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Every year, each human excretes approximately 4 kg of nitrogen, 1 kg of potassium and 0.3 kg of 

phosphorus through their urine. In conventional wastewater treatment, these nutrients are usually 

not recovered for agricultural production, although they can enhance plant growth. Dehydration 

technologies decrease the volume of source-separated urine and increase its nutrient density, 

facilitating the use of the dried product as fertiliser. This study investigated the suitability of various 

alkaline dehydration media for urine dehydration. Magnesium oxide and calcium hydroxide were 

used as alkalising agents, and biochar and wheat bran acted as co-substrates. Pure magnesium oxide 

and mixtures between magnesium oxide, biochar, wheat bran and calcium hydroxide were subjected 

to an average dehydration temperature of 48.3 °C (SD 2.8 °C) during the dehydration process. In 

this dehydration setup, all dehydration media reduced the mass of urine by > 90 % and dehydration 

rates of > 19 kg m-2 d-1 were observed. Magnesium oxide showed an N-recovery of 66.8 % (±1.2), 

while the other four dehydration media showed an N-recovery rate of > 74.5 %. A large amount of 

the ammonia that could not be recovered was plausibly lost due to ammonia stripping, as > 30 % of 

the urea in the urine used for this experiment was already hydrolysed. These promising dehydration 

and N-recovery rates contribute to the research on new on-site dehydration systems that sustainably 

produce fertiliser out of human urine. 

Keywords: Nutrient recovery, Fertiliser, Urine drying, Source separation, Magnesium oxide, 

Calcium hydroxide 
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If human urine is dried in alkaline dehydration media at about 50 °C, plant nutrients 

that otherwise would get lost can be retained. 

Urine contains urea, a substance rich in nitrogen. Nitrogen is the main 

component of air and crucial for the growth, health, and well-being of plants, as it 

is an essential element of protein. Urea is rapidly broken down when it gets into 

contact with an enzyme called urease. Bacteria produce enzymes and use them as 

their tools to transform one substance into another to access nutrients. Urease is 

very abundant in nature, and when the enzyme urease gets a hold of urea, it turns it 

into another nitrogen-rich substance called ammonium. Ammonium can become 

gaseous, and if that happens, it can get lost to the air and cannot be accessed by 

most of the plants anymore. In urine-collecting sanitation systems, the urease 

enzyme, therefore, needs to be deactivated to avoid losing nitrogen to the 

atmosphere. The urine can be made acidic or alkaline to deactivate urease. If the 

pH or the temperature is too high or too low, urea gets destroyed, and the plant-

available nitrogen gets lost, even though urease might not be active anymore. 

Therefore, our research group tried to find a combination of temperature, pH and 

material, which works best to inactivate the urease and conserve the urea of the 

urine. In this study, we used magnesium oxide and calcium hydroxide (also called 

“slacked lime”), to make the urine alkaline. We mixed these substances with wheat 

bran and biochar because they help with the drying of urine and wheat bran already 

contains some nitrogen. We also raised the air temperature to about 50 °C because 

previous studies indicated that this temperature could provide accelerated drying, 

while still keeping thermal urea degradation at a minimum. According to our 

results, less than 1 m² of material would be needed to dehydrate the urine of four 

people, if each person excretes 1.5 L urine per day. This means that a family with 

four family members could easily fit the dehydration unit into their existing 

bathroom. The family would require about 15 kg of magnesium oxide for urine 

dehydration per year, which equates to approximately 5 USD annual costs. As a 

minimum, 150 L of urine can be dehydrated per kg of magnesium oxide. A 

dehydration unit of 1 m² and a depth of 1 cm for a family of four, needs to be 

changed about 5 times a year, so about every 2.5 months. The dried fertiliser could 

be collected, and the new dehydration medium could be provided via municipal 

solid waste collection, minimising the administrative and logistical burden. 

Popular Scientific Summary 



 

 

Using alkaline dehydration, we recovered more than 67 % of the nitrogen in the 

urine. The other essential nutrients plants needed in larger quantities (so-called 

“macronutrients”), like phosphorus and potassium, are also retained in this dry 

fertiliser because drying at this temperature does not affect them, so they stay in the 

substrate. 

On a personal, societal and global level, this means that with urine separation 

and subsequent dehydration with one of the dehydration media that we developed, 

we can: 

1. save resources and money by cutting down on the use and production of 

artificial fertiliser 

2. reduce the pollution of water bodies and the need for wastewater treatment 

because the input of nutrients into the water streams is minimised 

3. reduce the costs for the transport of urine because of the volume reduction 

4. produce a dry fertiliser that farmers might be willing to use as it is easy to 

handle with already existing infrastructure and equipment 
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By the year 2050, there will be an estimated 9.7 billion people living on earth 

(United Nations, Department of Economic and Social Affairs, Population Division 

2017). An increase in population inevitably comes with an increased demand for 

food and agricultural products. In conventional agriculture, fertiliser containing N 

(nitrogen), P (phosphorus) and K (potassium), a so-called “NPK-fertiliser”, is often 

used to fertilise agricultural soils and to increase crop yields. Such artificial 

fertiliser is produced by using finite resources like potash and phosphate rock, and 

energy-intense processes are needed to make nitrogen derived from the atmosphere 

plant-available. Rockström et al. (2009) established planetary boundaries for the 

exploitation of these finite resources, and Steffen et al. (2015) showed that 

humanity has, in regards to the biochemical flows of nitrogen and phosphorus, 

exceeded the planetary boundaries for safe development. Steffen et al. (2015) 

determined that the planetary boundary for the flow of P from freshwater systems 

to the ocean lies at approximately 11 Tg P year-1, while the current flow lies at 

22 Tg P yr-1, so at about double of the amount of the planetary boundary. They 

further state that the planetary boundary for the intentional and industrial biological 

fixation of N is at 62 Tg N yr-1, while it is currently approximately 150 Tg N yr-1, 

which is more than double of the limit. This means that humanity needs to cut down 

on introducing reactive N and P into water bodies, as the current conditions are far 

beyond sustainable. According to the Food and Agriculture Organization of the 

United Nations (2019), the world demand for fertiliser nutrient use of N, P2O5 and 

K2O is projected to increase to 201 Mt in 2022 though. This represents an increase 

of over 7.8 % over the demand of 2016. To satisfy the increase in fertiliser demand, 

and to be able to feed an additional 2 billion people by 2050, humanity needs to 

either increase the production of artificial fertiliser or ramp up its efforts to find 

other strategies to supply crops with nutrients. 

One of these strategies is the recycling of plant nutrients that are excreted 

through urine and faeces. Presently human excreta are often seen and treated as 

waste products and sometimes even discarded without treatment, although they 

could be safely collected, treated and recycled. This attitude can lead to 

environmental problems like eutrophication of ponds and lakes and the 

development of hypoxic zones in coastal areas (Lienert & Larsen 2010; National 

Oceanic and Atmospheric Administration 2019). Akram et al. (2019) on the other 

1. Introduction  
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hand showed that if Sweden would recycle all human excreta (based on data from 

2007), instead of treating them as waste products, it could theoretically meet 167 % 

of its crop potassium, 81 % of its crop phosphorus and 75 % of its crop nitrogen 

needs. This shows that there is the potential that excreta recycling can decrease the 

demand for artificial NPK-fertiliser not only in Sweden but worldwide. Excreta are 

the sum of urine and faeces, which both contain valuable plant nutrients. These 

plant nutrients are not equally distributed between urine and faeces though, with 

urine containing 50–80 % of the phosphorus, 80–90 % of nitrogen and 80–90 % of 

the potassium of the amounts consumed through food (Kirchmann & Pettersson 

1994; Jönsson 2001; Vinnerås 2001). Faeces also contain bacteria that are 

pathogenic for humans, while human urine is usually free of pathogens (Willey et 

al. 2014). Because of their inherently different properties, it is beneficial to collect 

and store urine and faeces separately for further treatment and usage (Larsen et al. 

2013). 

In recent decades, the beneficial properties of urine have raised interest in using 

human urine or products derived from it, as a fertiliser (Kirchmann & Pettersson 

1994; Larsen & Gujer 1996; Jönsson et al. 1997; Stintzing et al. 2004; Vinnerås et 

al. 2008; Winker et al. 2009; Karak & Bhattacharyya 2011; Senecal & Vinnerås 

2017; Harder et al. 2019; Simha et al. 2020b). The simplest way of separately 

collecting urine and faeces is by using urine separating toilets and urinals, where 

separation occurs directly after excretion. Stored urine could be applied to 

agricultural fields directly (Vinnerås et al. 2008), but its high water content of 97 % 

(Putnam 1971) can cause problems with logistics and application, as high volumes 

have to be transported over long distances to be applied to agricultural fields 

(Trimmer & Guest 2018; Chipako & Randall 2020). This is why different strategies 

for nutrient extraction and nutrient concentration from urine have emerged in recent 

years (Maurer et al. 2006; Harder et al. 2019). Some technologies like membrane 

distillation (Tun et al. 2016; McCartney et al. 2020), passive evaporation (Bethune 

et al. 2014) and nitrification-distillation (Udert & Wächter 2012; Fumasoli et al. 

2016), focus on volume reduction, which increases the nutrient concentration in the 

product. Other technologies, for instance, ion-exchange (Tarpeh et al. 2017), 

precipitation (Lind et al. 2000; Etter et al. 2011) and stripping (Başakçilardan-

Kabakci et al. 2007; Pradhan et al. 2017) on the other hand focus on the extraction 

of selected nutrients from urine. While volume reduction can be very advantageous 

regarding logistics, most of the mentioned technologies do not capture all plant 

nutrients. For instance, during passive evaporation, nitrogen is lost to the 

atmosphere because of urea hydrolysis (Bethune et al. 2014). Therefore, before the 

volume of urine is reduced, it needs to be biochemically stabilised either by 

acidification or alkalinisation to inhibit urea hydrolysis by urease (Randall et al. 

2016; Saetta & Boyer 2017). The stabilised urine can then be dehydrated to produce 

a dry, powder-like product, which can easily be transported and spread on 
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agricultural soil. Alkaline urine dehydration technologies have successfully been 

tested in the past and show promising results regarding volume reduction and 

nutrient recovery (Dutta & Vinnerås 2016; Senecal & Vinnerås 2017; Simha 2020; 

Simha et al. 2020b). The closer the dehydration of urine happens to the point of 

excretion; the faster urea hydrolysis can be inhibited, and the lesser liquid urine 

volume has to be transported through pipes or by motorised transport. If 

dehydration happens in the toilet itself, no additional pipes have to be installed, and 

the moist air can exit the building through the buildings ventilation system. The dry 

nutrient-rich powder could be collected by municipal waste collection systems, 

which regularly visit the households. Therefore, on-site dehydration technologies 

hold the potential for the simple production of nutrient-rich fertiliser. Past studies 

regarding alkaline dehydration have used different alkalising substances like wood 

ash, alkalised biochar or calcium hydroxide to stabilise urine (Dutta & Vinnerås 

2016; Senecal & Vinnerås 2017; Simha et al. 2018, 2020b). Magnesium oxide 

though, a substance able to raise the pH of urine to pH 9.9 (± 0.2) and with low 

solubility in urine, that is regularly used in struvite production from urine (Maurer 

et al. 2006), has never before been tested as an alkaline dehydration medium, 

despite its promising properties. 
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The two main objectives of this experiment were to: 

1. evaluate if magnesium oxide is suitable for alkaline urine dehydration, as 

its low solubility in urine promises benefits regarding cost savings and 

user-friendliness. 

