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Abstract 
 
Increasing numbers of people are eliminating animal products from their diet in response to 

environmental concerns, as well as for human health reasons and in recognition of animal 

rights. Vitamin B12, an essential nutrient produced exclusively by bacteria and archaea, is 

present in animal products but is generally absent from unfortified plant foods. People 

adhering to strict vegetarian diets must consume a dietary supplement or sufficient fortified 

foods to prevent deficiency, and the rise of vegetarian eating patterns could cause increased 

deficiency rates if consumers are not aware of, or able to meet, their B12 needs. The purpose 

of this study was to gain insight into current knowledge and behaviour regarding B12 within 

a population in Southern Sweden, and to explore the potential for novel fermented foods to 

provide a viable source of B12. Three methods were employed: a survey, a literature review 

and an experimental study to examine the B12 production potential of Lactobacillus 

plantarum during the fermentation of white-beans and cauliflower; special focus is given to 

the inclusion of beans given the well establish health and environmental benefits of legumes. 

Knowledge relating to vitamin B12 was significantly higher among respondents who currently 

consume a vegan diet, but the majority of respondents were able to identify B12 as a 

necessary supplement for vegetarians (80%), and at least one symptom of B12 deficiency 

(63%). Consumption of fortified drinks and supplements containing B12 was reported by 75-

97% of vegans and 40-63% of vegetarians, compared to 21-34% of meat eaters. Consumption 

of B12 fortified food was low among all respondents. Attitudes to B12 fortification did not 

vary significantly between demographic groups; most respondents disagreed that foods 

should not be fortified with B12 and agreed that there are potential health benefits. A number 

of bacteria spp. have been reported to produce B12 during the fermentation of a variety of 

plant-based foods, although the quantity and bioavailability varies widely. Following the 

fermentation of mixed white beans and cauliflower by L. plantarum 299 B12 content 

increased significantly, although the average concentration (0.048 μg/100g) was low relative 

to the daily recommended intake value of 2 to 4 μg. Combining white beans with cauliflower 

represents a novel approach to producing fermented legume-based products and warrants 

further investigation. Further research is also needed to understand consumer interest in 

fermented products that contain B12. 
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Foreword 
 
Before coming to study agroecology at Alnarp I was fortunate to spend five years working for 

wildlife conservation and rehabilitation projects in the tropical rainforests of South America 

and South East Asia. During this time, I saw first-hand the ongoing destruction of primary 

rainforest in the name of industry, and my understanding of the impact human society has 

on the world around us was forever changed. My previous knowledge, from textbooks and 

lectures, was extensive but abstract, and although I was greatly concerned about the 

destruction of the natural world, nothing I learned in a classroom had the same impact as 

driving for hours through an endless sea of ranches and plantations to find a pocket of 

wilderness that was only clinging to life thanks to the good will and charity of those who had 

fought to protect it. Returning to Europe, I no longer saw the environment I had grown up 

with through the same eyes; Scotland is considered rugged and wild, renowned for its beauty, 

but to me it is a barren landscape reduced to little more than grazing land and monocultural 

plantations. Our native forests and mega-fauna are all but lost, and those species that remain 

are persecuted or exploited wherever they come into contact with human endeavours, at the 

centre of which is inevitably agriculture.  

 

Deciding to study agroecology was a step out of my comfort zone; I was not then, nor am I 

now, skilled in the art of growing and I have the utmost respect for those who produce the 

food I eat. It is easy to criticize farmers when looking at the world through the eyes of a 

biologist with a resounding love of the rainforest, but I know I must not lose sight of their 

humanity. We are all just trying to survive in a society that largely values economic growth 

above and beyond our own well-being and that of the environment we depend on. Having 

the opportunity to study alongside students with experience in agricultural and to connect 

with farmers and researchers has been a humbling experience, but also an encouraging one. 

Despite clashes of opinions and personal ethics, we were able to work productively together, 

and to ask difficult questions about the role each of has to play in shaping a better world.   

 

I am strongly committed to the vision of a vegan future; beyond a change in diet I recognize 

a philosophy that gets to the very root of so many of our problems – our violent and utterly 

dominating relationship with nature and non-human animals. We can step back, give up some 

space and let the natural world flourish around us, but to do so we must reduce our ecological 

demands. Removing animals from our diets is not the only change needed to achieve this, but 

as far as I can see, it is an essential one. It is also the only solution I see that truly values the 

concept of justice; non-human animals are here with us, not for us, and they deserve freedom 

to live their own lives, not just ones that profit humanity. As a former wildlife rehabilitator, I 

know only too well the trauma they experience at our hands, but also their resilience and 

determination to keep on living.   
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I also know from personal experience that pursuing this future doesn’t mean sacrificing 

something that is essential to our physical and social well-being – good food. Since becoming 

vegan I have come to enjoy a vastly more diverse diet and found new joy in sharing creative 

and delicious food with the people in my community. Going forward I hope I can put these 

skills to good use by developing new products that inspire others to value the diversity and 

quality of plant-based food.  

 

The following work represents an attempt to pursue my vision of the future without losing 

touch with reality. Radical change won’t happen overnight, and philosophy alone isn’t enough 

to guide us; the direction we take must be founded in sound science and reason. Taking a 

systems approach and developing solutions that are designed to drive positive systemic 

change, without creating too many new problems, will be central to building a more 

sustainable society.  
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Abbreviations  
 

AdCbl  Adenosylcobalamine 

Cbl  Cyanocobalamin  

dw Dry weight 

GHG Greenhouse gas 

GRAS Generally regarded as safe 

HCbl   Hydroxocobalamine  

LAB  Lactic acid bacteria 

LCA  Life cycle assessment 

MeCbl  Methylcobalamine  

MND Micronutrient deficiency  

MRS de Man, Rogosa and Sharpe 

RDI Recommended Daily Intake 

ww Wet weight 

  
 

 

Definitions 
 
Plant-based – derived wholly from plant origins 
 
Vegetarian* – excludes the consumption of all forms of meat, including poultry, fish and 
shellfish, but may include the consumption of eggs and/or dairy products.  
 
Vegan*† – excludes the consumption of all products of animal origin, i.e. all meat, fish, dairy 
and egg products.  
 
 
* For the purpose of this report, which is primarily focused on diet and nutrition, these definitions 
do not give consideration to the use of animal derived materials, such as wool and leather.  

 
†There is some debate about the inclusion of honey in a vegan diet; in the present research the 
definition of vegan does not exclude the consumption of honey as it does not provide a source of 
vitamin B12.  
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1. Introduction 
 

In recent years, there has been increased public awareness about the negative environmental 

impacts of animal agriculture, as well as the treatment and experiences of animals within 

farming systems, and a significant number of people have adopted vegan and vegetarian diets 

in response, reducing or entirely eliminating their consumption of animal products. Although 

the promotion of veganism is often met with resistance and even anger, it has become a 

significant area of research and shifting towards “plant-based” diets is increasingly advocated 

as a necessary step towards achieving sustainability (IPCC, 2019; Willett et al., 2019). The 

American Academy of Nutrition and Dietetics and the British Dietetics Association both  

acknowledge that well planned vegetarian diets, including vegan diets, are healthful and 

nutritionally adequate at all stages of life, and may provide health benefits in the prevention, 

management and treatment of diseases such as type II diabetes and cardiovascular disease  

(Melina et al. 2016; British Dietics Association, 2020), however, there is concern that the 

reduced consumption of animal products could increase the risk of some micronutrient 

deficiencies if consumers are not aware of their nutritional needs, or pro-active in ensuring 

those needs are met (Strain et al., 2017; Röös et al., 2020). Vitamin B12 (B12), which is not 

naturally present in plant foods, is an essential nutrient that must be supplemented into 

vegan and vegetarian diets, either as vitamin tablets or through fortified foods (Pawlak et al., 

2013). Since B12 is produced by bacteria, fermentation offers an alternative method to create 

a source that is suitable for vegans and vegetarians. The purpose of the present research is 

threefold; to gain insights into consumer knowledge about B12 and existing attitudes towards 

dietary supplements and food fortification, to review the existing literature relating to the 

production of B12 during the fermentation of plant-based foods, and to experimentally test 

the B12 production potential of lactic acid bacteria during the fermentation of vegetables and 

legumes. The role of novel food products in the development of a sustainable food systems 

is considered, and special focus is given to the inclusion of legumes considering they are 

widely regarded to offer many benefits, both for agricultural systems and human health.   

 

1.1 Background  
 

1.1.1 The development of agri-food systems 

 

Globally, agricultural activity covers as much as 43% of ice-free, non-dessert land and is a 

leading driver of land use change, fresh-water consumption, pollution and greenhouse gas 

(GHG) emissions (Poore and Nemecek, 2018; Ramankutty et al., 2018). Modern farming 

practices have developed following the green revolution, which lead to a significant increase 

in available calories and had an overall positive impact on global hunger and food security 

(Ramankutty et al., 2018). However, the industrialization of food production has also 

increased the environmental impact of agricultural systems and created a system that is 

heavily dependent on agri-chemical inputs and mechanization (Gliessman, 2015). More 
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recently, the globalization of food markets and the expansion of production systems 

modelled on the economy of scale have encouraged the growth of monocultures, leading to 

decreased agricultural biodiversity and, consequently, decreased diet diversity (Allen et al., 

2014; Gliessman, 2015; Zander et al., 2016). These changes are believed to negatively impact 

the resilience of agricultural systems and may contribute to a decline in human health 

outcomes, characterized by pervasive malnutrition and the rise of non-communicable 

diseases such as cardiovascular disease and diabetes (Allen et al., 2014; Jones, 2017). 

Advocates of agroecology, which can be defined as the ecology of food systems (Francis et 

al., 2003), argue that the continued growth and intensification of industrial agriculture and 

the globalized food market will further lead to decreased food security and environmental 

devastation, and that alternative strategies are necessary to achieve environmentally 

sustainable, nourishing and socially just agri-food systems (Hill, 1998; Gliessman, 2015). The 

future widespread adoption of vegan diets is one such strategy that would have 

transformative effects on the global agricultural landscape and is predicted to bring many 

benefits. However, it would also create a new set of challenges for the management of 

agricultural systems, and for public health and nutrition.  

 

1.1.2 The positive potential of dietary change 

 

Dietary change has become a hot topic. It is increasingly recognised that the most significant 

factor affecting the environmental impact of our food choices is the extent to which animal 

products are included in our diets (Aleksandrowicz et al., 2016; Poore and Nemecek, 2018). 

In 2010 the UN advised that a global shift to vegetarian diets would be necessary to prevent 

the worst effects of climate change, and in the ten years since research has continued to 

highlight the role of dietary change as an important component of sustainable development, 

(Bajželj et al., 2014; Aleksandrowicz et al., 2016; Bryngelsson et al., 2016), particularly in 

industrialized countries where the “western” diet, characterized by high meat, dairy and egg 

consumption, is associated with particularly high environmental impacts and increased rates 

of non-communicable chronic diseases (Tilman and Clark, 2014; Westhoek et al., 2014).  

 

Much attention has been given to the concept of food miles as an important factor in the 

carbon food print of food, and ‘eat local’ has become a common mantra. However, farm to 

table LCA assessment has shown that transport typically accounts for little more than 10% of 

any given products impact, and that the production system is the most significant factor, 

accounting for approximately 80% of GHG emissions (Weber and Matthews, 2008; Sandström 

et al., 2018). A comprehensive review of dietary change studies found that the calculated 

GHG emission reduction associated with vegan diets ranges from 20-70% with a median of 

45%, the largest decrease of any dietary change (Aleksandrowicz et al., 2016). A subsequent 

review of >38,000 farms, 1600 food processors, packaging types and retailers reported that 

vegan diets could reduce agricultural GHG emissions by as much as 49% (Poore and Nemecek, 

2018). Agricultural emissions have been notably absent from most international climate 
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change conferences and attempts to include agriculture in future policy have been more 

focused on climate adaptation and future food security than mitigation efforts (CCAFS, 2016). 

The potential reductions achieved by dietary change are significant, especially considering 

that recent analysis of mitigation policies has found that current measures are unlikely to 

successfully limit global warming to 2°C. For example, a recent modelling experiment, 

published in the journal Nature, predicted that global temperature increase is likely to fall 

between 2.0°C and 4.9 °C, and that there is only a 5% chance that the target of >2°C will 

be achieved. These results were not calculated under a ‘business as usual’ scenario, but 

were based on observed data from emission mitigation policies that are already in place 

(Raftery et al., 2017).  

 

Further to the reduction of GHG emissions, Poore and Nemecek (2018) estimated that 

(relative to 2010 reference levels) the wide-spread adoption of vegan diets would reduce 

global agricultural land use by up to 76%, eutrophication and acidification by approximately 

50%, and freshwater withdrawals by 19%. Global uptake of vegan diets could also have many 

positive consequences for human health; compared to non-vegan diets they are typically 

higher in protective nutrients and phytochemicals, for example, dietary fibre, folic acid, 

vitamin C and E, magnesium and iron, and lower in dietary factors associated with chronic 

diseases, such as saturated fat and cholesterol (Craig, 2009). Vegan diets are correlated with 

a lower risk of cardiovascular disease (CVD), type 2 diabetes, and some cancers (Craig, 2009; 

Orlich et al., 2013; Esselstyn, 2017); diseases that are affecting a growing number of people 

in all but the poorest nations (Tilman and Clark, 2014). 

 

1.1.3 Legumes: healthy food, healthy soil 
 

Increasing the consumption of legumes has been identified as a key strategy for reducing 

meat consumption and achieving sustainability in the food system (Foyer et al., 2016; Röös et 

al., 2020). Legumes constitute a broad variety of plants belonging to the plant family 

Fabaceae, many of which are grown for their edible seeds - green beans and peas, which are 

classified as vegetables, and dry beans, peas and lentils, referred to as grain legumes or pulses 

(FAO, 2017). Legumes are rich in dietary fibre, protein and micronutrients (Messina, 2014), 

and there are several recognized health benefits associated with regular legume consumption 

– including reduced risk of cardiovascular disease and diabetes (Messina, 2014; Mudryj et al., 

2014). There is also ongoing research into other potential benefits, such as reduced risk of 

certain cancers (Zhu et al., 2015; Rungruangmaitree and Jiraungkoorskul, 2017) and improved 

gut health (Borresen et al., 2017).  

 

In addition to providing a rich source of dietary fibre and human-edible proteins, legumes can 

make a significant contribution towards maintaining soil fertility; as nitrogen fixers they 

contribute nitrogen to cropping systems, reducing the need for the addition of other nitrogen 

sources (Jensen et al., 2012). In the current system, animal manure and bone meal are widely 
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used as fertilizers, but as demand for animal products decreases alternative strategies will be 

required as fewer animals are farmed and these inputs become scarce. Integrating legumes 

into crop rotations will go some way to addressing this need and avoiding increased 

dependence on synthetic nitrogen, which is energetically demanding to produce and 

associated with a high carbon footprint (Jensen et al., 2012). Other benefits attributed to 

cultivating legumes include enhanced soil carbon content and improved soil structure (Jensen 

et al., 2012; Stagnari et al., 2017), improved biodiversity of cereal dominated landscapes, in 

turn supporting increased insect biodiversity, and improved resilience to pests and disease 

(Köpke and Nemecek, 2010; Ebert, 2014). 

