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SDmatic, SRC-CHOPIN 2 and Alveolab are used to evaluate flour, but not widely used in Sweden. 
This study aimed to evaluate the machines and see if they could be used to predict baking volume 
for bread baked on Swedish wheat flour. PLS-models were built with baking volume as the Y-
variable. It was noticed that baking volume of breads made on winter wheats and spring wheats were 
explained by different parameters and as a result building separate PLS-models for these groups 
gave the best results. Damaged starch had negative impact on baking volume for spring wheats but 
not for bread baked on winter wheats. All PLS-models were optimised for Q2 by removal of X-
variables. Variables from SDmatic, SRC-CHOPIN 2 or Alveolab were left in all PLS-models. The 
most promising model in this study was built on winter wheats and had a Root Mean Square Error 
of Prediction (RMSEP)  at 75 ml, which can be compared to the average bread with a volume of 
2032 ml. This model had only one parameter from these machines and it is thus unclear how useful 
these machines are when predicting baking volume of bread baked on Swedish wheat flour. 
Glucomannan was the most important parameter for this model based on Variable Importance in 
Projection (VIP)-scores and was positively correlated with baking volume. Baking volume was the 
only predicted quality parameter and future studies should analyse how these machines can predict 
other quality parameters, such as crumb structure, bread staling and consumer acceptability. 

Keywords: damaged starch, dietary fibre, bread volume, PLS 
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SDmatic, SRC-CHOPIN 2 och Alveolab används ofta för att bestämma egenskaper hos vetemjöl, 
men inte i Sverige. I den här studien undersöktes om maskinerna kunde användas i modeller för att 
förutse bakvolym av bröd bakat på svenskt vetemjöl. PLS-modeller gjordes med bakvolym som Y-
faktor. Olika parametrar förklarade bakvolymen för bröd bakat på vårvete och höstvete, och därför 
gjordes separata PLS-modeller för vårvete och höstvete. Skadad stärkelse hade en negativ inverkan 
på bakvolymen för bröd bakat vårvete men inte för bröd bakat på höstvete. Parametrar i PLS-
modellerna togs bort för att optimera Q2. Minst en variabel från SDmatic, SRC-CHOPIN 2 eller 
Alveolab var kvar i alla PLS-modeller efter optimeringen. Den mest lovande modellen var byggd 
på höstvete och hade Root Mean Square Error of Prediction (RMSEP) på 75 ml vilket kan jämföras 
med den genomsnittliga bakvolymen på 2032 ml för bröd bakat på höstvete. Denna modell hade 
enbart en parameter från Alveolab och inga från SDmatic eller SRC-CHOPIN 2. Det är därför svårt 
att säga om dessa maskiner är användbara i PLS-modeller som ska förutse bakvolym av bröd bakat 
på svenskt vetemjöl. Glucomannan var den viktigaste parametern för denna modell baserat på 
Variable Importance in Projection (VIP) och var dessutom positivt korrelerat med bakvolym. 
Bakvolym var den enda kvalitativa parametern i den här studien. Framtida studier skulle kunna se 
om dessa maskiner kan användas för att förutse parametrar som strukturen av inkråmet, brödets 
hållbarhet och konsumentacceptans. 
 
Nyckelord: skadad stärkelse, kostfibrer, brödvolym, PLS 
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Wheat is the largest cereal crop in Sweden with an estimate of 452 700 hectares 
cultivated? of which 89 % was winter wheat for the production year 2020 (Swedish 
Board of Agriculture 2020). Wheat flour typically consists of 70-75 % starch, 14 % 
water, 10-12 % protein, 2-3 % non-starch polysaccharides and 2 % lipids (Goesaert 
et al. 2005). Starch in wheat usually consists of 25-28 % amylose and 72-75 % 
amylopectin. Starch is located in the endosperm of wheat kernels and stored in 
granules. Pieces of starch detach from the granules as they are being crushed in the 
milling process and are called damaged starch. Flours with smaller particle sizes 
have more damaged starch (Wang & Flores 2000; Ma et al. 2020). Damaged starch 
has different processing properties, compared to native starch, and affects water 
absorption of flours and mixing properties of doughs. The water absorption 
increases since damaged starch swell at room temperature and bind more water, 
which native starch only does at higher temperatures (Morrison & Tester 1994). It 
also contributes to late stage fermentation of dough by promoting β-amylase 
hydrolysis which degrades starch into maltose (Delcour & Hoseney 2010). Yeast 
consumes maltose and the by-product, carbon dioxide, makes the dough rise. A 
content of 4.5-8 % damaged starch has been found to yield flour with the highest 
baking quality (Arya et al. 2015). 

SDmatic is an amperometrical method for estimating starch damage by 
measuring how much iodine a flour absorbs in a water-iodine solution. Amylose 
from damaged starch granules form complexes with iodine and the result is thus 
affected by amylose content of the flour. Enzymatic tests for damaged starch are 
more accurate but take longer time and demands highly trained operators 
(McAllister et al. 2011). 

Wheat flour contains polysaccharides other than amylose and amylopectin and 
are referred to as non-starch polysaccharides. Arabinoxylan (AX), β-glucan, 
cellulose and arabinogalactan-peptides are part of this group. Dry matter of wheat 
endosperm cell walls consist of 75 % non-starch polysaccharides of which 85 % 
are AX. AX are chains of β-1,4-linked D-xylopyranosyl residues substituted on O-
2, O-3 or O-2,3 with α-L-arabinofuranoside residues. A quota of 0.5-0.6 of 
arabinose to xylose (A/X) is normal in wheat AX. Sifted wheat flour consists of 1.3 
and 2.8% AX (Mendis et al. 2013). AX are either water-extractable (WE-AX) or 
water-unextractable (WU-AX). Water extractability of AX increases as the 

1. Introduction  
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molecular weight decreases and the degree of substitution increases (Goesaert et al. 
2005). WU-AX impair proper gluten formation during dough mixing, either by 
physical hindrance or by extensive water absorption yielding less water for the 
development of the gluten network (Courtin et al. 1999; Courtin & Delcour 2002). 
Gas cells within dough might collapse when WU-AX perforate them and thus result 
in a lower bread volume (Courtin & Delcour 2002). WE-AX are associated with 
breads with better quality (Goesaert et al. 2005). An explanation might be the 
increased viscosity of the aqueous phase in the dough which stabilises air bubbles 
(Kaur et al. 2019), an effect which also increases oven-spring and yields breads 
with better crumb structure and increased volume (Gan et al. 1995). Too much AX 
give stiff doughs and breads with lower volume. If AX are degraded by enzymes 
the dough becomes sticky and yields a bread with lower volume (Delcour et al. 
1991). WE-AX and WU-AX have also both been shown to slow down staling of 
bread (Courtin & Delcour 2002; Kaur et al. 2019). 

