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Grass and clover ley is the main forage crop in Sweden, however, its restrictive role in feed 

intake limits the total amount included in the diet of a dairy cow. This study examined the effect of 

extrusion on grass silage intake, milk production, ingestive behaviour and rumen pH. Eight Swedish 

Red dairy cows in mid/late lactation were fed grass silage of early or late harvest, extruded or 

control, in a 4x4 Latin square design with four periods of three weeks. Diets were supplemented 

with a mix of soybean meal, compound feed and minerals. Extrusion increased daily silage dry 

matter (DM) intake by 1.84 kg/d (p < 0.001), neutral detergent fibre (NDF) intake by 1.04 kg/d (p 

< 0.001) and decreased physical effective NDF (peNDF8) intake by 1.37 kg/d (p < 0.001). Total DM 

intake increased by 1.74 kg/d (p < 0.001) while the dietary DM percentage of peNDF8 decreased by 

6.9 units (p < 0.001). Milk yield increased by 1.32 kg/d (p = 0.008), Energy corrected milk (ECM) 

yield increased by 1.87 kg/d (p = 0.004), milk protein concentration increased by 0.09 percentage 

units (p < 0.001) while total fat and protein production increased by 72.4 g/d (p = 0.015) and 73.7 

g/d (p < 0.001), respectively. Extrusion decreased average rumen pH by 0.1 units (p = 0.008). The 

time rumen pH was below 5.8 increased by 2.97 h/d (p = 0.038) while the curve area below this cut-

off point was not affected (p = 0.166). Rate of intake of silage DM and NDF was increased by 20.3 

and 11.3 g/min respectively (p < 0.001), daily silage eating time decreased by 0.6 h/d (p = 0.006) 

and daily rumination time decreased by 1.96 h/d (p < 0.001). Daily chewing time decreased by 2.49 

h/d (p < 0.001), with rumination and chewing time per kg of silage NDF intake, decreased by 18.9 

and 26.3 min/kg (p < 0.001) respectively. In conclusion, extrusion increased silage intake, eating 

rate and milk production but decreased chewing activity. 

Keywords: Extrusion, Grass silage, Dairy cows, Milk production, Milk composition, Rumen pH, 

Ingestive behaviour. 

  

Abstract  



 

 

Vall är den huvudsakliga grovfodergrödan i Sverige men vallfodrets egenskaper begränsar 

konsumtionen och därmed  även den totala mängden som kan ingå i mjölkkons totalfoderstat. Syftet 

med denna studie var att undersöka hur extrudering (en metod för intensiv bearbetning och  

finfördelning) av vallensilage påverkar foderkonsumtion, mjölkproduktion, ätbeteende och våm-

pH. Åtta SRB-kor utfodrades med gräsensilage från förstaskörd, slaget vid två tillfällen, som 

utfodrades hackat eller extruderat, i en romersk kvadrat med fyra behandlingar och fyra 

försöksperioder. Grovfodret kompletterades med kraftfoder bestående av färdigfoder, sojamjöl och 

mineralfoder. Extrudering ökade intaget av ensilage med 1,84 kg torrsubstans (TS) / dag (p < 0,001) 

och intaget av fiber (Neutral Detergent Fiber, NDF) med 1,04 kg / d (p < 0,001) medan intaget av 

peNDF8 (ett mått på struktureffekt som innefattar NDF-halt och partikelstorleksfördelning) 

minskade med 1,37 kg/d (p < 0,001). Det totala TS-intaget ökade med 1,74 kg / dag (p < 0,001) 

medan andelen  peNDF8 i foderstaten minskade med 6,9 procentenheter (p < 

0,001). Mjölkavkastningen ökade med 1,32 kg / d (p = 0,008), energikorrigerad mjölk (ECM) ökade 

med 1,87 kg / d (p = 0,004), mjölkproteinhalten ökade med 0,09 procentenheter (p < 0,001) medan 

den totala dagliga produktionen av fett och protein ökade med 72,4 g / d (p = 0,015) respektive 73,7 

g / d (p < 0,001). Extrudering minskade pH-värdet i våmmen med 0,1 enheter (p = 0,008). Tiden 

med våm-pH under 5,8 ökade med 2,97 h / d (p = 0,038), medan kurvarean under detta tröskelvärde 

inte påverkades (p = 0,166). Äthastigheten för torrsubstans och NDF i ensilage ökade med 20,3 

respektive 11,3 g / min (p < 0,001), den dagliga ättiden för ensilage minskade med 0,6 h / d (p = 

0,006) och den dagliga idisslingstiden minskade med 1,96 h / d ( p < 0,001). Den totala tuggtiden 

minskade med 2,49 h / d (p < 0,001), medan idisslingstid och tuggtid för NDF från grovfoder 

minskade med 18,9 respektive 26,3 min / kg (p < 0,001). Sammanfattningsvis ökade 

extrudering ensilageintag, äthastighet och mjölkproduktion men minskade tuggningsaktiviteten. 

 

Nyckelord: Extrudering, Gräsensilage, Mjölkkor, Mjölkproduktion, Mjölksammansättning, Våm-

pH, Ätbeteende. 
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Grass silage from temporal leys is the major feed for Swedish dairy cows. Silage is 

the conservation method of choice since it minimizes the loss of nutrients compared 

with dry forages due to easier storing, feeding and handling (Grant & Ferraretto 

2018). However, forage-based diets, due to their filling effect limit feed intake and 

cannot satisfy the high energy and protein requirements of dairy cows (Allen 2000). 

Limiting the forage filling effect and increasing fibre digestibility presents an 

opportunity for the dairy industry. Increased dry matter intake (DMI) and milk yield 

combined with decreased manure production are expected to result in increased 

profitability (Hernandez-Urdaneta et al. 1976; Allen et al. 2009; Adesogan et al. 

2019). Grass-based diets present important environmental benefits. Grasslands 

have a key role in the prevention of soil erosion, immobilization of leaching 

materials and pesticides, regularization of water regimes and act as a carbon 

reservoir (Rodriguez et al. 2017). According to Murphy et al. (2011), 50 % of the 

energy requirements of agriculture are related to fertilizer production, 22 % for 

machinery cost, 15 % for transportation and 13 % for pesticide production. Grass 

production requires less tillage, crop seedings, fertilizing, herbicides and pesticides 

compared with crop production resulting in lower energy input requirements per 

hectare (Murphy et al. 2011). Additionally, grasslands present an opportunity for 

wildlife habitat and improved attractiveness of the landscape (Carlier et al. 2009; 

Rodriguez et al. 2017). 

Livestock production has an important role in human nutrition, income 

generation and livelihoods (Smith et al. 2013). Ruminants possess the unique 

ability to convert fibrous feeds, that cannot be utilized by humans, such as forages, 

into high-quality food protein (Mottet et al. 2017). Increasing fibre digestibility will 

allow for greater inclusion of forage in the rations of dairy cows satisfying the 

demand of locally produced crops with good traceability in animal feeding 

(Mendowski et al. 2020). 

Ruminal fermentation of fibrous feeds results in higher methane production with 

detrimental effects for the dairy sector (Adesogan et al. 2019). Methane is produced 

at the expense of energy that could be utilized for milk production. The increased 

methane production combined with the decreased milk yield result in a higher 

carbon footprint of the final product. Furthermore, environmental reasons are one 

of the main arguments for vegan diets (Adesogan et al. 2019). Increasing fibre 

1. Introduction  
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digestibility, present an opportunity for decreased methane emissions. Additionally, 

decreasing forage filling effect will result in decreased use of concentrates thus 

lowering the competition among nonruminants, bio-fuel production and human 

food sector (Adesogan et al. 2019). 
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Forages can make up from 40% to 100% of the ratio of a dairy cow and are 

characterized by higher fibre and lower energy content compared to concentrates 

(Hernandez-Urdaneta et al. 1976). They are sources of neutral detergent fibre 

(NDF) and through their physical and chemical characteristics, they stimulate 

chewing, rumination and reticulorumen motility. Increased salivation buffers and 

keeps rumen environment healthy, maintaining animal welfare, health and 

productivity (Mertens 1997; Zebeli et al. 2012; Adesogan et al. 2019). 

Additionally, they pose an important energy source for the ruminants and through 

microbial fermentation produce milk fat precursors. 

The ruminal mat is the result of the extensive stratification of the reticuloruminal 

content with fibre acting as a supporting frame (Adesogan et al. 2019). It facilitates 

the digestion of solid feed particles through particle retention and optimizes the 

production and harvest of fermentation end products by optimizing the rumen 

micro-environment (Clauss et al. 2011; Adesogan et al. 2019). Particle density is 

an important factor affecting the sorting mechanism inside a ruminants forestomach 

(Clauss et al. 2011). Younger and larger fibre particles are, due to buoyancy, 

positioned into “lag-fermentation” flow-paths and are subjected to rumination. As 

feed particle size (FPS) decreases, they become less efficient of entrapping the 

fermentation gasses, their density increases and eventually they escape the rumen 

(Ellis et al. 2005). Consequently, FPS, chemical characteristics and density affect 

the reticulorumen motility and the rumen retention time (Allen 1996). 

2. Forage fibre 
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Feed intake is affected by animal factors including the energy status of the animal 

(Jensen et al. 2016) and dietary factors including feed availability, 

concentrate/forage ratio, NDF content, organic matter (OM) digestibility, FPS and 

palatability (Allen 1996, 2000; Oba & Allen 2000; Grant & Ferraretto 2018). These 

factors affect the chewing time that can be the main limiting factor under time-

restricted feeding regimes or conditions of high feed competition. However, under 

ad libitum feeding of high forage diets, feed intake is limited by the distention of 

the reticulorumen (Adesogan et al. 2019). 

Reticuloruminal distension is affected by the removal of its content by digestion, 

absorption or passage (Allen 2000). Retention time in the rumen and the total 

digestive tract are known to be negatively correlated to FPS and influenced by the 

functional specific gravity (Clauss et al. 2011; Dufreneix et al. 2019). The 

functional specific gravity refers to the particle density associated with the volume 

occupied by liquid and gases produced during the steps of feed hydration and 

digestion (Wattiaux et al. 1992). For low producing animals, a feed particle density 

of 1.1 to 1.4 and a FPS of 1.13 to 3.35 mm minimizes the retention time in the 

rumen and the whole digestive tract (Maulfair et al. 2011). Higher intake levels, on 

the other hand, can positively affect the passage rate through the digestive tract, 

decreasing ruminal retention time and increasing the probability that particles 

escape the rumen before extensive microbial degradation. High producing dairy 

cow have increased intake and a FPS of 3 to 4 mm and a density of 1.2 to 1.3 

minimizes rumen and total digestive tract retention time (Dufreneix et al. 2019). 

Therefore, decreased FPS and increased density directly affect and increase dry 

matter (DM) intake (Allen 2000).  

Feed digestibility and fragility can also affect passage rate (Udén 1984; Udén & 

Sutton 1994; Allen 1996). Higher fibre digestibility and higher fragility will lead to 

faster FPS reduction limiting the filling effect of NDF (Allen & Mertens 1988). The 

higher fragility of legumes results in lower filling effect compared to grass despite 

their lower DM and NDF digestibility (Weiss & Shockey 1991; Oba & Allen 2000). 