2. compare five dehydration media consisting of varying proportions of 

magnesium oxide, calcium hydroxide, wheat bran and biochar regarding 

their dehydration rate, N-recovery, mass reduction and physicochemical 

properties 

2. Objective 
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3.1. Current practices 

Sanitation in countries in Europe and North America heavily relies on sewered 

sanitation systems. These sanitation systems use drinking water as a transport 

medium to carry human excreta from their source to a wastewater treatment plant 

or directly into the environment. Sewered sanitation relies on a costly network of 

sewage- and water supply pipes, water- and wastewater treatment plants and regular 

operation and maintenance (Langergraber & Muellegger 2005). In conventional 

wastewater treatment plants, the focus lies on removing organic matter and plant 

nutrients like phosphorus or nitrogen from the wastewater. When none of the 

products of this sanitation system are reused as plant nutrients, it can be described 

as a linear sanitation system, in comparison to circular sanitation, where plant 

nutrients are fed back to the agricultural system. The plant nutrients that are entering 

a linear sanitation system and that are not reused in agriculture, can, therefore, be 

seen as lost for the agricultural system. The objective of installing such wastewater 

treatment plants in the first place was to keep plant nutrients and organic matter 

from entering the water bodies to prevent eutrophication and to prevent the spread 

of diseases (Orhon 2015). 

3.2. Reuse approaches 

In recent years, realising the upcoming shortage of non-renewable resources like 

phosphorus and nitrogen (Rockström et al. 2009; Ashley et al. 2011; Steffen et al. 

2015), the topic of plant nutrient recycling is coming back to the agenda of politics 

and society. Reuse approaches include the direct use of sewage sludge or different 

methods for phosphorus-recovery from the sewage sludge. The use of sewage 

sludge as a fertiliser has often been restricted or banned though, or restrictions for 

its use are being discussed (Regeringskansliet 2018; Umweltbundesamt 2018; VN 

2019). In Austria, restrictions were put in place because it has been found that 

sewage sludge can contain different contaminants like the plasticiser 

3. Literature 
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Bis(2-ethylhexyl) phthalate or the flame retardant Hexabromocyclododecane 

(Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft 

(BMLFUW) 2016). These and other contaminants are often introduced into the 

wastewater stream by mixing blackwater1 with wastewater from industries, 

greywater2 from households and rainwater runoff from streets in combined sewers 

or at the wastewater treatment plants. This cross-contamination of faeces and urine 

with contaminants from other sources during its transport and treatment is another 

reason why alternatives for conventional sewered sanitation systems have gotten 

more attention since the 1990s. It has been suggested many times that source 

separation of urine and faeces could be beneficial for plant nutrient recycling 

(Harder et al. 2019). It was also hypothesised that source separation and 

decentralised treatment technologies could provide means to tackle the increasing 

need for sanitation services in urban contexts that are projected to increase due to 

population growth (Larsen et al. 2013). Human urine attracted particular attention 

because it contributes a large part of the plant nutrients and volume of human 

excreta, while at the same time, urine only forms a small part of the total 

wastewater, less than 1% (Kirchmann & Pettersson 1994; Larsen & Gujer 1996; 

Jönsson et al. 1997). 

3.3. Characteristics and hygienic quality of human 

excreta 

The most obvious difference between human faeces and human urine is their water 

content and therefore, their state. Human faeces are composed of about 74 % water 

(Rose et al. 2015) and semi-solid, while urine is liquid and consists of around 97 % 

water (Senecal & Vinnerås 2017). Besides these visible differences, also the 

hygienic quality of faeces and urine differs significantly. Faeces can contain a 

multitude of potentially pathogenic bacteria, viruses, protozoa and helminths 

(Feachem et al. 1983), while urine, if excreted by healthy mammals, is usually free 

of pathogens, but not sterile (Hilt et al. 2014; Willey et al. 2014). This is because 

there is an inhospitable environment in the bladder, kidneys, and ureter produced 

by metabolic end products like enzymes, fatty acids, mucin, uric acid and a low pH 

(Willey et al. 2014). If a person is infected with Leptospira interrogans, Salmonella 

typhi, Schistosoma haematobium or Salmonella paratyphi, or certain kinds of 

helminths though, their urine can contain these specific pathogenic microorganisms 

(Feachem et al. 1983; Heinonen-Tanski & van Wijk-Sijbesma 2005). Separating 

urine and faeces from the point of excretion onwards provides the benefit of 

avoiding contact between urine and faeces and therefore, the introduction of large 

 
1 The mixture of faeces and urine with flush water and anal cleansing material or anal cleansing water. 
2 Water that was used for bathing, washing of clothes, food, and dishware.  
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numbers of pathogens into the urine. Even though urine separating interfaces 

separate the urine from faeces, faecal cross-contamination cannot entirely be ruled 

out with today’s technologies. Studies showed that urine in collection tanks had a 

mean faecal contamination ranging from non-detection up to 13.3 mg Lurine
-1  

(Höglund et al. 1998) and 9.1 mg Lurine
-1  (± 5.6 mg) respectively (Schönning et al. 

2002). 

3.4. Human urine as fertiliser 

Although plant nutrients can be found in human faeces as well, urine is the primary 

source of plant nutrients in human excreta (Table 1) (Vinnerås et al. 2006). 

Parameter Urine (kg person-1 year-1) Faeces (kg person-1 year-1) 

Wet mass 550 51 

Dry mass 21 11 

Nitrogen 4 0.55 

Phosphorus 0.365 0.183 

Potassium 1 0.365 

About 85 % of the N in urine is present in the form of non-volatile urea (Kirchmann 

& Pettersson 1994). If the urine gets into contact with urease, an extracellular 

enzyme with a high abundance in the environment (Mobley & Hausinger 1989; 

Krajewska 2009), the urea is hydrolysed to the volatile form ammonia (NH3) and 

carbonic acid. The half-life of urea, when subjected to urease from jack beans 

(Canavalia ensiformis), is 0.02 s at 25 °C (Callahan et al. 2005). Urea hydrolysis 

also increases the pH and produces bicarbonate ions (Hellström et al. 1999). After 

urea is hydrolysed, about 90 % of the total nitrogen occurs as NH4
+ and NH3 (Udert 

et al. 2006). 

𝐶𝑂(𝑁𝐻2)2 + 3𝐻2𝑂
𝑢𝑟𝑒𝑎𝑠𝑒
→    2𝑁𝐻4

+ + 𝐻𝐶𝑂3
− + 𝑂𝐻− 

𝑁𝐻4
+ + 𝑂𝐻−↔𝑁𝐻3(𝑎𝑞) + 𝐻2𝑂 

𝑁𝐻3(𝑔) ↔ 𝑁𝐻3(𝑎𝑞) 

 

Table 1. Proposed default values for excreted mass and nutrients in kg person-1 year-1 (Vinnerås et 

al. 2006) 

Equation 1. Urea hydrolysis via urease enzyme   

Equation 2. Ammonium and dissolved ammonia are in equilibrium  

Equation 3. Gaseous ammonia is in equilibrium with dissolved ammonia 
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Because the urine-pH and the concentration of ammoniacal nitrogen are rising 

during urea decomposition, there is a risk of ammonia evaporation, which leads to 

a loss of nitrogen to the surrounding air. Ammonia has a Henry’s constant of 

62 mol L-1 atm-1, making it a very volatile substance (Larsen et al. 2013), so the 

partial pressure of ammonia in the layer of air on the surface of the urine strongly 

influences the evaporation of ammonia, and ventilation, for instance through wind 

or forced ventilation by fans, will increase the ammonia-evaporation (Hellström et 

al. 1999). Since the urease enzyme is ubiquitous, urea hydrolysis will occur, 

increasing pH. The increased pH causes precipitation of struvite, calcite and 

hydroxyapatite in sewage and urine pipes and storage tanks (Udert et al. 2003; 

Larsen et al. 2013) and also occurs when urine is applied directly to agricultural 

fields. The ammonia in urine that degases into the surrounding air can be seen as 

“lost” for the agricultural system, as most plants cannot fix nitrogen from the air. 

This ammonia-loss is not only an odour nuisance but also contributes to 

environmental pollution and a decline in plant biodiversity (Guthrie et al. 2018). 

Urease activity and enzymatic ureolysis need to be inhibited to minimise these 

nitrogen losses due to urea hydrolysation. This can be done by stabilising the urine 

through acidification (Hellström et al. 1999; Saetta & Boyer 2017) or alkalinisation 

(Randall et al. 2016; Senecal & Vinnerås 2017). As urease is ubiquitous in toilet 

bowls, sewage pipes and storage tanks and since the half-life of urea can be as short 

as 0.02 s, inhibition of ureolysis needs to happen as close to the source of excretion 

as possible. If nitrogen recovery in the form of urea is to be maximised, long 

transport of untreated urine through pipes should be avoided. This speaks for 

decentralised sanitation systems, where urine separation and treatment happen at 

the source. 

3.5. Urine-diverting user interfaces 

To collect urine and faeces separately, they need to be kept separate from excretion 

onwards. There are several user interfaces on the market, which facilitate this 

separation. So-called “Urine-Diversion Toilets” (UDT) keep urine and faeces 

separate at the source. There are two different varieties: “Urine-Diverting Dry 

Toilets” (UDDT) and “Urine-Diverting Flush Toilets” (UDFT). In UDDTs, the 

faeces are collected without the addition of flush water (and with the design shown 

in Figure 1, also without anal cleansing water), and in UDFTs the faeces get flushed 

away using water (Figure 2). Urinals, as seen in Figure 3, facilitate the collection 

of urine with or without flush water, but do not offer a possibility for the collection 

of faeces. 
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Figure 1. Urine-Diverting Dry Toilets (UDDTs), with the design for people using toilet paper on 

the left and the design for people using water for anal cleansing on the right side (amended from 

Tilley et al., 2014) 

 
Figure 2. Urine-Diverting Flush Toilet (UDFT) (amended from Tilley et al., 2014) 
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Figure 3. Different versions of urinals (amended from Tilley et al., 2014) 

3.6. Urine treatment technologies 

Due to the different scenarios where a need for urine treatment and urine-diversion 

might arise, like in a rural area versus a city, with centralised versus decentralised 

treatment solutions and because of the different aims of urine treatment, various 

urine treatment technologies have emerged. Maurer et al. (2006) classified urine 

treatment technologies into seven categories: stabilisation, volume reduction, 

hygienisation, N-recovery, micropollution removal, P-recovery and nutrient 

removal. Harder et al. (2019) then classified treatment technologies for urine and 

yellow water (a mixture of urine and flush water) into four categories: stabilisation, 

contaminant reduction, water extraction and nutrient extraction. These two 

classifications are mostly overlapping, and as the focus of this study lies in the 

recovery of N from urine, an overview of the most relevant technologies in the area 

of nutrient recovery is provided: 

1. Struvite crystallisation 

Struvite, which is magnesium ammonium phosphate 

(MgNH4PO4 · 6H2O), can be produced by adding magnesium to urine, and 

it precipitates in a pH range of about pH 7 to pH 11. Usually, MgCl2, 

Mg(OH)2, or MgO are used as a magnesium source (Maurer et al. 2006).  

When the urea in urine is hydrolysed, it increases the alkalinity of urine by 

about factor 20 (Udert et al. 2006), which further aids struvite precipitation 

(J. R. Buchanan et al. 1994). More than 90 % of phosphate and some N 

can be recovered by struvite precipitation, and which can then be used as a 

slow-release fertiliser (Bridger et al. 1962; Lind et al. 2000; Ban & Dave 
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2004; Ronteltap et al. 2007, 2010; Wilsenach et al. 2007; Etter et al. 2011; 

Udert et al. 2016; Harder et al. 2019). 