 

Despite these benefits, the production of legumes in Europe is minimal – in 2016 the area of 

arable land dedicated to grain legumes in Europe was only 1.5%, compared to 14.5% globally 

(Watson et al., 2017). Increasing the area under production is therefore an area of research 

interest; a recent study of the production potential in Sweden concluded that, under the 

scenario whereby Swedish meat consumption is reduced by 50% and replaced with grain 

legumes, increasing the total area of grain legume cultivation from 2.2% to 3.2% would be 

feasible (Röös et al., 2020). Improving the market value of legumes is a recognized strategy 

that could promote their production by European farmers (Preissel et al., 2015). Food 

processors and product developers are uniquely placed to influence the production and 

consumption of sustainable products, but to do so they must take ecological and human 

health goals into consideration during product development (Spieldenner and Matope, 2017). 

The development of new legume-based products could increase consumer demand, 

increasing both their cultivation and consumption.  

 

1.1.4 Micronutrient deficiencies: an existing challenge in the western world 

 

Micronutrient deficiency (MND) often referred to as “hidden hunger”, can be defined as “an 

inadequate intake [of nutrients] beyond deficiency or without typical clinical signs and 

symptoms” (Biesalski, 2017). It is a recognized problem throughout the world, including 

within affluent countries where there is an apparent abundance of food available (Biesalski, 

2017; Troesch, 2017). Currently, the nutrients of highest concern are vitamins E, D and A and 

folate (Troesch, 2017). Low income, poor knowledge of nutrition and over consumption of 

nutrient poor food are probable causes of MND in affluent countries, which is of particular 

concern to children under 5 and pregnant women who have elevated nutrient requirements 

(Biesalski, 2017).  

 

A variety of different strategies have been employed to improve nutritional health, including 

campaigns to promote the adoption of healthy diets, the promotion of vitamin supplements, 

and the fortification of food products, with mixed results. While public information 

campaigns, dietary guidelines and improved nutritional labelling offer consumers the ability 

to make informed choices, such interventions are designed around the principle of ‘the 
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rational consumer’, whereby it is assumed that the right information will have a positive 

influence on consumer choices and long-term health outcomes (Réquillart and Soler, 2014). 

Assessment of these interventions has found them to have limited value (Brambila-Macias et 

al., 2011; Troesch, 2017), and several other influencing factors have been identified, including 

“taste cost” – the trade-off between immediate pleasure over long-term health benefits (Irz 

et al., 2015), conflicting messaging about the healthfulness of certain foods, and the role 

played by market forces in providing (or restricting) access to healthy food choices (Réquillart 

and Soler, 2014).  

 

The development of dietary supplements as a consumer product has created a multi-million-

dollar, global industry, however the widespread availability of supplements has not solved 

the problem of MND. Research has shown that the consumption of dietary supplements is 

highest among those who have the lowest need as they already derive sufficient nutrition 

from their diet, a paradox that has been named the “inverse supplement hypothesis”  (Pajor 

et al., 2017). These consumers are typically women in their 40s, 50s and 60s with above 

average income (Conner et al., 2001). Supplement users typically report using them to 

promote overall good-health and as a protective measure against illness, despite a lack of 

evidence to support these claims (Conner et al., 2001; Bailey et al., 2013). Both users and non-

users recognize media as a significant influencing factor on supplement consumption (Conner 

et al., 2003), and research in the US has found that less than 1 in 4 supplements were 

consumed following instruction from a medical professional (Bailey et al., 2013) suggesting 

that marketing campaigns are driving consumers to take supplements they do not need. This 

is perhaps not surprising if we consider that people with higher disposable income are more 

likely to consume sufficient nutrition from their diet, but also more likely to be the target of 

marketing campaigns by companies seeking to profit from dietary supplements. Among vegan 

populations dietary supplement use is varied. Research that examined the relationship 

between dietary motives and health behaviours found that vegans who were motivated by 

health reasons were less likely to consume dietary supplements than those who were 

motivated by ethical reasons (Radnitz, et al., 2015). The report provided no data to explain 

why, however the authors hypothesized that due to their focus on obtaining their nutritional 

needs from food, they may believe they do not need to take dietary supplements. A survey 

of American “raw” vegans - a subgroup of the vegan community that are highly motivated by 

beliefs surround health and nutrition, and that largely adhere to diets based on raw fruits, 

vegetables, nuts, seeds and sprouts - found that only 6% of the sample population consumed 

a B12 supplement (Hobbs, 2005). Ironically these reports indicate that people who adhere to 

vegan diets for health reasons may be at increased risk of developing B12 deficiency.  

 

Food fortification has been identified as one of the most cost-effective health interventions, 

and a significant factor in the reduction of MND in the industrialized world (Darnton-Hill and 

Nalubola, 2002). A variety of fortification products have been used to address a range of 

specific health conditions, such as iodized salt to treat goitre, vitamin D fortified milk for 
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rickets, and folic-acid enriched cereals and flours to prevent neural-tube defects arising during 

foetal development (Darnton-Hill and Nalubola, 2002; Molster et al., 2009; Troesch, 2017). It 

has been suggested that food fortification is a successful strategy because it requires little 

change in consumer behaviour and habits, however it is important to recognise that 

knowledge and attitudes still play an important role and the benefits of fortification will not 

be felt if consumers and policy makers are not convinced of its efficacy and safety (Darnton-

Hill and Nalubola, 2002). Research into the consumption of so called “functional foods” 

(products that are marketed as having enhanced health value, such as nutrient fortification 

or probiotic properties) has found that attitudes and behaviour vary significantly across 

Europe. While a high percentage of Swedish, Finnish and Dutch consumers report consuming 

functional foods, Danish, Belgian and Italian consumers report lower levels of consumption 

and are more sceptical of their reported benefits (Özen et al., 2014).   

 

Over-coming the challenge of malnutrition will require the actions of multiple stakeholders. 

Much focus has been put on the importance of responsible consumption, but the available 

evidence indicates that educational campaigns and product labelling alone have limited and 

inconsistent effects on consumer behaviour. Governing bodies, research institutes and actors 

within the food industry must also recognise their roles in achieving public health and 

sustainability goals.  

 

1.1.5 Vitamin B12 deficiency: a challenge for dietary change 

 

Although vegan diets confer many benefits, it is well documented that people who consume 

little or no animal products have an increased risk of suffering from B12 deficiency, a serious 

problem that can cause irreversible damage to the body (Pawlak, Lester and Babatunde, 

2014). B12 deficiency is not currently a major public health concern as there are few people 

in the population who don’t consume enough, and deficiency is largely limited to people 

adhering to vegan or vegetarian diets and older adults with malabsorption (Strain et al 2014). 

The increased up-take of vegan and vegetarian diets however, could lead to increase B12 

deficiency if measures are not taken to prevent it (Strain et al., 2017; Röös et al., 2020).  

 

The term “Vitamin B12” is used to describe a variety of water-soluble compounds of the 

cobalamin group (Kumar, Chouhan and Thakur, 2010), which are biosynthesized exclusively 

by bacteria and archaea, commonly Salmonella typhimurium, Escherichia coli and several 

Thermotoga spp. (Fang et al.,, 2017; Nakos et al., 2017). There are currently four recognised 

analogues of B12 that can be administered to prevent or treat deficiency in humans; 

methylcobalamin (MeCbl), adenosylcobalamin (AdCbl), hydroxocobalamin (HCbl) and 

cyanocobalamin (Cbl) (Thakkar and Billa, 2015). In humans and non-human animals, B12 is 

essential to the maintenance of myelin, the formation of red blood cells and the rapid 

synthesis of DNA during cell division (Kumar et al., 2010; Pawlak et al., 2014). Deficiency can 

lead to megaloblastic anaemia and neurological damage due to irregular development of the 



 15 

myelin sheath surround nerve cells. It can present with a variety of clinical symptoms 

including fatigue, constipation, the sensation of numbness and tingling in the hands and feet, 

mental confusion and memory problems, headaches, mouth-sores and a smooth tongue 

(Pawlak et al., 2014). The recommended daily intake (RDI) for adults ranges from 2μg – 4 μg 

per day (EFSA, 2015; Livsmedelsverket, 2019). In contrast, plants do not metabolize B12 and 

it is generally accepted there are no naturally occurring plant-based dietary sources (Pawlak, 

Lester and Babatunde, 2014). There is therefore a consensus among the medical community 

that people adhering to strict vegetarian diets must consume B12 supplements, either in 

vitamin tablets or fortified foods (Pawlak et al., 2013). However, as has already been 

established, consumer behaviour is influenced by a number of factors, and it is not safe to 

assume that information campaigns will lead to improved health outcomes; despite the 

importance of B12 supplementation being well understood by the medical community, 

studies frequently report low levels of B12 in vegan and vegetarians. For example, a 2013 

literature review found 18 reports on B12 deficiency in vegans and vegetarians, ranging from 

62% among pregnant women, 25-86% among children, 21-41% among adolescents and 11-

90% among the elderly (Pawlak et al., 2013). 

  

1.1.6 Novel fermented foods: a possible source of vitamin B12 

Fermentation is a simple and effective biotechnological method that has been exploited for 

countless generations without knowledge of the microbial processes involved (Di Cagno et 

al., 2013; Melini et al., 2019). During fermentation carbohydrates are broken down to 

produce energy. During this process a variety of micronutrients can be produced, including B 

vitamins (Waters et al., 2015). The contribution made by fermented foods to meeting B12 

requirements is controversial, although research from South Korea provides some evidence 

that diets rich in fermented foods protect against B12 deficiency in elderly women (Kwak, et 

al., 2010).  

 

Lactic acid fermentation is one method that has traditionally been used around the world to 

enhance the organoleptic properties of food, and as a method of preservation; in Europe, it 

is associated with the preservation of vegetable products, such as capers and cabbage 

(sauerkraut), and also in the production of breads and dairy products. Lactic acid bacteria 

(LAB) refers to a diverse group of gram-positive bacteria that share certain morphological, 

metabolic and physiological characteristics, notably the production of lactic acid during the 

fermentation of carbohydrates (von Wright and Axelsson, 2012). Members of the genus 

Lactobacillus are subject to generally regarded as safe (GRAS) status, and are widely used as 

starter cultures in the food industry, and as probiotics (Barrangou et al., 2012). It has also 

been observed that lactic acid fermentation can result in enhanced nutrient content of foods, 

as vitamins are created during the metabolic processes within the fermenting bacteria. L. 

reuteri has been shown to produce vitamin B12 during the co-fermentation of glycerol and 

fructose in soy-yoghurt (Gu et al., 2015b). Strains of L. coryniformis and L. plantarum isolated 
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from Japanese pickles have also been recorded to produce vitamin B12, though not in 

significant quantities (Masuda et al., 2012).  

 

Fermented bean products, predominately made from soya, are traditional to East and South 

East Asia and make an important contribution to Asian diets (Xu, Cai and Xu, 2017). Bean 

consumption in northern Europe is comparatively low, possibly due to a negative culinary 

perception as well as digestive discomfort arising from the high oligosaccharide content of 

beans (Messina, 2014). Fermentation has been identified as a possible method to reduce 

digestive problems association with bean consumption (Granito et al., 2005). Tofu, miso and 

tempeh have recently become more popular in Europe and are now widely available in 

supermarkets and specialist food stores. Fermented bean products based on European 

legume varieties, however, remain limited. One example is lupin tempeh, which has been 

developed in southern Sweden and commercially available since 2019 (Lupinta, 2020).  

 
Cauliflower (Brassica oleracea var. botrytis) is an annual cool-weather crop that is grown for 

its edible flower structures. More than two thirds of global cauliflower production occurs in 

China and India, however it is cultivated all over the world and grows most successful within 

the latitudinal range 11 – 60º N (Singh et al., 2018). This range covers most of Europe, 

including the southern regions of Sweden. It is reported as a good source of antioxidants, 

including vitamin C (24.8 mg/100 g), as well as micronutrients such as phosphorus  (61.35  

mg/100g)  and calcium (41.16 mg /100g) (Singh et al., 2007; Baloch et al., 2015). Between 

2002 and 2014 cauliflower production in Sweden increased from 4.9 – 6.7 thousand tonnes 

per year (Karlsson, 2015). Cauliflower has becoming increasingly popular following the recent 

trend of low-carb and gluten free diets; it is promoted as an alternative to grains with 

products such as cauliflower “rice” and pizza bases entering the market (O’Connor, 2018). 

Despite being a close relative of cabbage, cauliflower is not traditionally prepared as a 

fermented product in northern Europe, however it’s healthy nutritional profile and current 

popularity make it an excellent candidate for the development of a novel fermented food 

with high consumer appeal. It’s cultivation poses a unique set of challenges as it is highly 

sensitive to environmental conditions, and it requires significantly more attention than other 

members of the Brassica family (Ray and Mishra, 2017), but it has also been identified as a 

valuable addition to vegetable intercrops, contributing to both increased yield and 

profitability (Yildirim and Guvenc, 2005).  
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1.2 Aims and objectives 
 
The development of future agricultural systems will require innovations that support 

ecological sustainability without compromising human health outcomes. In recognition of the 

increased risk of B12 deficiency associated with the adoption of ecologically sustainable 

dietary patterns, the aim of the present research is to gain insight into consumer knowledge 

of B12 while simultaneously exploring fermentation as a tool for increasing levels of B12 in 

plant-based food. The following research question is considered: can novel fermented foods 

provide a viable source of vitamin B12 and contribute to the development of sustainable food 

systems in northern Europe? 

 

The objectives are: 
 

1. to assess consumer knowledge, behaviour and attitudes relating to B12 consumption 
within the Swedish population  
 

2. to review current research on different fermentation methods, with specific focus on 
lactic acid fermentation and increasing B12 content   
 

3. to explore the production of B12 during lactic acid fermentation of white beans and 
cauliflower, as potential ingredients for a novel fermented food product. 



 18 

2. Methods 
 

2.1 Survey 
 

2.1.1 Survey design and distribution 

 

A cross-sectional questionnaire was developed using Netigate online survey platform to 

gather the following information:  

 

• demographic information 

• animal product consumption frequency  

• diet identification and motivation 

• dietary supplementation behaviour 

• fortified food consumption 

• attitude toward dietary supplementation 

• attitude toward food fortification  

• knowledge pertaining to vitamin B12.  

 

Question design was based on previously published research on dietary choices, nutritional 

knowledge and attitudes and behaviour relating to folic acid consumption and food 

fortification (Molster et al., 2009; Janssen et al., 2016). To assess animal product consumption 

frequency, respondents were asked to score how often they consume the following animal 

products: beef, lamb, pork, chicken, fish and/or shellfish, other meats, eggs and/or egg 

products, milk and/or dairy products, and honey. Possible answers were ‘Never’, ‘Rarely (once 

or twice a year)’, ‘Sometimes (once or twice a month)’, ‘Often (once or twice a week)’ and 

‘Everyday’. Later, respondents were asked if they identify as vegan or vegetarian, followed by 

an open text question asking for three factors that motivate dietary choice. A seven-point 

likert scale was employed for all questions designed to measure attitudes. To assess B12 

consumption, respondents were asked to identify from a list of 14 dietary supplements which 

(if any) they had consumed within the last two weeks. Similarly, they were also asked if they 

had consumed any foods or drinks that were fortified with B12 within the past two weeks, 

and whether fortified products were consumed specifically because they were fortified.  