Increased forage FPS and the consequent decrease of available surface area, 

increased buoyancy can result in slower fibre fermentation rates, greater retention 

times thus limiting feed intake (Allen 1996; Zebeli et al. 2012). 

3. Feed intake 
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The physical effective NDF (peNDF) as a concept combines the physical and 

chemical properties of the diet as FPS and NDF content respectively (Humer et al. 

2018b). High peNDF levels are linked with higher dietary chewing index which 

can in term negatively affect DMI (Jensen et al. 2016). Diets on the other hand with 

insufficient amounts of peNDF and high starch content can suppress rumination, 

ruminal mat formation and chewing activity leading to lower ruminal pH. Lower 

ruminal pH creates suboptimal conditions for the cellulolytic bacteria and leads to 

decreased appetite, fibre digestion, rumen motility, microbial yield and milk fat 

(Allen 1997; Adesogan et al. 2019). Under these conditions, diet digestibility can 

be affected potentially increasing the filling effect and decreasing feed intake.  

The rumen volatile fatty acid (VFA) pattern can also affect satiety and voluntary 

intake. Propionate is a VFAproduced mainly during starch digestion by rumen 

bacteria but can also be present in small amounts in the silage. Propionate and 

unsaturated fatty acids from incomplete biohydrogenation have the greater effect 

on feed intake compared to other organic acids according to the hepatic oxidation 

theory (Harvatine & Allen 2006; Allen & Voelker Linton 2007; Allen et al. 2009). 

According to this theory diets with high levels of ruminal available starch result in 

greater production of propionate. The produced VFA are absorbed by the rumen 

epithelial and through the blood, reach the liver. Once the liver’s glucogenic 

capacity is exceeded the surplus of propionate is oxidized resulting in increased 

adenosine triphosphate (ATP) production and cerebral stimulation of the vagus 

nerve resulting in satiety (Allen et al. 2009; Grant & Ferraretto 2018). 

Diet palatability is affected by FPS, DM content and chemical composition 

(Nasrollahi et al. 2015; Grant & Ferraretto 2018). Low dietary DM content 

negatively affects palatability and has been reported in silage. Silage DM content 

affects the fermentation process resulting in a different composition of end products 

such as organic acids or nitrogenous compounds. These end products are known to 

affect behaviour and feed consumption of dairy cows. The main fatty acid during 

silage fermentation is lactic acid however acetate, propionate, ethanol, butyrate, 

ammonia-N and amines are also present at various concentrations. Butyrate is a 

result of fermentation of sugars and lactic acid by Clostridia and can suppress feed 

intake (Grant & Ferraretto 2018). Acetate may also contribute to intake regulation 

while ethanol does not appear to influence feed intake. Nitrogenous compounds are 

the result of proteolysis, can occur even under adequate management conditions 

and undergo rapid and extensive ruminal degradation (Grant & Ferraretto 2018). 

However, in silage-based diets, these nitrogenous compounds can increase blood 

ammonia-N and suppress intake through an increase in gamma-aminobutyric acid 

(Scherer et al. 2015). 
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Forage digestibility is depended upon many parameters including the chemical 

composition of the forage cell wall and the plant maturity stage. The main 

components of the plant cell wall are cellulose, hemicelluloses and lignin. Their 

proportions and how they interact with each other defines the degree of digestibility 

of the plant material. 

4.1. Forage chemical composition 

Cellulose is the most abundant biopolymer on earth and is polymerized by β-

glucose disaccharide (cellobiose). It is a linear homo-polysaccharide that functions 

as the major structural component of the plant cell wall (Hon 1994). It is 

characterized by a high degree of polymerization that can reach up to 500-15.000 

glucan units linked by β-1,4-glycosidic bonds (Holtzapple 2003a; Abraham et al. 

2020). Cellulose molecules run parallel in the same direction from nonreducing to 

reducing ends and are interlinked by hydrogen and covalent bonds and Van der 

Waals forces leading to a highly crystalline cellulose microfibril (Holtzapple 2003a; 

Kim et al. 2013). Crystalline or amorphous regions of cellulose are present in the 

plant cell wall and they are a result of the different orientation of the cellulose 

molecules (Atalla & Vanderhart 1984; Holtzapple 2003a). The large size of these 

microfibrils and the hydrogen bonds that hold the crystalline structure render them 

insoluble in water and resistant to biological degradation (Holtzapple 2003a; 

Bodvik et al. 2010). The amorphous regions, on the other hand, are more porous 

allowing water to penetrate and increase the reactivity to acid or enzymatic 

hydrolysis (Lindman et al. 2010). 

Hemicelluloses, the world’s second most abundant carbohydrates, comprise 20-

30% of the plant cell wall (Holtzapple 2003b). They include arabinoxylans, 

xyloglucans, glucomannans, galactomannans and β-glucans (Holtzapple 2003b; 

Hamaker & Tuncil 2014). They are short, highly branched heteropolysaccharides 

that are composed of 50-200 monomers such as pentoses (xylose and arabinose), 

hexoses (glucose, galactose and mannose) and sugar acids (Holtzapple 2003b). 

Most hemicelluloses have a continuous β-1,4-linked backbone that may be simple 

(one monosaccharide and few linkage types) or very complex (many 

4. Forage digestibility 
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monosaccharides, many linkage types, and varying length of branches), except for 

β-glucans that are not branched and have both β-1,4 and β-1,3 linkages in the 

backbone (Hamaker & Tuncil 2014). Hemicelluloses are more susceptible to 

physical and biological degradation due to their lower degree of polymerization and 

their amorphous structure (Li et al. 2015). Their branched nature allows them to 

form strong bonds with cellulose (hydrogen bonds) and lignin (covalent bonds) 

acting as a matrix that increases the rigidity of the plant material (Holtzapple 

2003b). Hemicelluloses have many variations of structures depending on the plant 

sources and genotype, the growing environment, the anatomical parts of the plant 

and variation within polymers (Scheller & Ulvskov 2010). Loosely branched 

hemicelluloses with smaller size can be solubilized in water and can be easily 

digested by bacteria (Hamaker & Tuncil 2014). 

Lignin is a complex, amorphous, hydrophobic, heteropolymer composed mainly 

of cross-linked aromatic components (trans-coniferyl, trans-sinapyl and trans-p-

coumaryl alcohols). It closely associates with cellulose and hemicelluloses and 

forms a complex matrix around cellulose microfibrils forming the rigid structure of 

plant cell wall (Holtzapple 2003c; Adesogan et al. 2019). Strong carbon-carbon and 

ether linkages and the insolubility of lignin render it undigestible under the 

anaerobic conditions of the rumen. Additionally, the formation of crosslinks with 

hemicelluloses creates a physical barrier against cellulolytic microorganisms 

lowering accessibility and digestibility of cell wall carbohydrates (Hatfield & Jung 

2007; Liu et al. 2018; Adesogan et al. 2019). 

4.2. Plant maturity 

The digestibility of the different plant tissues is affected by the changes of the 

chemical composition that take place as the plant matures and strongly affects 

animals performance (Akin 1989; Adesogan et al. 2019). As the plant matures 

tissues such as the sclerenchyma, the epidermis, the xylem, the non-

clorenchymatous parenchyma and the parenchyma bundle sheath cells become 

highly lignified and have lower digestibility while the mesophyll, the collenchyma 

and the phloem are more digestible (Akin 1989; Adesogan et al. 2019). The xylem, 

the lignified vascular tissue and the middle lamella are the greatest physicals 

constraints of microbial degradation (Akin 1989; Adesogan et al. 2019). Leaves are 

of greater nutritional value due to the higher proportion of non-lignified tissues 

(Akin 1989; Adesogan et al. 2019) while the lignified stem acts as a barrier to fibre 

digestion (Adesogan et al. 2019). The degree of lignification can affect the total 

chewing and rumination time, while the lower FPS reduction can affect the ruminal 

passage rate (Adesogan et al. 2019). 
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Physical-mechanical treatments such as milling and maceration do not use any 

external compounds and rely on physical force to increase forage digestibility 

(Saini et al. 2015; Rodriguez et al. 2017). Extrusion is based on the action of a 

single screw or double screws that co- or anti-rotate, forcing the feed through a tight 

barrel subjecting it to a combination of heating, mixing and shearing while as it 

exits the extruder the high abrasion and the sudden drop of pressure lead to the 

evaporation of the intracellular water resulting in cells rupture (Lee et al. 2009; 

Duque et al. 2017; Rodriguez et al. 2017; Abraham et al. 2020). It is a continuous 

process that acts both on the interior and exterior of the feed. The shearing forces 

act and remove the exterior surfaces of the feed, exposing the interior thus 

enhancing feed accessibility to microorganisms and increasing digestibility 

(Lamsal et al. 2010). The rise of temperature can be due to the friction or due to 

supplemental heat provision and can vary from 50o to 250o C with the majority of 

the studies reporting temperatures between 140o to 160o C (Mendowski et al. 2019, 

2020; Abraham et al. 2020). The opening size at the end of the barrel, feed moisture 

and the screw speed modify the intensity of the extrusion process (Rodriguez et al. 

2017). 

The structural changes induced by different mechanical treatments can be 

classified as Class I and Class II (Leu & Zhu 2013). Class I changes do not 

compromise significantly the crosslinks between the fibre’s microfibrils and the 

structural integrity of the cell wall. Increasing the processing intensity can cause 

fibres to be cut, separated, fragmented and slightly defibrillated leading to the 

increased external surface but minor cell wall deconstruction. On the other hand, 

Class II changes cause a significant breakup of the microfibrils crosslinks, internal 

defibrillation, structural cell wall deconstruction to a micro or nanofibril level. 

Compared to Class I changes that only increase the external surface, Class II 

changes result in a more porous structure and decreased cellulose crystallinity.  

Extrusion is differentiated by other mechanical treatments since it causes Class 

II structural changes and fibre disintegration at a cellular level see Figure 1 (Lee et 

al. 2009; Duque et al. 2017). The thermal and mechanical forces exerted on the 

feed by the screws disintegrate the quaternary and tertiary structure and the 

interactions between food components (Redgwell et al. 2011; Robin et al. 2012; 

Chen et al. 2014; Alam et al. 2016; Duque et al. 2017). Higher mechanical energy 

5. Physical-Mechanical treatments 
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input, higher temperature, or lower liquid/solid ratio will lead to the greater FPS 

reduction and finer skewness of the FPS distribution (Redgwell et al. 2011; Zhang 

et al. 2011; Robin et al. 2012; Um et al. 2013; Chen et al. 2014; Duque et al. 2017).  

Extruded cellulose fibre bundles are shortened, and defibrillated resulting in 

increased aspect ratio (length/diameter), porosity, WHC, and surface area (Chen et 

al. 2014; Duque et al. 2017; Gallos et al. 2017). Additionally, extrusion affects or 

removes hemicelluloses or lignin that wrap the cellulose (Duque et al. 2017). These 

effects facilitate enzymatic attack and accelerate the hydrolysis rate of 

hemicellulose and cellulose (Hjorth et al. 2011; Chen et al. 2014). 

  

Figure 1. Effect of different pretreatment methods on Rice Straw: (a) Unpretreated Rice Straw,(b) 

milling pre-treated rice straw, (c and d) Extruded pre-treated rice straw, (e and f) Scanning Electron 

Microscopy micrographs of unpretreated and extrude rice straw respectively (Chen et al. 2014).  

