetness duration (LWD) is an important factor 

for infection of apple leaves, apple scab models are dependent on the LWD 

parameter (Stensvand et al. 1997; Leca et al. 2015). In Swedish apple orchards leaf 

wetness sensors are currently used. It is often difficult to measure leaf wetness as 

there are a variety of different sensors which lack reliable standards. Ehlert et al. 

(2019) showed that several commonly used leaf wetness sensors in Germany did 

not accurately reflect apple scab infections that occurred during the study period. 

Angle, orientation and canopy position are other non-standardized factors that 

influence the readings of a leaf wetness sensor (Rowlandson et al. 2015). 

Calibration and maintenance of the sensors are crucial for reliable LWD data. 

RIMpro provide users with the option of using virtual stations, based on weather 

data from Meteoblue. The meteorological data obtained for the virtual weather 

stations contain information for parameters such as temperature, air humidity and 

rain but not for LWD. This means that LWD has to be calculated from the other 

weather parameters (Trapman 2017). RIMpro uses a model which simulates the 

wetting and drying of apples leaves developed by Leca et al. (2015). It was 

validated on a large scale in 2016 by asking the RIMpro users each time they used 

RIMpro whether apple trees were wet or dry in that moment (Trapman 2017). For 

74 locations in central Europe, each observation made by the grower was compared 

to the wetness indicated by the weather station and the virtual leaf wetness. In 81% 

of the cases, the observation made by the grower agreed with the in-orchard weather 

station, while the virtual leaf wetness was correct in 73% of the cases. The main 

discrepancy was that virtual data returned “false wets” in comparison with orchard 

observations. For 35 locations all primary infections were then compared using both 

the in-orchard station and virtual data. For the 417 potential infection events that 

occurred, 88% were calculated by both data types, while 9% of the infection events 

were calculated only on the orchard station data and 3% only on virtual data. In 

65% of the infection events the severity class of the infection was the same between 

the two types of stations.  
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In RIMpro, the leaf wetness calculations for the LantMet interface are simpler 

than the leaf wetness model used for the Meteoblue interface. The LantMet 

interface uses vapour pressure deficit (VPD) and rain as indicators of leaf wetness. 

VPD is a combined function of air temperature and relative humidity, calculated by 

the difference of the amount of moisture in the air and air moisture at saturation 

point, 100% relative humidity (Medina et al. 2019). VPD drives the transpiration 

of plants. If the air humidity becomes saturated, vapour condenses to form clouds 

which will lead to condense on leaves (Prenger & Ling). In other words, a low VPD 

means the relative humidity is high whereas transpiration will be low, which 

produces leaf wetness.  

1.5. Integrated pest management  

Integrated pest management (IPM) is an ecologically based pest control strategy 

which is dependent on natural mortality factors, such as natural enemies or weather 

(Flint & Bosch 1981). IPM strategies attempts to reduce harmful organisms by 

disrupting the natural control mechanisms as little as possible. Pesticides may still 

be used, but only after careful monitoring of both pest populations and natural 

control factors. It is therefore necessary to adopt a holistic view (Barzman et al. 

2015). A holistic view requires continuous collection of information about different 

parameters such as natural enemies, other pests, and cultural practices used. These 

parameters must then be evaluated with respect to interactions between the different 

factors and the impact of control actions (Flint & Bosch 1981). The consideration 

of all available plant protection methods to reduce the development of harmful 

organisms includes even the option to take no action. It is therefore central for IPM 

strategies to reduce pesticide usage to levels that are both economically and 

ecologically justified. This is best achieved by resorting to pesticides only when 

other management tools are insufficient (Barzman et al. 2015; European 

Commission 2020). 

As of 2014 professional pesticide users throughout EU must comply with eight 

general principles of IPM (Directive 2009/128/EC). These include: (1) Prevention 

and suppression, (2) monitoring, (3) decision making, (4) non-chemical methods, 

(5) pesticide selection, (6) reduced pesticide use, (7) anti-resistance strategies and 

(8) evaluation (Barzman et al. 2015). 