In addition to AX, wheat flour contains several polymers that affect the 
viscoelasticity of doughs when mixed with water. Solvent Retention Capacity, 
SRC, measures swelling of flour using four different solutions that enhances the 
swelling of specific polymers. The process of SRC involves weighing of flour, 
dissolving in excess solution, shaking and centrifugation of the tubes and finally 
weighing the remaining pellet (Kweon et al. 2011). The SRC-CHOPIN 2 is an 
automated version of this test which enables more efficient testing and is less 
operator demanding (Dubat et al. 2019). Huen et al. (2018) used PCA to show that 
values from SRC-CHOPIN, AlveoLab and SDmatic correlated with values from 
traditional flour analyses such as Farinograph and Extensograph. The Alveolab 
analyses rheological behaviour of dough. In combination with SRC one could 
explain which polymer affects the rheological behaviour in the Alveolab. P-value 
from an alveograph is a measurement of the dough’s tenacity and ability to resist 
deformation. P-values generally increases with increased level of damaged starch. 
Since damaged starch is mainly affected by milling, a combination of Alveolab and 
SRC might give insights into how to adapt the milling process to achieve the best 
flour possible (Kweon et al. 2011). 

Baking quality is often measured as in volume of the final bread. Several tests 
are applied in Sweden (e.g. Falling number, Farinograph, Amylograph etc.) for 
flour quality control. These tests can predict bread volume but not in a perfect way 
and therefore test baking is used as a reference. The aim of this report is therefore 
twofold. The first aim is to study if SRC-CHOPIN 2, SDmatic and Alveolab can be 
used to predict flour quality of Swedish wheat, and the second aim is to evaluate 
how user friendly these tests are.  
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This study tested 199 wheat flours with SDmatic, AlveoLab and SRC-CHOPIN 2. 
15 of the 199 flours were tested as duplicates. Amylograph, wet gluten, falling 
number, Farinograph, baking volume, ash content and protein content were 
previously determined by Lantmännen Cerealia. Fibre composition using a 
modified Uppsala method (Andersson et al. 1999) was analysed by the Swedish 
University of Agricultural Sciences, SLU. The dietary fibre results are reported as 
water-extractable arabinoxylan (WE-AX), water-unextractable arabinoxylan (WU-
AX) and insoluble mannose residues from the fibre analysis (man insol). The ratio 
between arabinose and xylose residues (ara/xyl) is also included in the analysis. 

2.1. Flours 
Five types of wheat flour were tested. All wheat, except for the German E-wheat, 
was harvested in Sweden during either 2018, 2019 or 2020. 

2.1.1. Winter wheat 
The name winter wheat (WW) originates from time of sowing since this type of 
wheat is sown in the winter half of the year and harvested the next year. A wheat 
with typically a protein content of 10-12 % and considered to be weaker than spring 
wheat. Ideal for biscuits or cakes but sometimes used for breadmaking as well 
(Yngveson 2015). WW has a slightly higher exchange (1-3 %) during milling than 
SW and ES.  

2.1.2. Spring wheat 
Spring wheat (SW) is sown during the spring and harvested in the autumn the same 
year. This type of wheat is used for breadmaking and has usually a protein content 
of 12-14 %.  

2. Materials and methods 
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2.1.3. Extra strong spring wheat 
Extra strong spring wheat (ES) is spring wheat with a high protein content, 13-14 
% and considered to be an extra strong flour. This classification is done by 
Lantmännen Cerealia.  

2.1.4. Baker’s wheat 
Baker´s wheat (BW) is a mixture of WW, SW and German E-wheat. In Germany, 
wheat can be classified as E, A, B or K. E-wheat is the highest class, with at least a 
protein content of 13.8 %, a falling number of 285 s and a bread volume of 710 
ml/100 g. E-wheat is rarely used on its own and instead mixed with other flours to 
improve their quality (Lásztity & Salgó 2002).  

2.1.5. Julius 
Julius flour is a winter wheat flour and consists only of one cultivar? named Julius. 
This was the only analysed flour that was cultivar specific and harvested year 2020. 

2.2. Chemicals 
All chemicals used in this report, listed in Table 1, were bought at VWR, part of 
Avantor.   

Table 1. Chemicals used in this report 
Chemical Concentration or 

purity 
CAS-number 

Citric acid 99 % 77-92-9 
Sodium thiosulphate 1 mol/l 7772-98-7 
Potassium iodine ≥99.5 % 7681-11-0 
Lactic acid 80-85 % 50-21-5 
Sodium carbonate 99 % 497-19-8 
D(+)-Sucrose  ≥99 % 57-50-1 

 

2.3. SDmatic 
Based on the principles of Medcalf & Gilles (1965) the SDmatic measures damaged 
starch based on iodine absorption in a solution at 35°C. SDmatic runs an electric 
current through an iodine solution. Flour is added and will absorb iodine and the 
current will drop. Damaged starch absorbs more iodine compared to native starch 
and SDmatic may therefore estimate the amount of damaged starch. SDmatic 
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measures the drop in current as percentage of iodine absorption (Ai %).  SDmatic 
presents the result as five different values that are all based on the iodine absorption 
(Ai %, UCD, UCDc, AACC and Farrand). Ai % is the actual iodine absorption with 
values often between 93 and 95 %. The four other units are calculated based on the 
Ai %, Appendix 1. Chopin Dubois Unit (UCD) scales the Ai % and can be 
calculated directly from Ai %, while the adjusted Chopin Dubois Unit (UCDc) 
adjusts for the moisture content and protein content of the flour. AACC76-31 and 
Farrand are enzymatic methods for determination of damaged starch. SDmatic 
gives an estimate of these values. 