 

The survey was open to responses for a 3-week period in February 2020 and was distributed 

via email to students at the Alnarp campus of the Swedish University of Agriculture, and via 

the facebook group “Vegan i Malmö”.   
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2.1.2 Demographic grouping 

 

Gender was divided into three categories, female, male and non-binary. Age was divided into 

five brackets: 21-25, 26-30, 31-35, 36-40 and 40+. Occupation and nationality were both 

divided into two groups: students vs. non-students and Swedish vs. non-Swedish.  

 

2.1.3 Dietary grouping 

 

Respondents were classified as belonging to one of four dietary groups, Vegan (V), Vegetarian 

(Vg), Low Meat (LM) and High Meat (HM), depending on their response to the food 

consumption frequency questions. Vegans answered “Never” to all animal products, with the 

exception of honey; although there is debate about the inclusion of honey in a vegan diet, 

honey is not a source of vitamin B12, so from a nutritional perspective those who consume 

honey are at the same level of risk as those who don’t. Vegetarians answered “Never” to all 

meat products but included dairy and/or eggs in their diet at any frequency. Low meat eaters 

answered “Rarely…” or “Sometimes…” to one or more kind of meat, and high meat eaters 

answered “Frequently…” or “Everyday” to one or more kind of meat.  

 

2.1.4 Dietary motivation 

 

Respondents were asked to provide up to three motivating factors that influenced their 

dietary choices in an open format question. Answers were coded into the following 

categories: self-related motives (e.g. health, well-being, taste, pleasure), ethical (concern for 

animals, moral concerns about harming others), environmental (e.g. climate change, 

biodiversity loss, deforestation), economic, local sourcing and miscellaneous (e.g. tradition, 

accessibility, social factors). 

 

2.1.4 Vitamin B12 Knowledge 

Respondent’s knowledge was assessed based on three factors: their ability to identify B12 as 

a necessary supplement for vegans and vegetarians, their knowledge of the Recommended 

Daily Intake, and their ability to name symptoms of B12 deficiency. The dependent variable 

“B12 knowledge” was derived from the aggregate score of these three questions: 

 

1) From a list of 14 dietary supplements, participants were asked to identify 

which (if any) were recommended for people following a strictly vegetarian diet. 

Respondents were scored 0 if they did not select B12 and 1 if they did, regardless of which 

other supplements were selected.  
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2) From the question “Approximately, what is the recommended daily intake of 

vitamin B12 for children over 10 and adults?” respondents were scored 1 if they answered 

2µg, and 0 if they answered 200µg, 2 mg or don’t know.  This intake value was based on 

information presented on the Swedish Food Agency website (Livsmedelsverket, 2019). 

 

3) Knowledge of B12 symptoms was assessed based on the number of symptoms 

that were correctly named in response to the question “Can you name any symptoms 

associated with vitamin B12 deficiency? (List as many as you know or leave the answer 

blank)”. Respondents were given a score of 0, 1, 2 or 3, in correspondence with the 

number of correct answers provided (a score of three represented 3 or more correct 

answers). B12 deficiency symptoms were established based on information provided by 

the Swedish Health system website (1177.se), and other web-based references (WebMD, 

Wikipedia). The following answers were accepted as correct: 

 
 

• Weakness, tiredness, lethargy 

• Heart palpitations, shortness of 

breath 

• Trouble concentrating, 

confusion 

• Smooth tongue, mouth sores 

• Problems with digestion, i.e. 

constipation, gas, loss of 

appetite, nausea 

 

• Anaemia  

• Nerve problems; pins and 

needles, loss of feeling in arms 

and legs 

• Vision loss 

• Headache, earache  

• Dizziness 

• Depression, memory loss, 

behavioural change   

 

2.1.5 Attitude measures (likert scales) 

 

In order to assess respondent’s attitudes towards dietary supplements and food fortification, 

a series of questions were designed using the likert method. A seven-point scale was used for 

each likert item, with scores designated from 1-7 as strongly agree, agree, somewhat agree, 

don’t know, somewhat disagree, disagree and strongly disagree.  

 

2.1.6 Statistical analysis of survey 

 

All analysis was performed using IBM SPSS Statistics version 26.  

 

Principle component analysis was performed with varimax rotation to group likert items, and 

reliability analysis was used to confirm internal consistency. New likert scale variables were 

created by calculating the mean of all items in a group. A likert scale value <4 indicated a 

positive average response, and a value >4 indicated a negative average response.  
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Where the assumptions were met, the effect of dietary group, age, gender, nationality, 

occupation and motivation on dependent variables was tested using ANOVA analysis, 

followed by Tukey’s multiple comparison test at significance level p = 0.05. In two instances 

the assumption of homogeneity of variance was not met (p<0.05) and non-parametric 

Kruskal-Wallis and Mann-Whitney tests were performed.  

 

The factors Age, Gender, Nationality, Occupation and Diet were treated as independent 

variables in all binary logistic analysis. Age was a continuous variable. Gender was treated as 

a categorical factor with “female” as the reference factor. Nationality and Occupation were 

coded as binary factors with a score of 1 for Swedish and student, and a score of 0 for all non-

Swedish and non-student respondents. Diet was treated as a categorical factor with HM as 

the reference factor. Multicollinearity was assessed using regression analysis.   

 

2.2 Literature review 
 
A search was performed on the citation database “Web of Science” using the following key 

words: B12, cobalamin, lactic acid bacteria, fermentation and fermented food. The resulting 

manuscripts were assessed for their relevance by examination of their titles and abstracts. 

Papers were included for review if they represented original research pertaining to the 

production of vitamin B12 by lactic acid bacteria, the production of vitamin B12 during the 

fermentation of plant-based foods, or the assessment of vitamin B12 content of fermented 

plant-based foods. Two subsequent screening processes were then followed to search for 

additional papers that might have been missed from the original search; firstly the reference 

lists of manuscripts were checked, and secondly the Web of Science “times cited” tool was 

used to search for more recent research that had referenced papers identified by the original 

search criteria. One review paper was included as it provided a summary of results that were 

otherwise not available in English, and one paper, which detailed an experiment, performed 

using mice, to test the bioavailability of vitamin B12 produced by L. reuteri during the 

fermentation of soymilk, was omitted due to concern over the nature of the research 

methods employed.   

Papers were divided into three categories and are discussed accordingly: the B12 content of 

fermented foods, the production of vitamin B12 during fermentation by Propionibacterium 

freudenreichii, and the production of vitamin B12 during fermentation by lactic acid bacteria.  

For the purpose of comparison, B12 concentrations have been reported as μg/100g 

throughout this report, except where otherwise stated, as well as whether they represent dry 

weight (dw) or wet weight (ww) values. A variety of methods have been developed to analyse 

B12 concentrations, including microbiological assay, polarographic, spectrophotometric, 

radio-ligand binding and various chromatographic techniques (Lawrance, 2015). 

Microbiological assay, which utilizes the known requirement of certain bacterial organisms 
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(e.g. Lactobacillus delbreueckii) for vitamin B12 to enable their growth in a supporting 

medium, has been the most commonly reported method used for the analysis of food 

(Lawrance, 2015) This method, as well as spectrophotometric methods, cannot differentiate 

between the different B12 analogues present in a sample. High performance liquid 

chromatography (HPLC) methods are more effective at differentiating the levels of different 

analogues (Quesada-Chanto et al., 1998), however the use of HPLC to test un-fortified food 

samples is limited due to the relatively low levels present, compared to the high detection 

limits (Lawrance, 2015). In this review, reported methods have been defined only as 

microbiological assay or HPLC, and B12 analogues have been reported whenever possible.  

2.3 LAB Fermentation of cauliflower and white beans 
 

Two separate fermentation experiments were conducted. Experiment 1 was performed to 

test the rate of fermentation of a single L. plantarum strain using three different preparations 

of cauliflower: raw, cooked and a 50:50 raw-cooked mixture. Experiment 2 was performed to 

test the rate of fermentation, and the vitamin B12 production, of four different L. plantarum 

strains using three different substrates: raw cauliflower, cooked white beans and a 50:50 raw 

cauliflower/cooked white bean mixture.  

 

2.3.1 Bacterial cultures 

 

Starter cultures from four strains of L. plantarum were provided by Probi AB (Lund, Sweden): 

299v, Lp900, 299 and Heal19. The strains were stored at 4ºC on MRS agar. For production of 

the fermentation inoculum the strains were cultivated in MRS broth at 35ºC over-night. The 

cells were harvested by centrifugation (Eppendorf MiniSpin, 10 000 g for 3 min) and washed 

twice with 0.85% NaCl solution. The bacterial suspension was added in a concentration of 1% 

(w/w) to the vegetable mix. More details on the used strains can be found in Appendix 1. 

 

2.3.2 Ingredient preparation 

 

Cauliflower could not be sourced directly from a producer and was purchased locally from an 

independent fruit and vegetable vendor. It was labelled as Swedish produced, however the 

exact variety and production method was undetermined. White beans were obtained directly 

from Swedish producer Per Modig (Kristianstad, Sweden).  

 

The outer leaves and excess stem were removed from cauliflower heads, and remaining 

florets were rinsed in cold water. To prepare the raw substrate, cauliflower florets were 

roughly chopped and then blended in a food processor until a grainy, paste like consistency 

was produced with pieces no larger than 2-3mm. For the cooked substrate, cauliflower florets 

were chopped into approximately 2cm-sized pieces then boiled for 10 minutes.  
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Cooked cauliflower pieces were cooled to room temperature and then processed in a food 

processor until a smooth, even consistency was achieved, similar to the texture of mashed 

potato. White beans were soaked in cold water for 16 hours, rinsed and then added to a pan 

of boiling water. They were hard boiled for approximately 10 minutes, and then simmered 

for a further 50 minutes until soft. Cooked beans were cooled to room temperature and then 

processed into a smooth paste using a food processor.  

 

For experiment 1, four portions of raw cauliflower, four portions of cooked cauliflower, and 

four portions consisting of a 50:50 ratio of raw and cooked cauliflower were prepared. For 

experiment 2, fifteen portions of raw cauliflower, fifteen portions of cooked white beans and 

fifteen portions consisting of a 50:50 ratio of raw cauliflower and cooked white beans were 

prepared. For each substrate, portions weighing 100g ±1g were measured into sterile 

containers with a volume of 150 ml and were combined with 2g of sea salt. Containers with 

only white beans also received 10ml of boiled water, cooled to room temperature, to dissolve 

the salt and ensure it was evenly distributed throughout the mixture. Samples were 

thoroughly stirred and left to rest for 10 minutes. 

 

2.3.3 Fermentation procedure 
 

For experiment 1, L. plantarum 299v was added to three containers of each substrate, and, 

for experiment 2, bacteria cultures from each of the four different L. plantarum strains were 

added to three containers of each substrate. For both experiments, a corresponding volume 

of 0.85% NaCl solution, without bacterial culture but with initial content of sterile MRS broth 

in the tube, was added to the remaining containers to produce control samples. Each mixture 

was thoroughly stirred again following the addition of bacteria or control substance. The pH 

of each sample was recorded immediately, and containers with bacterial culture were 

incubated at 30° for 120 hours (A), and 44 hours (B). The lids of the containers were placed 

loosely on to allow gas produced during fermentation to escape. Control samples were 

directly frozen at -80°C in order to prevent the degradation of the nutrient content.  

 

2.3.4 pH measurements 

 

To record the pH of samples, 1.5 ± 0.1g of mixture was combined with 3ml of distilled water 

in a test tube. Test tubes were agitated to ensure the content was well mixed before 

measurements were taken. In experiment 1, the pH of fermented samples was measured at 

4, 23, 48 and 72-hour increments. Samples were tasted after 23 hours. After 120 hours at 30° 

the samples had begun to spoil, with a detectable change in colour and visible mould growth. 

In experiment 2, the pH of fermented samples was measured after 18 and 44 hours. Samples 

were tasted after 44 hours, and then transferred to a freezer at -80°C. 
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2.3.5 Vitamin B12 analysis 

 

Limited funding was available to perform the B12 content analysis. Following the successful 

fermentation of the white-bean and cauliflower mixture, this treatment group was selected 

for analysis due to its unique composition and taste. Vitamin B12 analysis was performed by 

Eurofins, following method AOAC 952.20 - a microbiological assay procedure whereby the 

concentration of vitamin B12 is determined based on the observed growth of a known B12 

dependent bacteria, typically L. delbreueckii, in supporting medium (Lawrance, 2015). The 

level of growth achieved by the bacteria is directly proportional to the amount of vitamin B12 

in the test extract.  

 

2.3.6 Statistical analysis of laboratory experiment 

 

Both experiments were set up with three replicates in each treatment group and repeated 

once. Statistical analysis was performed using Minitab 17 for Windows. Treatment effect was 

tested using one-way ANOVA analysis, followed by Tukey’s multiple comparison test, at 

significance level P ≤ 0.05. 
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3. Results 
 

3.1. Survey 
 

3.1.1 Demographics 

 

A total of 140 completed responses were received. The majority of respondents were 

identified as Swedish (81.4%), female (73.6%), and students/interns (74.3%). The average age 

was 30.2 years, ranging from 21 – 56 years (figure 1).  

 

 

  

  

Figure 1. Visual representation of demographic data.  

 

 

 

Respondent Gender

Female 73.6% Male 21.4%

Non-Binary 3.6% Unknown 1.4%

Respondent Nationality

Swedish 81.4% Other EU/EEA 13.6%

Other Worldwide 4.3% Unknown 0.7%

Respondent Occupation

Student/Intern 74.3% Employed full time 15%

Employed part time 4.3% Self-employed 2.1%

Unemployed 3.6% Unknown 0.7%
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3.1.2 Dietary groups 

 

When asked to self-report diet identity, 27.1% and 34.3% of respondents identified as vegan 

and vegetarian respectively. When respondents were categorized based on reported eating 

habits, 22.9% were classified as vegan, and 21.4% were classified as vegetarian. In total 55.7% 

were categorized as meat eaters; 39.3% as low meat eaters and 16.4% as high meat eaters.  

 

3.1.3 Motivation 

 

The three most frequently cited motivations for dietary choices were ethics, health and the 

environment (table 1). This is in line with other research that has identified these three factors 

as the most commonly reported motives for choosing a vegan or vegetarian diet (Janssen et 

al., 2016). For vegans and vegetarians, these reasons accounted for >90% of all motivations 

given, and the only other motivations reported were social. Within meat-eating groups, the 

three principle motivations remained the same, however other motivations, including 

economic considerations, local sourcing of products and tradition, were also reported.   

 
Table 1. Dietary motivation reported by dietary group (%).  