An example of the first principle, “prevention and suppression”, of apple scab is 

shredding leaves. Decision support systems (DSS) can be of great value for IPM as 

it helps growers determine the level of disease and pest incidence and estimate 

potential economic loss (BiPRO GmbH 2009; Barzman et al. 2015). This can be 

done by using scientifically sound DSSs, such as RIMpro, to monitor pests and 

diseases, such as apple scab, since DSSs provide a simulation of the development 

of the pest or disease in relation to weather conditions (Shankar & Abrol 2012).  
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Monitoring provides the basis for the third principle, decision making. By 

evaluating the information from the monitoring methods, ecological and 

economical costs can be considered, and appropriate action can be taken. Choosing 

the most appropriate management strategy avoids unnecessary pesticides use, thus 

reducing a detrimental effect on environment and human health and even saving 

economic expenditure for the grower (Jordbruksverket 2020). A prime focus in IPM 

is threshold-based interventions (Barzman et al. 2015). Thresholds are however 

rarely universal. RIMpro provides risk-levels, but growers need to individually 

evaluate the situation in their respective orchards before taking action (Trapman 

2013). This is done by assessing the amount of apple scab during the previous 

season, which sanitary measures were taken during the fall, and how susceptible 

the varieties grown are.  

The fourth IPM principle, non-chemical methods, means the grower should 

avoid using pesticides if other alternatives are available (BiPRO GmbH 2009). 

Non-chemical methods such as biological methods are not available against apple 

scab. Preventative measures, such as scab-tolerant cultivars, are the only option to 

potentially avoid chemical methods (Carisse et al. 2006). 

Principles five, six and seven, are all related to the pesticide use which greatly 

depend on DSSs. Using pesticides may cause undesired side effects on beneficial 

organisms, increasing the risk for pest outbreaks (Reddy 2016).  

When pesticides are deemed necessary, pesticides with minimum impact on 

human health, non-targeted organisms and the environment should be prioritized 

(BiPRO GmbH 2009; Barzman et al. 2015; European Commission 2020). The 

pesticide application frequency, dose and area should be the lowest possible. As 

RIMpro models the development of the disease, and contains a fungicide simulation 

feature, the user may lower the application dose and frequency, based on the 

information provided by RIMpro. In addition to adverse health, economic, and 

environmental effects, the risk of resistance is another important reason why the 

use of fungicides should be limited (European Commission 2020). The seventh 

principle, anti-resistance strategies, depends on the fungicide chosen.  

The fungicide resistance action committee (FRAC 2019) classifies apple scab as 

a plant pathogen showing high risk for the development of resistance to fungicides. 

Using systemic fungicides with a curative mode of action may result in resistance 

development, while contact fungicides with a protectant quality have a lower risk 

of developing resistance (Wenneker & Jong 2018; Chatzidimopoulos et al. 2020). 

The protectant fungicides primarily affect spore germination while systemic ones 

are absorbed by the plant and then affect the fungal growth. Due to the high risk of 

resistance development of systemic fungicides, it is recommended to primarily use 

contact fungicides. An example of a multisite contact fungicide is dithianon 

(quinone class), which FRAC classifies as a low risk of resistance development. 

Dithianon has been used for almost 50 years and yet there are no reports of reduced 
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sensitivity (Stammler et al. 2013). The grower can prioritize protectant fungicides 

by applying fungicides with the correct timing based on the information provided 

by DSSs.  

The final principle, evaluation, demands that the grower evaluates the success of 

the plant protection measures taken.  

1.5.1. The role of SJV in integrated pest management 

The Swedish Board of Agriculture (SJV) is the authority in Sweden that is 

responsible to inform about IPM and to facilitate implementation, although other 

agencies are also involved (Nyrén 2013).  

SJV can offer assistance to apple growers practicing IPM. They have used 

RIMpro for 35 orchards in southern Sweden during the past decade, providing 

information about different diseases and pests, including apple scab. This service is 

provided to the public for free as a part of the government-funded goal to reduce 

the effects of pesticide use on public health and the environment (Swiergiel et al. 

2019). SJV sends weekly updates on the current situation of pests and diseases in 

Sweden. Alerts are sent to growers when the scab model exceeds warning 

thresholds for their orchards. 

It is essential that governmental institutions play a leading the role in IPM by 

providing salient information about IPM and supporting projects working to 

improve IPM-strategies, for example by making DSSs easily accessible. 