2.3.1. SDmatic’s procedure 
 
The SDmatic User’s manual explains how to prepare one sample (CHOPIN 
Technologies 2019). The manual instructs how to perform one test which requires 
120 ml distilled water. To speed up the process and to lower the impact of the 
operator for each test, a batch of SDmatic solution was prepared by scaling up the 
solution from 120 ml to 2 litres. 2000 ml ± 0.1 ml distilled water, 50 g ± 0.2 g 
potassium iodine, 25 g ± 0.1 g citric acid and 17 drops sodium thiosulfate 0.1 mol/l 
were mixed in a DURAN® glass bottle by shaking for 1 minute. Solution was then 
dosed into a reaction beaker for each analysis and weighed to 124.5 g ± 0.1 g. The 
reaction beaker was placed in the machine and the SDmatic arm was lowered to 
submerge the probe in the solution. 1 g ± 0.1 g flour was weighed onto an SDmatic 
spoon and placed in the machine. Exact flour weight, moisture content and protein 
content of the flour were added in the test instructions of the machine. 

The measurement cycle has six phases: 
1. SDmatic heats the solution to 35° C. 
2. & 3. Iodine is produced electrochemically by the probe according to the mass 
of flour indicated at the beginning of the test. 
4. No more iodine is produced and the electrical current which previously 
increased is kept at a plateau. 
5. The flour is introduced in the solution. The current decreases as the iodine is 
absorbed by the flour. 
6. The final current is measured by the probe 180 seconds after the addition of 
flour. 

2.4. SRC-CHOPIN 2 
SRC-CHOPIN 2 is an automated version of the Solvent Retention Capacity test. It 
tests how different polymers in wheat contribute to the swelling of flour in selective 
solvents. The constituents and solvents are, 5 % (w/w) lactic acid for gluten 
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proteins, 5 % (w/w) sodium carbonate for damaged starch, 50 % (w/w) sucrose for 
pentosans and distilled water as a reference (Kweon et al. 2011). 

2.4.1. Procedure of SRC-CHOPIN 2  
Weights of tubes, flours and gels are saved by the machine and no calculations on 
the side are needed.  

Empty tubes with caps on were weighed. 5 g ± 0.05 g flour was weighed and 
added to the tubes. Tubes with flours were weighed and the actual amount of flour 
added to each tube was measured by the machine. Syringes with 27 ml distilled 
water, 23 ml 50 % sucrose, 27 ml 5 % lactic acid or 26 ml 5 % sodium carbonate 
solution and tubes with flour were put into the machine. The SRC-CHOPIN 2 then 
started a 65 minutes automated program which adds solvents to the specific tubes 
and shakes, rests and centrifuges before finally discarding the supernatant. The 
tubes with the gels were weighed by the operator and an SRC % for each solvent 
was calculated by the machine, Equation 1.  

Equation 1. Used for calculating SRC Water, SRC Sucrose, SRC Lactic acid and 
SRC Sodium carbonate 

  

2.5. Alveolab Chopin 
Alveolab from Chopin Technologies measures the resistance in a piece of dough, 
called a patty, when it is blown into a bubble. The measurement ends when the 
dough bubble bursts. 5 patties are inflated, and the average is calculated by the 
machine. The pressure measured in mmH2O is plotted against the extensibility of 
the bubble measured in mm (Figure 1). Various parameters can be deduced from 
an alveograph and the most used are explained in Table 2. Blowing a dough bubble 
is a way to estimate how good the dough would be able to hold air in bubbles formed 
during fermentation.  
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Figure 1. Example of an Alveolab graph, where the black line is the mean value of 
the five replicates measured (1-5). 

Table 2. Description of Alveolab parameters 
Parameters Description Related with 

P Maximum pressure  Tenacity of the dough 
L Bubble diameter upon bursting Extensibility of the dough 
P/L P divided by L Viscoelasticity of the dough 

Ie  
Pressure after 200 ml of air has been blown into 
the bubble divided by P (Ie = elasticity index) 

The dough’s tendency to retract after being 
stretched  

W Area under the curve 
The strength of the flour and the energy needed 
to inflate the bubble 

2.6. Reproducibility study 
SDmatic, SRC-CHOPIN 2 and Alveolab data in this report were collected by two 
operators. 15 flours were tested in duplicates to test the operators’ reproducibility. 
For each SDmatic, Alveolab and SRC parameter there is a Reproducibility Limit. 
The operators were reproducible for a parameter if the difference between them 
were lower than the Reproducibility limit. Time of training before the 
reproducibility study was roughly two weeks.  

2.7. Statistical analysis 
The multivariate software SIMCA® 16 was used for Principal Component 
Analysis, PCA, and Partial Least Square Regression, PLS.  
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199 flours were analysed with SDmatic, SRC-CHOPIN 2 and Alveolab in this 
report. Other data presented was previously analysed and supplied by Lantmännen 
Cerealia except for the dietary fibre data analysed with a modified Uppsala-method 
(Andersson et al. 1999) by the Department of Molecular Sciences at the Swedish 
University of Agricultural Sciences, SLU, in Uppsala. 

3.1. Overview of data 
Table 3 gives an overview of the data with minimum, median and maximum values 
for some of the parameters for the flours. 