2. Ion Exchange 

Substances with a high affinity for ammonium like naturally occurring 

zeolite (for instance clinoptilolite or wollastonite) have been tested for 

removal of ammonia from urine and the treatment of wastewater (Ban & 

Dave 2004; Tarpeh et al. 2017). Ion exchange combined with struvite 

precipitation recovered 65–80 % of N from urine (Lind et al. 2000). 

3. NH3-stripping 

Ammonia gas can be stripped of urine using air as a carrier and water or 

H2SO4 as a receiving medium. Behrendt et al. (2002) showed that 

ammonia extraction from stored urine under vacuum (0.4 bar pressure) at 

40 °C, and absorption of the gas in water under 5 bar at 20 °C, resulted in 

a 10 % ammonia solution. Pradhan et al. (2017) used a combination of 

struvite production with Ca(OH)2 and ammonia stripping with H2SO4 and 

recovered 99 % of P and 85–99 % of N (w/w) from urine in 28 h at 40 °C. 

4. Nitrification-distillation 

This system combines biological nitrification by nitrite-oxidising bacteria 

and ammonia-oxidising bacteria for nutrient recovery with distillation for 

nutrient concentration. This combination of processes reduces the water 

content of the urine by 95–97 % and recovers all nutrients contained in 

urine in a concentrated nutrient solution or a dry solid, although about 3 % 

of the total nitrogen of the urine is lost during distillation. The process 

produces distilled water and sludge as a by-product and uses about 

140 Wh L-1 energy, which is mainly used for water evaporation (Udert & 

Wächter 2012; Fumasoli et al. 2016; Udert et al. 2016). 

5. Membrane distillation 

In conventional, direct contact membrane distillation, a temperature 

difference from one side of a hydrophobic, microporous membrane to the 

other creates a vapour pressure difference, which leads to a dewatering 

process. This concentrates the nitrate and ammonia on the membrane's 

feed side (Tun et al. 2016). Other technologies like isothermal membrane 

distillation with an acidic collector have a lower energy demand than 

conventional membrane distillation, do not suffer from poor selectivity in 

ammonia transport which dilutes the ammonia concentration of the 

product and achieve about 60 % ammonia recovery from urine 

(McCartney et al. 2020). 
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6. Dehydration 

Urine consists of approximately 97 % of water (Senecal & Vinnerås 

2017), which is why dehydration can drastically reduce the volume of 

urine. All nutrients found in urine can be fully recovered through 

dehydration. However, if the input urine is not stabilised by acidification 

or alkalinisation, most of the nitrogen degases to the surrounding air in the 

form of NH3, due to the hydrolysis of urea in urine. In the passive and 

open evaporation system that Bethune et al. tested in 2014, about 90 % of 

the NH3/NH4 of the input-urine got lost to the atmosphere. Measures to 

prevent hydrolysis of urea, which drastically increase the N-recovery in 

the dehydration step include acidification (Antonini et al. 2012; Saetta & 

Boyer 2017) and alkalinisation of the urine (Dutta & Vinnerås 2016; 

Simha et al. 2018, 2020b). If the urine is alkalised, all P and more than 

90 % of N can be recovered from the urine (Simha et al. 2020b). 

Besides dehydration and nitrification-distillation, all these technologies leave 

behind a liquid residue containing most of the other constituents of urine besides 

the recovered nutrient(s). This presents a problem, as this residue has to be dealt 

with and presents a new waste stream (Udert et al. 2016). Dehydration elegantly 

avoids creating this additional waste stream by evaporating the water and only 

leaving behind a solid residue, which can then be used as a dry fertiliser in 

agriculture. 

3.7. Dehydration 

The purpose of dehydration is “to remove bound water or hydrogen and oxygen 

from (a chemical compound) in the proportion in which they form water” 

(Definition of DEHYDRATE 2018 by Merriam-Webster). This study used 

convective cross-flow air drying in a batch mode to remove water from the 

dehydration medium by evaporation, to reduce the volume and the weight of the 

product. This dehydration process involves two steps that happen simultaneously – 

heat transfer and the resulting mass transfer. Heat energy is transferred to the 

dehydration medium by the heated air. The water vapour that forms above the 

dehydration medium's surface due to evaporation is transported away from the 

substance (confer Figure 4). Factors that influence the dehydration process are the 

velocity, temperature and humidity of the air. As long as the evaporation rate limits 

the dehydration rate, increasing the air velocity will increase the heat and mass 

transfer and the dehydration rate. Increasing the temperature and decreasing the 

humidity of the air will also increase the dehydration rate in the onset, as long as 

case hardening (the formation of a moisture-impermeable crust on top of the 
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dehydration medium) is avoided (Berk 2009). If moisture removal rates are 

improved by one of the factors mentioned above, the area required for dehydrating 

a particular volume of water or urine could be reduced, hence improving the area 

footprint of the urine dehydrating technology (Simha et al. 2020b). 

3.8. Alkaline dehydration of urine 

Urea hydrolysis is pH-dependent, and Kabdaşlı et al. (2006) reported that no 

biological or chemical urea hydrolysis is detectable at pH 10 or higher at a 

temperature of 20 °C (± 1 °C). However, Geinzer (2017) found that urease enzymes 

can be reactivated after the pH drops below pH 10 again. Bethune et al. (2014) 

showed that about 90 % of the NH3/NH4 from the input-urine got lost in their open 

passive evaporation system that did not inhibit urease. This significant loss of 

nitrogen indicates that passive evaporation without inhibition of urease activity is 

not an efficient way to recover nitrogen from urine. 

Studies showed that it is possible to recover > 90 % of the N from urine by 

alkaline dehydration, using different dehydration media and temperatures (Simha 

et al. 2020b). The dehydration media and temperatures used, and the N-retention 

attained in earlier studies were: 

1. a mixture of calcium hydroxide and wood ash, with a dehydration 

temperature of 20 °C, 35 °C and 60 °C, leading to an N-recovery of up to 

74 % at 35 °C (Dutta & Vinnerås 2016), 

2. wood ash, at 35 °C and 60 °C, leading to an N-recovery of up to 90 % at 

35 °C (Senecal & Vinnerås 2017), 

3. wood ash or alkalised biochar, at 40 °C, 45 °C and 50 °C, leading to an N-

recovery of >70 % at all temperatures (Simha et al. 2018), 

4. biochar, wheat bran, desert soil, wood ash and calcium hydroxide, alone or 

in combination at a temperature of 50 °C and 60 °C, leading to an N-

recovery of > 90 % at both temperatures (Simha et al. 2020b), 

5. a mixture of calcium hydroxide and wood ash, used in two pilot plants, at 

dehydration temperatures varying from 40 °C (± 27 °C) to 66 °C (± 15 °C) 

and from 36 °C (± 20 °C) to 64 °C (± 14 °C) respectively, lead to a 

recovery of 30 % (± 6 %) N (Simha et al. 2020a). 

The concept of alkaline dehydration is illustrated in Figure 4, exemplified by the 

setup used for this study. 
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Figure 4. Alkaline dehydration of urine exemplified by the setup used in this study; a. fresh urine; 

b. heated air; c. urine infiltrating in and being absorbed by the dehydration medium; d. alkaline 

dehydration medium (e.g. magnesium oxide as alkalising agent and biochar as co-substrate); e. 

Petri dish; f. moisture-laden air; g. evaporation (own work, adapted from Simha et al. (2018)) 

3.8.1. Limiting factors for alkaline dehydration of urine 

Temperature 

In previous studies at SLU (Dutta & Vinnerås 2016), it was found that lower 

dehydration temperatures (for example 35 °C) lead to higher nitrogen retention if 

urine is dehydrated on a mixture of ash and lime. This gain in N-retention comes at 

the cost of longer dehydration times. Randall et al. (2016) tentatively suggested an 

upper limit for dehydration temperature at 40 °C to avoid excessive chemical urea 

degradation, which he suggested should be explored in future studies. 

pH 

The pH of the mixture of urine and dehydration medium gradually declines during 

convective dehydration, mainly because CO2 is being absorbed, and 𝐶𝑂3
2− and 

𝐻𝐶𝑂3
− is formed (Simha et al. 2018). This means that either enough alkalising 

medium to always keep the pH >10 needs to be provided initially or additional 

alkalising medium needs to be continuously resupplied, risking N-loss if urea is 

reactivated when the pH falls below 10, as shown by Geinzer (2017). Chemical 

urea hydrolysis limits the scope of both urine acidification and alkalinisation 

technologies, as it significantly decreases the urea half-life from more than a year 

at around 20 °C down to days at pH <2 and pH >12 at temperatures of >60 °C 

(Randall et al. 2016). 
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3.8.2. Alkalising media used in previous studies 

The studies mentioned above that were carried out at SLU looked at wood ash, 

alkalised biochar and calcium hydroxide as alkalising media. 

Wood ash 

Wood ash is a waste product readily available in regions where wood is used for 

cooking or heating purposes. It has a high initial pH of >12.5 and a high surface 

area (Senecal & Vinnerås 2017). 

Alkalised biochar 

The pH of biochar depends on the feedstock from which is it derived and the 

conditions during pyrolysis. Zhang et al. (2019) found the biochar used during their 

experiments to have a slightly alkaline pH of around 8.76 (Zhang et al. 2019). Since 

urea hydrolysis is only inhibited by a pH >10 (Geinzer 2017), it needs to be 

alkalised to be used as an alkalising agent. This can be done, for instance, by a 

method described by Simha et al. (2018) where biochar is mixed with KOH pellets 

and deionised water, to reach a pH >12.5. 

Calcium hydroxide (Ca(OH)2) 

Calcium hydroxide is well known for its alkalising properties and used in 

agriculture to treat acidified soils. Randall et al. (2016) showed that the saturation-

pH of calcium hydroxide in urine is pH 12.5, its solubility in urine 3.5–5 g L-1 and 

that the addition of 4.3–5.8 g Ca(OH)2 Lfresh urine
-1  at 25 °C prevented urea hydrolysis 

by urease. They also suggest adding 10 g Lfresh urine
-1  to ensure sufficient Ca(OH)2 is 

always available for urease inhibition. It is a low-cost, broadly available bulk 

chemical (US$ 0.08 kg-1) (Muster et al. 2013), which is already extensively used in 

agriculture to combat acidification of soils (Haynes & Naidu 1998). 

3.9. Motivation for dehydration media selection and 

system setup 

Two alkalising media were chosen for this study: magnesium oxide and calcium 

hydroxide. Two co-substrates were chosen for this study: wheat bran and biochar. 

3.9.1. Magnesium oxide (MgO) 

The motivation for including MgO in this study was threefold. Firstly, it was to be 

tested, if the saturation-pH of magnesium oxide of pH 9.9 (SD 0.2) in urine (Simha 

et al. in preparation) would be sufficient for sustained inhibition of urea hydrolysis, 

as Geinzer (2017) found that urea hydrolysis was only inhibited at pH >10. 
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Secondly, it was assumed that its low solubility in unhydrolysed urine of 

<1.5 g Lurine
-1  (Simha et al. in preparation) could provide benefits over other 

alkalising agents like Ca(OH)2, whose solubility is more than double. A 

dehydration medium containing MgO that is used in a dehydrating toilet would 

have to be changed less frequently than a dehydration medium containing Ca(OH)2, 

which would increase the user-friendliness of the toilet. Thirdly, the ability of MgO 

to capture the ammonium present in urine that was shown in earlier studies 

(Wilsenach et al. 2007) might further increase N-recovery. Because of its novel use 

as an alkalising agent for alkaline urine dehydration, it was also of the highest 

interest to test the use of pure magnesium oxide as a dehydration medium. 