Currently 33 out of 35 weather stations used by SJV for RIMpro are situated in 

Scania, where most of the commercial apples are grown (www.fruitweb.se). 

However, switching to virtual weather data would give new opportunities to expand 

the area which is currently covered and to include more orchards. Moreover, virtual 

weather data would render installation and maintenance of weather stations 

superfluous.  

1.6. Objective 

The aim of this project was to evaluate if grid weather data can replace physical 

weather stations in the RIMpro apple scab disease model for Swedish apple 

growers. To evaluate this aim, two main questions needs to be answered:  

• Is the leaf wetness model and calculation used for virtual weather stations 

sufficient to replace the leaf wetness sensors used by the in-orchard weather 

stations? 

• Will virtual weather stations produce similar outcomes in apple scab disease 

development when compared to the physical weather stations?  
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2.1. Software and weather data 

To evaluate grid data for apple scab decision support systems, the cloud-based 

decision support system RIMpro (RIMpro B.V., Zoelmond, NL) was used. An 

interface for LantMet (http://www.ffe.slu.se/lm) (cooperation between SLU, SJV 

and Hushållningssällskapet) grid weather data was created by Marc Trapman in 

RIMpro. Since grid data from LantMet does not include leaf wetness 

measurements, vapor pressure deficit (VPD) was used as the leaf wetness parameter 

in the grid data model. The model assumed that trees were wet when the amount of 

rain was greater than 0.0 mm or when VPD was smaller than 2.5 hPa. As RIMpro 

users already have the option of adding virtual weather stations based on data from 

Meteoblue (Meteoblue AG, Basel, Switzerland), an extra set of virtual stations were 

created for every orchard to compare the use of Meteoblue versus LantMet. 

 

2.2. Site selection and experimental design 

For ten commercial apple orchards, virtual weather stations were created based on 

weather data from both LantMet and Meteoblue. The ten sites selected were based 

on the geographical distribution of apple orchards in Scania (Figure 1). A 

requirement was that the orchard had a functional weather station with few data 

gaps for the previous two seasons. The orchards where divided into three regions, 

West, Northeast, and Southeast.  

RIM values were gathered for each infection event for the primary scab infection 

period of 2019 and 2020. To compare infections between the different types of 

stations, infections were determined by the rain events which caused the main 

ejection of ascospores. When rain occurred within 5 h from each other at different 

stations they were considered to be part of the same rain event. When multiple rain 

events stretching over several days contributed to an infection, it was difficult to 

separate which of the rain events had the greatest impact. For an infection to be 

2. Material and methods 

http://www.ffe.slu.se/lm
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considered the same in these instances, at least one rainfall with a meaningful 

contribution of ejected ascospores had to occur at the different stations. 

Additionally, an overlap in the RIM value infection period was required. 

 

2.3. Statistical analysis 

All data was processed and analysed using Minitab 19 (v. 19.2020.1.0) for 

statistical analyses and Microsoft Excel (v. 16.0.13328.20356) for the numerical 

comparisons. 

To simplify the comparison between weather sources and stations, the RIM 

infection values were categorized from 0-4 based on the infection risk levels as 

defined by RIMpro graphical outputs (Table 1).  

  

Figure 1. The location of the ten selected orchards in Scania, Sweden. Source: 

https://www.google.com/maps 
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RIM value Category Risk levels in RIMpro 

0-9 0 No infection risk 

10-99 1 Sligh infection risk 

100-299 2 Medium infection risk 

300-599 3 High infection risk 

600+ 4 Extreme infection risk 

2.3.1. Comparison of infection events 

To compare infection events between the stations, principal component analysis 

(PCA) was carried out for the seasons 2019 and 2020 for all three regions. As this 

study aimed to compare three different types of stations, the difference in infection 

severity between the different stations at every infection event was the main 

interest. This means comparing different infection events was of no interest. To 

eliminate this difference in the PCA, the infection values for the different stations 

at each infection event were standardized to have an average of zero. This was done 

by subtracting the mean of the three stations infection value from each individual 

station’s infection value.  

The PCA was also complemented with Pearson correlation matrices for every 

region for the 2019 and 2020 seasons. Additionally, a simple numerical comparison 

of each stations infection category for every infection event was carried out (see 

Appendices 1 for example).  