Table 3. Parameters analysed in this report with minimum, median and maximum 
values shown as well as unit and the origin of the different analyses 

Analysis Performed by Output Min Median Max Unit 

Alveolab Within this 
report 

P 56 84 114 mmH2O 

  L 50 88 146 m 
  W 135 227 346 10-4J 
  P/L 0.4 0.96 2.28 -dl 
  Ie 37.9 50.65 60.5 % dl 

SRC-
CHOPIN 2 

Within this 
report 

SRC Lactic acid 110 126 147 % (dI) 

  SRC Sodium 
carbonate 

75.9 84.6 95.7 % (dI) 

  SRC Sucrose 92.7 103 111 % (dI) 
  SRC Water 58.7 65.7 74.0 % (dI) 

SDmatic Within this 
report 

Ai 92.5 94.3 95.8 % 

Ash Lantmännen 
Cerealia 

Ash content dm 0.48 0.59 0.72 % 

Foss 
InfratecTM 

Lantmännen 
Cerealia 

Protein 5,7 ts NIT 10.5 12.3 16.2 % 

3. Results 
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Falling 
number 

Lantmännen 
Cerealia 

Falling number 304 395 471 s 

Amylograph Lantmännen 
Cerealia 

Amylogram max 774 1150 1580 s 

  Amylogram 
gelatinisation temp 

86.0 88.3 90.6 °C 

Wet gluten Lantmännen 
Cerealia 

Gluten index 62.3 92.6 99.6 % 

  Wet gluten dm 26.6 34.3 46.2 % 
Farinograph Lantmännen 

Cerealia 
Farinogram water 

absorption 
55.0 59.6 65.5 % 

  Farinogram 
development time 

1.2 3.0 4.7 min 

  Farinogram Stability 3.2 6.4 17.5 min 
  Farinogram degree of 

softening 
36 79 121 BU 

Test baking Lantmännen 
Cerealia 

Baking volume, 
spring wheats 

2050 2460 2970 ml 

  Baking volume, 
winter wheats 

1650 1910 2200 ml 

Uppsala-
method 

 
SLU 

WU-AX 1.022 1.307 1.574 % 

  WE-AX 0.528 0.729 1.064 % 
  man insol  0.03 0.08 0.11 % 

 

3.1.1. Principal Component Analysis 
Principal component analysis (PCA) is an exploratory method used to summarise 
multidimensional data into two dimensions. It does so by fitting a line through the 
data that covers the most variance. This line is called principal component 1, PC 1. 
90 degrees perpendicular to PC 1 another line, PC 2, can be drawn that covers the 
second most variance. By plotting PC 1 and PC 2 against each other the 
multidimensional data can be visualised in a two-dimensional plot. PCA can be 
used to see which observations in a dataset are alike and also explain why 
(Karamizadeh et al. 2013). Acore plot shows how observations relate to each other 
where each dot represents an observation. A loading plot shows how the variables 
relate and where each dot represents a variable.…. 

The score plot of the PCA for all flours and all parameters shows that the flours 
form two groups along PC 1 (Figure 2). One group is WW and Julius, which are 
winter wheats. The other group is SW, ES and BW and will be referred to as spring 
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wheats, although BW is a mixture of winter wheat, spring wheat and German E-
wheat.  
 

 

Figure 2. PCA score plot for 198 flours and all parameters in Table 2. 

 

Figure 3. PCA loading plot for 198 flours and all parameters in Table 2. 
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3.2. Duplicate study 
The two operators were reproducible for 100 % of the SDmatic parameters (results 
not shown). Reproducibility for Alveolab and SRC-CHOPIN 2 were roughly the 
same with 78 % and 80 % respectively. Alveolab and SRC-CHOPIN 2 involves a 
lot of manual work, so it is logical that the operators were the most reproducible for 
the SDmatic which only involves weighing of flour.  

3.3. PLS-modelling of the dataset 
Partial Least Squares, PLS, is a method used to predict response variables, Y, from 
a set of explanatory variables, X. Principal Component Analysis, PCA, fits 
principal components to the data to maximise their variance, but without taking the 
predictive power into account. Thus, PCA might neglect important parameters with 
high predictive power. PLS is instead focused on predictive power and the PLS-
factors are drawn to maximise the predictive power (Pirouz 2006). 

All PLS-models presented in this report, except for Figure 14, have baking 
volume as the Y-variable. The models are summarised and given a descriptive name 
in Table 4. All models were optimised for Q2 by removal of X-variables. 

Table 4. PLS-models summarised and given a descriptive name. Root mean square 
error of prediction, RMSEP, is only given for models used to predict unknown data. 
E.g. SW80% is built on 80% of the spring wheats and predicts the remaining 20 %.  
Variable Importance for the Projection, VIP, with parameters ordered from highest 
to lowest. n is the number of flours included in the model 

Name VIP Flours In the model R2Y R2Ypredicted 

 
Q2 RMSEP 

Allflours&years 
(3 PLS-factors) 

Protein, Ai, 
Dmin, SRC 
Sucrose, insol 
ara/xyl, SRC 
sodium 
carbonate 

All 
flours 
n=196 

All years 0.853  0.841  

WWallyears 
(3 PLS-factors) 

Protein, fibre 
composition, 
gluten index, 
SH, W, 
farinograph, 
Ash, SRC 
Sodium 
carbonate 

Winter 
wheats 
n=108 

All years 0.658  0.563  
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SWallyears 
(2 PLS-factors) 

Ai, P/L, Dmin, 
K, P, Protein, 
Gluten index, 
SRC Water, 
Amylogram 
gelatinisation 
temp. 

Spring 
wheats 
n=88 

All years 0.432  0.376  

Allflours2018 
(1 PLS-factor) 

Protein, Ai, 
Dmin, insol 
ara/xyl, SRC 
Sucrose, SRC 
sodium 
carbonate 

All 
flours 
n=86 

2018 0.846 0.753 0.838 154 ml 

WW2018 
(I PLS-factor) 

Wet gluten, 
Protein, 
Farinograph 
development 
time, UCDc, 
Farinograph 

Winter 
wheats 
n=42 

2018 0.555 0.103  0.517 169 ml 

SW2018 
(1 PLS-factor) 

Protein, 
AACC, Ai, 
P/L, P, fibre 
composition, 
SRC water, 
Gluten index 

Spring 
wheats 
n=44 

2018 0.539 0.047 0.471 142 ml 

Allflours80% 
(4 PLS-factors) 

Protein, 
AACC, SRC 
Lactic acid, 
SRC Sucrose, 
insoluble 
ara/xyl, SH 

All 
flours 
n=157 

80 %  
of flours 

0.863 0.856 0.848 122 ml 

WW80% 
(2 PLS-factors) 

Man insol , 
gluten index, 
SH, protein, 
Ash 

Winter 
wheats 
n=85 

80 %  
of flours 

0.623 0.467 0.51 75 ml 

SW80% 
(1 PLS-factor) 

Ai, P/L, 
Protein, SRC 
Water, Wet 
gluten, Fibre 
composition 

Spring 
wheats 
n=71    

80 %  
of flours 

0.455 0.323 0.361 124 ml 
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3.3.1. Allflours&years 
Loadings for Allflours&years (a PLS-model with all flours from all years) can be 
seen in Figure 4. Notable is that parameters from all three Chopin instruments, the 
Uppsala method and the Foss InfratecTM (near infra-red analysis) remain in the PLS 
after optimising the model. 