3.9.2. Calcium hydroxide (Ca(OH)2) 

Calcium hydroxide was selected for this experiment because of its beneficial 

properties like high alkalinity, low price, broad availability, and its widespread use 

in agriculture. To establish if there were differences in the pH of the dehydration 

media where calcium hydroxide is used in combination with magnesium oxide, 

calcium hydroxide was mixed into two out of five dehydration media used in this 

study. For alkalinisation of fresh urine, Randall et al. (2016) suggest using 

10 g Ca(OH)2 Lurine
-1 , to have solid Ca(OH)2 present in the urine at all times to ensure 

a high pH. Studies about the sole use of calcium hydroxide as dehydration medium 

already exist (Simha et al. 2020b), so for this study, calcium hydroxide was mixed 

with magnesium oxide, which itself is also able to raise the pH to about pH 10, so 

it was chosen to use less than 10 g Ca(OH)2 Lurine
-1 . 

3.9.3. Wheat bran 

Wheat bran, which forms about 14–16 % of the grain, is produced during the 

milling process when the endosperm is separated from the germ and bran fraction 

of wheat. It is made up of the aleurone layers, testa, pericarp and hyaline (Stevenson 

et al. 2012). When wheat bran was compared against sawdust as a potential 

candidate for the use as a part of the dehydration media, it seemed to have less of a 

market for reuse, besides being used as an ingredient of fodder and for few baking 

goods (Reisinger et al. 2013). So, using wheat bran for urine dehydration could 

establish new reuse options and open new markets for it. Wheat bran also introduces 

some nitrogen into the dehydration medium, making the final fertiliser product an 

even more valuable fertiliser. 

3.9.4. Biochar 

Biochar is widely used as an agricultural soil amendment (confer “Terra preta”) (De 

la Rosa 2020). It can be produced by a range of processes like hydrothermal 

conversion, pyrolysis or gasification, where biomass is heated without a supply of 
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oxygen (Zheng et al. 2010). Biochar is able to adsorb NH4
+ and PO4

3- (Cai et al. 

2016; Takaya et al. 2016; Trazzi et al. 2016), and ammonia adsorbed by biochar 

was shown to be bioavailable for plants (Taghizadeh-Toosi et al. 2012). Urea 

intercalated biochar showed potential as a slow-release fertiliser (Manikandan 

2013). Trial runs established that biochar could break up the lipid-film that can 

accumulate at the surface of urine during dehydration, a property, which could 

prove beneficial during dehydration (unpublished data). Biochar is widely 

available, but prices vary significantly from 80 USD to > 13 000 USD t-1 depending 

on, e.g. the quality of the biochar (Campbell et al. 2018). As biochar has so many 

beneficial properties, it was included in four out of five dehydration media of this 

study. The percentage of biochar varied from 33 % to 75 % of the mass of the 

dehydration medium. 

3.9.5. Airflow and dehydration temperature considerations 

Choosing an airflow rate of around 5 Lair min-1 and a dehydration temperature of 

50 °C was based on experiences made during previous studies. For instance, Dutta 

and Vinnerås (2016) aimed at inhibiting urea hydrolysis by urease by using a 

mixture of Ca(OH)2 and wood ash as dehydration medium. In their study, the 

highest nitrogen retention of 74 % was achieved at a dehydration temperature of 

35 °C. Dutta and Vinnerås stated that further research was needed to find an optimal 

combination of a dehydration temperature between 35–60 °C and airflow of 1–

5 L min-1 in the dehydration setup. 
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4.1. Urine collection 

Approximately twenty volunteers (male and female) of around 25–65 years and 

with different diets and lifestyles anonymously donated urine at the Department of 

Energy and Technology, SLU at different times during the day. Sterile, high-density 

polyethene bottles with a screw cap, a separate seal and a volume of 500 mL (VWR 

International, Gosselin, France) were used to collect the urine. The filled bottles 

were collected after each working day, so within less than 12 h and stored at 3 °C 

(± 1 °C) for less than 14 days before the urine was used for the experiments. The 

collected urine had an average pH of 6.6 (SD 0.2) and an average EC of 

11.7 mS/cm (SD 1.2). 

 

 
Figure 5. Urine collection in sterile bottles in the toilets at the department of Energy and 

Technology, SLU (own work) 

4. Materials and Methods 
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Figure 6. Urine yield of one workday (approximately 9 L) (own work) 

4.2. Experimental procedure 

4.2.1. Urine preparation 

To prepare a uniform urine mixture for the dehydration runs, about 5 L of urine was 

taken from the refrigerator and mixed in a sterile, 5 L glass Florence flask. The 

mixed urine was then poured back into the 500 mL HDPE-bottles (Gosselin, 

France) in which the urine was collected and stored before mixing. 450 mL of fresh 

urine was needed for each run of the experiment (30 mL of urine were applied to 

each of the 15 samples of the dehydration media), so 450 mL of urine was put aside 

for start of the experiment, and all remaining bottles were refrigerated again for 

future dehydration runs. 

4.2.2. Media preparation 

Each dehydration medium had a mass of 30 g at the start of the experiment 

(composition confer Table 2). For detailed descriptions about sources of the 

materials used for the dehydration media, see Table 6 in the Appendix. Magnesium 

oxide (MgO) (Acros Organics, Belgium; laboratory-grade) in powder form 

(d99 < 150 µm), non-activated biochar (Vindelkol AB, Sweden; grain size < 1 mm), 

wheat bran (Kungsörnen, Sweden; food-grade) and calcium hydroxide (Ca(OH)2) 

(Nordkalk Corporation, Sweden; technical grade, powder-form) were used as is, 

and not pre-treated. 
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Dehydration media name 

MgO 

(% of total) 

Biochar 

(% of total) 

Wheat Bran 

(% of total) 

Ca(OH)2 

(% of total) 

(MgO) (Char) (Bran) (Lime) 

MgO 100.0    

MgO-Char 25.0 75.0   

MgO-Char-Lime 11.7 66.7  21.7 

MgO-Char-Bran 25.0 37.5 37.5  

MgO-Char-Bran-Lime 11.7 33.3 21.7 33.3 

 

 
Figure 7. Dehydration medium with MgO (a), biochar (b), wheat bran (c) and Ca(OH)2 (d) during 

the weighting and before the mixing process (own work) 

30 g of dehydration medium (composition in Table 2) was placed into square 

polystyrene Petri dishes with an edge length of 100 mm and a height of 20 mm 

(Sarstedt, Germany). The substances were weighed into the same Petri dish and 

mixed using a stainless-steel spatula (confer Figure 7). The experiment was done 

in triplicate, meaning that three Petri dishes were prepared with each dehydration 

medium. 

4.2.3. Application of urine 

Before application to the dehydration media, the urine was heated to 37 °C (± 2 °C) 

in a water bath for about 5 min, to mimic the temperature of urine at excretion. The 

urine temperature was repeatedly measured with a thermometer to avoid 

overheating (FLUKE 52 k/J, John Fluke MFG.CO., INC). Before each dehydration 

run, 30 mL of urine was uniformly applied to each dehydration medium, using a 

pipette (Eppendorf Research 10 mL Pipette, Eppendorf AG). The weight of the 

added urine was weighed (Adventurer Pro AV2102, OHAUS Corporation; 

Table 2. Mass composition of the dehydration media, values of ingredients given in % of total 

mass, rounded to one decimal place. The mass of each dehydration medium was 30 g 
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d = 0.01 g), and an average urine density of 1.04 g mL-1 (SD 0.01) was calculated. 

Therefore, the 90 mL of urine that were applied during the first run equated to an 

average of 94.90 g (SD 0.61) and the 30 mL of urine that were added for each other 

experimental run, equated to an average of 31.33 g (SD 0.74). In total, an average 

of 1159.99 g (SD 1.97) of urine was added to each dehydration medium throughout 

the experiment. Unpublished trial runs (Simha and Friedrich) showed that biochar 

is very electrostatic for about the first 12 hours of dehydration time, leading to a 

loss of biochar as particles get displaced out of the Petri Dishes. It was also noted 

that biochar gets displaced out of the Petri Dishes if the fans' air velocity inside the 

dehydration setup is too high. Based on the experience from these trial runs, it was 

decided to: 

1. apply a larger amount of urine (90 mL instead of 30 mL) to each 

dehydration medium before the very first dehydration run 

2. reduce the initial fan speed 

4.2.4. Dehydration time and temperature 

Dehydration happened at a mean temperature of 48.3 °C (SD 2.8 °C) (confer 

Dehydration temperature in Results). Based on experiences made during a previous 

study by Simha et al. (2020) an estimated dehydration rate of 7 min mL-1 was 

assumed, and each dehydration run was set to last for 3.5 h (0.15 d). Due to the 

addition of 90 mL of urine in the first dehydration run, a dehydration time of 10.5 h 

(0.44 d) for this dehydration run was chosen. Every sixth experimental run, the 

dehydration media were dried for 4.5 h (0.19 d), to avoid the accumulation of 

excess urine. After each dehydration run, the samples were removed from the oven 

and weighed (Adventurer Pro AV2102, OHAUS Corporation; d = 0.01 g). 

4.2.5. Dehydration setup 

Fresh urine was dehydrated in a modified benchtop oven (Electrolux, Sweden) with 

inner dimensions of 42 cm width by 35 cm depth by 32 cm height. The oven was 

equipped with eight computer fans (Spire Corp, The Netherlands) with a dimension 

of 60 mm edge length by 15 mm height, rated at an airflow of 464 L min-1 at 12 V 

to allow for better air distribution inside the oven. Four fans (two fans on each side) 

were installed for each of the two layers of drying racks in the oven (Figure 8, 

number 2). The front of the fans was facing the dehydration media, and the fans 

were pointed towards each other, providing an airflow parallel to the surface of the 

dehydration media. The fans had an adjustable voltage which allowed for regulation 

of the fan speed. Four holes were drilled into the top of the oven to insert plastic 

tubing for forced aeration of the oven with four aquarium pumps (“Rena 301”) 

(Rena Aquatic Supply, USA), each rated at 5–5.5 Lair min-1 and 30 kPa (Figure 8, 
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number 1). Plastic T-piece adapters were installed at the end of the aquarium pump 

tubing to ensure distribution of the inlet air parallel to the surface of the dehydration 

media (Figure 8, number 5). 

 

 
Figure 8. Schematic drawing of modified benchtop oven used as dehydration setup with inner 

dimensions of 42 cm width by 35 cm depth by 32 cm height (own work) 

Two standard oven racks were used to ensure unrestricted airflow. The benchtop 

oven's door was kept open at a width of 4 cm during the whole experiment to avoid 

overpressure and let moist air escape the dehydration system. 

 

 
Figure 9. Oven racks used in the dehydration setup with five dehydration media in triplicates (own 

work) 
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4.2.6. Shifting of the samples in the dehydration setup 

The position of the samples in the oven was changed before each dehydration run. 

During trial runs (unpublished data), the samples positioned next to the fans or on 

the lower oven rack (closest to the heating elements in the floor of the oven), dried 

best. After each run, priority for the places with better drying capacity was given to 

samples that had pooling on top of the substrate. This was done to be able to add 

urine to this dehydration medium in the next experimental run again because too 

much pooling would have prohibited further addition of urine. Priority was also 

given to never have all triplicates of one dehydration medium on the same oven 

rack. 

4.2.7. Mixing of dehydration media during the experiment 

After the first and the second dehydration runs, the dehydration media were 

manually mixed with a spatula within their own Petri dish before urine was added 

for the next dehydration run. After discussion with Vinnerås, it was decided to stop 

mixing the dehydration media after each dehydration run, to limit the time the 

samples are out of the dehydration setup and to avoid any material loss by spilling 

of material during the mixing process. 