2.3.2. Causes of differences between stations 

The main cause of categorical differences larger than one between two stations was 

further investigated. This was done by carefully comparing RIMpro’s graphical 

output and weather data for each of the three types of station for every infection 

event. Since multiple factors may contribute to differences between stations, the 

investigation of the differences was evaluated in the following order: 1) rain, 2) 

available mature spores, 3) leaf wetness duration and temperature, and 4) relative 

humidity. Only the highest ranked difference observed was counted for each 

infection event. Rain differences included both differences in rain amount and 

timing of the rain, while mature spores included differences in both available 

mature spores during the season and when spores were depleted at the end of the 

season. 

Table 1. Categorization of RIM values based on risk levels from graphical outputs in RIMpro. 
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2.3.3. Impact of distance between grid-point and weather 

station 

The distance between LantMet grid-points and weather stations in orchards was 

measured using google maps (www.google.com/maps). To determine if the 

distance of a LantMet grid-point and a weather station had any effect on the output, 

a Pearson correlation matrix was produced containing distance and the percentage 

of infections differing between LantMet and weather stations. 

2.3.4. Regional differences in infection events 

The average number of infections per orchard, each year, for the different stations 

and regions were calculated. This was done to investigate potential differences in 

performance for the different type of weather sources between the two seasons 

studied. 
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Three different weather data sources, for the 2019 and 2020 seasons, were 

investigated for the RIMpro apple scab model in southern Sweden. This was done 

for primary infections, which is caused by the sexually reproduced spores 

(ascospores).  The weather data sources used were from in-orchard, physical 

weather stations, Meteoblue and LantMet grid-data. 

A typical output of the RIMpro apple scab model is shown in figure 2. The RIM 

infection value is represented by the red line. This project was carried out after 

primary infection period ended, and therefore, a forecast was not included in the 

study. The graph shows only historical data which can be obtained by RIMpro with 

weather data from either an in-orchard weather station or a virtual weather station. 

During the ongoing primary infection period, both historical and forecasted 

infections are represented in the graphical output. 

 

3. Results 

Figure 2. Graphical output of the RIMpro apple scab model. The bottom axis shows rain (dark blue) 

and leaf wetness (light blue) over the growing season. Above, the proportion of mature spores (light 

red) and immature spores (dark red) are shown. The main graph shows the number of spores ejected 

during rain events (yellow bars), the number of spores germinating (white area), while the red lines 

represent the RIM infection value. The orange area indicates scab lesions that were initiated by 

infection from the germinating spores and are incubating in the leaf after which scab lesions will 

become visible. Used by permission of RIMpro B.V., Netherlands. 
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3.1. Numerical comparison of infection events 

For the primary infection period of apple scab in 2019, there were 130 predicted 

infection events (Table 2). In 11% of the events, all three stations produced unique 

RIM category infections, while in 19% of the cases all three stations produced the 

same RIM infection category. As seen in table 2, in 62% of the events, the RIM 

infection categories were the same for weather stations and LantMet grid-data. The 

weather station and Meteoblue data predicted the same RIM infection category for 

29% of events. When comparing the virtual stations based on LantMet and 

Meteoblue, the two produced the same RIM infection category for 37% of the 

infection events. Differences between the weather station and LantMet did not 

exceed two categories during any infection event, while the comparison of 

Meteoblue compared with either the weather station or LantMet showed differences 

of three to four categories. For the 2020 season, 100 infection events were 

predicted, 30 less than 2019. Again, the weather station and LantMet gave the 

highest percentage of the same category infections at 53%. For the weather station 

and Meteoblue 39% of the infection events had the same category and for LantMet 

and Meteoblue, 35% were the same. For 2020 there were no category 4 differences 

between any stations (Table 2). 

Table 2. Predicted primary infection events of apple scab 2019 and 2020 by different weather 

stations compared against each other for 10 Swedish apple orchards. “Δ” shows differences in 

infection severity. n = 130 for 2019; n =100 for 2020. 