5.1. Effect on digestibility 

Enzymatic hydrolysis and ruminal degradation of NDF require the physical access 

and attachment of the fibrolytic bacteria (Ellis et al. 2005). Surface sites are 

colonized first and then erosive degradation of the subsurface takes place (Ellis et 

al. 2005). The speed of these processes is determined by the number and the spatial 

distribution of these sites and is related to FPS (Ellis et al. 2005). The available 

surface can be distinguished into the external surface that depends on FPS and shape 

and the internal that depends on the microstructure of the fibers. Physical treatment 

methods such as milling lead to FPS reduction and increase in the external surface 

(Leu & Zhu 2013). Extrusion, however, leads to increased surface both externally, 
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due to FPS reduction (Johnson et al. 1999; Adesogan et al. 2019), and internally 

through the increase in porosity and reduction of cellulose crystallinity. The forces 

developed during extrusion break down the hydrogen bonds between 

hemicellulose, lignin and proteins (Lamsal et al. 2010; Hjorth et al. 2011). Altering 

or breaking down of lignin or hemicelluloses can also increase the solubility and 

the accessibility of the feed resulting in faster hydrolysis by the rumen bacteria and 

higher digestibility (Mosier 2005; Yang et al. 2015).   

Extrusion has been used to decrease rumen degradability of proteinous seeds 

while maintaining high intestinal digestibility, leading to improved nutritive value 

(Paula et al. 2018; Mendowski et al. 2019, 2020). Numerous studies on biogas 

production report that extrusion as a pretreatment method leads to increased 

digestibility and increased methane yields (Abraham et al. 2020). Extruded material 

presented faster degradation of slowly degradable compounds and improved the 

degradability of some otherwise non-degradable compounds (Hjorth et al. 2011). 

Enzymatic digestibility is enhanced and accessibility of carbohydrates due to a 

combination of FPS reduction, increased surface area, number of pores and changes 

in biomass composition (Duque et al. 2017). Under high temperature and/or 

shearing forces extrusion is reported to affect the lignin fraction of the biomass, 

causing condensation or pseudo-lignin complex formation (Duque et al. 2017).  

Prolonged heat exposure during extrusion can decrease digestibility due to 

extensive Maillard reactions, the formation of toxic compounds (Fernández-Cegrí 

et al. 2012; Mendowski et al. 2019). Moderate extrusion conditions prevent the 

formation of toxic compounds resulting from oxidation of lignin (Olsson & Hahn-

Hägerdal 1996). 
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A limited number of studies that investigated forage extrusion for non-ruminant 

species were found in the literature. Feeding extruded alfalfa silage to laying hens 

did not present any benefits (Wüstholz et al. 2017). Sows fed with extruded corn 

silage lost more body weight and backfat thickness during lactation and inclusion 

of 30% of extruded corn silage lead to a non-statistically significant increase in 

litter weight gain (Weng 2019). Ponies fed different extruded grass species 

presented higher apparent digestibility coefficient for acid detergent fibre but lower 

digestibility coefficient for other feed components (Feltre et al. 2019). 

No studies investigating the effect of inclusion of extruded forage or silage in 

the diets of dairy cows were found. A study by Oliveira et al. (2018) compared the 

inclusion of corn silage with extruded sugar cane. However, the difference in the 

nutrient content between the diets and the experimental design used do not allow 

clear conclusions. Agbossamey et al. (2000) used maceration before ensiling to 

improve the characteristics of alfalfa silage. However, due to rainy conditions and 

prolonged wilting and soil contamination, the quality of the silage declined with 

increased levels of mechanical treatment potentially affecting feed intake.  

Results from in vitro studies have been inconsistent. Williams et al. (1997) did 

not find extrusion treatment to lead to any positive change in the fermentation and 

the total gas production in corn silage and wheat straw with VFA production being 

lower for extruded substrates. On the other hand, rumen fermentability of precision 

chopped grass and clover silage has been reported to be increased by extrusion 

(Yang et al. 2018). 

6. Background  
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Grass silage of different maturity stages was intensively mechanically processed 

using a bio-extruder and fed to dairy cows. The experiment aimed to investigate the 

effect of extrusion on milk yield, milk composition, intake and ingestive behaviour 

of dairy cows. The hypothesis was that extrusion will increase feed intake and milk 

production without adverse effects on dairy cows ingestive behaviour.  

7. Aim and Hypothesis 
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The study was conducted in SLU facilities (Swedish Livestock Research Centre, 

Lövsta, Uppsala) from January till April 2020. The experimental design and all 

handling of the animals were approved by the Uppsala Local Ethics Committee 

(Uppsala, Sweden), ID-No: 5.8.18-12171/2018. 

8.1. Search terms 

The information presented in this thesis was based on studies retrieved from the 

literature with search keywords that included (“extruder, extrusion” etc.) as well as 

keywords (“forage, silage, roughage, grass, alfalfa, hay”). Papers were selected 

based on the relevance to the topic. Search engines used included Google Scholar 

and Web of Science and notification alerts were created at the time of the search. 

Additional, papers were included based on the information needed.  

8.2. Animals, housing, feeding and study design 

Eight multiparous lactating Swedish Red cows, four fistulated (Days in Milk, 

mean 143 ± 38 SD) and four intact (DIM mean 68 ± 10 SD) were used for this 

experiment. Mean lactation number was 2.8 ± 0.96 for fistulated cows and 2.5 ± 

0.58 for intact cows. The cows were cannulated not later than 5 months before the 

experimental start while one of the fistulated animals had an incidence of mastitis 

in a previous lactation and had one non-functional udder quarter. 

The cows were housed in individual tie-stalls (width: 1.6 m, length: 1.8m, an 

additional 0.6 m platform was added to the tie-stall to provide additional space) 

with rubber mats covered with sawdust bedding, with an empty stall between each 

cow. The stable was temperate with temperatures between 8 to 15o C. Each animal 

had individual automatic water bowls equipped with water meters (model P-50; 

Schlumberger Ltd., Montrouge, France). Forage, concentrates and mineral feed 

were fed in separate troughs while a salt licking block was available for each 

animal. Animals were moved into the individual tie stalls 7 days before the start of 

8. Materials and Methods 
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the experiment to allow for acclimatization to the new housing conditions. Milking 

took place twice per day at 7:00 and 17:30 in the individual tie stalls. 

A change-over design (Latin square) with 2 blocks (fistulated or intact) was used 

with 4 periods and 4 treatments. Each experimental period lasted 21 days. The first 

14 days were used as an adaptation period to the new diet and measurements were 

collected during the last 7 days. Cows were offered ad libitum silage (processed or 

unprocessed) of different maturity stage (early or late harvest) in a 2x2 factorial 

arrangement with 4 diets. Animals were randomly allocated to treatment at the 

beginning of the experiment and changed treatments according to the Latin square 

design.  

In addition to silage, cows were receiving a concentrate mix consisting of 

minerals, pelleted compound feed (Komplett Norm 180, Lantmännen Malmö, 

Sweden, Table 1) and soybean meal at a flat rate throughout the experiment. Intact 

animals, being earlier in lactation and having higher milk yield received 10 kg of 

concentrates per day (8 kg compound, 2 kg Soybean Meal) while fistulated ones 

received 8 kg/d (6 kg compound feed, 2 kg Soybean Meal). Concentrates were 

offered four times per day (at 6:00, 11:00, 15:00 and 19:00) and silage was offered 

three times per day (at 6:00, 11:00 and 19:00). If needed additional silage was 

offered to assure ad libitum feeding (minimum 10% leftovers). Refusals were 

collected before the morning feeding.  

Table 1. Pelleted compound feed composition 

Ingredients Composition % 

Barley 36.3 

Rapeseed meal 24.1 

Wheat bran 15 

Oats 10 

Wheat 5 

Molasses sugar beet 2 

Sugar beet pulp 1.9 

Fat 1.9 

Vitamins and minerals 3.8 

 

8.3. Silage production 

Silage was produced from the primary growth of a long-term grass-dominated ley 

near Uppsala, Sweden (18o E, 60o N). Cutting took place on the 13th of June 2019 

and will be referred to as early harvest and on the 23rd of June that will be referred 

to as late harvest. The grass was wilted to a DM content of 40-50% and preserved 
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as bale silage (diameter 130 cm, height 110 cm) and 8 layers of plastic were used. 

Bales were stored in an external concrete area close to the barn and covered by a 

net to protect against birds. Before harvest, samples were collected for botanical 

analysis and the average composition of the ley was determined to be 70 % 

Timothy, 26 % Tall Fescue, 3 % Red Clover and 1 % weeds. The maturity stage 

was estimated according to Pomerleau-Lacasse et al. (2017) with 22 % of Timothy 

being at elongation stages E4-E5 and 78 % at the reproductive stage (42 % R0, 19 

% R1, 17 % R2-R3). Bale silage core samples were taken from 2 bales for early 

and late harvest respectively before the experiment, three cores per bale were drilled 

and pooled into one sample per bale for chemical analyses. The results, presented 

in Table 2, were used for intake calculations. 

Table 2. Chemical composition of experimental feeds 

 Silage  Concentrate 

Early harvest Late harvest Soybean Meal2 Compound feed1 

DM, g/kg 361 436  876 880 

Chemical composition, g/kg 

DM 
     

Ash 127 107  74 60 

NDF 550 561  135 225 

CP 127 107  487 180 

Sugar    121 60 

Starch    62 310 

IVOMD3 806 679    

ME, MJ/kg DM 10.03 8.263  13.4 13.4 

1Tabulated value from the manufacturer 

2Feedipedia (INRA et al. 2020) 

3Metabolizable energy values were calculated based on Spörndly R. (2003) 

NDF = Neutral Detergent Fibre, CP = Crude Protein, IVOMD = In Vitro organic matter 

digestibility, ME = Metabolizable energy. 

 

8.4. Extrusion Conditions 

During the experiment, silage was processed twice per week. Bales were opened 

and inspected for the presence of signs of mal-fermentation before further 

processing. Affected areas were discarded and in case of extensive areas, the whole 

bale was discarded. Bales were then chopped using a vertical TMR feed mixer 

(SILOKING TrailedLine Classic Premium 14). Speed of blades was set to 30 

revolutions per minute (RPM). A single bale was processed for a total of 30 minutes 

while for two bales total time was 60 minutes. Additive (ProMyrTM TMR 
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Performance), to improve the aerobic stability (4 litres/tonne) was added at half-

way during processing. Extrusion of grass silage took place in a twin-screw co-

rotating bio-extruder (Bio-Extruder MSZ-B15e, two 11 kW electrical motors, 

LEHMANN Maschinenbau GmbH). Rotation speed was set at 6 (54 RPM) while 

the opening at the end of the extruder was set at 50%. A handheld infrared non-

contact thermometer gun (STANLEY STHT77365 Infrared Thermometer) was 

used during the last day of period 4 to measure temperature during processing for 

early harvest extruded (EE) (4 recordings) and late harvest extruded (LE) (3 

recordings) silage. The temperature was recorded on the silage as it exited the 

extruder (LE mean 57ο C ± 3 SD, EE 52ο C ± 2 SD), at the middle of the barrel of 

the extruder (LE mean 54ο C ± 5 SD, EE mean 43ο C ± 4 SD), the temperature of 

the barrel at the exit point (LE mean 63ο C ± 2 SD, EE 60ο C ± 3 SD). At the time 

of extrusion, the control silage temperature was 11.7ο C for early harvest and 10.3 ο 

C for late harvest while the environmental temperature as measured on the wall of 

the facility was 12.6 ο C. 