4.2.8. Storage of the dehydration media between dehydration 

runs 

Due to the duration of the dehydration runs, the experiment lasted from 26.06.2017 

to 20.07.2017. Between the dehydration runs, the samples were stored with a Petri 

dish lid, at ambient temperature in the laboratory, which was 21 °C (± 2 °C). The 

samples were stored following the dehydration runs 1–7, 9, 10, 12, 14, 16, 19, 27, 

30 and 31. 

4.3. Physicochemical analysis 

4.3.1. Procedure 

Each working day, after all dehydration runs were performed, a sample of 10 mL 

of the mixed urine that was used for the dehydration runs, was collected and stored 

at -20 °C for further analysis. This urine was then analysed for electrical 

conductivity (EC), pH, volatile solids (VS), NH4-N, total solids (TS), Tot-P and 

Tot-N. 
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4.3.2. pH and EC 

The pH of the urine and the dehydration media was measured with a pH-meter 

(PHM210, RADIOMETER ANALYTICAL S.A., France) and a pH-probe (Red 

Rod Combined pH electrode, RADIOMETER ANALYTICAL S.A., France). An 

EC-meter (Cond 340i, WTW, Germany) and an EC-probe (TetraCon 325, WTW, 

Germany) were used to measure electrical conductivity. The dehydration media's 

pH and EC were measured twice in total, once at the beginning of the experiment 

and once at the end of the experiment. The urine pH and EC were measured for 

each batch of urine after it was mixed in a sterile, 5 L Florence flask (see Materials 

and Methods). 

For the preparation of the dehydration media samples, 5 g of each dehydration 

medium was mixed with 25 mL of urine in conical 50 mL polypropylene Falcon™ 

centrifuge tubes. It was mixed using an analogous vortex mixer (VWR, USA) and 

then left to rest for one hour. Then the pH and the EC of the supernatant was 

measured. Urine was used instead of distilled water to measure the pH and EC 

because it was of interest for this experiment, which pH and EC the dehydration 

media reach when they react with the urine. 

4.3.3. Mass measurements 

For measuring the mass during this study, two different scales have been used. For 

the measurement of mass during total solids and volatile solids determination of the 

urine, a digital scale with four decimal places of accuracy (OHAUS Corporation, 

USA) was used. A digital scale with two decimal places of accuracy (OHAUS 

Corporation, USA) was used for all other measurements. 

4.3.4. Total solids (TS) and adjustment for loss of urea 

The total solids of the dehydration media were measured by subjecting them to a 

temperature of approximately 110 °C for 14 h. When setting the oven to 110 °C, 

the analogous temperature control of the benchtop oven sometimes showed 

temperatures of up to 120 °C. Since the temperature was not measured in any other 

way, the temperature is given as an approximation. If the analogous measurement 

showed higher readings than 110 °C, the temperature was adjusted back to 110 °C 

as soon as it was noticed. 

To account for the urea-loss due to heat, the urine-TS were adjusted by 

calculating the urea concentration in the urine. 

The NH4-N concentration in urine was 1.7 g Lurine
−1  and the concentration of Tot-

N 5.73 g Lurine
−1 . Assuming that NH4-N and urea-N are the only forms of N in urine, 

NH4-N accounts for approximately 30 % of Tot-N, and urea-N accounts for the 

remaining 70 % of N, therefore equating to 4.03 g Lurine
−1 . 



41 

 

4.3.5. Volatile solids (VS) 

The samples and the urine that were heated for TS-determination were then 

subjected to 550 °C for a duration of 6 h in a muffle oven to determine the volatile 

solids content of the dehydration medium and the urine. 

4.3.6. Nitrogen, Phosphorus, Potassium and Carbon 

The initial P-, and K-content of the dehydration media was calculated using results 

of the analysis of biochar and wheat bran which were analysed using emission 

spectrophotometry with inductively coupled plasma (ICP) (Optima 7300 DV 

Coupled Plasma Optical Emission Spectrophotometry (ICP-OES), PerkinElmer 

Inc., USA). It was assumed that Ca(OH)2 and MgO did not contain any P or K. 

Therefore, pure Ca(OH)2 and pure MgO were not analysed for their P- or K-content. 

The dehydration media's final N- and C-content was measured using Dumas dry 

combustion method (LECO Corporation, USA). It was assumed that Ca(OH)2 and 

MgO do not add a significant amount of N or C to the dehydration media. Therefore, 

pure Ca(OH)2 and pure MgO were not analysed for their N- or C-content. 

After the experiment, samples of all dehydration media were analysed for their 

final P- or K-content using emission spectrophotometry with inductively coupled 

plasma ICP (Avio 200 ICP Optical Emission Spectrometer, PerkinElmer Inc., 

USA). 

The Tot-N of the urine was analysed using “Spectroquant Crack Set 20” (Merck 

KGaA, Germany) and “Spectroquant Nitrate test NO3
- test kit” (Merck KGaA, 

Germany). The test kit has a measuring range of 1–25 mg L-1 NO3-N. The urine 

was diluted 1000-fold with deionised water for the analysis. 

The NH4-N-content of the urine was analysed using “Spectroquant Ammonium 

test” (Merck KGaA, Germany). The test has a measuring range of 5–150 mg L-1 

NH4-N. The urine was diluted 100-fold with deionised water for the analysis. 

The P-content of the urine was analysed using “Spectroquant Crack Set 10” 

(Merck KGaA, Germany) and “Spectroquant Phosphate test” (Merck KGaA, 

Germany). The test kit has a measuring range of 0.05–5 mg/L PO4-P. The urine was 

diluted 1000-fold with deionised water for the analysis. 

After preparation with the test kits, a photometer (NOVA 60 A Spectroquant®, 

Merck KGaA, Germany) was used to take N and P readings. 

4.3.7. Calculations 

The dehydration media were evaluated for their effectiveness to reduce urine mass 

(on wet basis). For evaluating the mass reduction, we used Equation 4, for the mass 

concentration factor Equation 5 and for the average dehydration rate Equation 6. 

The mass of the dehydration medium at the beginning of the experiment was 

labelled as 𝑚𝑚𝑒𝑑𝑖𝑎, the total mass of urine added to in the experiment 𝑚𝑢𝑟𝑖𝑛𝑒, and 
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the mass of the product at the end 𝑚𝑒𝑛𝑑−𝑝𝑟𝑜𝑑𝑢𝑐𝑡. The surface area in m² was labelled 

𝐴, dehydration time was labelled 𝑡, the Petri dish weight after the addition of urine 

to the dehydration medium was labelled 𝑤𝑖, the Petri dish weight after the 

dehydration was labelled 𝑤𝑖+1 and the number of dehydration runs was labelled 𝑛. 

𝑚𝑎𝑠𝑠. 𝑟𝑒𝑑𝑊𝐵 = (
𝑚𝑚𝑒𝑑𝑖𝑎 +𝑚𝑢𝑟𝑖𝑛𝑒 −𝑚𝑒𝑛𝑑−𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑚𝑚𝑒𝑑𝑖𝑎 +𝑚𝑢𝑟𝑖𝑛𝑒
) × 100 

𝑚𝑎𝑠𝑠. 𝑐𝑓𝑊𝐵 = (
𝑚𝑚𝑒𝑑𝑖𝑎 +𝑚𝑢𝑟𝑖𝑛𝑒
𝑚𝑒𝑛𝑑−𝑝𝑟𝑜𝑑𝑢𝑐𝑡

) 

𝑑𝑟𝑦. 𝑟𝑎𝑡𝑒𝑊𝐵̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑛
∑(

𝑤𝑖 − 𝑤𝑖+1
𝑡 × 𝐴

) × 100

𝑛

𝑖=1

 

To estimate the N-recovery, a mass balance was carried out on a Tot-N basis. The 

mass balance was compared against the potential urea-recovery at 48.1 °C 

(±1.5 °C), the average temperature inside the dehydration setup. Using an equation 

by Simha et al. (2020b), a urea half-life of 133 days was calculated. The estimation 

for theoretical urea-N-recovery was based on the urea-N content, which was 

estimated to be 70 % of Tot-N in the input-urine. This was done by assuming that 

NH4-N and urea-N are the only forms of N in the input-urine and since the 

concentration of NH4-N was 1.7 g Lurine
−1 , so about 30 % of the concentration of 

Tot-N 5.73 g Lurine
−1 . 

4.3.8. Statistical analysis 

Normality of the data was tested using a Shapiro-Wilk test, and the equal variance 

between the different dehydration media data was verified using the Brown-

Forsythe-Levene test. We performed an analysis of variance (ANOVA) followed 

by a Tukey’s Honest Significant Difference Test (HSD) to reveal significant 

differences (p = 0.05) between the dehydration media. For comparison of the 

dehydration media's physicochemical properties at the beginning and at the end of 

the experiment, unpaired two-sample Student’s t-tests were executed. The software 

used for all statistical analyses was RStudio version 1.2.5042 and R version 4.0.0 

(RStudio Team 2016), with R-packages “agricolae” by de Mendiburu (2020) and 

“car” by Fox & Weisberg (2019). 

Equation 4. Mass reduction (% wet basis) 

Equation 5. Mass concentration factor 

Equation 6. Average dehydration rate 
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4.3.9. Exclusion of Outlier 

One of the triplicates of MgO-Char had to be excluded from the calculations 

because it was categorised as an outlier after discussion with Vinnerås. This was 

concluded after reviewing the results of the analysis of the N-content which were 

determined by burning in a “TruMac”-furnace. Two of the triplicates showed a very 

similar nitrogen content of 4.12 % and 4.39 %, while the third sample showed 

0.71 %. The sample was analysed again, and the second analysis confirmed the 

significantly lower nitrogen content. This was the only case where an outlier was 

detected, and the only case where a triplicate was excluded from further 

calculations. It is believed that this outlier was due to contamination of the sample 

with urease, which was incompletely inactivated because this triplicate showed the 

lowest final pH (pH 9.71) of all dehydration media. 

4.3.10. Handling of errors 

Handling of the few errors that happened during the experiments: 

1. Dehydration time too long or too short: Time was added to or deducted 

from the next experimental run. All dehydration media had the same total 

dehydration time. 

2. If too much urine was added (40 mL instead of 30 mL), which happened 

once for one of the triplicates of MgO, in the next run, less urine (20 mL 

instead of 30 mL) was added. All dehydration media had the same total 

amount of urine added to them. 