Year Stations compared  Δ0 Δ1 Δ2 Δ3 Δ4 

2019 Weather station - LantMet 62% 33% 5% 0% 0% 

 Weather station - Meteoblue 29% 52% 13% 3% 3% 

 LantMet - Meteoblue 37% 44% 14% 4% 2% 

       

2020 Weather station - LantMet 53% 45% 2% 0% 0% 

 Weather station - Meteoblue 39% 48% 11% 3% 0% 

 LantMet - Meteoblue 35% 51% 12% 3% 0% 

 

3.2. Principal component analysis of predicted 

infections 

For the principal component analyses (Figure 3), all three regions in both years, 

with the exception of the West region during 2020, produced similar outputs. For 

the five plots with similar output, the first component explained the difference in 

data between Meteoblue and the other two stations, with a variance explained 

between 60.1- and 77.4%. The second component in these five analyses showed the 
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difference between LantMet and the weather stations with a variance explained 

between 22.6- and 39.4%. The PCA of the Western region in 2020 differed from 

the others where the two components are similar in variance explained, and no large 

differences were seen between the three different weather data sources.  

The PCA was complemented with correlation matrices for every region both 2019 

and 2020 (Figure 4). 

Figure 3. Loading plots from principal component analysis for standardized RIM infections for the 2019 and 2020 apple 

scab season. Within parentheses of the different components are the percentage of variance explained. For all but the 

West region 2020, the first component shows the difference between Meteoblue and both the weather station and 

LantMet. The second component then explains the difference in variance between the weather station and LantMet. For 

the West region in 2020, there was no large difference between any of the stations. 
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3.3. The number of predicted infections  

There were both regional and station-type differences associated with the number 

of infections per orchard in both years (Table 3). For all three regions, except West 

2019, the weather stations predicted more infections than Meteoblue. On average, 

weather stations and LantMet predicted infections differed between 0- and 1, while 

it differed between 0- and 2.7 for the weather station and Meteoblue. 

Table 3. The average number of infection events per station, region, and year. West n=4, Southeast 

n=3, Northeast n = 3. 

Year Region Weather station LantMet Meteoblue 

2019 West 10.0 9.0 10.0 

 Southeast 11.3 11.3 11.0 

 Northeast 12.0 12.0 9.3 

     

2020 West 6.0 6.5 5.5 

 Southeast 7.7 6.7 6.3 

 Northeast 7.0 8.0 6.0 

Figure 4. Pearson correlation matrices for each region in 2019 and 2020. For all 

regions and both years, excluding 2020 West, the correlation between the weather 

station and LantMet is stronger. For 2020 West, there are smaller differences between 

the different weather sources. 
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3.4. Causes of differences in predicted infection 

There were 87 infection events in total for 2019 and 2020 where a categorical 

difference in infection larger than one could be seen between two stations, of which 

eight involved the weather station versus LantMet (Table 4). The four causes of 

differences were rain, leaf wetness, mature spores, and relative humidity. Rain 

differences were the most common cause, contributing to 69% of the differences. 

Both mature spores and leaf wetness were found to cause 15% of the total 

differences. Relative humidity caused only one categorical difference larger than 

one. Temperature caused no observed differences. 

Table 4. Primary causes of categorical differences greater than 1 arranged by stations against each 

other for each region and year. 

Year Region Stations Rain Mature 

spores 

LW RH 

2019 West Weather station - LantMet 2 0 0 0 

  Weather station - Meteoblue 7 1 2 0 

  LantMet - Meteoblue 7 0 2 0 

       

 Southeast Weather station - LantMet 2 0 0 0 

  Weather station - Meteoblue 1 0 3 0 

  LantMet - Meteoblue 1 0 4 0 

       

 Northeast Weather station - LantMet 1 0 1 0 

  Weather station - Meteoblue 8 2 1 0 

  LantMet - Meteoblue 10 1 0 0 

       

2020 West Weather station - LantMet 1 0 0 0 

  Weather station - Meteoblue 1 0 0 0 

  LantMet - Meteoblue 2 1 0 0 

       

 Southeast Weather station - LantMet 0 0 0 1 

  Weather station - Meteoblue 2 1 0 0 

  LantMet - Meteoblue 1 3 0 0 

       

 Northeast Weather station - LantMet 0 0 0 0 

  Weather station - Meteoblue 8 2 0 0 

  LantMet – Meteoblue 6 2 0 0 
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3.5. Distance between weather sources 