 

 

Figure 4. PLS-loadings for PLS model Allflours&years, which is based on the 
whole data set. Baking volume is the Y-variable. 
 
The rigidity of the Allflours&years can be visualised by plotting observed, 
predicted and cross validation Y-predictions (Figure 5). As seen, predicted Y and 
cross validation Y-predictions are close to each other which mean that the model is 
rigid and removal of one observation wouldn’t mean a large change of the model. 
The iodine absorption, Ai, should according to Figure 4 be negatively correlated 
with baking volume. This correlation can be studied by plotting baking volume 
against Ai (Figure 6). The correlation seems to be true for spring wheats but not for 
winter wheats.  The strong negative correlation suggested by Figure 4 seems to 
originate out of the difference between the two groups of wheats. 
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Figure 5. Observed Y plotted against predicted Y (circles), and cross validation Y-
predictions (squares), (on the whole data set). BW-green, ES-pink, Julius-red, SW-
yellow, WW-blue.  
 

 

Figure 6. Baking volume as a function of iodine absorption, Ai, for all flours. 

3.3.2. WWallyears 
Since the flours formed two groups, winter wheats and spring wheats, in the PCA 
(Figure 2) one PLS for each group was made. Figure 7 shows the PLS-loadings for 
WWallyears (a PLS-model with WW from all years). Less variables could be 
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removed this time, compared with Allflours&years, and with Q2=0.563 the model 
was less good at predicting the baking volume. The model was also less rigid, as 
seen in Figure 8 where the predicted Y variables are further off the cross validation 
Y-predictions. No parameters from SDmatic were left after optimising WWallyears 
for Q2 (Figure 7).  
 

 

Figure 7. PLS-loadings for WWallyears (a model of WW and Julius after removal 
of X-variables to optimise Q2). Baking volume is the Y-variable. 
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Figure 8. Observed Y plotted against predicted Y (circles), and cross validation Y-
prediction (squares), (WW plus Julius). Julius-green, and WW-blue. Circles are 
predicted Y values and squares are predicted Y values from the cross validation. 

3.3.3. SWallyears 
 
SWallyears (a PLS-model built on SW from all years) had R2Y=0.432 and 
Q2=0.376 which is worse than both Allflours&years and WWallyears, Table 4. Even 
if this model is not good at predicting baking volume, it shows that different 
parameters explain baking volume for winter wheats and spring wheats (Figure 9). 
Baking volume for spring wheats seems to be positively correlated with protein 
content and Dmin (from Alveolab), and negatively correlated with Ai% and SRC 
water. Baking volume for winter wheats, in WWallyears, were positively correlated 
with insoluble mannose and protein content and negatively correlated with gluten 
index (Figure 7).  
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Figure 9. PLS-loadings for SWallyears (SW, ES and BW for all years). 

3.4. Predicting baking volume  
Baking volume is an important quality parameter with regards to consumer 
preferences, economy and industrial application. Being able to predict baking 
volume would therefore be desirable. A test set may be used to test a PLS-model’s 
predictiveness. The model is built on a training set and then has to predict the baking 
volume for the test set.  Allflours&years, WWallyears and SWallyears have no test 
sets since all observations were included in the models. Instead new models 
(Allflours80%, WW80% and SW80%) were made where 20 % of the observations 
were left out and used as test sets. To see how well models built on only data from 
2018 could predict the harvest of 2019, another set of models were made 
(Allflours2018, WW2018 and SW2018). 

3.4.1. Predictions based on all flours 
Allflours80% has a Root Mean Square Error of Prediction, RMSEP=122 ml which 
means that the average prediction deviated with 122 ml. With R2Ypredicted=0.856 the 
model could fit the predicted data well, especially well for the winter wheats (Figure 
10). Allflours2018 has a RMSEP=154 ml. Baking volume for the whole dataset 
spanned from 1650 ml to 2970 ml. A RMSEP=154 ml seems acceptable at this 
point. But since each group, winter wheats and spring wheats, had a span of 
approximately 300 ml in baking volume it means that this model might predict an 
average sample as one of the highest or lowest, or vice versa. Allflours2018 could 
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therefore not be used to predict baking volume. The model could however fit the 
data well and had a R2Ypredicted=0.753. A possible explanation why Allflours80% 
and Allflours2018 could fit the data well is that the predicted data has a large span 
in baking volume, and that makes it easier to fit a line through the data with a high 
R2Ypredicted-value. 

 

 

Figure 10. PLS-model based on 80 % of all flours, Allflours80%, and predicting 
the remaining 20 %. Included observations were selected at random and the model 
were optimised for Q2. 

3.4.2. Predictions made on winter wheats 

WW80% (RMSEP=75 ml and R2Ypredicted=0.467) is quite good at predicting the 
baking volume (Figure 11). The RMSEP is the lowest for all models. This can be 
compared with the RMSEP=169 ml for WW2018. The baking volume for WW is 
roughly between 1800 and 2150 ml and a RMSEP of 169 ml means therefore that 
the model can’t predict the next year’s harvest. Even the R2Ypredicted =0.103 for 
WW2018 is low. Important to remember is that WW80% is based on 85 flours 
which makes it better to predict baking volume than WW2018 does, which is based 
on only 42 flours. The same parameters were not selected for WW80% and WW2018 
(Table 4). This might be due to that different parameters were important for the 
baking volume for the two years and thus explain the poor estimation of 2019 year’s 
harvest. 