Diet/Motivation Ethics Health Environment Economic Local Other 

Vegan 96.9 71.9 84.4 - - 6.3 

Vegetarian 93.3 60 93.3 - - 10 

Low Meat 50.9 61.8 76.4 16.4 12.7 20 

High Meat 34.8 60.9 65.2 26.1 4.3 30.4 

All 67.9 63.6 80 10.7 5.7 15 

 

 

Binary logistic regression indicated that diet was a significant predictor of the motivation 

ethics, and all other motives (economic, local and “other” combined). Vegans and vegetarians 

were significantly more likely to report ethics as a motivation (Chi-sq=46.6, df=8, p<0.01) and 

less likely to report other motivations (chi-sq=25.9, df=8, p,0.01), than the high meat group, 

which did not differ significantly from the low meat group. Nationality was found to be a 

significant predictor of the environment motivation (Chi-sq=18.0, df=8, p=0.021), with 

Swedish respondents being approximately 3 times more likely to quote this motive (95% CI = 

1.04-8.81, p=0.042). No other variables were found to have a significant effect on dietary 

motivations. 

 

3.1.4 Vitamin B12 Knowledge 

 

80% of respondents correctly identified that people who eat a strict vegetarian diet are 

recommended to take B12 supplements, however only 25% identified the recommended 

daily intake of B12 from a multiple-choice list with four possible answers. 62% of all 
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respondents knew at least one symptom of vitamin B12 deficiency, and 11% identified 3 or 

more. One-way ANOVA analysis demonstrated that dietary group had a significant effect on 

“B12 Knowledge” (F 3, 136 = 8.484, P<0.01). Post hoc comparisons using the Tukey HSD test 

indicated that the mean score for dietary group “Vegan” (3.06) was significantly higher than 

all other dietary groups (Vg 1.9, LM 2, HM 1.48), which did not differ significantly from each 

other.  

 

The variables Age, Gender, Nationality and Occupation were not found to have a significant 

effect on the total “B12 Knowledge”, however binary logistic regression indicates that “Diet”, 

“Gender” and “Nationality” were all significant predictors of whether a respondent correctly 

identified that B12 is a necessary supplement for people adhering to a strict vegetarian diet 

(Chi-square = 29.997, df=8, p<0.01). The odds ratios were reported as “Vegan” 28.367 (95% 

CI 2.871-280.317, P<0.001) and “Swedish” 7.561 (95% CI 2.367-24.157, p<0.001) indicating 

that, relative to high meat eaters and non-Swedish nationals, people who adhere to a vegan 

diet, and people with Swedish nationality were 28 and 7.5 times more likely to correctly 

identify vitamin B12 as a necessary supplement, respectively. Conversely, the odds ratio for 

“Male” 0.271 (0.090-0.822, p<0.05), indicates males are less likely than females to correctly 

identify this. No difference was observed between female and non-binary individuals.  The 

model had an overall correct prediction rate of 84.7%.  

 

3.1.5 Consumption of B12 supplements and fortified products 

 

Binary logistic regression indicates that “Diet” is a significant predictor of the consumption of 

B12 supplements (Chi-sq=23.883, df=8, p<0.01), and B12 fortified drinks (Chi-sq=26.661, df=8, 

p<0.01). In both models the predictors Age, Gender, Occupation and Nationality were not 

significant. For B12 supplementation, the odds ratio for “Vegan” diet is 7.900 (95% CI 2.205 – 

28.310, p<0.01), and for B12 fortified drinks, the odds ratio for “Vegan” diet is 9.497 (95% CI 

2.523 – 35.742, P<0.01). These results indicate that respondents who eat a vegan diet are 

approximately 8 and 9 times more likely than those in the “High Meat” diet group to have 

consumed a B12 supplement, or drinks that have been fortified with B12 within the past two 

weeks, respectively.  In both models, “Vegetarian” and “Low Meat” diet groups were not 

significantly different than “High meat”. When the supplementation dependent variable was 

expanded to include multivitamin consumption (i.e. the respondent had taken a B12 

supplement, and/or a multivitamin which is assumed to contain vitamin B12), the odds ratio 

increased to 55.570 (6.076-508.191, p<0.01), however this result has an extremely wide 

confidence interval, likely due to the relatively small quantity of data. None of the factors 

tested were found to be significant predictors of the consumption of B12 fortified foods.  

 

Overall, 55% of respondents had taken a B12 supplement and/or multivitamin within the past 

two weeks. Consumption was highest among vegans (96.9%), followed by vegetarians 

(63.3%), and approximately even among low and high meat diet groups at 34.5% and 34.8%, 
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respectively (figure 2A). The consumption of B12 fortified drinks and food was lower; 39% of 

all respondents reported consuming B12 fortified drinks, and only 24% reported consuming 

B12 fortified food, within the past two weeks. Consumption of B12 fortified drinks was also 

highest among vegans (75%), followed by vegetarians (40%). In both meat-eating groups 

reported consumption was relatively low at approximately 20-25% (figure 2B). There was a 

high degree of uncertainty about the consumption of B12 fortified foods, as between 25-50% 

of respondents in each group answered ‘don’t know’ when asked if they had consumed B12 

fortified products within the past two weeks. Interestingly, the highest reported consumption 

(40%) was in the High Meat group (figure 2C). Within both vegan and vegetarian groups only 

25% of respondents reported consuming B12 fortified foods.  

 

 

 

 
Figure 2. Percentage of respondents who consumed a B12 

vitamin supplement, B12 fortified drinks, or B12 fortified 

foods within the past two weeks, divided by dietary group. 

A –B12 supplement or multivitamin;  

B – B12 fortified drinks; C – B12 fortified foods. 
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3.1.5 Attitudes to vitamin supplements and food fortification 

 

Following principle component analysis of likert items, four likert scales were created; each 

scale combined a minimum of three likert items and had high internal consistency (α>0.7). A 

fifth combination of likert items was identified by principle component analysis, however the 

internal consistency was low (α<0.7), so the items were not combined for analysis.  

 

Kruskal-Wallis analysis indicated that diet has a significant effect on the variable ‘B12 

knowledge perception”, which measured respondents self-reported knowledge level about 

vitamin B12 (H3=15.365, p=0.002). Pairwise comparisons showed that respondents in the 

dietary group ‘Vegan’ were significantly more likely to report that they are knowledgeable 

about B12 than all other diet groups, which did not vary significantly from each other. This is 

consistent with the results of the “B12 knowledge” test which showed vegans scored higher 

than all other dietary groups. The average score for each group was <3, indicating that 

respondents from all groups felt knowledgeable about B12.  

 

Diet also had a significant effect on the variable “B12 fortification scepticism”, which 

measured agreement with negative statements about B12 fortification of foods (e.g. “Food 

should not be fortified with vitamin B12”). In this instance, the vegetarian group responded, 

on average, more negatively to these statements than all other diet groups (f3,139=5.811, 

p=0.001). The mean score for Vegetarian was 5.76, compared to 4.59, 4.96 and 4.66 for High 

Meat, Low Meat and Vegan, respectively. All of the scores are greater than 4, indicating that, 

on average, respondents disagree with negative statements about B12 fortification.  

 

Diet did not have a significant effect on the remaining two likert scales, “Attitudes to B12 

fortification” and “Dietary supplement value” which measured agreement with positive 

statements about B12 fortification of foods and the importance of dietary supplements to the 

respondents, respectively. Occupation had a significant effect on “Dietary supplement value” 

(U=2870, p,0.01). The mean score for non-students was 3.2 indicating they valued dietary 

supplements positively, whereas for students it was 4.6, a slightly negative response.  None 

of the other variables tested had a significant effect on “Attitudes to B12 fortification”.  

 

Within questions relating to the B12 fortification of foods there was a relatively high regress 

of uncertainty, with 20-40% of respondents answering “don’t know” to each of the individual 

items (table 2). When these responses were removed, the adjusted average scores for likert 

items indicated a moderately positive response to B12 food fortification. Less than 20% of 

respondents agreed that food should not be fortified with B12, and only 10% indicated they 

would avoid buying food with added B12. Approximately 25% agreed with the statement that 

adding B12 to foods is unnatural, however no additional questions were asked to ascertain 

whether there was a positive or negative association with the concept of “natural”.  
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More than 80% of respondents agreed that fortifying foods with B12 has health benefits for 

them, and although only 30% indicated that they would by foods specifically for B12, almost 

70% would prefer to eat B12 fortified foods if given a choice. Overall, only 17% of people 

reported that they depend on fortified foods to obtain their B12, however this number 

increased to 31% within the vegan diet group. 

 

Table 2. Responses to likert items relating to B12 fortification of food.  
a Percentage of agree vs. disagree adjusted to exclude neutral answers. b Overall neutral responses.  
c Adjusted mean excluding neutral answers. 1-3: agree, 5-7: disagree 

 

 Adjusted 

responsesa (%) 

Neutral 

responsesb 

Adjusted 

meanc 

Item 1-3 5-7 %  

Food should not be fortified with vitamin B12 17.2 82.8 33.6 5.3 

It is unnatural to add vitamin B12 to foods 24.5 75.5 24.3 5.1 

I would avoid buying foods with added B12 10.3 89.7 31.3 5.6 

Where there is a choice, I would prefer to eat foods that 

 are fortified with B12 

67.0 33.0 28.6 3.7 

I rely on fortified foods to meet my vitamin B12 requirements 17.0 83.0 20.0 5.6 

Fortifying foods with B12 has health benefits 81.0 19.0 40.0 3.0 

I would buy foods specifically for the added vitamin B12 30.6 69.4 22.9 4.9 

I would prefer to take B12 supplements that have it added to foods 45.1 54.9 27.1 4.3 

 
 

3.2 Literature Review 
 

3.2.1 Vitamin B12 content of fermented foods 

 

Assessment of the vitamin B12 content of traditional fermented food products is limited and 

for this review only four original research papers, published in English, were identified. Table 

3 provides an overview of the products tested and the B12 content reported.  

 

Three out of four papers focused on the B12 content of fermented soya bean products from 

across East and South East Asia. The earliest paper was published in 1977 and examined the 

vitamin B12 content of two traditional fermented Indonesian foods: tempeh, made from soya 

beans, and ontjom, made with by-products such as peanut press cake (from peanut oil) and 

soya pulp (from tofu) (Liem et al., 1977). Tempeh and ontjom are predominately fermented 

by Rhizopus and Neurospora mould, not bacteria, however microbiological assay analysis of 

purchased samples revealed vitamin B12 levels up to 6.3 μg/100g in tempeh, 3.1 μg/100g in 

peanut ontjom and 2.3 μg/100g in soya ontjom. Since mould is unable to synthesis B12, Liem 

et al. (1977) hypothesised that B12 content was produced by contaminant bacteria during the 

fermentation process. They proceeded to isolate a bacterium (species unknown) from 

tempeh with an elevated B12 content and demonstrated, via inoculation experiments, that 

B12 was present only in tempeh that had been contaminated with the bacteria during 
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fermentation. Tempeh produced from with a pure Rhizopus sp. culture did not contain 

vitamin B12. 

 

Traditional Korean fermented foods include three different soya bean products, doenjang, 

chungkookjang and ganjang (soy sauce), as well as kimchi (cabbage) and gochujang (red chili 

paste) (Kwak et al., 2008; Kwak, et al., 2010). Low levels of B12 were detected in all products, 

but significant variation was found between different samples of the same products (table 3). 

Homemade products had consistently higher B12 content than commercially produced 

products, with the highest concentration being found in homemade doenjang (9.82 μg/100g). 

In kimchi, a product that has become popular in Europe, B12 concentration ranged from 0.18 

- 0.24 μg/100g. This study used microbiological assay methods to assess the B12 content, and 

the specific cobalamin analogues were not reported. No analysis was performed to identify 

the species responsible for fermentation of the tested products.  

 

The most recent study, published in 2017, reported the B12 content of a broad range of soya 

bean products, determined by high-performance liquid chromatography (HPLC) analysis (Xu, 

et al. 2017). All products contained detectable levels of B12, although these levels varied 

significantly (P<0.05) among all the products sampled. Variation was observed between 

different products, but also between the same products sourced from different producers 

(table 3). 

 

The highest concentration was 73.2μg/100g, found in Liubiju, a dry yellow soybean paste. 

Other products with notable B12 content included doenjang (53.1μg/100g) black bean 

douche (52.5μg/100g), and tempeh (50.9μg/100g). Although HPLC was used to determine the 

B12 concentration, the cobalamin analogue was not specified in the results. As in the previous 

study, no analysis was performed to identify the species responsible for fermentation of the 

tested products.  

 

The fourth paper examined the nutritional and functional composition of a range of 

traditionally prepared fermented bamboo shoot (FBS) products, collected from the Indian 

states of Arunachal Pradesh and Manipur (Sonar et al., 2015). Following HPLC analysis, the 

B12 content of FBS products was found to be significantly higher than that of unfermented 

bamboo shoots. The vitamin B12 content was reported to range from 6.7 – 75.6 mg/100g, 

however it is likely this has been mis-reported as these values are three orders of magnitude 

(mg instead of µg) higher than all other reported results. The cobalamin analogue was 

reported to be the bioactive form cyanocobalamin. No analysis was performed to identify the 

bacteria spp. present in the ferments, but the authors suggested the rise in B12 content was 

likely a result of LAB activity during fermentation.  
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Table 3. Summary of reported vitamin B12 content in traditional fermented plant-based food products. ~ Unknown, amg/100g b μg/100ml 
Product   Production method Product origin Vitamin B12  

content μg/100g 
B12 analysis  
methods 

Reference  

 
Yellow Soybean Paste Commercial China, Hongkong, Korea 29.4 - 73.3 HPLC (Xu, Cai and Xu, 2017) 

Sufu  Commercial China 28.7 - 36.8   

Miso  Commercial China 35.5 - 48.4   

Natto  Commercial China, Japan 27.9 - 35.1   

Black bean sauce Commercial China 24.6 - 30.7   

Black bean douchi Commercial China 26.5 - 52.5   

Yellow bean douchi Commercial China 22.9 - 27.6   

Stinky tofu Commercial China 29.9   

Moldy tofu  Home-made China 42.2   

Tempeh  Home-made Indonesia 50.9   
 
Various fermented  
bamboo shoot products          ~ North East India 6.7 - 75.6a HPLC (Sonar et al., 2015) 

  
Doenjang  Commercial  Korea 0.07 - 0.49 Microbiological assay  

(Kwak et al., 2008;  
Kwak et al., 2010) 

(yellow soybean paste) Home-made Korea 0.3 - 9.82   
 
Chungkookjang  Commercial Korea 0.08 - 0.31   

(soybeans) Home-made Korea 0.05 - 1.4   
 
Gochujang  Commercial Korea 0 - 0.14   

(red chili paste) Home-made Korea 0.02 - 0.43   
 
Kimchi (Cabbage)          ~ Korea 0.18 - 0.24   
 
Ganjang (Soy sauce)  Home-made Korea 0.02 - 6.76b   

Tempeh (soybean) Commercial Canada, Indonesia, USA 0.4 - 6.3 Microbiological assay  (Liem et al., 1977) 

Peanut ontjom          ~ Indonesia 3.1   

Soybean ontjom          ~ Indonesia 2.3   
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3.2.2 Vitamin B12 production during fermentation by Propionibacterium freudenreichii 

 

P. freudenreichii is a vitamin B12 producer with GRAS status, which is commonly used in the 

food industry. It is known to predominately produce a bioactive analogue of B12, and minimal 

pseudo-B12 forms (Deptula et al., 2015). 