The distance between the in-orchard weather station and the LantMet grid-points 

ranged between 0.4- and 4.1 km. The correlation between the percentage of 

infections differing between physical weather stations and LantMet and the distance 

between the grid-points and the in-orchard weather station was not significant (r = 

0.151). 
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The scope of this study was to compare different sources of weather data, two 

sources of virtual weather data and physical weather stations, feeding into the apple 

scab forecast provided by the decision support system RIMpro. This study 

compares 10 apple orchards in Southern Sweden, during the 2019 and 2020 

seasons. The amount and severity of infections using weather data from in-orchard 

weather stations and LantMet grid-data in southern Sweden correlated to a higher 

extent when compared to Meteoblue and the weather station. The results show that 

replacing in-orchard weather stations with LantMet grid-data in Sweden could be a 

viable option. 

4.1. Numerical comparison of infections 

The categorical infection did not exceed a difference of two between the weather 

station and LantMet at any infection event, while it was in some instances as large 

as three or four when comparing Meteoblue and the weather station. Thresholds for 

when treatment is necessary are impacted the apple variety grown, the level of scab 

recorded in the orchard the previous season, and the phenological stage of the tree. 

As these factors were not recorded for any of the stations and are not accounted for 

in the RIMpro model (with the exception of phenological stage), threshold values 

for treatment were not verified. However, category 4 infections are recommended 

to always be sprayed twice, while several factors impact the spraying decisions for 

the lower categories (Trapman 2013; Veens 2014). If the orchard had low amounts 

of scab the previous season, category 1 and 2 infections might not need treatment. 

This indicates that large categorical differences between stations will likely result 

in different management decisions.  

In 42% and 63% of the cases in 2019 and 2020, respectively, when a categorical 

difference of one was observed, one of the two stations had a category 1 infection 

while the other had no infection. This suggests a correlation between low 

categorical differences and a low severity of infection. Protection may not be 

recommended for infections of low severity and in some cases, fungicide residue 

from previous applications might be enough to protect the plant from these 

infections. 

4. Discussion 
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The categorization of the infections was necessary in order to enable statistical 

analyses. A potential problem with this categorization is that the difference in 

absolute RIM infection values between two stations may vary greatly (see 

Appendices 2). This means that two stations with different categories could be very 

similar in absolute RIM values, and therefore be treated the same way. Meanwhile 

two stations with the same category could have a larger difference in absolute RIM 

values, leading to a difference in treatment. 

4.2. Principal component analysis and correlations of 

infections  

The variation of infection severity between stations was mostly ascribed to 

differences between Meteoblue and the weather station or LantMet when running 

a principal component analysis. Only one region in one year was found to have 

similar variation between all stations. The amount of scab infections per orchard 

were 28-43% lower in 2020 than 2019 and infections were particularly mild in the 

West region, which may explain the similarities between weather data sources for 

that region. The differences seen between the stations were supported by correlation 

matrices.  

The observed differences between Meteoblue and the in-orchard weather station 

contradicts Trapman (2017). This is most likely due to the geographical factors, 

since the study by Trapman (2017) was carried out in central Europe where 

Meteoblue is based. The weather data for Meteoblue does not seem to have the 

same accuracy in southern Sweden as in central and southern Europe. For all three 

locations in the Northeast region 2020, Meteoblue had the same rain data despite a 

distance of 12 km between the orchards. This had some major impacts on the result, 

as two rain events were reported for all three Meteoblue stations, but not reported 

for either the weather stations or LantMet stations in that region. These two rain 

events caused a categorical difference in infection of two and three between the 

Meteoblue stations and the other two. For 2019, there was one rain event on May 

20th that gave an infection on all ten weather stations, whereas seven out of ten 

LantMet stations and zero Meteoblue stations predicted any infection. 

4.3. Categorical differences of infections 

Of categorical differences larger than one in predicted infections between the 

different weather sources, 65% was mainly due to differences in rainfall prediction. 

This was also where most of the difference between the weather station and 

LantMet was seen. This is not surprising since rainfall measurements are 
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susceptible to errors (Gleason et al. 2008; Hernebring 2008; Michael Pollock et al. 

2014; Campell Scientific 2015; Karlsson et al. 2016).  