The same parameters were not selected for WW80% and Allflours80%, and more 
parameters were included in WW80% (Figure 12). This indicates that different 
parameters can explain the baking volume for winter wheats and spring wheats. 
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Figure 11. PLS-model based on 80 % of the winter wheats, WW80%, and 
predicting the remaining 20 %. Included observations were selected at random and 
the model were optimised for Q2. 
 

 
Figure 12. PLS-loadings for a model of WW of 2018 years harvest, WW2018, after 
removal of X-variables to optimise Q2. Baking volume is the Y-variable. 
 
UCDc is positively correlated with baking volume in WW2018 (Figure 12). This is 
not the case for the loadings-plot for the whole dataset (Figure 3). A low correlation, 

SRC Lactic acid

SRC Sucrose

UCDc

Protein 5,7 ts NIT

Falling number

Wet gluten dm

Farinogram water absorption
Farinogram development time

Farinogram FQN

glc insol mean

Baking volume

  

 
 

  
 
  

  
   

  
 

  



30 
 

although positive for UCDc and baking volume for WW2018 may be seen in Figure 
13. 
 

 

Figure 13. UCDc for WW2018 plotted against baking volume.  

3.4.3. Predictions made on spring wheats 
SW80% (RMSEP=124 ml and R2Ypredicted=0.323) has a higher prediction ability 
than SW2018 (RMSEP=142 ml and R2Ypredicted=0.047). This difference in 
predictiveness might be since the models are built on a different number of 
observations, 71 and 44 for SW80% and SW2018 respectively. And therefore, the 
80%-model outperformed the 2018-model, as also seen for the WW-models. 
Some different variables were selected for the two models, although the most 
important variables were similar (Table 4). The variables with highest VIP-values 
for SW2018 (Protein, AACC, Ai and P/L) were similar to the ones for SW80% (Ai, 
Protein and P/L). Ai and AACC are both measurements of damaged starch. This 
suggests that the baking volume for spring wheats from 2018 and 2019 can be 
explained with roughly the same variables.  

3.5. Predicting damaged starch content 
Damage starch correlates with other tested parameters (Figure 3). Since SDmatic 
only tests for damage starch it could be left out if one could predict the content of 
damage starch. Figure 14 shows an attempt to make a PLS-model with AACC from 



31 
 

SDmatic as the Y-variable. AACC is an estimate of the AACC76-31 method. The 
model is based on 80 % of the whole dataset and predicts the remaining 20 %.  
 

 

Figure 14.  PLS-model based on 80% of the whole dataset, predicting the remaining 
20 %. AACC is set as the Y-variable.  
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The flours formed two clear groups, winter wheats and spring wheats, in the PCA 
in Figure 2. Based on this it was logical to make individual PLS-models for the two 
groups since they probably were explained by different variables. Models built on 
80 % of the flours or flours from only 2018 were built for winter wheats, spring 
wheats and all flours together. This gave several PLS-models based on varying 
numbers of flours. PLS-models based on approximately the same number of flours 
will be compared first. The discussion will then continue with PLS-models based 
on winter wheats and then spring wheats. 

4.1. PLS-models with based on approximately 86 flours 
SWallyears (n=88), Allflours2018 (n=86) and WW80% (n=85) are based on 
approximately the same number of flours. This makes it easier to compare these 
models. SWallyears has an R2=0.432 and Q2=0.376. These values are low and 
means that the model does not fit the data well and that the model has a low 
predictiveness. SWallyears was not used to predict any test set and has therefore no 
R2Ypredicted.  

Allflours2018 can fit its predicted data quite well (R2Ypredicted=0.753).  The span 
of baking volume for winter wheats and spring wheats are about 250 ml and 350 
ml respectively, Figure 5. Since Allflours2018 has an RMSEP=154 ml it means that 
it can’t predict the baking volume. WW80% (RMSEP=75 ml and R2Ypredicted=0.467) 
has a worse fit but a more acceptable RMSEP. The R2Ypredicted-value alone might 
thus not be enough to decide if a model is good or not. The baking volume varied 
more for the spring wheats than the winter wheats, Table 4 and Figure 5. This makes 
it even more important to have low RMSEP for a model that will predict winter 
wheats. Because a model won’t be able to predict the baking volume if the RMSEP 
covers the whole span in baking volume. 

4.2. PLS-models for all flours 
The highest R2Ypredicted=0.863 was found in the PLS-model Allflours80%. An 
explanation for this might be the broader span of baking volume which makes it 

4. Discussion 
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easier to fit a line to the data and therefore gives a higher R2Ypredicted.. The 
RMSEP=122 ml is more explanatory, which is the third highest for all the PLS-
models. Allflours80% (RMSEP=122 and R2Ypredicted=0.863) is better than 
Allflours2018 (RMSEP=154 ml and R2Ypredicted=0.753). There might be two 
reasons for this. One is that Allflours80% (157 flours) were built on more flours 
than Allflours2018 (86 flours). The other is that the model included flours from all 
years and thus the parameters should be relevant for the predicted flours. 

4.3. PLS-models for winter wheats 
WW80% (RMSEP=75 ml) had a lower RMSEP than WW2018 (RMSEP=169 ml). 
This might have two reasons. The reasons are the same as for the Allflours-models; 
that WW80% are based on more flours and flours from all years which mean that 
the parameters should be relevant for the predicted flours.  It is however interesting 
that WW2018 had the highest RMSEP=169 ml. This indicates that all of this year’s 
parameters were not applicable for the other two years’ flours.  

Both WW2018 and WW80% had protein content as an important parameter. That 
protein content is positively correlated with baking volume was also seen by 
Bockstaele et al. (2008). WW2018 was the only of these two models with a 
parameter for damaged starch, namely UCDc. Damaged starch might increase late 
stage fermentation (Delcour & Hoseney 2010) and this could increase the baking 
volume. Baking volume and UCDc is negatively correlated in the loadings-plot for 
the whole data set, Figure 3. A low positive correlation between baking volume and 
UCDc for WW2018 was seen in Figure 13. No positive correlation could be seen 
when Ai was plotted against baking volume for the whole data set (Figure 6). This 
low positive correlation is probably of low importance. 