8.5. Measurements and Sampling 

Offered feed and leftover weights (forage and concentrates) on fresh matter basis 

was recorded daily throughout the experiment. Milk yield was recorded in each 

milking (DelPro MU 480 with a MM25WC milk meter; DeLaval International AB, 

Tumba, Sweden). Milk samples (4 samples) were collected from the evening 

milking of the 16th day until the morning milking of the 18th day of each period and 

stored at 4ο C. Animal behaviour was video recorded during the whole 24h 

throughout the experiment. 

Samples including silage, compound feed, soybean meal and mineral feed were 

collected from day 15 till day 19 of each period (day 16 to day 19 in period 1). 

Concentrate leftovers were collected from day 16 to day 20. All samples were 

stored at -20 οC until the end of the experiment. Each period silage samples (day 15 

till day 19) and refusals samples (day 16 till day 20) were collected for DM 

determination. Dried samples were stored in plastic bags for future analyses. 

Spot samples of urine and faeces were collected from day 15 to day 19 at 8:00 

and 16:00. Urine samples were divided into acidified (5 ml of urine with 1 ml of 

HCl 3.87 M) and diluted (1 ml of urine in 9 ml of water) sub-samples. Faeces 

(450ml) were collected in plastic bags. Both urine and faeces were frozen at -20o C 

for future analyses 

Ruminal liquid samples were collected at 20 different times during days 15 to 

19, to represent the entire 24-h cycle. Samples in the interval 22:00 to 6:00 were 

only obtained bihourly. A 50-mL tube was manually inserted in the rumen 

approximately 20 cm below the surface and filled with rumen sample. The samples 

were strained, and pH was measured (pH 1000 H VWR® pHenomenal®).  
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8.6. Sample handling and analyses 

Offered silage and refusal samples were collected daily and used for DM 

determination at 60o C for 24 hours till constant weight was achieved. Offered and 

refused silage samples were collected on 4 occasions during the experiment and 

sieved using the Penn State Particle Separator (Nasco, Fort Atkinson, WI, USA) 

consisting of two sieves, 19 mm and 8 mm, and a bottom pan results presented in 

Table 3. Concentrate leftover samples were pooled within animal and period. The 

pooled samples were then milled on a (DAVIDE 4V, Novital S.r.l, Lonate Pozzolo, 

Italy) using a (0.4 mm screen) screen and analysed for DM, ash, acid insoluble ash 

and Kjedahl-N. 

Table 1. Percentage of particles retained in the sieves of Penn State Particle Separator per 

experimental silage 

Sieve size Early Extruded Early Control Late extruded Late control 

19 mm 0 % 19% ± 11% 0 % 25% ± 10% 

8 mm 48% ± 12% 45% ± 5% 42% ± 14% 41% ± 6% 

Bottom pan 52% ± 12% 36% ± 6% 58% ± 14% 34% ± 5% 

Silage samples were collected daily and stored at -20 °C. A sub-sample (0.5 kg) 

was stored at -20 °C for future analyses and the rest of the silage samples were 

pooled within period and treatment. More specifically, 0.5 kg of frozen from each 

day was used to create a pooled sample. The pooled sample was milled through a 

(13 mm screen) on a meat mincer while still frozen and divided into 3 subsamples. 

A sample (400gr) was analysed for DM, ash, minerals, acid insoluble ash, NDF, 

IVOMD and Kjedahl-N. A 20 g sub-sample was mixed with an equal weight of 

water and stored at 4° C overnight. Silage liquid was extracted using a hydraulic 

press and the extracted liquid was analysed for Kjedahl-N, NH4, pH, VFA, lactic 

acid and alcohols. 

Soybean meal, compound concentrate and mineral samples were pooled at the 

end of the experiment. Two subsamples were created (250 g for soybean meal and 

compound feed and 100 g for mineral) within feed type and period. One of the 

subsamples was stored at -20° C while the other was analysed for DM, ash, acid 

insoluble ash, Kjedahl-N and NDF. 

Faecal samples were thawed and pooled gently within animal and period. A 

subsample of 0.5 kg was stored at -20o C for future analyses. Water was added to 

the rest of the pooled sample (10 % of total weight) an electric hand drilling 

machine was used to mix it vigorously. A subsample of 1 kg was collected and 

stored at -20° C and an average of 180 g was weighed into two big Petri dishes for 

freeze-drying and analyses of ash and acid-insoluble ash. 

Milk samples were analysed with an infrared analyser (FT 120; Foss, Hillerød, 

Denmark) for fat, protein, lactose, solids, somatic cell count, and fatty acids 
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categories (saturated, monounsaturated and polyunsaturated, C16:0, C18:0, 

C18:1C9, C14:0).  

Video recordings (24 h) of the 21st day of each collection period were scanned 

at 5-minute intervals and 1 min of each 5-minute interval was observed. Behaviour 

was classified into: Eating forage, eating concentrate, ruminating standing, 

ruminating laying, idle standing, idle laying, drinking, and licking salt block. The 

activities were assumed to persist for the entire 5 min period. The results were used 

to calculate total eating time, total ruminating time and the total time the animal 

was idle (Beauchemin et al. 2003). 

8.7. Calculations 

Daily DM intake for silage and concentrate was calculated using the information 

collected from DM content, fresh weight offered and weight of refusals. Daily DMI 

for day 15 till day 19 was used to calculate the average DMI per period for each 

cow. While calculating average silage DMI per cow, intake information from one 

day of period 1, for a fistulated cow (cow 734) receiving early harvest extruded 

(EE) diet, was excluded since the animal appeared depressed and there was a 

sudden drop in feed intake (unusual observation: 15.8 kg/d, average 20.8 kg/d ± 0.7 

SD). Additionally, the weekly average DMI information for an intact cow (cow 

653), under EE treatment, for period 4 was discarded since the cow presented 

difficulty while laying and intake was negatively affected the last 9 days of the 

period.     

Daily milk yield was calculated by summing the yield from both milkings per 

day. Average milk yield per period was calculated using daily milk yield from day 

15 till day 19. Average milk composition was determined using the results from the 

infrared analysis combined with the milk yield at the time of sampling. Energy 

corrected milk (ECM) was calculated as: ECM (kg) = milk yield (kg) × {[38.30 × 

fat content (g/kg) + 24.20 × protein content (g/kg) + 16.54 × lactose content (g/kg) 

+ 20.7]/3.140} (Sjaunja et al. 1990). Feed efficiency was calculated by dividing the 

daily milk yield with the total DMI and the daily ECM yield with the total DMI. 

Eating activity (min/d) and Eating rate (g/min) were calculated for total DMI 

and silage DMI using the intake information and the behavioural observations 

collected on day 21 of each period. Since biting activity could not be differentiated 

during the video analysis, it was included in the eating activity time. Rumination 

time (min/kg) for silage DMI and NDF intake was calculated using Rumination 

time (min/d) and intake information. Idle time (min/d) and Total Chewing time 

(min/d) were calculated with chewing time being the sum of eating and ruminating 

time. Chewing time (min/kg) for total DMI and silage DMI was calculated using 

the intake information. NDF intake and the particle distribution (particles bigger 

than 8mm) of the diets were used to calculate the peNDF8 as kg per day and as a 
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percentage of total DM intake. The average, median, minimum and maximum 

values of ruminal pH value were calculated per cow per period. Additionally, time 

and area under the curve that pH was lower than the thresholds of 6 and 5.8 was 

calculated (Zebeli et al. 2012; Humer et al. 2018a). 

8.8. Statistical Analysis 

Statistical analysis was performed with Minitab® 18.1 Statistical Software (2017) 

State College, PA: Minitab, Inc.(www.minitab.com) using ANOVA General Linear 

Model. Cow (nested in Block), Period, Harvest, Treatment, Block and the 

interaction of Harvest × Treatment were considered as factors in the model. 

Residuals were tested for normality using the Anderson–Darling test. Significance 

level was set at p < 0.05, while value of  0.05 < p < 0.1 were considered as tendency. 

Behaviour observations for an intact cow under EE for period 4 was excluded since 

the cow presented difficulty while laying affecting her daily activities. Additionally, 

behaviour observations of an intact cow on period 1, receiving late control (LC) 

diet, were discarded because the animal spent an unusual amount idle. Behaviour 

observation was performed on day 20 instead.   

http://.(www.minitab.com/
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9.1. Intake 

As expected, extrusion increased intake of silage DM, OM and NDF by 11.3 % 

while silage crude protein (CP) and silage metabolizable energy (ME) intake 

increased by 11.0 % (p < 0.001). These values are presented in Table 4 and 

correspond to an additional intake of 1.87 kg DM, 1.72 kg OM, 1.04 kg NDF, 0.21 

kg CP and 16.7 MJ ME per day. Extrusion decreased peNDF8 intake by 22.9 % 

(1.37 kg/d). Harvest did not affect silage DM, OM or NDF intake. Early harvest 

diets resulted in increased silage CP, ME and peNDF8 intakes by 21.0 % (0.39 kg 

CP), 23.7 % (33.9 MJ ME) and 4.6% (0.24kg/d), respectively (p < 0.001). A 

tendency in the interaction between Harvest × Treatment was observed for silage 

DM (p = 0.063), OM (p = 0.056) and NDF (p = 0.053) intakes. Extrusion increased 

silage DM intake by 8.9 % (1.48 kg) for early harvest and by 14.0 % in the late 

harvest (2.27 kg) while silage OM and NDF intake increased by 8.7 % (1.35 kg OM 

and 0.82 kg NDF) and by 14.0 % (2.09 kg OM and 1.27 kg NDF) for early and late 

harvest respectively. Extrusion decreased peNDF8 intake by 18.4% (1.10 kg/d) in 

early harvest and by 27.5% (1.65 kg/d) in late harvest.  

Concentrate DM intake was decreased in extruded diets by 1.7 % (0.13 kg) while 

in diets based on early harvest it decreased by 0.7 % (0.06 kg). Extrusion increased 

total DM intake by 7.2 % (1.74 kg), total NDF intake by 9.4 % (1.02 kg), total CP 

intake by 4.7 % (0.18 kg) and ME intakes by 5.8 % (14.94 MJ). However, extrusion 

decreased the percentage of peNDF8 on total DMI intake by 28.2 % (6.9 percentage 

units). Diets based on early harvest increased total CP intake by 9.9 % (0.38 kg/d), 

ME intake by 13.4 % (33.16 MJ) and had a higher percentage of peNDF8 by 2.8 % 

(0.6 percentage units). An interaction between Harvest × Treatment and a tendency 

towards interaction was observed for total NDF (p = 0.05) and total DM intake 

respectively (p = 0.055). Extrusion increased total DM intake by 5.4 % (1.33 kg) 

and total NDF intake by 7.2 % (0.78 kg) for early harvest diets while for late harvest 

diets the increase was 9.0 % (2.16 kg) for total DM intake and 11.7% (1.25 kg) for 

total NDF intake. Finally, an interaction between Harvest and Treatment (p < 0.001) 

9. Results 
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resulted in a decrease of peNDF8 content of the diets by 22.7 % for early harvest 

and by 33.5 % for late harvests.  