The in-orchard weather stations register rain at 0.2 mm while LantMet does 

already at 0.1 mm. Because the RIMpro model requires a minimum of 0.2 mm rain 

for ascospores to be discharged, this will not have any direct impact on the number 

of spores ejected. The different cut-offs for registering rain may have had some 

effect on the leaf wetness duration, but as infections require multiple hours of leaf 

wetness in order to occur, it is unlikely that the impact is significant. Indeed, leaf 

wetness caused a difference between the weather station and LantMet predictions 

only once. This suggests that the leaf wetness calculations done for the LantMet 

weather data could be a sufficient replacement for the leaf wetness sensors used for 

the in-orchard weather stations. The reason for leaf wetness causing a difference in 

predicted infections between weather stations and Meteoblue six times, were likely 

due to the lower accuracy of weather data obtained by Meteoblue rather than the 

leaf wetness model itself. It is possible that for category 1 differences, which was 

not further investigated, that potential problems with the LantMet leaf wetness 

calculations would become more apparent.  

There was no occasion where the weather station and LantMet differed with 

respect to differences in mature spores, while it occurred in 16% of the predicted 

infections involving Meteoblue data. Most of these cases involved Meteoblue not 

recording rain on days where the other two data sources did (or the opposite), 

leading to a discrepancy in when the available mature spores were ejected. One 

could therefore argue that rain ultimately caused the difference for most of these 

cases, as rain differences led to the discrepancies in mature spores (except for a few 

occasions at the end of the season when one of the stations spores was depleted). 

On no occasion did temperature impact an infection difference between any of 

the stations. This is not surprising since temperature usually doesn’t vary greatly 

between data sources (Trapman et al. 2008). 

4.4. Distances  

The distance between the LantMet grid-points and the in-orchard weather stations, 

and the number of infections differing between the two stations showed a very weak 

correlation. It can therefore be inferred that areas with a less dense grid-network 

should be able to use LantMet, assuming that the distance does not exceed 4 km, 

which was studied here. No investigation was made of the difference in infections 

between orchards using the same grid-point, but this should be studied for future 

reference. If similar results are achieved between stations surrounding the same 

grid-point and the in-orchard stations, it might be possible for SJV or farmers to 

collectively use a single RIMpro source for multiple surrounding orchards. This 

would open the possibility to decrease cost and to cover larger areas.  
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4.5. Potential problems and future directions 

The primary infection period of apple scab in 2019 and 2020 were compared in 

retrospect. This means the infections compared here is based on the outcome of the 

historical data. However, one should be aware that when the tool is used during an 

ongoing season, most of the fungicide application decisions are based on predicted 

infections from weather forecast data, and not historical. Weather forecasts can 

change rapidly and the expected RIM may change from a high-risk infection to low-

risk infection in just a short period of time. The forecasts of infections are only as 

good as the weather forecasts used. Unreliable forecasts are what growers consider 

one of the most difficult aspects of scab management.  

Unfortunately, as this study was conducted after the primary infection period of 

2020, no comparison of the forecasted infections and the actual predicted infection 

of the models had been done. However, when it comes to forecasts differences are 

not expected between the in-orchard weather station and LantMet since they would 

both use YR as a weather forecast source. Meteoblue has its own forecast system, 

which can also be used for the other two stations for an additional fee. Weather data 

from Meteoblue forecasts would not be the same as historical Meteoblue weather 

data. Thus, the lower accuracy of historical data from Meteoblue in southern 

Sweden compared to LantMet seen in this study, would not necessarily be the case 

when comparing weather data from Meteoblue forecasts and YR forecasts. 

As the grower sometimes must take decisions days before the expected infection 

event due to the weather impacting when application can be made, they are 

dependent on the forecast being as similar to the outcome as possible. Since the 

number of fungicide applications per season is limited, spraying fungicides based 

on a forecasted infection which does not turn into an infection will not only reduce 

the number of possible applications for the season, but also be costly as well as 

having an environmental impact. 

As weekly checkups of the weather stations and scab evaluation in the orchards 

were not carried out in this project, the accuracy of the predicted infections for the 

different stations cannot be evaluated. However, multiple studies from the past few 

years have confirmed the legitimacy of RIMpro as a decision support tool for apple 

scab, where several of these studies have showed the potential of decreasing the 

number of fungicide applications during a season compared to standard farming 

practices, such as calendar-based sprays (Wallhead et al. 2017; Acimovic et al. 