4.4. PLS-models for spring wheats 
The SW2018 predicted 2019 harvest year quite badly (RMSEP=142 ml) and fitted 
the data poorly (R2Ypredicted=0.047). The RMSEP is still lower than WW2018 
(RMSEP=169 ml) but in combination with the low R2Ypredicted makes this model 
unable to use for prediction of baking volume. One thing that SW2018 shows are 
the parameters important for spring wheats, and that they differ from winter wheats.  

SW80% had R2Ypredicted=0.323 which was higher than SW2018’s 
(R2Ypredicted=0.047) but is still lower compared to WW80% (R2Ypredicted=0.467). The 
low R2Ypredicted-values for the spring wheat models indicate that the included  

parameters might not explain the variation in the data. This is interesting since the 
Swedish spring wheat is more similar to wheats grown in southern European 
countries, than the Swedish winter wheat is. The Alveolab is widely used in these 
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countries to evaluate wheat performance (Lásztity & Salgó 2002). It is therefore 
interesting with the low predictiveness of the spring wheat models since machines 
like Alveolab are used for evaluation of wheats alike the Swedish spring wheat.  

4.5. Damaged starch and protein content 
Both SW2018 and SW80% have damaged starch and protein content as important 
parameters as well as P/L. P is related to the dough’s stiffness which increases with 
increased content of damaged starch since more damaged starch means a higher 
water absorption of the flour. P were close to UCDc, Ai and AACC (all parameters 
from SDmatic) in PC1 in the PCA (Figure 3) which shows that they correlated. L 
is on the other side of PC1 and is instead more positively correlated with protein 
content. P/L relates to both protein content and damaged starch and this is an 
explanation for why it was important for the PLS-models of spring wheats. The 
correlation between damaged starch and P was also noticed by Huen et al. (2018). 
Figure 3 shows a correlation between damaged starch and Farinograph water 
absorption as observed in other litterature (Bockstaele et al. 2008). Tipples et al. 
(1978) suggested that Farinograph water absorption could be predicted based on 
damaged starch and protein content. One could flip this argument and speculate that 
Farinograph data in combination with protein content could estimate damage starch 
content.  

Figure 14 shows an attempt to estimate damaged starch (AACC from SDmatic). 
AACC is an estimate of the enzymatic method, AACC76-31, for determining the 
content of damage starch. The AACC spanned between 5 and 7 % damaged starch 
for the whole dataset. With RMSEP=0.26 %-units and R2Ypredicted=0.77, the model 
might predict damaged starch quite well. Parameters included in the model came 
from the Alveolab, SRC-CHOPIN 2 and Foss InfratecTM. One might thus exclude 
SDmatic from the set of analyses and instead estimate it. Parameters from SDmatic 
were however important when creating the PLS-models for predicting baking 
volume. Excluding SDmatic would therefore make it harder to predict baking 
volume. 

Figure 6 shows a clear negative correlation between iodine absorption and 
baking volume for spring wheats. This relationship between damaged starch and 
baking volume was also noticed by Barrera et al. (2007). They have two theories to 
explain this. Either that too much damaged starch binds water and hinder optimum 
gluten formation or that too much damaged starch gives a high initial water 
absorption followed by a loss in viscosity due to enzymatic hydrolysis of the 
damaged starch. The test baking procedure in this study was adapted for water 
absorption of the flour so it is more likely that the later reason is applicable for this 
study. Since spring wheat flours have high protein contents the effect of damaged 
starch might be greater than for winter wheats. That winter wheats have a higher 
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damaged starch content than spring wheats is also seen in Figure 6. Winter wheat 
has a 1-3 % higher exchange than spring wheat, which is a plausible explanation 
for the observed difference in damaged starch content.  

4.6. Dietary fibre composition 
Some parameters from the Uppsala-method were included in 7 out of the 9 PLS-
models, Table 4. Insoluble mannose (determined by the Uppsala-method) was a 
parameter with high VIP-values for WW80% and WWallyears, and also positively 
correlated with baking volume. Insoluble mannose originates from glucomannan in 
the cell walls of the starchy endosperm. Glucomannan is a hemicellulose with 
emulsifying capacity. Li et al. (2020) showed that addition of konjac glucomannan 
improved the stability of gluten proteins in wheat dough. This could be an 
explanation for the positive correlation with baking volume.  

WU-AX has been linked with lower baking volume (Courtin & Delcour 2002) 
and WE-AX with higher baking volume (Goesaert et al. 2005). WU-AX or WE-
AX were however not included in any PLS-model predicting the baking volume in 
this report. It indicates that these were not useful parameters when predicting the 
baking volume for the samples in this study. 

Insol ara/xyl (the quota of arabinose-residues and xylose-residues in WU-AX) 
was negatively correlated with baking volume for all PLS-models based on all 
flours. In other words, a higher degree of substitution for WU-AX were found to be 
negatively correlated with the baking volume.  

Less than one percent of wheat flour consist of arabinogalactan. It has however 
an effect on baking volume and has been seen to increase it when dough was 
fortified with extra arabinogalactan (Saeed et al. 2015). Insoluble galactose, 
originating from insoluble arabinogalactan, was correlated with a lower baking 
volume for WWallyears and with a higher baking volume for SW2018. Insoluble 
galactose had a VIP>1 for WWallyears and this correlation would be interesting to 
study further. 
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PLS-modelling of wheat flours can be used to some extent to predict baking 
volume. The most promising model in this study was WW80%. Separate PLS-
models for winter wheat and spring wheat should be made since they are explained 
by different parameters. Protein content were important for all models and damage 
starch were particularly important when explaining the spring wheat models. 
Although glucomannan constitutes less than 1 % of wheat flour, it was an important 
parameter for WW80% and WWallyears. 

The duplicate study showed that the two operators were reproducible for 
SDmatic, Alveolab and SRC-CHOPIN 2, although only completely reproducible 
for SDmatic. The fact that they had limited training time is a good indication for 
the user-friendliness of the machines. 