Table 2. Effect of Treatment and Harvest on Silage, Concentrate and Total Intake 

 Early harvest  Late Harvest  P-value 

Extruded Control Extruded Control SED1 Harvest Treatment 
Harvest × 

Treatment 

Silage 
  

 
  

 
   

kg/d  

 DMI 18.4 17.0  18.5 16.2 
0.29 

(0.27) 
0.102 < 0.001 0.063 

 OMI 16.8 15.5  17.1 15.0 0.26 

(0.25) 
0.512 < 0.001 0.056 

 NDFI 10.1 9.33  10.4 9.10 0.159 

(0.151) 
0.983 < 0.001 0.053 

 peNDF8I 4.87b 5.97a  4.36c 6.01a 0.070 

(0.067) 
< 0.001 < 0.001 < 0.001 

 CPI 2.34 2.15  1.98 1.74 0.035 < 0.001 < 0.001 0.256 

MEI (MJ/day) 185 170  153 134 2.8 

(2.7) 
< 0.001 < 0.001 0.3 

Concentrate 

DMI 
         

kg/d  7.61 7.76  7.69 7.80 0.035 0.034 < 0.001 0.415 

Total 
         

kg/d  

 DMI 26.1 24.7  26.2 24.0 
0.29 

(0.28) 
0.172 < 0.001 0.055 

 NDFI 11.7a 10.9b  12.0a 10.7b 0.160 

(0.152) 
0.903 < 0.001 0.05 

 CPI 4.23 4.08  3.89 3.67 0.038 

(0.036) 
< 0.001 < 0.001 0.212 

peNDF8 % 18.7c 24.1b  16.6d 25.0a 0.18 

(0.17) 
< 0.001 < 0.001 < 0.001 

MEI (MJ/day) 287 274  256 238 2.9 

(2.8) 
< 0.001 < 0.001 0.26 

DMI = Dry Matter Intake. OMI = Organic Matter Intake. NDFI = Neutral Detergent Fibre Intake. CPI = Crude 

Protein Intake. MEI = Metabolizable Energy Intake, peNDF8I = Physical Effective NDF Intake, peNDF8 = 

Percentage of peNDF8 intake of total DM intake.  

1Standard Error of the Difference. Minimum values presented in parenthesis.  

abcd Means within each row with different superscripts were significantly different from each other (P ≤ 0.05). 

9.2. Milk production 

Extrusion affected milk yield with the results presented in Table 5. Milk yield 

increased by 4.2 % (1.32 kg) and ECM yield by 5.4 % (1.89 kg). Milk fat and 

lactose content were not affected by extrusion, but protein content increased by 2.5 
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% (0.09 percentage units). Daily total milk solid production was also affected by 

extrusion with total fat production increasing by 5.2 % (72.4 g) and total protein 

production increasing by 6.8 % (73.7 g). Diets based on early harvest caused greater 

milk yield, ECM yield and total milk protein production by 3.5% (1.1 kg), 3.8 % 

(1.34 kg) and 3.8 % (42.4 g) respectively while they tended (p < 0.1) to increase 

milk fat content. Extrusion tended (p < 0.1) to affect milk fatty acid composition, 

more specifically SFA tended to increase by 1.1 %, while MUFA and PUFA 

decreased by 2.5 % and 5.5 %.  

Table 3. Effect of Treatment and Harvest on Milk yield, ECM and milk composition 

 Early harvest  Late Harvest  P-value 

Extruded Control Extruded Control SED1 Harvest Treatment 
Harvest × 

Treatment 

Yield kg/d          

Milk 33.0 32.5  32.7 30.6 0.62 0.022 0.008 0.069 

ECM 36.9 36.2  36.8 33.7 0.80 0.029 0.004 0.054 

Milk composition 

% 
  

 
  

 
   

Fat 4.55 4.51  4.57 4.48 0.061 0.88 0.143 0.573 

Protein 3.62 3.51  3.59 3.52 0.024 0.391 < 0.001 0.269 

Lactose 4.58 4.56  4.56 4.54 0.027 0.245 0.384 0.911 

Fatty acids g/kg          

SFA 2.982 2.938  3.000 2.902 0.0497 0.795 0.058 0.451 

MUFA 0.926 0.935  0.930 0.943 0.0174 0.609 0.379 0.873 

PUFA 0.127 0.127  0.124 0.134 0.0048 0.583 0.152 0.190 

Daily solid 

production g/d 

         

Fat 1459 1440  1459 1333 38.1 0.066 0.015 0.063 

Protein 1167 1126  1158 1051 25.6 0.031 0.001 0.088 

Milk efficiency          

Milk/kg DMI 1.26 1.32  1.25 1.27 
0.024 

(0.023) 
0.114 0.038 0.398 

ECM/kg DMI 1.42 1.47  1.41 1.40 
0.031 

(0.029) 
0.108 0.261 0.23 

ECM = Energy Corrected Milk. DMI = Dry Matter Intake. SFA = Saturated Fatty Acids, MUFA = Mono 

Unsaturated Fatty Acids, PUFA = Poly Unsaturated Fatty Acids.  

1Standard Error of the Difference. Minimum values presented in parenthesis. 

A tendency in the interaction between Harvest × Treatment was observed for milk 

yield (p = 0.069), ECM yield (p = 0.054) and total milk solids production (fat 

production p = 0.063; protein production p = 0.088). Extrusion of early harvest 

increased milk yield by 1.4 % (0.47 kg), ECM yield by 2 % (0.72 kg), daily milk 

fat production by 1.3 % (18.9 g) and daily protein production by 3.6 % (41 g). 

Extrusion of late harvest instead increased milk yield by 7.1 % (2.16 kg), ECM 

yield by 9.1 % (3.05 kg), daily fat production by 9.4 % (125.8 g) and protein 
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production by 10.1 % (106.5 g). The efficiency of milk production (milk yield per 

kg DM intake) decreased with extrusion by 2.9 % (0.04 kg), however, the efficiency 

of ECM production (ECM yield per DM intake) was not affected by treatment. 

 

9.3. Ruminal pH 

Extrusion decreased average ruminal pH by 1.7 % (0.10 units) and minimum 

ruminal pH by 1.5 % (0.09 units) (Table 6 and Figure 2). Time rumen pH was below 

5.8 increased by 151.4 % (178.1 min) while time below rumen pH 6.0 increased by 

92.6 % (402.2 min). The area under pH value of 5.8 was not affected by treatment 

while the area under pH value of 6.0 increased by 168.7 % (74.4 pH × minutes). 

There was tendency (p = 0.066) for extrusion to increase maximum pH by 1.2 % 

(0.07 units). Diets of early harvest lowered maximum rumen pH by 1.7 % (0.1 

units). 

Table 4. Effect of Treatment and Harvest on ruminal pH 

 Early harvest  Late Harvest  P-value 

Extruded Control Extruded Control SED1 Harvest Treatment 
Harvest × 

Treatment 

Ruminal pH          

Average 5.99 6.09  6.01 6.11 0.038 0.486 0.008 0.991 

Median 5.96 6.09  6.00 6.12 0.053 0.399 0.016 0.846 

Minimum 5.69 5.75  5.66 5.78 0.048 0.935 0.041 0.377 

Maximum 6.44 6.37  6.55 6.48 0.047 0.018 0.066 0.925 

Time (min/d) under          

5.8 262 89.3  330 146 95.20 0.392 0.038 0.939 

6.0 868 433  806 436 136.0 0.769 0.006 0.748 

Area (pH × min) 

under 

         

5.8 21.7 1.74  18.3 9.27 13.0 0.828 0.166 0.576 

6.0 120 36.6  117 51.6 31.60 0.807 0.016 0.694 

1Standard Error of the Difference. 
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Figure 2. Rumen pH variation over 24 hours. 1= feeding of forage, 2=feeding of forage and 

concentrate, 3=feeding of concentrate. 

 

9.4. Ingestive behaviour  

Extrusion affected daily ingestive behaviour as shown in Table 7. Daily silage 

eating time and total eating time decreased by 13.2 % (36 min) and 10.3 % (31.8 

min) respectively. Eating rate (g/min) increased with extrusion by 33.1% for silage 

DM (20.3 g/min) and for silage NDF (11.3 g/min). Extruded diets decreased 

rumination time by 19.9 % (117.8 min) with rumination time per kg silage DM and 

kg silage NDF intake decreasing by 29.1 % (10.5 min/kg DM; 18.9 min/kg NDF 

respectively). Extrusion, decreased total chewing time by 16.6% (149.6 min) with 

chewing time per kg silage DM and kg silage NDF intake decreasing by 26.7 % 

(14.6 min/kg DM; 26.3 min/kg NDF respectively). Harvest did not affect ingestive 

behaviour, while a tendency in the interaction between Harvest × Treatment was 

observed in total rumination time (p = 0.084) with extrusion resulting in a decrease 

of 23.2 % (140.6 min/d) for early harvest and 16.4 % (95 min/d) for the late harvest. 
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Table 5. Effect of Treatment and Harvest on ingestive behaviour 

 Early harvest  Late Harvest  P-value 

Extruded Control Extruded Control SED1 Harvest Treatment 
Harvest × 

Treatment 

Eating time (min/d)          

Silage 228 267  245 279 16.7 (15.9) 0.22 0.006 0.827 

Total  266 300  287 315 16.9 (16.1) 0.144 0.014 0.808 

Eating rate (g/min)          

Silage DMI 82.1 63.8  81.0 58.8 4.70 (4.46) 0.362 < 0.001 0.541 

Silage NDF 45.1 35.1  45.5 33.0 2.61 (2.47) 0.619 < 0.001 0.505 

          

Rumination (min/d) 465 605  485 580 18.0 (17.1) 0.846 < 0.001 0.084 

Unitary time 

(min/kg) 
         

Silage NDFI 46.8 65.4  45.2 64.3 2.48 (2.35) 0.448 < 0.001 0.895 

Silage DMI 25.7 36.0  25.4 36.1 1.38 (1.31) 0.899 < 0.001 0.814 

          

Chewing time 

(min/d) 
731 906  772 896 23.0 (21.8) 0.343 < 0.001 0.123 

Unitary time 

(min/kg) 
         

Silage NDFI 73.4 98.0  71.5 99.6 2.99 (2.84) 0.945 < 0.001 0.409 

Silage DMI 40.4 53.9  40.1 55.9 1.67 (1.58) 0.461 < 0.001 0.348 

1Standard Error of the Difference. Minimum values presented in parenthesis. 
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10.1. Intake and eating time 

According to our hypothesis, the animals receiving extruded diets had higher silage 

DM intake compared to control diets. These results are in agreement with a meta-

analysis by Nasrollahi et al. (2015) and indicate that decreasing forage FPS 

improves intake capacity and lowers eating time. However, the magnitude of the 

effect in the present study is bigger since DM intake increased by 1.74 kg/d 

compared to the increase of 0.5 kg/d (minimum 0.3 kg/d; maximum 0.75 kg/d) for 

high forage diets expected in the meta-analysis.  

Extrusion resulted in a reduction of FPS (Table 3) which is expected to increase 

available surface area affecting digestibility, passage rate and filling effect. 