 

Tempeh 

 

As described above, in 1977 it was reported that tempeh contaminated with an unknown 

bacteria contained elevated levels of vitamin B12 (Liem et al., 1977), and subsequent analysis 

identified Klebsiella pneumoniae and Citrobacter freundii as two species capable of producing 

vitamin B12 during co-fermentation of tempeh (Keuth and Bisping, 1993, 1994; Wiesel, Rehm 

and Bisping, 1997). P. freudenreichii was reported not to produce vitamin B12 during tempeh 

fermentation and it was suggested that soya beans might be an unsuitable growth medium 

for this species (Keuth and Bisping, 1993). Two more recent studies have been performed to 

investigate the potential for co-fermentation of lupin-based tempeh by Rhizopus spp. and P. 

freudenreichii (Signorini et al., 2018; Wolkers et al., 2018). Lupin is a native European grain 

legume species commonly grown for fodder, but which has recently been investigated as a 

sustainable source of plant-based protein for humans. In both studies, the co-fermentation 

of lupin by Rhizopus spores and P. freudenreichii significantly increased vitamin B12 content.  

Signorini et al. (2018) co-fermented three different species of lupin, Lupinus albus, L. 

angustifolius and L. mutabilis with Rhizopus oligosporus and P. freudenreichii. Two different 

fermentation processes were tested: sequential, whereby lupin seeds were fermented with 

propionibacteria for 48 hours prior to inoculation with Rhizopus spores, and simultaneous, 

whereby lupin seeds were inoculated with a mix of Rhizopus spores and propionibacteria. 

Both methods produced significantly higher levels of vitamin B12 than fermentation with 

pure cultures of either R. oligosporus or P. freudenreichii. Sequential fermentation produced 

a dry weight concentration of approximately 68.4 μg/100g B12, whereas simultaneous 

fermentation produced up to 123.0 μg/100g (dw), a 44% increase from the sequential 

method.    

Wolkers-Rooijackers, Endika and Smid (2018) reported similar results. Following co-

fermentation of lupin seeds with R. oryzae and P. freudenreichii a significant increase of B12 

was observed, up to 0.97 μg/100 g fresh weight. In both cases, 100g of tempeh would provide 

approximately 50% of the daily B12 RDI.  

Cereals 

Four papers were identified that explored the production of B12 during fermentation of 

cereal products by P. freudenreichii. This method is proposed as an alternative to chemical 

fortification.  
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During fermentation of rye malt extract and barley malt extract P. freudenreichii is reported 

to produce 1.93 μg/100g and 1.57 μg/100g respectively (Chamlagain et al., 2015). A 

subsequent study explored the effect of adding B12 precursors, (cobalt, 5,6-

dimethylbenzimidazole (DMBI), riboflavin and nicotinamide) to various cereal matrices. The 

presence of B12 precursors had a notable impact on the B12 content of the fermented 

products. The highest concentrations were observed in a malted barley flour matrix (BM); 

fermented BM contained 1.2 - 3.7 μg/100g, whereas BM with added cobalt, riboflavin and 

nicotinamide contained 71.2 μg/100g. The highest concentration, 148 μg/100g, was observed 

in BM with added cobalt and DMBI, however it was noted that DMBI is not permitted to be 

used in food production  (Chamlagain et al., 2018).  

Xie et al. (2018) fermented non-sterile durum flour, whole-wheat flour and wheat bran for 

seven days with P. freudenreichii and reported average B12 levels of 3.3, 8.7 and 15.5 μg/100g 

(dw) respectively. However, they also observed that pathogenic endogenous microbiota 

could potentially grow in these conditions, leading to safety concerns and limit the use of 

these fermented products in food applications. A follow up study examined the effect of co-

fermenting wheat bran with P. freudenreichii and L. brevis ATCC 14869, with controlled and 

uncontrolled pH levels, as a possible method to improve the microbiological safety (Xie et al., 

2019). In this experiment, fermenting wheat bran with P. freudenreichii and a controlled pH 

of 5.0, produced the highest concentration of B12: an average of 3.57 μg/100g (dw) after day 

one, which remained stable until day three. Samples that were co-fermented with P. 

freudenreichii and L. brevis, with a controlled pH of 5.0, contained an average of 3.32 μg/100g 

(dw) B12 after three days. Co-fermented samples with an uncontrolled pH contained a 

significantly lower average of 1.83 μg/100g (dw) B12 after day three, however they exhibited 

the strongest inhibition of pathogenic microbes.  

3.2.3 Vitamin B12 production during LAB fermentation  

 

Lactobacillus reuteri 

 

L. reuteri was the first Lactobacillus sp. identified as a vitamin B12 producer (Taranto et al., 

2003). It was demonstrated that L. reuteri CRL1098, isolated from sourdough, was able to co-

ferment glycerol, a B12 dependent process, in B12-free growth medium. Furthermore, cell 

extract from L. reuteri facilitated the growth of three B12 dependent microbial species in B12-

free growth medium; L. delbrueckii subsp. lactis ATCC 7830, Salmonella enterica serovar 

Typhimurium (metE cbiB) and Escherichia coli (metE). The vitamin B12 was produced 

intracellularly and later examination of the chemical structure demonstrated that the main 

analogue produced was a form of pseudo-vitamin B12 which is not proven to be bioavailable 

to humans (Santos et al., 2007). However, it has also been shown that modifying the growth 

medium can alter both the quantity produced, and the analogue. The omission of single 

amino acids from the growth medium, including alanine, lysine and cysteine, was 

demonstrated to enhance the B12 production by L. reuteri; in particular, the omission of 
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cysteine combined with the addition of glycerol produced a 17-fold increase in the production 

of vitamin B12, although the specific analogues were not reported (Santos et al., 2009). Under 

optimized conditions, where the compounds δ-aminolevulinic acid (ALA) and  5,6-

dimethylbenzimidazole (DMB), which are required for vitamin B12 production, were added 

to the growth medium, L. reuteri has been shown to produce biologically active vitamin B12 

(Mohammed et al., 2014).  

 

Two reports have been published from experiments designed to examine the effect of 

fermenting plant-based food products with L. reuteri. Bao et al. (2019) inoculated furu, a 

traditional Chinese fermented tofu product (also known as sufu) with L. reuteri during large 

scale fermentation. They reported that vitamin B12 content was increased up to 14.17 μg per 

100g (ww) and was predominantly present as the bioavailable forms AdCbl and Cbl; at this 

level, approximately 17g of furu would be sufficient to obtain the recommended daily intake 

of 2.4 μg of vitamin B12. The authors reported this concentration was significantly higher than 

in their control group (3.6 μg/100g), and higher than concentrations previously reported by 

Li et al. (2004), who observed that B12 concentrations in furu were highly variable, ranging 

from 0.42-0.78 μg per 100g dw (study unavailable in English).  

 

The co-fermentation of glycerol and fructose in soy-yoghurt by L. reuteri produced up to 18 

μg/100ml of vitamin B12 (Gu et al., 2015a). At these levels, consuming 14 ml of soy-yoghurt 

would be sufficient to obtain the recommended daily intake, however it must be noted that 

the authors did not include evidence to support their conclusion that the B12 produced was 

bioavailable, and the paper has been criticized for the misleading use of the term “vitamin 

analogues” to distinguish pseudo vitamin B12 (Varmanen et al., 2016).  

 

Lactobacillus plantarum 

 

A variety of screening processes have been used to identify B12 producing strains of L. 

plantarum in vitro and various research has explored their potential to fortify plant-based 

food products during fermentation. 

 

Intracellular production of vitamin B12 by L. plantarum was first reported by Madhu et al. 

(2010). In this study the production of B12 was optimized by controlling the fermentation 

conditions, and by the addition of zinc chloride (ZnCl2) to the growth medium. An unspecified 

strain of L. plantarum was isolated from Kanjika, a traditional Indian sour liquid made from 

powdered rice, and identified by 16S rRNA sequencing. Bacteria were inoculated into a 

modified B12-production medium, and fermented for 48 hours under anaerobic conditions, 

followed by 48 hours under aerobic conditions. The highest B12 concentration, 1.31μg/100g 

dw, was reported when the growth medium contained 0.69% Zn Cl2. The B12 analogue was 

identified as Cbl under HPLC analysis, and bioassay experiments performed with E. coli ATCC 

11105 confirmed its bioavailability.  
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L. plantarum BHM10, isolated from human milk samples, and BCF20, isolated from human 

faecal samples, were identified as vitamin B12 producers by genetic screening for cbiK, a 

characteristic gene of anaerobic vitamin B12 synthesis. Following HPLC analysis the average 

intracellular level of Cblm in BHM10 and BCF20 was reported as 1.09μg/100ml and 

2.39μg/100ml, respectively (Bhushan et al., 2016). Further analysis of the species’ techno-

functional characteristics found that BHM10 produced approximately 0.4μg/100ml 

extracellular Cblm during the fermentation of soymilk (Bhushan et al., 2017). At this 

concentration 600ml of soymilk would be sufficient to obtain the recommended daily intake 

of 2.4 μg.  

 

Extracellular production by L. plantarum CN-225, DW12, L295 and CY2 has been reported 

(Masuda et al., 2012; Kantachote et al., 2017; Li et al., 2017).  Following the isolation of 233 

LAB from Japanese pickles, L. plantarum CN-225 was reported to produce approximately 

0.2μg/100ml of extracellular vitamin B12. This study also reported L. coryniformis CN-229 as 

an extracellular B12 producer. The analogue produced was not reported for either species 

(Masuda et al., 2012)  L. plantarum DW12 was reported to produce 15.93 μg/ml intracellular 

and 14.11 μg/ml extracellular vitamin B12 during 48 hour fermentation of mature coconut 

water (Kantachote et al., 2017). Following the same methods, L. casei L4 has also been 

reported to produce up to 11.47 μg/mL B12 after 48 hour fermentation of coconut water (Giri 

et al., 2018). L. plantarum L295 and CY2 were identified as high extracellular vitamin B12 

producers following solid phase extraction and HPLC analysis (Li et al., 2017). L295 was 

reported to produce 95 ± 15 μg/l of AdCbl and MeCbl, and CY2 60 ± 9μg/l of AdCbl. The same 

study reports high intracellular production by 8 additional L. plantarum strains.  

 

One additional report identified five strains of different Lactobacillus spp. as potential vitamin 

B12 producers following seven rounds of successful growth on B12-free medium; L. 

plantarum PB5067, L. reuteri PBS072, L. fermentum PBS073, L. rhamnosus PBS070 and 

Bifidobacterium animalis subsp. lactis PBS075 (Presti et al., 2015). However, no further 

analysis was performed to confirm the analogue produced, or the quantity, and it has been 

observed that growth in B12-deprived conditions is not sufficient to confirm B12 production 

(Bhushan, Tomar and Mandal, 2016).  

 

3.3 LAB Fermentation of Cauliflower and White Beans 
 

3.3.1 Experiment 1 

 

No biologically meaningful difference was observed in the outcome of fermentation between 

raw, cooked or mixed cauliflower samples. Within 24 hours the pH of every sample had 

decreased to the range of 3.65 - 3.88, and after 72 hours it had dropped to 3.37 - 3.60 (figure 

3). The cooked samples had the lowest average pH (3.38), followed by the mixed sample 
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(3.47) and finally the raw sample (3.60). As this experiment is part of a larger product 

development project, consideration was given to the over-all number of steps required for 

each process. In order to minimize the time and energy required, it was decided that raw 

cauliflower would be used for experiment 2.   

 

 

Figure 3. Average (± 1 SD) pH of fermented cauliflower recorded over 72 hours. A: raw 
cauliflower, B: cooked cauliflower, C: 50:50 cooked/raw mixture.  

 

3.3.2 Experiment 2 

 

Fermentation rate 

 

A significant difference was observed between the fermentation rate of the white beans 

compared to the cauliflower and cauliflower/white bean mixtures (figure 4). All samples of 

cauliflower, and cauliflower mixed with beans reached a pH ≤3.91 within the first 18 hours, 

and ≤3.58 within 44 hours. The samples containing only white beans initially experienced a 

drop in pH, to the range of 4.75 - 4.9 within 18 hours, however after 44 hours the pH did not 

decrease any further and for many samples an increase was observed. The differences 

observed between the average pH for each substrate group were statistically significant (at 

44 hours, F2=2866.0, p<0.01).  

 

For each of the three mediums there was no biologically meaningful difference between the 

fermentation achieved by the different strains of bacteria. Similarly, no significant difference 

in taste and/or texture could be identified among the cauliflower samples, or the mixed 

cauliflower/bean samples.  Due to low change in pH observed in the pure white beans, these 

ferments were considered unsuccessful and were excluded from the taste analysis.  
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Figure 4. Change in pH of fermented cauliflower, white beans and cauliflower/white bean mixture, 

recorded over 44 hours (mean ±1SD). A: 299v, B: Lp900, C: 299, D: Heal19 
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The most interesting difference observed during the taste analysis was that between the pure 

cauliflower and the mixture of cauliflower and white beans. As expected, the fermented 

cauliflower had a fresh, clean acidity with a slight cabbage taste, not unlike mild sauerkraut. 

The cauliflower and bean mixture also had a fresh acidity, but with a dryer mouth feel and a 

deeper, umami flavour, giving an overall richer experience.  

 

3.3.3 Vitamin B12 analysis 
 

A small but statistically significant difference in the concentration of B12 was observed 

following the fermentation of 50:50 white beans and cauliflower mixture with L. plantarum 

299 (table 4). The average concentration increased by 66% relative to the control, up to 

0.048μg/100 g (ww). No statistically significant differences were observed between the other 

3 treatment groups and the unfermented control. Analysis was not performed to identify the 

B12 analogue(s), so the bioavailability is unknown.   

 

 

 

Table 4. Vitamin B12 content (μg/100 g fresh 

weight) of white bean and cauliflower samples. 

Treatment B12 content 

Mean ± 1SD 

Control 0.029 ± 0.002a* 

299v 0.033 ± 0.004ab 

Lp900 0.034 ± 0.011ab 

299 0.048 ± 0.013b 

Heal19 0.034 ± 0.004ab 

*Different letters indicated significant differences 

(Anova, p<0.05).   
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4. Discussion 
 

4.1 B12 knowledge, behaviour and attitudes  

 

The present research indicates that the surveyed population (predominately Swedish female 

students) is aware of and has basic knowledge relating to B12. The majority of respondents 

(80%) were able to identify B12 as a necessary supplement for people adhering to a strict 

vegetarian diet (though only 25% could identify the RDI) and approximately two thirds (63%) 

could identify at least one symptom of B12 deficiency. The survey was conducted online and 

unsupervised, so it is possible the respondents opted to look up answers to questions 

assessing B12 knowledge, influencing the results. However, given the average time to 

complete the survey was under 9 minutes, less than the anticipated 10-15 minutes, and that 

75% of respondents did not identify the correct RDI for B12, it is considered unlikely that this 

occurred to a significant degree. Vegan diet was the only factor found to have a significant 

effect on “B12 knowledge”; respondents in this diet group had a significantly higher average 

score than all other groups, which did not differ significantly, indicating they are more 

knowledgeable. This result is encouraging as it indicates the most vulnerable subgroup of the 

surveyed population is aware of their B12 needs, and the potential consequences of 

becoming deficient. Women were more likely than men, but not non-binary people, to 

correctly identify B12 as a necessary supplement; an interesting result given that preventing 

micronutrient deficiency is particularly important for women of child-bearing age, and the 

average age within the survey population was approximately 30 years old.  