Some parameters from either SDmatic, SRC-CHOPIN 2 or Alveolab were left 
in all PLS-models after optimising Q2. WW80% (the most promising model) had 
only one variable from Alveolab and no other parameters from SDmatic or SRC-
CHOPIN 2. How good these machines are at predicting baking volume for bread 
baked on Swedish wheat flour is therefore still unclear. 

Future studies should analyse how these machines can predict other quality 
parameters, such as crumb structure, bread-staling and consumer acceptability. 

5. Conclusion 
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Appendix 1. Equations for SDmatic units. All units are based on the iodine 
absorption, Ai. UCDc is adjusted by the moisture content and protein content of the 
flour.  
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Appendix 2. Popular scientific summary. 
Imagine never having to test bake. If you are a baker at a large bakery or a cereal 
scientist, you might be shocked over this drastic idea. If you are not, you are 
probably like most people. There is no way in hiding it that the following text is 
mostly aimed for people in the baking industry, but it might be even more insightful 
if you are not so stick along.  

Let´s take it from the beginning. Bakeries test bake the flour as a quality 
measurement. The bread is baked under strict controlled circumstances and the final 
bread volume is measured. This process takes a lot of time and demands highly 
trained bakers. Time and money (salaries is one of the major outcomes in food 
companies) could be saved if we instead could predict the baking volume. This 
report tested if three machines from Chopin Technologies together with statistical 
models could do this.  

The three machines from Chopin Technologies were used to test 200 flour 
samples. The machines were SDmatic, SRC-CHOPIN 2 and Alveolab. Wheat flour 
is made from wheat kernels and the kernels contain starch. Some starch is damaged 
during the milling process. SDmatic estimates the damaged starch content of flour. 
Damaged starch can act as feed for the yeast but too much will make the dough 
absorb too much water and become sticky. Where the sweet spot is depends on the 
product.  

SRC-CHOPIN 2 tests how much gluten proteins and dietary fibres the flour has. 
Gluten proteins are important for baking volume. Fluffy white bread would not be 
possible without these proteins. Dietary fibre is healthy for us but might have 
negative impact on the baking volume. Yet again, the sweet spot depends on the 
product.  

Lastly, the Alveolab. Have you ever blown a bubble with chewing gum? Have 
you ever tested how large of a bubble you could make? The Alveolab does that but 
with wheat dough. Larger bubbles that are easy to inflate are related to higher 
baking volume. These were the tests performed in this study but previous data on 
these flours were also available. If you are new to cereal science and thinks that 
three tests are enough then I will just mention that ash content, protein content, 
Faringraph data and fibre composition were previously analysed on these flours. 
 
So how could we predict baking volume? We would use something called PLS, 
Partial Least Squares Regression. This a method to summarise several dimensions 
into two dimensions with a focus on predictive power. Does it sound a little bit 
complicated? Imagine that you draw a two-dimensional graph with baking volume 
on the Y-axis and protein content of the X-axis. Now let us add the damaged starch 
content on the Z-axis. We could add more and more axes but after three the plot is 
hard to read. PLS is there to help us. By setting baking volume as the Y variable 
and all the other test parameters as the X variables, PLS will try to see which 
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parameters are important for explaining the baking volume. Unimportant 
parameters will be discarded and left out of the model.  

This study analysed both winter wheat and spring wheat (named after the time 
of sowing). PLS-models for each group of wheat were made. The model for winter 
wheat could predict the baking volume with a difference of either plus or minus 75 
ml compared to the observed baking volume. Since the average bread volume for 
winter wheats were 2030 ml it shows that this model could predict the baking 
volume quite well.  The spring wheat model performed not so well, which is 
interesting since machines like Alveolab are commonly used to test flours more 
similar to spring wheat than winter wheat. But let us focus on the winter wheat 
model. The most important parameter for this model was the level of glucomannan, 
a type of dietary fibre, in the flour. The more the glucomannan, the higher the 
baking volume. Other studies have seen that addition of glucomannan to wheat 
dough could stabilise gluten proteins and therefore increase the bread volume. This 
large effect is interesting since glucomannan makes up than less than 1 % of the 
total flour.  

The damaged starch content had no impact on the baking volume for winter 
wheats but had a clear negative impact for spring wheats. This might be since more 
damaged starch means a higher initial dough consistency but damaged starch is 
sensitive to enzymatic hydrolysis. If the damaged starch is degraded the dough will 
then loose its consistency and air cells in the dough might collapse and decrease the 
baking volume.  

Three take home messages 
• The model for winter wheat were more promising.  
• Damaged starch had a negative impact on baking volume for spring wheats. 
• Flour has less than 1 % glucomannan but it still affected the bread volume 

for winter wheats. 
 
Final conclusion: Data from SDmatic, SRC-CHOPIN 2 and Alveolab might be used 
to predict baking volume but not yet to the point where we could stop test baking. 
 


	1. Introduction
	2. Materials and methods
	2.1. Flours
	2.1.1. Winter wheat
	2.1.2. Spring wheat
	2.1.3. Extra strong spring wheat
	2.1.4. Baker’s wheat
	2.1.5. Julius

	2.2. Chemicals
	2.3. SDmatic
	2.3.1. SDmatic’s procedure

	2.4. SRC-CHOPIN 2
	2.4.1. Procedure of SRC-CHOPIN 2

	2.5. Alveolab Chopin
	2.6. Reproducibility study
	2.7. Statistical analysis

	3. Results
	3.1. Overview of data
	3.1.1. Principal Component Analysis

	3.2. Duplicate study
	3.3. PLS-modelling of the dataset
	3.3.1. Allflours&years
	3.3.2. WWallyears
	3.3.3. SWallyears

	3.4. Predicting baking volume
	3.4.1. Predictions based on all flours
	3.4.2. Predictions made on winter wheats
	3.4.3. Predictions made on spring wheats

	3.5. Predicting damaged starch content

	4. Discussion
	4.1. PLS-models with based on approximately 86 flours
	4.2. PLS-models for all flours
	4.3. PLS-models for winter wheats
	4.4. PLS-models for spring wheats
	4.5. Damaged starch and protein content
	4.6. Dietary fibre composition

	5. Conclusion
	Blank Page