Increasing available surface area is expected to increase the accessibility of 

cellulose and hemicellulose by the fibrolytic bacteria and increase the speed of FPS 

reduction affecting passage rate. Additionally, the decreasing FPS is expected to 

increase rumen passage rate and decrease the filling effect of the diet (Allen 2000; 

Nasrollahi et al. 2015). Extrusion increased silage DMI more in the late harvest 

diets (Extruded 18.49 kg/d; Control 16.22 kg/d) compared to early harvest diets 

(Extruded 18.44 kg/d; Control 16.96 kg/d). However, silage DMI intake did not 

differ between extruded diets (early harvest 18.4 kg/d, late harvest 18.5 kg/d) 

despite the difference in maturity. This indicates that the chemical composition was 

not the limiting factor. Intake might have been limited instead by the rumen pool 

size and the FPS reduction achieved by the extrusion intensity selected for this 

project.  On the contrary, control diets differed in DMI between early harvest (17.0 

kg/d) and late harvest (16.2 kg/d). This difference can be explained by the lower 

digestibility of the late harvest and the higher degree of lignification resulting is 

slower passage rate, increased reticulorumen distention and satiety. Total DMI 

intake also followed this trend with extruded diets not differing (early extruded 26.1 

kg/d, late extruded 26.2 kg/d) compared to control diets (early control 24.7 kg/d, 

late control 24.0 kg/d). The effect of extrusion on the filling effect is also observed 

in the NDF intake. Despite, late harvest diets having higher NDF content, extrusion 

resulted in increased NDF intake by 1.25 kg/d for late harvests compared to 0.78 

10. Discussion 
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kg/d for early harvests. According to Nasrollahi et al. (2015) decreasing FPS is 

expected to increase NDF intake by 0.17 kg/d, but in the present study, the total 

NDF intake increased by 1.02 kg/d indicating that extrusion resulting in higher 

NDF intake compared with other mechanical treatment methods. According to 

Zebeli et al. (2012) increasing the percentage of peNDF8 on total DMI beyond 14.9 

% suppress DMI due to filling effect. In the present experiment, peNDF8 was 17.6 

% for extruded and 24.6% for control diets, indicating that the higher DMI of 

extruded diets was due to decreased filling effect. Additionally, the decrease of 

peNDF8 with extrusion follows the corresponding changes of DMI with the value 

for late harvest (16.6 %) being the lowest and resulting in the highest increase in 

DMI followed by early harvest (18.7 %). This indicates that extrusion is an efficient 

method of manipulating FPS to increase feed intake. 

The physical changes caused by extrusion on silage resulted in decreased silage 

eating time by 0.6 h/d while the total eating time decreased by 0.5 h/d. The 

decreased eating time combined with the increased intake resulted in higher eating 

rates for extruded diets. These results are in agreement with studies on the effect of 

FPS reduction on eating time and eating rate, however, the magnitude of the effect 

is bigger since a decrease of 0.3 h/d was expected (Nasrollahi et al. 2016). 

10.2. Milk yield 

According to a meta-analysis by Nasrollahi et al. (2015) decreasing FPS is expected 

to increase milk yield by 0.54 kg/d (minimum 0.35k kg/d, maximum 0.73 kg/d). In 

the present experiment, extrusion resulted in a greater increase in milk yield (1.32 

kg/d). The increase was more profound in the late harvest (2.16 kg/d) compared to 

early harvest (0.47 kg/d). It is particularly interesting that the milk yield of animals 

receiving late extruded (LE) diets (32.7 kg/d), did not differ statistically but was 

numerically higher than for animals receiving early control (EC) diets (32.5 kg/d). 

Some milk components were affected by treatment while others were not. Protein 

content was statistically significantly higher in extruded diets (Extruded 3.61 %, 

Control 3.52 %) corresponding to an increase of protein content by 0.09 %. These 

results indicate that extrusion is more efficient in increasing protein content 

compared to other methods that result in FPS reduction as indicated by the expected 

increase in protein content of 0.01 % (minimum -0.005 %, maximum 0.024 %) 

(Nasrollahi et al. 2015). The difference in milk solids resulted in increased ECM 

yield for extruded diets (36.8 kg/d) compared to control diets (35.0 kg/d). ECM 

yield increased more in the late harvest (3.05 kg/d) compared to early harvest (0.72 

kg/d) and it is particularly interesting that LE diets produced more ECM daily 

compared with EC diets (LE: 36.8 kg/d, EC: 36.2 kg/d). Total milk fat production 

increased by 72.4 g/d compared with the expected decrease of 5 g/d (minimum -20 

g/d, maximum 9 g/d) and total milk protein production increased by 73.7 g/d  
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compared with expected increase of 20 g/d (minimum 10 g/d, maximum 30 g/d) 

(Nasrollahi et al. 2015). Fat and lactose content was only numerical higher in 

extruded diets compared to control, but no statistically significant difference was 

observed. These improvements in milk production can be explained by the 

increased intake from extruded diets resulting in enhanced energy and nutrient 

balance (Table 8). 

The dietary chewing index (minutes per kg DMI) is negatively linearly related 

to Net Energy intake (Jensen et al. 2016). In the present study, extrusion decreased 

the dietary chewing index and increased DMI providing more energy for milk 

production. However, the increased DM intake by 1.74 kg/d does not explain the 

increase in milk yield by 1.32 kg/d. This is also observed in the amount of DM 

consumed per kilogram of milk produced. Extrusion resulted in a decrease of 0.04 

kg of milk per kg of DM intake. However, due to the increased milk-solid 

production ECM yield per DM intake was not affected. Additionally, the amount 

of saturated fatty acids did not differ significantly between treatments indicating 

that there was no-significant increased fat tissue mobilization. Unfortunately, due 

to time constraints, faecal analyses were not performed so there is no information 

regarding digestibility and passage rate. 

Table 6. Metabolizable Energy and Intestinal Amino Acid Supply 

 Early harvest  Late Harvest 

Extruded Control Extruded Control 

Required      

ME MJ/d 264 260  263 245 

IAAS g/d 2004 1974  2000 1865 

Intake      

ME MJ/d 287 275  257 240 

IAAS g/d 2442 2368  2332 2206 

Balance      

ME MJ/d 23 15  -6 -5 

IAAS g/d 438 394  332 341 

Expected BW change kg/d      

Based on ME balance 0.64 0.42  -0.19 -0.18 

Based on IAAS balance 1.75 1.58  1.33 1.36 

ME = Metabolizable energy, IAAS = Intestinal Amino Acid Supply 

Calculated based on Fodertabeller för idisslare 2003 

10.3. Rumen pH 

Cows receiving extruded diets presented decreased average rumen pH (pH 6.0) 

compared with animals receiving control diets (pH 6.1). Minimum ruminal pH was 

also decreased while maximum ruminal pH tended to increase. These results are in 
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agreement with the meta-analysis by Nasrollahi et al. (2016) which indicated that 

decreasing FPS in silage based diets will result in decreased rumen pH. Several 

signals can be used to detect Sub Acute Ruminal Acidosis (SARA), however, 

rumen pH is the most reliable (Humer et al. 2018a). Different cut-off points can be 

used depending on available methods. When a single measurement is used, the cut-

off point for SARA is 5.5 (Humer et al. 2018a), in the present experiment the 

minimum pH value of all animals was above this cut-off point. Another method of 

accessing the risk of SARA is by calculating the time ruminal pH drops below 

certain cut-off points. Plaizier et al. (2008) suggested that ruminal pH below 5.6 for 

more than 3 h per day can be used, in the present experiment ruminal pH did not 

drop below this cut-off point. Zebeli et al. (2008), on the other hand, suggested that 

a cut-off point of 5.8 for more than 5.24 h/d indicates an increased risk of SARA. 

Extrusion increased significantly the time rumen pH was below this cut-off point 

(4.9 h/d) compared to control diets (2.0 h/d), yet, the values are not within the range 

indicating increased risk of SARA. Late extruded diets had an average time of 5.5 

h/d being marginally higher that the limit of increased SARA risk, however, when 

calculating the Area Under Curve for this cut-off point no statistical difference was 

observed between treatments. The increased SARA risk for late extruded diets can 

also be explained by the peNDF8 intake. According to Zebeli et al. (2012), diets 

should contain more than 18.5 % peNDF8 to minimize the risk of SARA. In the 

present experiment extruded diets had peNDF8 values of 16.6 % and 18.7 % for late 

and early harvest respectively explaining the slightly lower ruminal pH in late 

harvest.  

Changes in rumen pH can be explained by the altered ingestive behaviour. 

Extrusion resulted in a decrease of total rumination time by 2.0 h/d while total 

chewing time decreased by 2.5 h/d. The decrease of total chewing time is in 

agreement with studies on the effect of FPS reduction, however, the expected 

decrease according to these studies is 0.7 h/d (Nasrollahi et al. 2016). Decreased 

total chewing time is explained by the physical changes of diet that can also be 

observed in the peNDF8 intake. Extruded diets, resulted in decreased peNDF8 

intakes (17.6 %) compared to control (24.6 %) diets. The decrease in peNDF8 intake 

was higher in late extruded diets indicating that the treatment effect is stronger on 

the more mature and lignified plant tissues. 

10.4. Strengths and weaknesses 

The results of this study indicate that forage extrusion is an effective method for 

improving the nutritional quality of forage with interesting future applications. 

However, as every study, it presents some strengths and is subject to some 

limitations. The chosen housing system (tie-stalls) have been a subject to criticism 
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for animal welfare reasons in many parts of the world since in restricts voluntary 

movement possibilities and social interaction of dairy cows (Robbins et al. 2019). 

Nevertheless, under good management practices allowing dairy cows to exercise 

improves animal welfare quality and does not necessarily indicate that tie-stalls will 

result in poor welfare (Popescu et al. 2013). Unfortunately, in the present 

experiment animals were not allowed to exercise since it would affect the sampling 

protocols and accessing to pasture would complicate the estimation of their feed 

intake. However, the distance between the tie stalls allowed for physical contact 

between the cows and the expression of affiliative behaviours such as grooming. 

Tie stalls resulted in high internal validity since they allowed to monitor with high 

precision the reaction of each individual to the offered treatments while eliminating 

feed competition. The external validity of the effect of extrusion on DMI is high in 

farms practising tie-stall housing system. On the other hand, selection of this 

housing system might underestimate the effect of extrusion on the DMI, feed 

sorting and the productivity of a group of animals (Grant & Ferraretto 2018). 

The selection of the experimental design (Latin square) increased the internal 

validity of the experiment and resulted in a smaller mean square for error. The 

number of animals was also decreased according to the Reduction principle of the 

3 R’s (NC3Rs). Although the use of fistulated animals facilitated the collection of 

samples, a study with a greater number of intact animals will allow to verify the 

results of the present experiment and detect additional differences between the 

treatments. 

Extrusion decreased the average ruminal pH and increased time under a pH cut-

off point of 5.8. However, ruminal pH variation within 24 h was estimated using 

information from ruminal liquid samples that were collected at 20 different 

occasions for 5 days. This indicates that a degree of variation in ruminal pH may 

have not been detected. Despite this, the available information combined with the 

productivity and behaviour of the animals indicates that there was no risk of SARA. 

Furthermore, the adaptation period to the new diets was two weeks, which might 

be insufficient for the microbial population of the rumen to adjust to dietary 

changes. Finally, silage was offered ad libitum while concentrates were offered on 

restricted amounts separately. Offering concentrates separately might have affected 

the ruminal fermentation pattern, resulting in excessive fermentation compared to 

a total mixed ration (Humer et al. 2018a). 