 

The results also indicate that the consumption of dietary supplements containing B12 and 

B12 fortified drinks is widespread within the vegan, and to a lesser extent vegetarian, 

subgroup of the surveyed population, a positive indicator that people within these groups are 

taking steps to reduce their risk of B12 deficiency. Consumption of supplements containing 

B12 was reported by 97% of vegans and 63% of vegetarians, compared to 34% of meat eaters. 

Consumption of B12 fortified drinks was lower in both groups, at 75% and 40%, respectively, 

though still notably higher than among meat eaters (21%). Consumption of B12 fortified food 

was low among all respondents; only one vegan respondent reported consuming no B12 

supplements or fortified drinks, indicating that they depend on B12 fortified foods to meet 

their RDI. The research methods employed depend on self-reported consumption within the 

past two weeks. This method has been used to assess dietary supplement consumption 

elsewhere in the literature (Molster et al., 2009) however, it must be recognised that these 

results function as a proxy measure, and do not provide evidence that respondents are 

consuming sufficient quantities to meet their nutrient needs. More in depth analysis of 

behaviour patterns using methodology such as the theory of planned behaviour (Conner et 

al., 2003) coupled with clinical analysis of blood serum levels would provide more robust 

evidence that the population is protected against B12 deficiency.  
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Limited conclusions can be drawn from the present results about attitudes towards dietary 

supplementation and the consumption of B12 fortified foods. No demographic factors were 

found to influence attitudes, and there was a high degree of uncertainty for many of the 

questions asked, with up to 40% of respondents answering “don’t know” in some cases. From 

the data presented there is some indication that, among those who answered positively or 

negatively, B12 fortified foods are viewed positively. A clear majority disagreed with 

statements indicating that foods should not be fortified with B12 and agreed that fortifying 

foods with B12 has health benefits, but it should also be observed that the majority also 

disagreed that they would buy foods specifically for B12. This indicates that although 

consumers aren’t likely to reject foods containing B12, they currently do not look to fortified 

foods as a regular source. Previous research has identified that Swedes are significant 

consumers of “functional foods”, products that are marketed as having enhanced nutritive 

value and health benefits, such as probiotic products, juice containing added vitamins or 

minerals, and bread with added omega 3 fatty acids (Özen et al., 2014). It is reported that the 

typical Swedish consumer of functional foods is health-conscious, highly educated, health 

motivated and accepting of health claims associated with functional foods (Landström et al., 

2007). It is therefore considered that a B12 enriched fermented product could likely be 

marketed to the Swedish population with some success, however, as is seen with current 

dietary supplement marketing and consumption patterns, the potential for such a product to 

protect against B12 deficiency in the wider population may be limited.  

 

 

4.2 Dietary motivations 
 
The most frequently reported motives were environmental, which were stated by 80% of all 

respondents. Furthermore, nationality was a significant predictor of environmental motives 

with Swedish respondents citing them more often than non-Swedish nationals. This gives a 

positive indication that there is a widespread awareness that dietary choices can impact 

environmental issues, and that campaigns designed to influence dietary choices in order to 

improve environmental outcomes could be well received by the Swedish population. 

Demonstrating low environmental impact of products may also be beneficial to their 

marketing.  Unsurprisingly, dietary group was also identified as a significant predictor of 

motivation, with vegans and vegetarians being significantly more like to state ethics related 

motives than meat eaters. Conversely, they were less likely to report “other” motives than 

meat eaters; most notably local sourcing of food and economic reasons were reported by 

12.7-16.4% of low meat eaters, and 4.3-26.1% of high meat eaters, respectively, but were not 

stated by any vegans or vegetarians. Health was the other most commonly reported 

motivation, cited by 63% of all respondents. It did not differ significantly between dietary 

groups or demographic factors and was not associated with differences in attitudes towards 

B12 supplementation or product fortification.  
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The main limitations to this survey are the small sample size, and the uneven demographic 

representation. Binary regression analysis highlighted some significant differences between 

different factors, however in most cases the confidence interval was very wide, likely 

reflecting the small quantity of data included in the analysis. The formulation of questions 

used to assess attitudes could also be refined to reduce the number of neutral (don’t know) 

answers.  

 

4.3 B12 production through fermentation of plant-based foods  

 

Research into the B12 content of traditional fermented plant-based products is limited to a 

small number of studies. There is some evidence that B12 may be present at nutritionally 

meaningful concentrations in some products, although the quantity of B12 is highly variable, 

even within different variations of the same product (Xu et al., 2017). The microorganisms 

responsible for B12 production were not experimentally determined in any of the studies that 

reported B12 content of traditional fermented products but, where it was discussed, LAB spp, 

as well as Rhizopus, Mucoraceae and Aspergillus fungi were recognized as the 

microorganisms responsible for fermentation (Liem et al. 1977; Xu et al. 2017). Fungal species 

do not produce B12 (Martens et al., 2002) and therefore the B12 content of fungal fermented 

products must arise via contamination, as was reported by Liem et al. (1977), or during lactic 

acid fermentation which is sometimes employed as a final processing step. The high levels of 

B12 reported in some home-made products relative to their commercial counterparts may 

reflect diversity among the bacteria present, contamination with other bacteria spp, or 

differences in the fermentation process compared to commercial processes. For example, 

Kwak et al. (2010) recognized that the traditional method of producing home-made Doenjang 

takes approximately 10 months, whereas commercial Doenjang is prepared in as little as 3-4 

months under tightly regulated conditions whereby microorganism diversity is controlled by 

inoculation. The commercialization of fermentation processes typically relies on known 

starter cultures to reduce the risk of contamination and ensure food safety; it is interesting 

to considered that in some cases this may have a deleterious effect on the final product 

quality in terms of reduced nutrient content, potentially impacting the health outcomes of 

populations that have previously depended on traditional fermented products to meet their 

micronutrient needs. The present research only considers B12, however it is reasonable to 

suspect other vitamins could be affected in a similar way. Careful isolation and selection of 

vitamin producing bacteria that can be safely utilized for fermentation or co-fermentation 

with fungal spp. could be beneficial to ensure the nutritive quality of products remains 

consistent under commercial production methods.  

 

These results are corroborated by data from studies that have demonstrated the production 

of B12 during fermentation of plant-based media under experimental conditions. To date, 

multiple strains of four different Lactobacillus spp. (L. plantarum, L. reuteri, L. coryniformis 

and L casei) have been reported to produce B12 during fermentation. P. freudenreichii has 
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also been successfully used to produce B12 during fermentation of plant-based foods, and 

during co-fermentation with Rhizopus spp and L. brevis. A further three strains of LAB (two 

Lactobacillus and one Bifidobacterium) have been identified as possible producers following 

growth on B12 free media, however this method alone is not regarded as sufficient to prove 

B12 production and further analysis would be needed to confirm their production potential 

(Bhushan et al,, 2016). A variety of experimental and analytical methods have been employed 

to examine B12 production during fermentation, and although nutritionally significant 

quantities are reported in several cases (Bhushan et al., 2017; Kantachote et al., 2017), 

evidence that it is present as a bioavailable analogue is often lacking. Furthermore, several 

studies report intracellular concentrations which would require cell lysis to occur, either 

during processing at an early stage of digestion, for the B12 content to be nutritionally 

meaningful. None-the-less, extracellular bioavailable analogues are also reported (Masuda et 

al., 2012; Kantachote et al., 2017; Li et al., 2017) and it is reasonable to conclude that lactic 

acid fermentation, under controlled conditions, could be developed as a tool to produce 

plant-based products that are naturally rich in B12.  

 

In the present work, a small but statistically significant increase was observed in the 

concentration of B12 within samples of mixed white-beans and cauliflower fermented with L. 

plantarum 299, compared to unfermented control samples. No method was employed to 

induce cell lysis and it is considered that the increased concentration reflects extracellular 

B12 production. However, the average concentration observed (0.048μg/100g (ww)) is low 

relative to the RDI of 2.4μg. Furthermore, the results were obtained by microbiological assay 

and there is no data to demonstrate which B12 analogue was present. The fermented white-

bean-cauliflower matrix therefore cannot be considered a significant source of B12 for 

humans. The four L. plantarum strains examined had not previously been reported to produce 

B12. The experimental design could be improved by the inclusion of LAB strains, such as L. 

plantarum L295 and CY2, that have already been identified as extracellular B12 producers or 

by integrating a screening processes to identify likely B12 producers, such as microbiological 

assay or genetic analysis, into the experimental design. Assessing the B12 content of 

sauerkraut samples could also be employed as a strategy to identify suitable LAB bacteria 

strains for production during the fermentation of vegetables.  

 

4.4 Developing a novel fermented food 

 

Lactic acid fermentation of vegetables is traditional to many countries around the world; in 

northern European cabbage is the most commonly utilized crop, used for the production of 

sauerkraut. Cauliflower is another member of the family Brassicaceae that is consumed 

throughout Europe. It is not widely used in fermented products, which gave rise to questions 

about its suitability for fermentation in its raw form, however the present work indicates that 

it can be successfully fermented both as a raw ingredient and after a short period of boiling.  
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Legumes are well known for their high oligosaccharide content which is associated with poor 

digestibility (Messina, 2014). It is recognised that fermentation may ease digestive problems 

by reducing oligosaccharide content, however, with the exception of soya, grain-legumes are 

not widely used for the production of fermented foods. When soya is used, it is predominately 

fermented by fungi, although LAB are sometimes used in the final processing stage, e.g. furu 

is made via lactic acid fermentation of tofu (Bao et al., 2019). Results presented from 

experiment 2 indicate that common white beans are not a suitable medium for fermentation 

by L. plantarum as the pH did not decrease to less than 4, which is required to ensure a stable 

product (Montet et al., 2014). If this holds true for other LAB and bean varieties, the inability 

of LAB to ferment grain-legumes, combined with climatic differences, may explain the 

absence of fermented legume foods in traditional European diets – the cooler, dryer climate 

is less suitable for spontaneous fermentation by fungi which presumably was essential to the 

development of fermented soya products in Asia.  

 

The fermentation of a mixed matrix including beans and vegetables is a novel approach to 

producing a fermented legume product that has not been reported elsewhere. In the present 

work, the combination of white-beans and cauliflower proved to be a successful matrix for 

fermentation with L. plantarum; a stable pH of approximately 3.5 was produced within 48 

hours. The carbohydrate content was not assessed so there is, as yet, no evidence that this 

method can be employed to reduce oligosaccharide content and improve digestibility, 

however two hypotheses are suggested. The first is that L. plantarum can metabolize 

carbohydrates from white beans in the presence of an alternative energy source. In this case, 

during fermentation of the cauliflower-bean matrix, available monosaccharides may enable 

the fermenting bacteria to create and sustain a stable environment for sufficient time to 

degrade the more complex oligosaccharides present in the beans. This could lead to the 

development of a product with improved digestibility, increasing consumer acceptance of 

white beans. The second is that L. plantarum cannot metabolize carbohydrates from white 

beans. In this case, beans within a fermented cauliflower-bean matrix will likely be preserved 

by the high lactic acid content, but remain relatively unchanged within the mixture, as the 

bacteria ferment only the vegetable derived carbohydrates. In this instance digestibility 

would presumably not be improved, but other factors such as enhanced taste and improved 

shelf-life may also be appealing to consumers. Further research is required to establish the 

oligosaccharide content of the fermented mixture, and its digestibility.  

 

Formal taste-testing was not performed on the fermented samples and further research 

focussing on taste, texture and overall consumer acceptance would be beneficial to 

understand if the fermented cauliflower-bean matrix presented here has potential to be 

developed into a novel consumer product. In this instance, B12 production was not sufficient 

to be nutritionally meaningful, but there are several other micronutrients that can be 

produced during fermentation that could also add nutritional value to the product and should 

be considered. For example, the concentration of folate and riboflavin, two other essential B-
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vitamins, was also analysed and is reported elsewhere (Thompson et al., 2020 - Appendix 1). 

Results from the survey component of this study indicate that most consumers (within the 

surveyed demographic) have at least a basic knowledge and awareness of vitamin B12. 

However, no attempt was made to measure understanding of B12 production and whether 

consumers would recognize a difference between B12 present as a fortification and B12 

produced in situ during fermentation. In the event that a product was developed containing 

B12 produced during fermentation, attitudes towards different B12 production methods and 

sources could influence consumer interest in the product and willingness-to-pay. Further 

consumer research, such as conjoint analysis, could be employed to assess the value of 

fortified and in situ produced B12 to the consumer, however this would also require 

supporting evidence that consumers understand the difference.  

 

The survey also indicates that consideration is already being given to the environmental 

impact of food choices, and that some value is placed on sourcing food locally. The 

development of products based on locally sourced ingredients and with a demonstrated low 

environmental impact may be appealing to a wide range of consumers within the surveyed 

Swedish demographic and could potentially be used to facilitate the consumption of more 

plant-based foods that support the development of sustainable agricultural systems in 

Sweden. Increasing the consumption of legume-based products via the production of novel 

fermented foods could create a more stable market, encouraging and enabling more farmers 

to integrate these ecologically valuable plants into their cropping systems, reducing their 

need for nitrogen fertilizers, enhancing overall biodiversity and contributing to improved soil 

health.   

 

5. Conclusion 
 

The development of ecologically sustainable food systems will require radical changes to 

current product and consumption patterns, but it must not come at the expense of human 

health goals. The growing acceptance and popularity of vegan and vegetarian diets is an 

encouraging trend that indicates many people are prepared to make changes in their own 

behaviour in order to influence positive societal outcomes. Those advocating the adoption of 

vegan diets must recognise there are associated nutritional challenges, including the 

increased risk of B12 deficiency, and that current attempts to overcome existing 

micronutrient deficiencies often fall short, even in wealthy populations with ample access to 

food and dietary supplements. It cannot be assumed that education alone will be sufficient 

to ensure a vegan population would meet its B12 requirements, and steps must be taken to 

ensure that a variety of affordable B12 sources are made available. The development of novel 

fermented foods is identified here as a strategy to provide a plant-based source of B12 while 

simultaneously encouraging the diversification of cropping systems to include more legumes. 

The present experimental work did not produce a sufficient quantity of B12 to provide a viable 

source, however other work in the field indicates that it is likely possible to achieve this 
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outcome by working with known B12 producing bacterial strains under controlled conditions. 

In the surveyed population knowledge of B12 is high among recognised risk groups, and 

environmental concern is a strong driving force for dietary choices. These factors could be 

employed in the marketing strategy for introducing a novel B12 enriched fermented legume 

product.  