44 

 

5.1. Mass balance 

 
Figure 10. Mass balance of all dehydration media, displaying average values, n = 3 (only for 

MgO-Char n = 2, as one triplicate was excluded from the calculations since it was identified as an 

outlier) 

MgO

Urine in (g) Medium in (g) Product out (g) Gases out (g)

Mass 1162.00 Mass 30.00 Mass 84.60 Mass 1104.90

N 6.36 N 0.00 N 4.25 N 2.11

P 0.68 + P 0.00 → = P 0.32 + P -

K 2.12 K 0.00 K 2.12 K -

TS 13.50 TS 30.00 TS 55.90 TS -

TSadj 23.50 VS - VS 65.00 TSadj -

MgO-Char

Urine in (g) Medium in (g) Product out (g) Gases out (g)

Mass 1160.10 Mass 30.30 Mass 113.00 Mass 1073.40

N 6.36 N 0.02 N 4.80 N 1.58

P 0.68 + P 0.00 → = P 0.38 + P -

K 2.45 K 0.03 K 2.48 K -

TS 13.50 TS 30.10 TS 54.60 TS -

TSadj 23.50 VS - VS 64.90 TSadj -

MgO-Char-Lime

Urine in (g) Medium in (g) Product out (g) Gases out (g)

Mass 1160.40 Mass 30.30 Mass 112.60 Mass 1072.10

N 6.36 N 0.02 N 4.74 N 1.64

P 0.68 + P 0.00 → = P 0.37 + P -

K 2.34 K 0.03 K 2.37 K -

TS 13.50 TS 30.00 TS 54.00 TS -

TSadj 23.50 VS - VS 64.20 TSadj -

MgO-Char-Bran

Urine in (g) Medium in (g) Product out (g) Gases out (g)

Mass 1159.00 Mass 30.10 Mass 111.90 Mass 1072.30

N 6.36 N 0.30 N 5.07 N 1.60

P 0.68 + P 0.11 → = P 0.46 + P -

K 2.34 K 0.15 K 2.49 K -

TS 13.50 TS 29.00 TS 54.10 TS -

TSadj 23.50 VS - VS 64.90 TSadj -

MgO-Char-Bran-Lime

Urine in (g) Medium in (g) Product out (g) Gases out (g)

Mass 1158.50 Mass 30.20 Mass 113.00 Mass 1070.80

N 6.36 N 0.27 N 4.94 N 1.69

P 0.68 + P 0.10 → = P 0.43 + P -

K 2.37 K 0.13 K 2.51 K -

TS 13.50 TS 29.10 TS 52.90 TS -

TSadj 23.50 VS - VS 63.50 TSadj -
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Mass balances were carried out for all dehydration media (Figure 10). All 

dehydration media managed to reduce the mass of urine by > 90 %, with pure MgO 

being significantly more effective (p > 0.001) and weighing around 25 % less than 

the other products at the end of the experiment. When MgO was mixed with other 

substrates, the mass concentration factor reduced (Table 3). There were no 

significant differences between the average dehydration rates of the different 

dehydration media (p > 0.05), which varied from 19.1 kg m-2 d-1 (± 4.3) to 

19.7 kg m-2 d-1  (± 4.5) for MgO. The average dehydration rate of each dehydration 

medium (Table 3) varied over time due to material properties as well as the position 

of the dehydration medium on the oven racks. 
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Figure 11. Dehydration rate of the dehydration media in kg m-2 d-1 over the course of the total 

dehydration time of 5.6 days. n = 3 (only for MgO-Char n = 2, as one triplicate was excluded 

from the calculations since it was identified as an outlier); the first experimental run lasted 10.5 h 

(0.44 d) (90 mL urine addition), “regular” dehydration runs lasted 3.5 h (0.15 d) (30 mL urine 

addition), and “dry runs”, which were done to avoid excess accumulation of urine, lasted 4.5 h 

(0.19 d) (indicated by grey symbols) 
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N-recovery was estimated by performing the mass balances (Figure 10) and showed 

that pure MgO had the lowest N-recovery of about 67 %. The highest N-recovery 

was achieved in the dehydration medium that consisted of a mixture of MgO with 

biochar and wheat bran (for media composition see Table 2). When Ca(OH)2 was 

part of the media, the N-recovery decreased compared to the other dehydration 

media mixtures (Table 3), although the difference was not always statistically 

significant. 

Properties MgO MgO-Chara 

MgO-Char-

Lime 

MgO-Char-

Bran 

MgO-Char-

Bran-Lime 

mass.redWB 

(%) 

92.9 (0.1)A 90.5 (0.3)B 90.5 (0.2)B 90.6 (0.5)B 90.5 (0.4)B 

mass.cfWB 14.1 (0.2)A 10.6 (0.4)B 10.6 (0.2)B 10.7 (0.6)B 10.5 (0.6)B 

dry.rateWB 

(kg d-1 m-2) 

19.7 (4.5) 19.1 (4.3) 19.2 (4.7) 19.2 (4.6) 19.5 (5.0) 

N-recovery 

(%) 

66.8 (1.2)D 75.5 (0.4)BC 74.5 (0.9)C 79.7 (1.1)A 77.6 (0.7)AB 

a n = 2, because one triplicate was identified as an outlier and excluded from the calculation 

The dehydration process (at approximately pH 10 and 50 °C) resulted in a loss of 

> 20 % nitrogen. About 70 % of the Tot-N in urine was assumed to be present as 

urea-N (confer Materials and Methods), so according to Warner (1942), under the 

prevailing conditions during dehydration, chemical urea hydrolysis should only 

account for 1.2 % of urea loss, which means that urea was also lost due to other 

factors. All media besides pure MgO managed to recover more than 74 % of the 

input Tot-N, so the other media did most probably recover around 15–30 % of the 

ammonium. 

5.1.1. Elemental composition 

All elemental compositions were calculated on TS-basis (see Table 4). Using pure 

MgO as a dehydration medium, resulted in an NPK-content of 6.5 % (N), 0.5 % (P) 

and 3.3 % (K). All other dehydration media, where MgO was mixed with other 

substances (composition see Table 2), achieved a higher NPK-content at the end of 

the experiment. The dehydration media with the highest NPK-content were MgO-

Char-Bran and MgO-Char-Bran-Lime, both of which achieved on average about 

7.8 % (N), 0.7 % (P), 3.9 % (K), their NPK-content not significantly being 

influenced by calcium hydroxide (p < 0.05). The final C-content of the dehydration 

media was lowest in MgO with 6.8 % and highest in MgO-Char with 30.9 %. 

Table 3. Means and standard deviation of mass reduction on wet basis (𝑚𝑎𝑠𝑠. 𝑟𝑒𝑑𝑊𝐵), mass 

concentration factor on wet basis (𝑚𝑎𝑠𝑠. 𝑐𝑓𝑊𝐵), dehydration rate on wet basis (𝑑𝑟𝑦. 𝑟𝑎𝑡𝑒𝑊𝐵) and 

N-recovery from urine for all dehydration media; n = 3, significant difference is illustrated by 

different superscript letters within the same row (α = 0.05) 
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Properties MgO MgO-Chara 

MgO-Char-

Lime 

MgO-Char-

Bran 

MgO-Char-

Bran-Lime 

N      

initial 0.0 (0.00)D 0.07 (0.01)C 0.07 (0.01)C 1.01 (0.01)A 0.9 (0.00)B 

final 6.5 (0.12)C 7.4 (0.04)B 7.4 (0.09)B 7.8 (0.11)A 7.8 (0.07)A 

P      

initial 0.0 (0.00)C 0.01 (0.00)C 0.01 (0.00)C 0.38 (0.01)A 0.3 (0.01)B 

final 0.5 (0.03)C 0.6 (0.00)B 0.6 (0.02)B 0.7 (0.02)A 0.7 (0.01)A 

K      

initial 0.0 (0.00)D 0.09 (0.01)C 0.08 (0.01)C 0.49 (0.02)A 0.4 (0.01)B 

final 3.3 (0.22)B 3.8 (0.01)A 3.7 (0.09)AB 3.8 (0.21)A 3.9 (0.23)A 

C      

initial 0.0 (0.00)E 54.2 (1.75)A 48.2 (1.56)B 43.5 (0.88)C 38.6 (0.78)D 

final 6.8 (0.04)D 30.9 (0.4)A 29.8 (0.7)A 27.7 (0.8)B 24.8 (0.3)C 
a n = 2, because one triplicate was identified as an outlier and excluded from the calculation 

5.1.2. pH and EC 

The initial pH of all dehydration media was ≥ 9.8, with media with only MgO as an 

alkalising substance having a pH of about 10, reflecting the saturation-pH of 

MgO/Mg(OH)2 in urine established by Simha et al. (in preparation). Randall et al. 

(2016) established a saturation-pH of Ca(OH)2 in urine of pH 12.5, which is well 

reflected by both media containing Ca(OH)2, having an initial pH of ≥12.6. There 

was no significant difference in the final pH of the dehydration media (p > 0.05), 

with all media dropping to a pH of about pH 10. The urine that was added to the 

dehydration media had an average EC of 11.7 mS cm-1 (± 1.2) and increased the 

final EC of all dehydration media (besides pure MgO) to around 25 mS cm-1. 

  

Table 4. Mean elemental composition displayed in % of total solids of the dehydration media at 

the beginning and end of the experiment, n = 3, standard deviation in parentheses; within rows, 

same superscript letters illustrate no significant difference (α = 0.05) 
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Properties MgO MgO-Charc 

MgO-Char-

Lime 

MgO-Char-

Bran 

MgO-Char-

Bran-Lime 

pH      

initiala 10.3 (0.0)C 10.2 (0.1)C 12.7 (0.0)A 9.8 (0.0)D 12.6 (0.0)B 

finalb 10.1 (0.0)A 9.9 (0.0)A 10.0 (0.1)A 9.9 (0.0)A 10.0 (0.3)A 

EC 

(mS cm-1) 

     

initiala 9.2 (0.0)AB 8.7 (0.0)AB 12.8 (3.9)A 6.6 (1.2)B 13.1 (2.9)A 

finalb 29.7 (0.6)A 25.4 (0.5)B 25.2 (0.3)B 25.8 (0.9)B 25.4 (0.5)B 
a the urine used for the analysis of the initial pH and EC of the dehydration media had a pH of 6.7 

and an EC of 9.4 mS cm-1 
b the urine used for the analysis of the final pH and EC of the dehydration media had a pH of 6.9 

and an EC of 10.1 mS cm-1 
c n = 2, because one triplicate was identified as an outlier and excluded from the calculation 

5.2. Dehydration temperature 

 
Figure 12. Average temperature and standard deviation (°C) inside of the dehydration setup, 

measured at three different positions (see Figure 8, number 4) 

A drop in average dehydration temperature from 51.08 °C (SD 2.53 °C) to 47.42 °C 

(SD 2.16 °C) after 1.35 days of dehydration time for the rest of the remaining 

dehydration time was recorded (see Figure 12). The change in dehydration 

temperature can be attributed to the increase in fan speed due to the change in 

voltage from 7.5 V to 9 V. The voltage was increased because pooling of urine 

could be seen on the dehydration media at the end of the dehydration runs. As 

described in Materials and Methods, the lower voltage of 7.5 V was initially chosen 

to avoid displacing biochar out of the Petri dishes by too high air velocity. 

Table 5. Initial and final mean pH and EC of the dehydration media measured in 1:5 (w/v) 

media:urine suspension at 21 °C (± 2 °C); n = 3, standard deviation in parentheses; within rows, 

same superscript letters indicate no significant difference (α = 0.05) 
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6.1. Ammonia concentration in the input-urine 

Thirty per cent of the total nitrogen in the input-urine was in the form of ammonia, 

which is considerably higher than the ammonia concentration of < 5 % that is to be 

expected in freshly excreted urine. The high ammonia concentration in the input-

urine shows that the urea in the input-urine partially hydrolysed during collection 

and storage before its application to the dehydration media, although utmost care 

was taken during urine collection and storage. This means that urease might have 

been introduced to the dehydration media through the urine, hydrolysing a part of 

the urea that was added throughout the experiment. Further N-losses were probably 

counteracted by the ability of MgO to form struvite, magnesium ammonium 

phosphate, (NH4MgPO4·6H2O) with NH4
+ in the urine. This property distinguishes 

MgO from other alkalising media like Ca(OH)2 or wood ash. 