This study was focused on mid and late lactation animals and utilized diets of 

lower nutritional quality than the ones normally used in a dairy farm. Despite the 

short duration of the experiment (84 days), a clear effect of treatment was observed 

in milk production and milk compositions. Furthermore, due to time limitations, 

this study is based on the available information that could be provided within one 

month from the end of the experiment. Information regarding rumen pool size, 

passage rate, digestibility, microbial protein production, detailed chemical analysis 
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of the offered feeds etc. had to be excluded from the current work. However, the 

available results support the hypothesis that extrusion of silage results in improved 

DMI and milk production without compromising ingestive behaviour. 

10.5. Implementation 

The results of this thesis indicate that adoption of extrusion as a mechanical 

treatment method for silage can be beneficial for milk production. Extruded diets 

resulted in increased milk production 32.9 kg/d compared to control diets 31.5 kg/d. 

Grass silage used in the present experiment had relatively low ME content of 10.0 

MJ/kg DM for Early harvest and 8.26 MJ/kg DM for Late harvest. Despite this 

difference, extruded diets resulted in non-statistically significant different milk 

yield (early harvest 33.0 kg/d, late harvest 32.7 kg/d) and ECM yields (early harvest 

36.9 kg/d, late harvest 36.8 kg/d). Consequently, extrusion presents an opportunity 

in situations where forage of lower nutritional quality is available since it can 

sustain or even increase the production levels. Cases like this include unforeseen 

drawbacks of the harvest resulting in forage of higher maturity stage.  

Delaying harvest is expected to result in increased DM yield per hectare at the 

expense of forage nutritional quality. Decreasing the number of harvests might 

substitute for the extrusion cost and combined with the increased DM yield will 

result in decreased production cost per kilo of forage DM. Forage extrusion can 

then be implemented as a method to increase feed intake and milk production 

without increasing the overall cost for milk production. This approach can be 

beneficial for animals with lower productivity such as dairy cows at late lactation 

or small ruminants.  

Diets in the present experiment were silage-based with an average forage to 

concentrate ratio of 70:30. Despite the high forage inclusion and the lower 

nutritional quality, extrusion resulted in increased milk production and silage DMI 

while decreasing concentrate DMI. This effect can be utilized by organic farms, 

providing an opportunity for increased use of farm-grown forages and lower need 

for concentrates. 

Ingestive behaviour was also affected by extrusion resulting in decreased eating 

and rumination time and consequently increase in eating rate. These effects were 

observed in the tie-stalls where there was no feed competition and additionally the 

cows were milked in the stall. The increased eating rate can be particularly 

beneficial under farm conditions and may facilitate feed bunk management (Grant 

& Ferraretto 2018). Additionally, the particle size decrease and the more 

homogenous diet created by extrusion is expected to allow, all individuals in a 

group to consume sufficient amounts of silage and improve the supply of nutrients 

to the rumen (Table 9, Appendix). This will result in increased production of the 

group since all intake of all individuals will improve. 
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In the present experiment decreased eating and rumination time allowed the 

cows to spend more time idle. The time budget of a dairy cow under farm conditions 

differs from the one observed in the present experiment since animals need to move 

to and from the milking parlour etc. Eating time is in an inelastic relation with 

resting time. Decreasing eating time without suppressing rumen pH can be 

beneficial under farm conditions (Grant & Ferraretto 2018). 

Finally, increasing forage consumption at the expense of concentrates while 

increasing milk production can be beneficial for the overall net food productions. 

Forages are a source of nutrients indigestible to human in contrast with the 

ingredients of certain concentrates as indicated by human edible proportion (Ertl et 

al. 2016). Adopting diets, high in silage and low in human-edible concentrates 

presents an opportunity for improved and sustainable animal production.  

10.6. Future research 

The results of the present experiment show that extrusion of silage can affect feed 

intake and result in increased milk production. However, to enlighten the causative 

conditions more research is needed. Silage extrusion affected FPS, indicating that 

passage rate and digestibility have also been altered. Meticulous sieving of extruded 

silage will allow for a more precise determination of the effect on FPS reduction 

and correlate the effect with the intensity of the extrusion process and the physical 

characteristics of the silage. Use of imaging techniques, such as Scanning Electron 

Microscopy or Light Microscopy will allow to identify changes in the 

microstructure of the feed material and correlate them with the observed effect. 

Extrusion, through the mechanical energy, affects the behaviour of feed particles 

with water (Redgwell et al. 2011; Robin et al. 2012; Alam et al. 2016; Huang & 

Ma 2016; Bader Ul Ain et al. 2019). Determination of fibre water solubility and 

water absorption index will provide information regarding this interaction 

(Oikonomou & Krokida 2012), explaining potential differences in digestibility and 

its effect on rumen microbiota and rumen fermentation. The effect of extrusion on 

feed accessibility can be evaluated through estimations of porosity, water retention 

index and by estimating the absorption of different substances such as stains or 

nitrogen (Leu & Zhu 2013; Chen et al. 2014). Performing these analyses on faeces 

and rumen content will provide additional information regarding the digestion and 

the behaviour of the particles throughout the digestive tract. Additionally, since 

extruded substrates have increased water holding capacity and solubility and since 

the reduction of FPS is expected to result in faster passage rate and a slight decrease 

in NDF digestibility, we can assume that the higher NDF content in the faeces 

combined with the increased water holding capacity may affect the viscosity of the 

faeces. This might affect farm hygienic conditions. 
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The result of extrusion is affected by many parameters including the setting of 

the extruder (speed, opening size, feed rate) but it is also affected by the 

characteristics of the diets such as DM content and FPS (Duque et al. 2017). 

According to Zheng et al. (2015), the screw profile can generate local temperature 

spikes even under low-temperature conditions, like the ones in the present 

experiment, resulting in lignin relocalization affecting digestibility. These 

characteristics can differ significantly between silage, increasing the variation in 

the extrusion conditions (temperature, pressure etc.). Extrusion parameters should 

be optimized based on the characteristics of the diets to be extruded such as NDF 

content, FPS and DM to attain repeatable results. Additionally, based on the 

production stage of the animal different processing intensities might be required to 

achieve the ideal FPS reduction and the consequent passage rate increase. 

The present experiment followed a fraction of the lactation. A study on the whole 

lactation will provide more information on the effect of extrusion on milk 

production, feed intake and additionally its effects on reproduction and energy 

balance. Adopting extrusion as a strategy to increase DMI in dairy cows in early 

lactation, may assist in easing the effects of negative energy balance through 

increased nutrient supply. Improved energy balance will improve the health and 

welfare of the dairy cows, additionally, it might affect the lactation curve and 

improve reproductive performance. 

Extrusion presents an opportunity for improving the nutritional quality of 

different feeds. The results of this experiment indicate that the filling effect of the 

diet is decreased. This can be particularly beneficial in feeds and by-products high 

in NDF content and CP. By increasing DMI and passage rate more nutrients will 

escape rumen degradation and be absorbed in the small intestines increasing the 

productivity of the animals. Extrusion, however, might be beneficial also in silage 

of higher nutritional quality through decreased FPS, increased digestibility and 

passage rate. In the present experiment, extrusion resulted in a significant increase 

in DMI in both early and late harvest. Animals consuming EE diets consumed 

1.48kg/d more indicating that extrusion might increase intake also in silage of lower 

maturity stage compared with the one used. 

Future research should aim to provide recommendations on how to implement 

the acquired knowledge on-farm conditions. A study on TMR extrusion, or silage 

extrusion and then the formation of TMR diets would be beneficial. Additionally, 

the cost of extrusion combined with the benefits from improvements in feed 

nutritional quality, milk production and potential effects on reproduction, carcass 

composition etc. should be considered.  

Intensively processed silage is expected to interact and affect rumen microbiota. 

Rumen samples can be analysed using sequencing techniques for microbiota 

composition or transcriptome. Detecting changes in the microbiota composition and 
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identify metabolic pathways resulting in methane production will clarify the 

manner they are being affected by the changes in digestibility and passage rate. 

Last but not least, the current results indicate that extrusion can contribute to a 

more sustainable food production system by decreasing human-animal competition. 

Farm animals have been often criticized for consuming ingredients that could 

otherwise be consumed by humans. However, some of these claims often do not 

take into consideration that the diet of a dairy cow is mostly based on materials that 

are indigestible by a human. In the present experiment, extrusion resulted in 

increased silage intake and milk production while concentrate intake decreased. 

Milk protein is according to the Digestible indispensable amino acid score (DIAAS) 

recommended by (FAO 2013) of excellent nutritional value with a score higher than 

100. On the contrary, plant-based proteins such as soy protein isolate, soy flour or 

wheat have a DIAAS score of 84.89 and 45 respectively (Mathai et al. 2017). 

Implementation of this system in the calculations of milk protein production will 

allow a more accurate estimation of the net food production and will estimate the 

changes in the amino acid profile (Tables 13, 14, 15 in Appendix). 
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This study investigated the effect of extrusion on intake, milk production and 

ingestive behaviour. Extrusion increased silage DM intake while decreasing 

concentrate DM intake. Extruded diets increased milk and ECM yields and resulted 

in higher daily milk solid production. No statistically significant difference was 

found in milk yield between early harvest control diet and late harvest extruded 

diets. Silage eating rate increased while eating time and rumination time decreased. 

The decreased total chewing time resulted in a slightly lower average rumen pH 

without increasing the risk of SARA. Extrusion can be utilized as a mechanical 

treatment for forage and silage resulting in increased intake and milk production 

without adverse effects in ingestive behaviour. 

11. Conclusions 



48 

 

 

Abraham, A., Mathew, A.K., Park, H., Choi, O., Sindhu, R., Parameswaran, B., 
Pandey, A., Park, J.H. & Sang, B.-I. (2020). Pretreatment strategies for 
enhanced biogas production from lignocellulosic biomass. Bioresource 
Technology, vol. 301, p. 122725 

Adesogan, A.T., Arriola, K.G., Jiang, Y., Oyebade, A., Paula, E.M., Pech-
Cervantes, A.A., Romero, J.J., Ferraretto, L.F. & Vyas, D. (2019). 
Symposium review: Technologies for improving fiber utilization. Journal 
of Dairy Science, vol. 102 (6), pp. 5726–5755 

Agbossamey, Y.R., Savoie, P., Seoane, J.R. & Petit, H.V. (2000). Effect of intensity 
of maceration on digestibility and intake of alfalfa hay and silage fed to 
sheep. Canadian Journal of Animal Science, vol. 80 (1), pp. 113–121 

Akin, D.E. (1989). Histological and Physical Factors Affecting Digestibility of 
Forages. Agronomy Journal, vol. 81 (1), pp. 17–25 

Alam, M.S., Kaur, J., Khaira, H. & Gupta, K. (2016). Extrusion and Extruded 
Products: Changes in Quality Attributes as Affected by Extrusion Process 
Parameters: A Review. Critical Reviews in Food Science and Nutrition, vol. 
56 (3), pp. 445–473 

Allen, M.S. (1996). Physical constraints on voluntary intake of forages by 
ruminants. Journal of Animal Science, vol. 74 (12), p. 3063 

Allen, M.S. (1997). Relationship Between Fermentation Acid Production in the 
Rumen and the Requirement for Physically Effective Fiber. Journal of 
Dairy Science, vol. 80 (7), pp. 1447–1462 