 

6. Critical Reflections 
 

The overall aim of this project was ambitious, and the results of both the experimental 

procedure and population survey are limited. The design of survey items used to measure 

attitudes towards supplementation and B12 fortification could be greatly improved; 

insufficient questions were included, although the question design was drawn from similar 

research, there was limited agreement between items and few valuable likert scales could be 

produced. The results were also constrained by the small sample size and homogeneity 

among respondents. A more random population sampling method and wider distribution 

would great improve the quality of this research. Alternative methods, such as conjoint 

analysis, may have been a more suitable to examine the value of B12 containing fermented 

products, and consumer’s willingness to buy.  

 

The fermentation experiment was well executed; however, the results were heavily restricted 

by the expense of outsourcing B12 analysis. If further research is conducted it would be 

beneficial to invest in the development of inhouse B12 analysis capabilities, or to work in 

collaboration with a lab that already has these capabilities. Genetic screening of LAB prior to 

testing would likely have increased the likelihood of identifying B12 producing strains, as has 

been reported elsewhere in the literature.  
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Utveckling av nya växtbaserade livsmedel 
- effekt av mjölksyrafermentering  

Fig. 1 Fermentering av olika slag påverkar 
produktens organoleptiska egenskaper och är 
en mycket gammal metod för livsmedelskon-
servering.  

Mjölksyrafermentering är en traditionell metod 
att påverka ett livsmedels kemi och förlänga 
hållbarheten. Detta arbete fokuserar på effek-
ten av fermentering av ett växtbaserat livsmedel 
med avseende på proteinkvalitet och  B-vita-
miner. 

Bakgrund
Studier kring framtida hållbara livsmedels-
system pekar på ökad konsumtion av grön-
saker, inklusive baljväxter (Karlsson et al., 
2017). I denna kontext är vitamin B

12
 av 

intresse eftersom den främst tillförs genom 
animaliska livsmedel. Vitamin B

12
 produce-

ras av vissa grupper av mikroorganismer och 
under senare år har man isolerat stammar av 
mjölksyrabakterier som producerar detta vi-
tamin. Parallellt har mjölksyrafermentering 
länge spelat en viktig roll i människans kost 
och används exempelvis för produktion av 
surkål och surdegsbröd. Vid mjölksyrafer-
mentering omvandlas tillgängliga kolhy-
drater till organiska syror, huvudsakligen 
mjölksyra och ättiksyra, beroende på vil-
ken bakterieart som domineras. Vid spon-
tan mjölksyrafermentering av grönsaker 
är Lactobacillus plantarum den dominerande 
bakteriearten (Di Cagno et al., 2013) och 
en sänkning av pH till runt 4.0 har rappor-
terats att ge en stabil produkt (Montet et al., 
2014). En fördel med att använda välkända 
mjölksyrabakterier, som L. plantarum för fer-
mentering, är att de ingår i listan ”Quali-
fied Presumption of Safety (QPS)”, och är 
godkända för användning i livsmedels- och 
foderkedjan inom EU.

Syftet med mjölksyrafermentering är i 
allmänhet att förlänga hållbarhet genom att 
hindra tillväxt av andra mikroorganismer 
som kan fördärva livsmedlet. Det är emel-
lertid en komplex process som påverkar 
livsmedlets kemi. Fermenteringsprocessen 
styras av livsmedlets sammansättning, vilka 
stammar av mjölksyrabakterier som domi-
nerar och abiotiska faktorer som temperatur. 

Bortsett från den direkta effekten på livs-
medlet är också vissa stammar av mjölk-
syrabakterier associerade med probiotiska 
egenskaper. De stammar av L. plantarum som 
använts i denna studie har tidigare visats ha 
olika hälsoeffekter exempelvis förbättrade 
symtom hos personer med IBS (Ducrotté et 
al., 2012) och ökad järnabsorption (Hoppe 
et al., 2017).

I denna studie fermenterades blomkål, 
vita bönor samt en blandning av blom-
kål och vita bönor med hjälp av fyra olika 
stammar av L. plantarum som tillhandahölls 
av företaget Probi AB (https://probi.com/). 
Förändringen av pH följdes över tid och 
effekten av fermenteringen på viktiga nä-
ringsparametrar som total protein, aminosy-
rasammansättning och riboflavin, folat och 
vitamin B

12
-innehåll studerades.  

Metod
Mixad rå blomkål, kokta och mixade vita 
bönor samt en blandning av blomkål och 
vita bönor (1:1 vikt/vikt) användes i för-
söken. Bakteriesuspensioner (L. plantarum), 
producerad enligt gängse metodik, tillsattes 
i en koncentration av 1% (vikt/vikt). För-
söken genomfördes på SLU Open Food 
Lab*, Alnarp, sattes upp med tre replikat i 
varje behandling och upprepades en gång. 
Behandlingarna inkuberades vid 30° C un-
der 44 timmar och efter detta avsmakades 
behandlingarna och blandningen av blomkål 
och vita bönor valdes för fördjupad analys. 
Den totala mängden protein i proverna be-
stämdes med Dumas-metod. Bestämning av 
riboflavin utfördes enligt europeisk standard 
EN14152. Bestämning av den totala mäng-
den folat utfördes enligt europeisk standard 
EN1413. Extraktion av vitamin B

12
 utfördes 

enligt metod AOAC 952.20. Bestämning av 
riboflavin och den totala mängden folat ut-
fördes vid Livsmedelsverket, Uppsala, Sveri-
ge. Vitamin B

12
 och aminosyrasammansätt-

ning bestämdes av Eurofins Food & Agro 
Testing Sweden AB, Linköping, Sverige.

Resultat och diskussion
Både blomkål och vita bönor hade liknan-
de initialt pH på cirka 6.2. Efter 18 timmars 
fermentering var pH emellertid signifikant 
lägre i de behandlingar som innehöll blom-
kål, 3.7 respektive 3.8, jämfört med behand-
lingen som endast innehöll vita bönor, där 
pH var 4.8. När försöket avslutades hade 
pH sjunkit ytterligare i de behandlingar 
som innehöll blomkål, till 3.4 respektive 3.5, 
medan pH stigit till 5.0 i behandlingen med 
vita bönor. Sammanfattningsvis tillförde 
blomkålen kolhydrater som var tillgängliga 
för L. plantarum och gav en effektiv fer-
mentering där pH sjönk under 4.0.  

 Fördelen med att inkludera vita bönor i 
produkten var tydlig, då den totala mängden 
protein i livsmedlet var högt och variera-
de mellan 21.1-23.2% av torrvikten. Efter 
fermentering sågs en liten ökning av ami-
nosyrorna alanin, glycin, histidin, isoleucin, 



latekvivalenter per dag för en vuxen (EFSA,  
2014), är den fermenterade produkten som 
producerats i denna studie intressant.

Produktion av vitamin B
12

 är begränsad 
till några få arter av bakterier och arkéer, 
och att ett tillräckligt intag av detta vitamin 
är ett problem med växtbaserade dieter. I 
denna studie var ökningen av vitamin B

12
 

i de fermenterade behandlingarna mindre 
uttalad än vad som sågs för riboflavin och 
folat. En signifikant ökning av vitamin B

12
 

sågs endast efter fermentering med en av 
stammarna av L. plantarum. För denna be-
handling sågs en ökning med 66% jämfört 
med kontrollen, till 0.05 ± 0,01 µg/100 g 
färskvikt. Ett intag av 4 ug vitamin B

12
 per 

dag rekommenderas enligt EFSA (2015) 
och den fermenterade produkten kan bara 
ge en mindre del av det totala behovet trots 
den signifikanta ökningen. 
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Fig. 2 Kolonier av mjölksyrabakterien 
Laktobacillus plantarum. 

- Faktabladet är utarbetat inom institutionen för Biosystem och teknologi, www.slu.se/bt 

- Projektet är finansierat av SLU Holding, Partnerskap Alnarp och SLU Future Food

- Projektansvarig: Malin Hultberg, malin.hultberg@slu.se, Inst. för Biosystem och teknologi

- Övrig publicering inom projektet: Thompson et al.. (2020) Fermentation of cauliflower and white beans with    
 Lactobacillus plantarum – impact on levels of riboflavin, folate, vitamin B12, and amino acid composition”.    
 Plant Foods for Human Nutrition. DOI: 10.1007/s11130-020-00806-2

- Epsilon: http://epsilon.slu.se

leucin och valin jämfört med den ofermen-
terade kontrollen. Den totala mängden pro-
tein påverkades inte av fermenteringen. 

Riboflavin är viktigt för funktionen av 
flera enzymer och de viktiga källorna är 
mjölk och mejeriprodukter, samt spannmål 
och kött. Det är ett vattenlösligt vitamin som 
inte lagras i kroppen med ett rekommende-
rat dagligt intag av 1,6 mg för vuxna (EFSA, 
2017). Koncentrationen av riboflavin öka-
de signifikant jämfört med kontrollen i alla 
behandlingar fermenterade med L. plan-
tarum. Ökningen var mellan 76-113% av 
kontrollens värde och det högsta värde som 
uppmättes var 91.6±0.6 µg/100 g färskvikt. 
Halterna av riboflavin i den slutliga fermen-
terade produkten var generellt låga jämfört 
med det rekommenderade dagliga intaget.

För folat observerades ett liknande möns-
ter som för riboflavin, med en signifikant 
ökning i alla fermenterade prover jämfört 
med kontrollen. Ökningen varierade mellan 
32-60% av kontrollen och det högsta vär-
det som uppmättes var 58.8±2.0 µg/100 g 
färskvikt. Liksom riboflavin syntetiseras fo-
later av både växter och mikroorganismer, 
och viktiga källor är bladgrönt, mejeri- och 
fullkornsprodukter. Folater har en nyckelroll 
i cellmetabolismen men biotillgängligheten 
för naturliga folater varierar och de bryts lätt 
ned. Folatbrist kan förekomma och i vissa 
länder sker en berikning med folsyra i utval-
da livsmedel. Med tanke på ett genomsnitt-
liga rekommenderade intaget av 250 μg fo-
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Abstract
As diets change in response to ethical, environmental, and health concerns surrounding meat consumption, fermentation has
potential to improve the taste and nutritional qualities of plant-based foods. In this study, cauliflower, white beans, and a 50:50
cauliflower-white bean mixture were fermented using different strains of Lactobacillus plantarum. In all treatments containing
cauliflower, the pH was reduced to <4 after 18 h, while treatments containing only white beans had an average pH of 4.8 after
18 h. Following fermentation, the riboflavin, folate, and vitamin B12 content of the cauliflower-white bean mixture was mea-
sured, and compared against that of an unfermented control. The riboflavin and folate content of the mixture increased signif-
icantly after fermentation. Relative to control samples, riboflavin increased by 76–113%, to 91.6 ± 0.6μg/100 g fresh weight, and
folate increased by 32–60%, to 58.8 ± 2.0 μg/100 g fresh weight. For one bacterial strain, L. plantarum 299, a significant 66%
increase in vitamin B12 was observed, although the final amount (0.048 ± 0.013 μg/100 g fresh weight) was only a small fraction
of recommended daily intake. Measurements of amino acid composition in the mixture revealed small increases in alanine,
glycine, histidine, isoleucine, leucine, and valine in the fermented sample compared to the unfermented control.

Keywords B-vitamins . Brassica oleracea . Lactic acid bacteria . Nutritional quality . Phaseolus vulgaris

Introduction

Recent research has highlighted good potential of a
change in diet in helping to resolve global challenges such
as climate change, biodiversity loss, and food insecurity
[1]. Studies exploring future sustainable food systems in
the Nordic countries suggest decreasing consumption of
meat by 80–90% and increasing consumption of vegeta-
bles. Legumes, with their high protein content, are of spe-
cial importance in this concern due to their benefits for
agricultural cropping systems via biological nitrogen-

fixation [2]. Thus, there is a need for developing new
plant-based products including legumes.

Fermentation has been used since ancient times for food
preservation, while also having an impact on organoleptic
characteristics. Several traditional Asian fermented bean prod-
ucts have now become popular in the West, including tofu,
tempeh, and miso. Additional driving forces in developing
fermented vegetable products are the growing interest in lo-
cally produced food, and consumer interest in products with
less chemical additives.

During fermentation with lactic acid bacteria (LAB),
available carbohydrates are converted to organic acids,
mainly lactic acid and acetic acid, depending on the
species used. For vegetables, a decrease in pH to
around 4 has been reported to ensure a stable product
[3]. The dominant species in spontaneous lactic acid
fermentation of vegetables is Lactobacillus plantarum
[4]. A benefit of using well-known lactic acid bacteria,
such as L. plantarum, for fermentation is that they are
included in the Qualified Presumption of Safety (QPS)
list, which authorizes their use in the food and feed
chain within the European Union.
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The aim in lactic acid fermentation is generally to preserve
the food by excluding growth of spoilage microorganisms.
However, lactic acid fermentation is a strain-dependent and
complex process with a broad impact on the nutritional value
of the food [5]. An increase in the content of important nutri-
ents, including the B-vitamins, after fermentation of plant-
based products has been reported [6]. Apart from the direct
effect on the food due to the bacterial metabolism, certain
strains of LAB are also associated with probiotic properties.
The L. plantarum strains investigated in the present study
have been shown to have different health effects in humans,
for example improved symptoms in people with irritable bow-
el syndrome [7], protection against lumbar spine bone loss in
postmenopausal women [8], and increased iron absorption
from foods [9].

The growth and capability for efficient fermentation of
LAB are affected by several factors, such as composition of
the substrate, strain-specific variations, and the fermentation
procedure. In the present study fermentation of vegetables,
cauliflower, white beans, and a mixture (50:50) of cauliflower
and white beans, was studied. Four strains of L. plantarum
were used and the effects of fermentation on levels of impor-
tant nutritional parameters such as amino acid composition
and riboflavin, folate, and vitamin B12 content were studied.
Three of the investigated strains are available commercially as
food supplements and as chilled plant-based food products
and have been used to ferment cereals, berries and fruit
[10–12]. The ability of the included strains to ferment vegeta-
bles and produce riboflavin, folate and vitamin B12 have not
been investigated before.

Material and Methods

Bacterial Cultures

Four different strains of L. plantarum (strain 299v, strain
Lp900, strain 299, strain Heal19) were provided by the com-
pany Probi AB, Sweden (https://probi.com/) and are described
in Table 1. For production of the inoculum used for
fermentation, the strains were cultivated as static culture in
MRS broth (BDH Chemicals, UK) at 35 °C for 16 h. After

this, the cells were harvested by centrifugation (Eppendorf
MiniSpin, 10,000 g for 3 min) and washed twice with 0.85%
NaCl solution. The control treatment was prepared with sterile
MRS broth and a similar washing procedure. The bacterial
suspensions, diluted in 0.85% NaCl and with an OD620 of 0.8
(corresponding to 7–8 log CFU/ml), and a control suspension
(0.85% NaCl only) were added in a concentration of 1% (w/w)
to the vegetable mixtures.