2019; Garofalo 2019; Chatzidimopoulos et al. 2020). This means if the weather 

source is accurate then the predicted infection value by RIMpro can be assumed to 

be reliable. The weather stations were calibrated by a service technician before the 

season started for both years. Maintenance and recalibrations were not done by an 

expert until the next season unless some apparent problem emerged with the station. 

It was accordingly up to the grower to check the stations every week, especially 

with respect to rain measurement. Since this may not have been carried out by the 
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growers during the seasons studied, the data from the weather stations may not be 

fully reliable. This means the weather data provided by the weather stations should 

not be considered as flawless. Thus, the infections provided by the weather stations 

are not necessarily more accurate than the virtual data.  

If weather stations are handled correctly, they provide reliable orchard-specific 

weather data. For this to occur, correct positioning of the weather station and its 

different parts is required as well as weekly and yearly maintenance and calibration, 

and reliable internet connection for data to be sent (unless the stations are using 

SIM-card for data transferring). Add to this the cost and limited lifetime of the 

weather station. Meanwhile, grid weather data requires no maintenance, no 

purchase cost and can easily be added to new orchards. However, the potential 

benefits of grid-data are of no importance if the weather data supplied by the grid 

system is not representative of the weather in the orchard. Incorrect weather data 

may lead to inefficient fungicide applications, which ends up costing more for the 

grower while also having an unnecessary impact on the environment. 

Apple scab and other fungal pathogens are more difficult to model than many 

insect pests, as they are more dependent on parameters such as rain and leaf 

wetness, which are harder to predict and measure. For the simulation of insect 

biology, such as the codling moth model, virtual data is easier to implement because 

of its primary dependence on temperature, which varies less between data sources 

when compared to rain (Trapman et al. 2008). 

4.6. Conclusion 

The aim of this study was to evaluate if grid weather data can replace physical 

weather stations in the RIMpro apple scab model for Swedish apple orchards. For 

a potential implementation of grid-data, similar outcomes of the apple scab 

infection predictions calculated by RIMpro were considered necessary. 

Additionally, as leaf wetness is not obtained directly from the grid-data, the 

additional calculations needed to obtain leaf wetness values had to be considered a 

sufficient replacement to leaf wetness sensors. The results from this study shows 

promising results for implementing grid-data from LantMet as few infections 

differed between the stations from LantMet and in-orchard weather stations by 

more than one category.  

The leaf wetness was only causing a difference in infection between LantMet 

and the weather stations once, implying the leaf wetness calculations done for 

LantMet would be a satisfactory replacement. Ideally this study would have been 

conducted with forecasts included during ongoing season. In addition, regular 

check-ups of the weather stations should be made to make sure reliable data is 

collected. 
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Providing more Swedish apple growers with the opportunity of using a DSS, can 

aid in the process of improving integrated pest management. On multiple occasions 

during the conducted study, spores were ejected after a rainfall but the conditions 

following the ejection were not sufficient for an infection to occur. This means 

unnecessary applications can be avoided by following the development of the 

disease. Gridded weather data would give multiple growers an opportunity to start 

using RIMpro for a lower cost than currently, as no weather stations would be 

required. 

Before a full implementation can be applied, forecasts should be tested during 

another season, where weather stations are continuously checked and maintained. 
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Appendices 1 

Figure 5. Graphical outputs from the same orchard for the same period but with different weather 

sources used (weather station, LantMet and Meteoblue). Highlighted in red is a predicted 

infection event which occurred on all three weather sources, with the same infection severity. 

Highlighted in blue is a predicted infection event which occurred only on the Meteoblue weather 

source. The RIM-value of this predicted infection passed the threshold for the highest severity 

risk, giving a category 4 infection. As the other two weather sources did not predict any infection 

for this event, a category 4 difference in infection severity were seen between Meteoblue and the 

other two weather sources. Used by permission of RIMpro B.V., Netherlands. 
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Appendices 2      

Table 5. RIM infection value for all 10 stations for the primary infection period of apple scab 2019. Organized in color by 

region. 
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Table 6. RIM infection value for all 10 stations for the primary infection period of apple scab 2020. 

Organized in color by region. 