6.2. Nutrient recovery 

This study aimed to test magnesium oxide's suitability to recover nutrients from 

human urine by alkaline urine dehydration. Earlier studies that looked into alkaline 

urine dehydration managed to recover up to 90 % of input urine-N in wood ash 

(Senecal & Vinnerås 2017) but assumed the urea-N in the input-urine to be 5 % 

based on Udert et al. (2006). Using only Ca(OH)2 as a dehydration medium, Simha 

et al. (2020a) managed to achieve an N-recovery of about 78 % at 50 °C. However, 

for this study, fresh urine was used, and it was assumed that the urine was 

unhydrolysed. In contrast to these previous studies, using MgO as a sole alkalising 

and dehydration medium only achieved an N-recovery of about 67 %. In the 

aforementioned study by (Senecal & Vinnerås 2017) the urea-concentration in the 

input-urine was estimated to be 95 % of Tot-N, and the recovery of input-urine Tot-

N was 90 %, so wood ash managed to recover 95 % of the urea-N. In our study, 

because the urea-concentration in the input-urine was estimated to be 70 % of Tot-

N, and the recovery of Tot-N was 67 %, pure MgO managed to recover 96 % of the 

6. Discussion 
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urea from the input-urine. This shows that pure MgO at 50 °C can achieve urea-N-

recovery rates comparable to wood ash at 30 °C. Adding co-substrates to the 

dehydration medium increased the N-recovery to > 74 %, which shows that, 

compared to pure MgO, the other dehydration media used during this study were 

also capable of recovering NH4-N, which is further discussed under “The effects of 

adding co-substrates”. 

Regarding the recovery of Tot-N, three factors might help to explain the lower 

N-retention experienced during this study compared to other studies: the inverse 

solubility of MgO in urine, the partially hydrolysed input-urine and ammonia-

stripping. 

6.3. MgO solubility 

The solubility and the pH of MgO in urine are temperature-dependent, meaning that 

the solubility of MgO decreases as the temperature increases (Rocha et al. 2004). 

The final pH of all media was about pH 10, regardless of whether only MgO or 

MgO combined with Ca(OH)2 was used as alkalising agent(s). The inverse 

solubility of MgO and its temperature-dependent pH means that the pH of the media 

that only used MgO as an alkalising agent potentially dropped to around pH 8.8 at 

50 °C during the experiment (Simha et al. in preparation). As Geinzer (2017) 

showed, urease gets deactivated if the pH increases to > 10, but it can become 

reactivated if the pH falls below pH 10 again. As the chemical urea degradation 

under the prevailing conditions was calculated to only account for around 1.2 % 

urea-loss, the observed nitrogen loss may be accredited to enzymatic urea 

hydrolysis by urease that seems to have occurred during the experiment. Since the 

N-recovery was 67 %, when pure MgO was used as dehydrating medium, and only 

70 % of  Tot-N was in the form of urea enzymatic ureolysis seems to have been at 

least partially inhibited. Further studies, perhaps with urine with very little or no 

NH4-N, are needed to establish a clear understanding of the activity of urease at the 

given treatment conditions. 

6.4. Ammonia stripping 

The high nitrogen losses that occurred during this experiment might be explained 

by ammonia stripping (Başakçilardan-Kabakci et al. 2007). Ammonia-nitrogen 

exists as both NH4
+ as well as free ammonia/dissolved ammonia gas in urine. The 

equilibrium depends on the pH, the temperature and the ionic strength of the urine. 

In freshly excreted, untreated urine with a pH < 7, NH3-N is nearly exclusively 

present in the form of ammonium (NH4
+). When the temperature and pH increase 

and urine is concentrated during dehydration, the equilibrium shifts towards 
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ammonia (NH3). This means that at 50 °C and pH >10, more than 80 % of the NH3-

N is in the form of ammonia (NH3). The surface area available for dehydration was 

the same for all dehydration media (100 cm²). As ammonia has a Henry’s constant 

of 62 mol L-1 atm-1 in water solution (Larsen et al. 2013), the partial pressure of 

ammonia in the layer of air on the surface of the urine strongly influences ammonia 

evaporation. This means that high nitrogen losses in this experiment could have 

resulted from the interfacial transfer of gaseous ammonia due to ventilation. 

6.5. The effects of adding co-substrates 

Adding other substrates like wheat bran, biochar or calcium hydroxide to MgO, 

increased the N-retention to > 74 % (Table 3). This was possibly due to pooling of 

urine on top of the substrate, which might increase the transfer of gaseous NH3 to 

the air, was less frequent when MgO was mixed with co-substrates. Because MgO 

has a higher density than urine (3.58 g m-3 versus approximately 1.05 g cm-3), and 

because of the low solubility of MgO in urine, there was significant pooling visible 

on top of MgO after each application of urine, as MgO settled on the bottom of the 

Petri dish. When co-substrates were added to pure MgO, less pooling of urine could 

be seen on top of the substrate, as wheat bran and biochar have a high water holding 

capacity. The dehydration process sometimes made the particles reversibly 

hydrophobic though, meaning that pooling was sometimes visible during the first 

few minutes after urine application. Adding wheat bran and biochar seems to have 

helped break up the lipid layer that forms on the surface of urine during dehydration. 

The co-substrates could have restricted the diffusion of aqueous ammonia, thereby 

lowering its transfer to the gaseous state, and increasing NH4-N recovery. 

If the amount of MgO was decreased and Ca(OH)2 was added as an additional 

alkalising agent, as in MgO-Char-Lime and MgO-Char-Bran-Lime, the initial pH 

increased to > 12.5. The N-recovery of these two media decreased compared to the 

media with only MgO as an alkalising agent, although the differences were not 

significant (p < 0.05). The lower N-recovery might be attributed to a higher rate of 

chemical urea hydrolysis in the dehydration media containing Ca(OH)2, as urea 

half-life decreases to a few days at a pH > 12, or the decreased ability of the mixture 

with Ca(OH)2 to form struvite with ammonia that was present in the urine. 

6.6. Fan speed 

Trial runs showed that untreated biochar gets displaced from the Petri dishes if the 

fan speed is too high. Therefore, the fan speed at the beginning of the experiment 

was adjusted to a speed where no biochar was displaced. After seven dehydration 

runs, partial crust formation and solidification of the dehydration media were 



53 

 

observed, making the dehydration media less susceptible to changes in air velocity. 

The fan speed was then increased, which lowered the temperature in the 

dehydration system from 51.08 °C (SD 2.53 °C) to 47.42 °C (SD 2.16 °C). This 

change in temperature probably resulted from the higher air exchange with the air 

surrounding the dehydration setup (through the oven door gap) due to higher 

turbulence within the dehydration setup. Following the change in air velocity, less 

pooling was observed on top of the dehydration media, but this did not significantly 

affect the dehydration rate (Figure 11 and Figure 12). 

6.7. Mass balance 

The mass balances, which were carried out for all dehydration media (Figure 10), 

showed that the gaseous N-losses were highest (2.11 g) when pure MgO was used 

as a dehydration medium, and lowest when MgO was mixed with biochar (1.58 g). 

This might be because the co-substrates that were added to the other dehydration 

media hinder the diffusion of NH3(aq), as discussed earlier. The highest N-content 

in the products was measured in the dehydration media that contained wheat bran, 

with MgO-Char-Bran containing 5.07 g and MgO-Char-Bran-Lime with 4.94 g. 

Wheat bran contains nitrogen, thereby introducing some N to the dehydration 

medium at the start of the experiment. The mixture of wheat bran, biochar and MgO 

reached the highest N-content of any dehydration medium (5.07 g). When calcium 

hydroxide was added to the mix (in MgO-Char-Bran-Lime), the initial and final 

N-content decreased. This was probably because the wheat bran content had to be 

lowered in comparison to MgO-Char-Bran, to allow for the addition of calcium 

hydroxide (Table 2), and because calcium hydroxide caused a significantly higher 

pH at the start of the experiment than just MgO (pH 12.6, confer Table 5), which 

might have increased both gaseous losses of ammonia and chemical urea 

degradation. The highest P-content in any product could be observed in MgO-Char-

Bran (0.46 g), and the lowest in pure MgO (0.32 g), highlighting the added value 

that wheat bran can bring to the product, as it already contains P. The highest K-

content with 2.49 g can be observed in MgO-Char-Bran while using MgO as the 

sole dehydration medium results in the lowest K-value of 2.12 g. As the mass 

balance shows, this can again be attributed to the dehydration medium's wheat bran 

content, adding 0.15 g K to the dehydration medium at the start. All dehydration 

media had 30 g at the start of the experiment and had about 1160 g of urine added 

to them. However, only four out of five dehydration media reached a comparably 

similar end weight of around 113 g, with MgO ending up at a significantly lower 

84.6 g. This is reflected in the higher mass of gases that left the system when only 

MgO was used as a dehydration medium (1104.9 g) and the higher mass reduction 

and mass concentration factor (Table 3) in comparison to the other dehydration 

media. 
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6.8. Application scenario 

Magnesium oxide, as the sole dehydration medium showed an average dehydration 

rate of 19.7 kg d-1 m-2. According to Vinnerås et al. (2006), each person excretes 

around 550 kg of urine per year, which means that for a family of four around 

2200 kg of urine per year should be accounted for. If the aim were to dehydrate 

6 kg of urine daily for a family of four, 1 m2 of dehydration medium would provide 

more than enough surface to dehydrate all the urine. During this experiment, we 

dehydrated 1.16 kg of urine in 30 g of dehydration medium. Given that the 

dehydration medium's final pH at the end of the experiment did not fall below 

pH 10, more urine could potentially have been dehydrated in the medium until the 

pH falls below 10 and more alkalising medium needs to be added, or the 

dehydration medium exchanged. This would probably even have increased the 

fertiliser value of the product. Our experiments showed that approximately 37 kg 

of urine could be dehydrated per kg dehydration medium. This means that less than 

60 kg of dehydration medium would be enough to dehydrate all the urine of a family 

of four excreted over a year. With a bulk price of 0.3 USD kg-1 (Bray & Ghalayin 

2020), the costs for one year worth of magnesium oxide as sole dehydration 

medium for a family of four would roughly amount to 18 USD. The dry fertilizer 

could be collected through the already existing solid waste collection system, 

thereby minimizing additional costs for logistics of collection and transport. The 

fertiliser could then further be processed in a central facility, to, for instance, 

produce pellets out of the dry fertiliser powder. Having the fertiliser in the form of 

pellets will make it possible to use existing fertiliser application equipment and 

infrastructure in agriculture. In countries where a large part of the population might 

still have land plots for agricultural production available to themselves, the dry 

fertiliser could be applied to the field directly after the dehydration process is 

finished. This would eliminate collection and transport of the fertiliser product and 

the added yield due to the fertiliser and well as possibly selling excess fertiliser 

could potentially create an additional source of income for the people. 

6.9. Fertiliser mass and nutrient concentration 

A family of four produces around 2200 L of urine per year. If the family used pure 

MgO as a dehydration medium, the total mass of fertiliser acquired by the end of 

the year would amount to 86.8 kg (based on the urine density and TS-values 

measured during this experiment). Based on the NPK-values of the fertiliser 

acquired using pure MgO as a dehydration medium during the study (6.5 % N, 

0.5 % P and 3.3 % K based on TS-values), a family of four could, within a year, 

produce a fertiliser that would contain around 5.6 kg N, 0.4 kg P and 2.9 kg K, 

which could then be used as a sustainable fertiliser for agricultural crops. 
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6.10. Outlook 

This study showed that it is possible to recover up to 80 % N of a partially 

hydrolysed urine (70 % of Tot-N was urea) in a dehydration medium consisting of 

magnesium oxide, biochar and wheat bran at a dehydration temperature of 50 °C. 

These results and previous studies by our group suggest that if conditions would 

further be optimised for achieving low ammonia losses, and by using unhydrolysed 

urine as a source, N-recovery could be significantly improved. For instance, this 

could be achieved by utilising lower dehydration temperatures of < 40 °C and direct 

excretion of fresh urine onto the substrate. Utilising wheat bran and biochar as 

co-substrates showed potential to break up the lipid film that would otherwise build 

up on pooling urine on the dehydration medium's surface, which beneficially 

influenced the N-recovery. Since biochar is already used as a soil amendment 

(confer “Terra Preta”), and wheat bran adds additional N, P and K to the final 

fertiliser, the addition of both co-substrates holds the potential to further increase 

the value the fertiliser provides for agricultural use. 