Experimental Set-up

Raw cauliflower (Brassica oleracea var. botrytis) mixed in food
processor, cooked and mixed white beans (Phaseolus vulgaris
L.), and a mixture of consisting of a 50:50 ratio (w/w) of raw
cauliflower and cooked white beans (cauliflower-white bean)
were weighed out into plastic containers. Each portion weighed
100 g ± 1 g and was combined with 2 g of sea salt.

Suspension of L. plantarum was added to each container.
The mixture was thoroughly stirred again following addition
of bacteria or control suspension. The pH of each sample was
recorded and the control samples were directly frozen at
−80 °C. Containers with bacterial culture were incubated at
30 °C for 44 h. The pH of fermented samples was measured
after 18 and 44 h.

After 44 h, the treatments were tasted and the cauliflower-
white bean mixture was chosen for further analysis. Samples
for determination of riboflavin (vitamin B2), folate, vitamin
B12, total protein, and amino acid composition in this treat-
ment were prepared and frozen at −80 °C. All samples were
analyzed for total protein and vitamin content, while analyses
of amino acid composition were performed on the control
samples of cauliflower-white bean mixture and the samples
fermented with L. plantarum 299.

Analysis

Determination of Riboflavin, Total Amount of Folate
and Vitamin B12

Determination of riboflavin was performed according to
European Standard EN14152, as described by Jakobsen [13].
Determination of the total amount of folate was performed

Table 1 Strains of Lactobacillus
plantarum used in this study Strain Origin DSM number1

L. plantarum strain 299v Human gastrointestinal (GI) tract 9843

L. plantarum strain Lp900 Ogi, red sorghum, Nigeria –

L. plantarum strain 299 Human GI tract 6595

L. plantarum strain Heal19 Human GI tract 15,313

The strains deposited at DSM are available commercially as food supplements and as chilled plant-based food
products
1 German Collection of Microorganisms and Cell Cultures
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according to European Standard EN1413, as described by
DeVries et al. [14], except for use of protease in the extraction
procedure. Extraction of vitaminB12was performed according to
method AOAC 952.20, as described by Ball [15].

Total Protein and Amino Acid Composition

Total amount of protein in the samples was determined by the
Dumas method [16] and applying a conversion factor of 6.25
for total nitrogen. Concentrations of the amino acids were de-
termined according to the method of Llames and Fontaine [17].

Statistics

The experiments were set up with three replicates in each
treatment and repeated once. The data obtained were analyzed
statistically using Minitab 17 for Windows. One-way Anova
followed by Tukey’s multiple comparison test was employed
to test for effects of treatments and the significance level was
set to P ≤ 0.05.

Results and Discussion

The different strains of L. plantarum behaved similarly with
regard to the effect of pH on the different treatments. No
significant difference was observed between the strains within
each reading (18 and 44 h). Data from all strains were there-
fore pooled for each time point for analysis of the effect of
fermentation on pH (Fig. 1). Cauliflower and white bean had a

similar initial pH of approximately 6.20. However, after 18 h
of fermentation with L. plantarum strains, the pH was signif-
icantly lower in the cauliflower and the cauliflower-white
bean mixture treatments (3.66 ± 0.05 and 3.75 ± 0.04, respec-
tively, mean ± SD) than in the treatment with white bean only
(4.82 ± 0.02). After 44 h of fermentation, a slight but signifi-
cant increase in pH was observed in the white bean treatment,
to 4.96 ± 0.01. In the treatments with cauliflower and
cauliflower/white bean mixture the opposite pattern was ob-
served, with a slight but significant decrease in pH to 3.44 ±
0.1 and 3.52 ± 0.07, respectively.

Thus, fermentation was more efficient in the treatments
including cauliflower adding benefits such as increased shelf
life due to the low pH. Cauliflower is reported to contain
approximately 4.2% carbohydrates, with a high concentration
of monosaccharides [18]. Legumes, on the other hand, are
well-known for containing high amounts of complex oligo-
saccharides, a component of dietary fiber that is less available
for microbial degradation [19]. Thus, the easily available car-
bohydrates provided by cauliflower most probably sustained
microbial growth, followed by a decrease in pH due to pro-
duction of organic acids, to a greater extent than in the white
bean treatment.

The mixture of cauliflower and white bean was chosen for
further studies on the content of total protein, riboflavin, fo-
late, and vitamin B12. The taste was dominated by a sour and
salty flavour, similar to traditional fermented cabbage (sauer-
kraut), but with a deeper, underlying umami taste that brought
a mild cheese-like quality. The taste was unusual, but not
unpleasant, though more comprehensive taste analysis and

Fig. 1 Changes in pH during
fermentation with Lactobacillus
plantarum of homogenized
cauliflower, white bean, and a
mix (50:50) of cauliflower and
white bean
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consumer research would be required to determine the mar-
ketability of the product.

From a nutritional perspective the benefit of including
white beans was clearly apparent, as the total amount of pro-
tein ranged from 21.1 to 23.2% of dry weight in the different
bacterial treatments. Inconsistent results have been reported
regarding the effect of fermentation on total protein amount
[20]. Based on work with cereals, it has been suggested that
the total amount of protein is generally not changed during
lactic acid fermentation, although an increase can be observed
in certain cases. If an increase is observed, it can often be
related to a decrease in carbon ratio in the total mass due to
bacterial metabolization of carbohydrates [21]. In the present
study, no significant differences were observed in organic car-
bon content or in total nitrogen in relation to the control or
between any of the treatments. Based on these results, no
effect on the total protein amount was observed.

Riboflavin is important for the function of several enzymes
involved in energy metabolism. It is naturally present in several
different foods, including plants, and main sources of riboflavin
intake are milk and dairy products, followed by cereals and
meat. It is a water-soluble vitamin that is not stored in the body,
and the daily dietary reference value has been set to 1.6 mg for
adults [22]. Despite its presence in a wide variety of foods,
riboflavin deficiency may occur. In this study, fermentation
with L. plantarum increased the concentration of riboflavin
significantly compared to the control in all treatments
(Table 2). Significant differences in riboflavin concentration
related to the different strains were observed. The highest value
was observed after fermentation with L. plantarum Lp900,
which gave an increase of 113% compared to the initial value,
to 91.6 ± 0.6μg/100 g fresh weight. The smallest increase, 76%
of the initial value, was observed in the treatment with
L. plantarum 299v. A similar increase in riboflavin content
has been observed by Capozzi et al. [23] on fermenting wheat
with L. plantarum for production of bread and pasta. However,
in their study the strains used were selected for over-production
of riboflavin, while such selectionwas not applied in the present
study. Our results suggest that fermentation with L. plantarum
can be used to increase the concentration of riboflavin in plant-
based foods. However, it should be pointed out that the levels of
riboflavin in the final fermented product were still generally

low, at the level of μg/100 g product, compared to the recom-
mended daily intake of 1.6 mg.

For folate, a similar pattern as for riboflavin was observed,
with a significant increase in all fermented samples and varia-
tions between strains. Like riboflavin, folate is synthesized by
both plants and microorganisms, with main dietary sources be-
ing leafy green vegetables, dairy products, and cereal products.
This vitamin, including several related compounds play a key
role in ensuring essential functions of cell metabolism, such as
DNA synthesis. However, the bioavailability of natural food
folates varies and these compounds are easily degraded. Thus,
folate deficiency is a general concern, and a strategy based on
fortification of selected foods has been adopted in some coun-
tries. In this study, the highest concentration of folate was ob-
served after fermentation with L. plantarum 299v, which
showed an increase of 60% compared to the initial value, to a
total concentration of 58.8 ± 2.0 μg/100 g fresh weight. The
smallest increase, 32% of the initial value, was observed in
the treatment with L. plantarum 299. Considering the average
recommended intake of 250 μg dietary folate equivalents/day
[24], the fermented vegetable mixture is of interest. The ability
of microorganisms to produce folate is strain-specific, and a
decrease in folate concentration in fermented products due to
microbial consumption has been reported [25]. It should be
pointed out that a significant increase in folate concentration
was observed for all four strains of L. plantarum included in
the present study, and that the genes for folate biosynthesis have
been identified in this species [26]. Thus, fermentation of veg-
etables with L. plantarum might be considered as a general
measure to increase folate concentration.

Vitamin B12 has a function as an important co-factor in
several enzymes in procaryotes, protists, and animals, while
B12-dependent enzymes have not been found in plants and
fungi. Production of vitamin B12 has been shown to be limited
to a few species of bacteria and archaea [27], and ensuring
intake of adequate levels of this vitamin is a high concern with
plant-based diets. In recent years, two strains of L. plantarum
that produce vitamin B12 have been isolated [28]. In the pres-
ent study, the increase in vitamin B12 in the fermentation treat-
ments was less pronounced than that seen for riboflavin and
folate. A significant increase in B12 content was observed after
fermentation with L. plantarum 299 only (Table 2). An

Table 2 Concentration (μg/100 g
fresh weight) of riboflavin, folate,
and vitamin B12 before (control)
and after lactic acid fermentation
of a mixture of cauliflower and
white beans at 30 °C for 44 h
using four different strains of
Lactobacillus plantarum

Treatment Riboflavin Folate Vitamin B12

Control 42.83 ± 1.20a* 36.84 ± 0.81a 0.029 ± 0.002a

L. plantarum strain 299v 75.64 ± 0.82b 58.82 ± 1.98c 0.033 ± 0.004ab

L. plantarum strain Lp900 91.60 ± 0.56c 55.88 ± 0.98c 0.034 ± 0.011ab

L. plantarum strain 299 76.36 ± 9.21b 48.74 ± 3.98b 0.048 ± 0.013b

L. plantarum strain Heal19 85.07 ± 2.14bc 53.55 ± 1.28bc 0.034 ± 0.004ab

Values shown are mean ± standard deviation

*Different letters within columns indicate significant differences (p ≤ 0.05; Anova followed by Tukey’s test)
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increase of 66% (to 0.048 ± 0.013 μg/100 g fresh weight)
compared to the initial value (0.029 ± 0.002) was observed
in this treatment. Considering that intake of 4 μg vitamin
B12 per day has been set as adequate by EFSA [29], it is clear
that the fermented products evaluated in the present study
could only provide a very small fraction of the total require-
ment, despite the significant increase. For the two vitamin
B12-producing strains of L. plantarum previously isolated, it
has been demonstrated that increased production of vitamin
B12 can be achieved by addition of a B12 precursor such as 5-
aminolevulinate [28]. Thus, a future approach to increase the
concentration of vitamin B12 in fermented vegetables could be
to ensure high concentrations of precursors before fermenta-
tion. Also, as the presence of human inactive analogues, such
as pseudovitamin B12, have been reported in LAB high-
producing strains should be subjected to detailed chemical
analysis including not only microbiological assay but also
liquid chromatographic methods [30].

It should be pointed out that no cell lysing treatment
was performed in the present study, apart from storage in
the freezer (−80 °C), and that strains of L. plantarum have
been demonstrated to have high stability when frozen
[31]. Additionally, no difference in moisture content in
any of the treatments compared to the control was ob-
served after lyophilization (data not shown). Thus, the
increased levels of vitamins observed in the present study

did not represent an intracellular pool, and were not due
to an increase in dry matter.

No distinguishable difference in taste could be detected in
the mixture fermented with the different bacterial strains and,
based on the significant increase in vitamin B12 level, the
vegetable mixture fermented with strain L. plantarum 299
was chosen for analysis of amino acid composition. The re-
sults showed small increases in alanine, glycine, histidine,
isoleucine, leucine, and valine in the fermented sample com-
pared to the control (Table 3). Of these amino acids, histidine,
isoleucine, leucine, and valine are essential in the human diet.
Thus, fermentation with L. plantarum 299 can be considered
to have slightly improved the protein quality of the vegetable
mixture. In contrast, a recent study reported a decrease in
protein quality after fermentation of pea proteins with
L. plantarum [32]. In that study, high consumption of the
sulfur-containing amino acids was observed and thus the au-
thors recommend selection of species other than L. plantarum
for fermentation. This discrepancy in results, despite working
with the same species and a similar vegetable, reflects the
strain-specific metabolism of L. plantarum, which has been
suggested to be due to their diverse ecological niches [28]. It
also highlights the need for working with several strains of the
same species in order to draw sound conclusions on charac-
teristics of the species.

Conclusions

Lactic acid fermentation is of importance for food preserva-
tion, while also having impact on taste and nutritional compo-
sition. In the present study three different vegetable substrates
(cauliflower, white bean, and cauliflower-white bean mixture)
were fermented using four different strains of L. plantarum.
All strains had a similar impact on pH of the different sub-
strates, and fermentation was more efficient in the treatments
including cauliflower. Due to the efficient fermentation, with a
final pH below 4, the pleasant taste and inclusion of legumes
the impact of fermentation on riboflavin, folate, and vitamin
B12 concentrations and on protein quality was studied in the
cauliflower-white bean mixture. All strains of L. plantarum
significantly increased the content of both folate and ribofla-
vin compared to an unfermented control. Fermentation also
had an impact on the content of vitamin B12, with fermenta-
tion with one of the bacterial strains (L. plantarum 299)
resulting in a significant increase in vitamin B12 content. In
the treatment involving fermentation of a cauliflower-
white bean mixture with L. plantarum 299, amino acid
composition was analyzed. The results revealed small
increases in the concentrations of alanine, glycine, his-
tidine, isoleucine, leucine, and valine in the fermented
sample compared to the unfermented control.

Table 3 Amino acid (aa) composition (g/100 g protein, dry weight
basis) of a mixture of cauliflower and white bean before (control) and
after fermentation with Lactobacillus plantarum strain 299

Amino acid Control Fermented sample

Alanine 1.11 ± 0.01a* 1.13 ± 0.01b

Arginine 1.42 ± 0.04a 1.42 ± 0.05a

Aspartic acid 2.92 ± 0.04a 2.97 ± 0.01a

Cysteine 0.23 ± 0.01a 0.24 ± 0.01a

Glutamic acid 3.60 ± 0.04a 3.63 ± 0.03a

Glycine 0.97 ± 0.01a 1.03 ± 0.01b

Histidine 0.67 ± 0.01a 0.70 ± 0.01b

Isoleucine 1.09 ± 0.00a 1.13 ± 0.01b

Leucine 2.02 ± 0.01a 2.08 ± 0.02b

Lysine 1.80 ± 0.01a 1.84 ± 0.05a

Methionine 0.25 ± 0.01a 0.23 ± 0.03a

Phenylalanine 1.40 ± 0.04a 1.46 ± 0.03a

Proline 0.93 ± 0.07a 1.00 ± 0.03a

Serine 1.52 ± 0.02a 1.48 ± 0.02a

Threonine 1.09 ± 0.01a 1.10 ± 0.01a

Tyrosine 0.85 ± 0.02a 0.87 ± 0.01a

Valine 1.32 ± 0.02a 1.36 ± 0.01b

aa 23.21 ± 0.14a 23.68 ± 0.05b

*Values within rows followed by different letters are significantly differ-
ent (p < 0.05)
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Thus a slight improvement in nutritional quality was ob-
tained after fermentation, although it should be pointed out
that the quantity of different vitamins produced during fer-
mentation, particularly of riboflavin and vitamin B12, was
low relative to the recommended intake.
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