6.11. Recommendations 

The author suggests further investigation into the potential of a combination of 

MgO, wheat bran and biochar as dehydration medium, at dehydration temperatures 

lower than 40 °C. This takes into consideration the value biochar, and wheat bran 

add to the product, as well as the solubility of MgO in urine, which decreases at 

higher temperatures, which in turn decreases the urine pH. The availability of 

magnesium, being the world’s 8th most abundant element (United States Geological 

Survey) is essentially unlimited, eliminating any concerns about future shortages in 

supply. Using MgO instead of Ca(OH)2 provides the benefit of lower solubility of 

MgO, making less frequent changing intervals of the dehydration medium possible. 

In comparison to Ca(OH)2, magnesium oxide also provides the added benefit of 

eliminating the Mg-deficiency as a limiting factor for struvite precipitation, 

therefore bearing the potential for precipitation of NH4
+ in the urine in the form of 

struvite. The lower saturation-pH of MgO compared to Ca(OH)2 in urine also 

minimises N-losses by chemical urea degradation that might occur at a pH >12. 

Using lower dehydration temperatures and further optimising the dehydration setup 

might increase the N-retention and increase the product's fertiliser value. 

6.12. Limitations and Disclaimer 

In a parallel study done by Prithvi Simha, Cecilia Lalander, Annika Nordin and 

Björn Vinnerås from SLU (unpublished results) it was discovered that during the 
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mixing of the dehydration media that was done at the end of the experiment to be 

able to take representative samples of the dehydration media, a certain amount of 

water that initially remained in the sample, was lost. This was due to the low 

humidity level (approximately 20 % humidity) in the air, the frequent air exchange 

in the laboratory and the long mixing and storage time (about 1 to 2 days). 

As described in Materials and Methods, biochar gets displaced from the Petri 

Dishes quite easily at the beginning of the experiment, due to its electrostatic 

behaviour and the high air velocity in the dehydration setup. To avoid this, in this 

experiment, a higher loading rate of urine was chosen for the first urine addition 

(90 mL instead of 30 mL). In future studies, it should be evaluated, if compaction 

of the biochar to a more solid form (e.g. pellets that fall apart when coming into 

contact with a liquid), could solve the problem of displacement of the biochar. 

In this study, the temperature within the media was not measured. In future 

studies, it would be interesting to look closer at the temperature within the media, 

and how this affects the dehydration. This is especially interesting, if the depth of 

the material is increased or if the samples, like in this study, are heated 

intermittently. In this study, the dehydration media had a maximum depth of about 

20 mm at the end of the experiment and were removed from the oven frequently to 

either add fresh urine for the next experimental run or to store them until the next 

dehydration run. When the samples were stored, it could be assumed that they 

cooled down to room temperature, which was approximately 21 °C (± 2 °C). 

The greatest difficulty the study setup presented, was the accumulation of urine 

over time, which leads to the Petri dishes becoming full. This entailed the risk of 

spillage of urine and dehydration media. For this reason, if the same experimental 

setup is chosen in future studies, Petri dishes with higher sidewalls would be 

beneficial. These higher sidewalls could change the drying pattern by restricting the 

airflow over the dehydration media though. 

Data acquired during this thesis will be used in a publication which the author 

of this thesis will be co-authoring. 



57 

 

This study's objective was to investigate the use of MgO as an alkalising agent and 

sole dehydration medium for alkaline urine dehydration. Our results showed that 

pure MgO recovered 66.8 % (SD 1.2) of nitrogen from partially hydrolysed urine 

(30 % of Tot-N being NH4-N). When MgO was mixed with biochar and wheat bran, 

an N-retention of 79.7 % (SD 1.1) was achieved. The temperature dependency of 

the pH and the solubility of MgO showed a risk of reactivation of urease, which 

increases N-losses, as urea gets hydrolysed. All dehydration media that contained 

MgO had an initial and final pH of around 10, which suggests increased suitability 

of MgO as a dehydration medium at lower temperatures (< 40 °C), where the 

temperature dependency of the pH and solubility is not as prominent as in these 

experiments. The experiments showed that if partially hydrolysed urine is 

dehydrated, stripping of ammonia can increase N-losses. The products obtained by 

alkaline urine dehydration during this study had high NPK values, which makes 

them suitable as crop fertilisers. 

7. Conclusions 
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Product Identification Producer Additional 

information 

Benchtop oven for 

dehydration system 

Model number 

2177 970 80 11 

Electrolux, Sweden Output of 1000 W, 

max. temperature 

200 °C 

Biochar  Vindelkol AB, 

Sweden 

Grain size: 1mm 

Computer fan Model number 

SP06015S1M3 

Spire Corp, The 

Netherlands 

60 mm edge length 

by 15 mm height, 

12 V, Sleeve 

bearing, operating 

temperature range 

30–70°C 

Conical Centrifuge 

Tubes, 50 mL 

VWR article 

number 734-0448 

Corning 

Incorporated, USA 

Poly(propene), 

Falcon™ 

Digital scale, two 

decimal places 

Adventurer Pro 

AV2102 

OHAUS 

Corporation, USA 

d = 0.01 g 

Digital scale, four 

decimal places 

PA114C OHAUS 

Corporation, USA 

d = 0.0001 g 

Dry combustion TruMac LECO Corporation, 

USA 

 

EC-meter Cond 340i WTW, Germany Ser.-Nr.: 05120030 

EC-probe TetraCon 325 WTW, Germany  

ICP Optima 7300 DV 

Coupled Plasma 

Optical Emission 

(ICP-OES) 

PerkinElmer Inc., 

USA 

 

ICP Avio 200 ICP 

Optical Emission 

Spectrometer 

PerkinElmer Inc., 

USA 

 

9. Appendix 

Table 6. Materials and equipment, their producers, model and article numbers 
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Magnesium oxide 

MgO 

Code: 263835000; 

Lot: A0377994; 

CAS: 1309-48-4 

Acros Organics, 

Belgium 

98 %, extra pure, 

powder, particle 

size 99 % 

<150 µm, 500 g 

Nordkalk SL 

Ca(OH)2 

 Nordkalk 

Corporation, 

Sweden 

Technical grade 

Photometer NOVA 60 A 

Spectroquant 

Merck KGaA, 

Germany 

 

pH-meter PHM210 

651R032N020 

RADIOMETER 

ANALYTICAL 

S.A., France 

 

pH-probe “Red Rod” 

Combined pH 

electrode 

RADIOMETER 

ANALYTICAL 

S.A., France 

 

Pipet tips 5–10 mL Article number 

8987-532 

VWR International  

Pipette 1–10 mL Eppendorf 

Research 10 mL 

System nr 

041-3474 

Eppendorf AG, 

Germany 

 

Rotary switch 

adapter 

Article number 

44710 

Kjell & Co 

Elektronik AB, 

Sweden 

max. output current 

2.25 A, max. output 

voltage of 27 VA 

R version 4.0.0 RStudio Team 2016  

RStudio version 1.2.5042 RStudio Team 2016  

R-package car  Fox & Weisberg 

2019 

 

R-package 

agricolae 

 de Mendiburu 2020  

Statistical software Minitab, Version 

18.1 

Minitab, Inc., USA  

Spectroquant 

Ammonium test 

1.00683.0001 Merck KGaA, 

Germany 

Used for analysis of 

NH4-N 

Spectroquant 

Nitrate test NO3
- 

test kit 

1.09713.0001 and 

1.09713.0002 

Merck KGaA, 

Germany 

Used for analysis of 

Tot-N 

Spectroquant Crack 

Set 20 

1.14963.0001 Merck KGaA, 

Germany 

Used to transform 

all Nitrogen in the 

sample into Nitrate 
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Spectroquant Crack 

Set 10 

1.14687.0001 Merck KGaA, 

Germany 

 

Spectroquant 

Phosphate test 

1.14848.0001 Merck KGaA, 

Germany 

 

Wheat Bran Batch number 

1702230016, 

Package numbers 

022691 and 022692 

Kungsörnen, 

Lantmännen 

Cerealia, Sweden 

Purchased at a local 

supermarket 

 

 
Figure 13. One of the triplicates of the dehydration medium MgO after the end of the experiment, 

after 1.16 kg of human urine was dehydrated in this Petri dish (own work) 
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Figure 14. Dehydration setup used during the experiment (own work) 

9.1. Excluded dehydration media 

9.1.1. Wheat bran and Ca(OH)2 

The mixture of wheat bran with Ca(OH)2 3:1 by weight, formed a surface layer that 

was impermeable for urine even after a prolonged contact time. 

9.1.2. Coffee grounds 

First, used coffee grounds were autoclaved at 121 °C for 20 min. The material was 

moist and absorbed water very well. It was mixed with Ca(OH)2 3:1 by weight. 

After the mixing, the mixture became hydrophobic, which made it unsuitable for 

the experiments. 

9.1.3. Hermetia illucens larvae shells 

The shells were sieved and then sorted by hand to remove debris and impurities. 

They were dried at 105 °C for approximately 48 h and then ground using a standard 

coffee grinder. The ground larvae shells were mixed with Ca(OH)2 at a ratio of 1:1 
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by weight. This mixture was hydrophobic, which made it unsuitable for the 

experiments. 

 
Figure 15. Hermetia illucens larvae shells with impurities (own work) 

 

 
Figure 16. Hermetia illucens larvae shells after sieving and manual selection (own work) 

9.1.4. CaCO3 

Calcium carbonate was not used in the final selection of the experiment because the 

density of calcium carbonate (2.8 g cm-3) (ICSC 1193 - CALCIUM 

CARBONATE) was considerably higher than the density of other dehydration 

media used in the experiment, like wheat bran (0.17–0.25 g cm-3) (Food and 

Agriculture Organization of the United Nations). Because the weight of the 

dehydration media was fixed to 30 g, and the amount of urine that was applied was 

fixed to 30 mL, there would have been pooling of urine on top of the calcium 
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carbonate, while there would at the same time be no pooling on top of other 

dehydration media. 

9.1.5. Sawdust 

It was decided to exclude sawdust from the final dehydration media selection 

because the chemical properties of sawdust and wheat bran were too much alike to 

advocate for the use of both. 

9.2. Trial runs 

On the following pages, photos of the many trial runs conducted, and the plethora 

of tested ideas are shown. They are accompanied by qualitative descriptions to why 

these ideas were not included in the final experimental design. The photos were 

taken by the author, but credits for the ideas also go to Björn Vinnerås and Prithvi 

Simha. 

 

 
Figure 17. Dehydration media consisting of ash and glass beads – this idea was excluded because 

the addition of glass beads did not lead to expected higher dehydration rate (own work) 
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Figure 18. Glass beads that were used for the experiment in Figure 17 (own work) 

 
Figure 19. Two different dehydration setups tested during the trial runs, both were loaded with 

sawdust and water was applied; the air was pumped out of these setups at the top during the 

dehydration. These dehydration setups were not chosen because the moist air condensed in the air 

pumps and destroyed them. Also, as can be seen in Figure 21, with the chosen filling height and 

loading rate, the sawdust expanded and was blocking the holes on the side of the setup and falling 

out of them (own work) 
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Figure 20. Filling of the dehydration setup seen on the left in Figure 19 and in Figure 21 with dry 

sawdust (own work) 

 

 
Figure 21. Setup of Figure 19 (on the left side) after the dehydration of water in the dehydration 

medium sawdust. As can be seen here, the sawdust got very close to the ventilation holes in the 

walls as compared to the initial filling height seen in Figure 20 (own work) 
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Figure 22. Test of a different setup and a lower number of fans for ventilation in the trial runs, this 

setup was not used, because the dehydration rate in the dehydration system proved to be too low 

(own work) 
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