Allen, M.S. (2000). Effects of Diet on Short-Term Regulation of Feed Intake by 
Lactating Dairy Cattle. Journal of Dairy Science, vol. 83 (7), pp. 1598–1624 

Allen, M.S., Bradford, B.J. & Oba, M. (2009). BOARD-INVITED REVIEW: The 
hepatic oxidation theory of the control of feed intake and its application to 
ruminants. Journal of Animal Science, vol. 87 (10), pp. 3317–3334 

Allen, M.S. & Mertens, D.R. (1988). Evaluating Constraints on Fiber Digestion by 
Rumen Microbes. The Journal of Nutrition, vol. 118 (2), pp. 261–270 

Allen, M.S. & Voelker Linton, J.A. (2007). In vivo methods to measure digestibility 
and digestion kinetics of feed fractions in the rumen. Pp. 72-88, Proc. 
International Symposium on Advances in Ruminant Nutrition Research, 
Departmento de Nutricão e Producão Animal Faculdade de Medicna 
Veterinania e Zootecnia, University of São Paulo, Pirassununga, Brazil 

Atalla, R.H. & Vanderhart, D.L. (1984). Native Cellulose: A Composite of Two 
Distinct Crystalline Forms. Science, vol. 223 (4633), pp. 283–285 

Bader Ul Ain, H., Saeed, F., Ahmed, A., Asif Khan, M., Niaz, B. & Tufail, T. 
(2019). Improving the physicochemical properties of partially enhanced 
soluble dietary fiber through innovative techniques: A coherent review. 
Journal of Food Processing and Preservation, vol. 43 (4), p. e13917 

Beauchemin, K.A., Yang, W.Z. & Rode, L.M. (2003). Effects of Particle Size of 
Alfalfa-Based Dairy Cow Diets on Chewing Activity, Ruminal 
Fermentation, and Milk Production. Journal of Dairy Science, vol. 86 (2), 
pp. 630–643 

References 



49 

 

 

Bodvik, R., Dedinaite, A., Karlson, L., Bergström, M., Bäverbäck, P., Pedersen, 
J.S., Edwards, K., Karlsson, G., Varga, I. & Claesson, P.M. (2010). 
Aggregation and network formation of aqueous methylcellulose and 
hydroxypropylmethylcellulose solutions. Colloids and Surfaces A: 
Physicochemical and Engineering Aspects, vol. 354 (1–3), pp. 162–171 

Carlier, L., Rotar, I., Vlahova, M. & Vidican, R. (2009). Importance and functions 
of grasslands. Notulae Botanicae, Horti Agrobotanici, Cluj-Napoca, vol. 37 
(1), pp. 25–30 University of Agricultural Sciences and Veterinary Medicine. 

Chen, X., Zhang, Y., Gu, Y., Liu, Z., Shen, Z., Chu, H. & Zhou, X. (2014). 
Enhancing methane production from rice straw by extrusion pretreatment. 
Applied Energy, vol. 122, pp. 34–41 

Clauss, M., Lechner, I., Barboza, P., Collins, W., Tervoort, T.A., Südekum, K.-H., 
Codron, D. & Hummel, J. (2011). The effect of size and density on the mean 
retention time of particles in the reticulorumen of cattle ( Bos primigenius 
f. taurus ), muskoxen ( Ovibos moschatus ) and moose ( Alces alces ). 
British Journal of Nutrition, vol. 105 (4), pp. 634–644 

Dufreneix, F., Faverdin, P. & Peyraud, J.-L. (2019). Influence of particle size and 
density on mean retention time in the rumen of dairy cows. Journal of Dairy 
Science, vol. 102 (4), pp. 3010–3022 

Duque, A., Manzanares, P. & Ballesteros, M. (2017). Extrusion as a pretreatment 
for lignocellulosic biomass: Fundamentals and applications. Renewable 
Energy, vol. 114, pp. 1427–1441 

Ellis, W.C., Mahlooji, M., Lascano, C.E. & Matis, J.H. (2005). Effects of size of 
ingestively masticated fragments of plant tissues on kinetics of digestion of 
NDF. Journal of Animal Science, vol. 83 (7), pp. 1602–1615 

Ertl, P., Klocker, H., Hörtenhuber, S., Knaus, W. & Zollitsch, W. (2015). The net 
contribution of dairy production to human food supply: The case of Austrian 
dairy farms. Agricultural Systems, vol. 137, pp. 119–125 

Ertl, P., Steinwidder, A., Schönauer, M., Krimberger, K., Knaus, W. & Zollitsch, 
W. (2016). Net food production of different livestock: A national analysis 
for Austria including relative occupation of different land categories / Netto-
Lebensmittelproduktion der Nutztierhaltung: Eine nationale Analyse für 
Österreich inklusive relativer Flächenbeanspruchung. Die Bodenkultur: 
Journal of Land Management, Food and Environment, vol. 67 (2), pp. 91–
103 

FAO (ed.) (2013). Dietary protein quality evaluation in human nutrition: report of 
an FAO expert consultation, 31 March-2 April, 2011, Auckland, New 
Zealand. Rome: Food and Agriculture Organization of the United Nations. 
(FAO food and nutrition paper; 92) 

Feltre, K., Balieiro, J.C. de C., Fukumasu, H. & Gobesso, A.A. de O. (2019). 
Digestive effects and intestinal health of ponies fed a complete single diet, 
thermally processed and containing long fiber. Livestock Science, vol. 223, 
pp. 151–156 

Fernández-Cegrí, V., Ángeles De la Rubia, M., Raposo, F. & Borja, R. (2012). 
Effect of hydrothermal pretreatment of sunflower oil cake on biomethane 
potential focusing on fibre composition. Bioresource Technology, vol. 123, 
pp. 424–429 

Gallos, A., Paës, G., Allais, F. & Beaugrand, J. (2017). Lignocellulosic fibers: a 
critical review of the extrusion process for enhancement of the properties of 
natural fiber composites. RSC Advances, vol. 7 (55), pp. 34638–34654 

Grant, R.J. & Ferraretto, L.F. (2018). Silage review: Silage feeding management: 
Silage characteristics and dairy cow feeding behavior. Journal of Dairy 
Science, vol. 101 (5), pp. 4111–4121 



50 

 

 

Hamaker, B.R. & Tuncil, Y.E. (2014). A Perspective on the Complexity of Dietary 
Fiber Structures and Their Potential Effect on the Gut Microbiota. Journal 
of Molecular Biology, vol. 426 (23), pp. 3838–3850 

Harvatine, K.J. & Allen, M.S. (2006). Effects of Fatty Acid Supplements on Feed 
Intake, and Feeding and Chewing Behavior of Lactating Dairy Cows. 
Journal of Dairy Science, vol. 89 (3), pp. 1104–1112 

Hatfield, R.D. & Jung, H.-J.G. (2007). Nutritional Chemistry of Forages. p. 20 
Hernandez-Urdaneta, A., Coppock, C.E., McDowell, R.E., Gianola, D. & Smith, 

N.E. (1976). Changes in Forage-Concentrate Ratio of Complete Feeds for 
Dairy Cows. Journal of Dairy Science, vol. 59 (4), pp. 695–707 

Hjorth, M., Gränitz, K., Adamsen, A.P.S. & Møller, H.B. (2011). Extrusion as a 
pretreatment to increase biogas production. Bioresource Technology, vol. 
102 (8), pp. 4989–4994 

Holtzapple, M.T. (2003a). CELLULOSE. In: Caballero, B. (ed.) Encyclopedia of 
Food Sciences and Nutrition (Second Edition). Oxford: Academic Press, pp. 
998–1007. 

Holtzapple, M.T. (2003b). HEMICELLULOSES. In: Caballero, B. (ed.) 
Encyclopedia of Food Sciences and Nutrition (Second Edition). Oxford: 
Academic Press, pp. 3060–3071. 

Holtzapple, M.T. (2003c). LIGNIN. In: Caballero, B. (ed.) Encyclopedia of Food 
Sciences and Nutrition (Second Edition). Oxford: Academic Press, pp. 
3535–3542. 

Hon, D.N.S. (1994). Cellulose: a random walk along its historical path. p. 25 
Huang, Y.-L. & Ma, Y.-S. (2016). The effect of extrusion processing on the 

physiochemical properties of extruded orange pomace. Food Chemistry, 
vol. 192, pp. 363–369 

Humer, E., Aschenbach, J.R., Neubauer, V., Kröger, I., Khiaosa-ard, R., 
Baumgartner, W. & Zebeli, Q. (2018a). Signals for identifying cows at risk 
of subacute ruminal acidosis in dairy veterinary practice. Journal of Animal 
Physiology and Animal Nutrition, vol. 102 (2), pp. 380–392 

Humer, E., Petri, R.M., Aschenbach, J.R., Bradford, B.J., Penner, G.B., Tafaj, M., 
Südekum, K.-H. & Zebeli, Q. (2018b). Invited review: Practical feeding 
management recommendations to mitigate the risk of subacute ruminal 
acidosis in dairy cattle. Journal of Dairy Science, vol. 101 (2), pp. 872–888 

INRA, CIRAD, AFZ & FAO (2020). Feedipedia—Animal Feed Resources 
Information System. Feedipedia. Available at: 
https://www.feedipedia.org/content/about-feedipedia [2020-06-07] 

Jensen, L.M., Markussen, B., Nielsen, N.I., Nadeau, E., Weisbjerg, M.R. & 
Nørgaard, P. (2016). Description and evaluation of a net energy intake 
model as a function of dietary chewing index. Journal of Dairy Science, vol. 
99 (11), pp. 8699–8715 

Johnson, L., Harrison, J.H., Hunt, C., Shinners, K., Doggett, C.G. & Sapienza, D. 
(1999). Nutritive Value of Corn Silage as Affected by Maturity and 
Mechanical Processing: A Contemporary Review. Journal of Dairy 
Science, vol. 82 (12), pp. 2813–2825 

Kim, S.H., Lee, C.M. & Kafle, K. (2013). Characterization of crystalline cellulose 
in biomass: Basic principles, applications, and limitations of XRD, NMR, 
IR, Raman, and SFG. Korean Journal of Chemical Engineering, vol. 30 
(12), pp. 2127–2141 

Lamsal, B., Yoo, J., Brijwani, K. & Alavi, S. (2010). Extrusion as a thermo-
mechanical pre-treatment for lignocellulosic ethanol. Biomass and 
Bioenergy, vol. 34 (12), pp. 1703–1710 

Lee, S.-H., Teramoto, Y. & Endo, T. (2009). Enzymatic saccharification of woody 
biomass micro/nanofibrillated by continuous extrusion process I – Effect of 



51 

 

 

additives with cellulose affinity. Bioresource Technology, vol. 100 (1), pp. 
275–279 

Leu, S.-Y. & Zhu, J.Y. (2013). Substrate-Related Factors Affecting Enzymatic 
Saccharification of Lignocelluloses: Our Recent Understanding. BioEnergy 
Research, vol. 6 (2), pp. 405–415 

Li, F., Zhang, M., Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., 
Wu, C., Tian, J., Lu, T., Xie, G. & Peng, L. (2015). High-level 
hemicellulosic arabinose predominately affects lignocellulose crystallinity 
for genetically enhancing both plant lodging resistance and biomass 
enzymatic digestibility in rice mutants. Plant Biotechnology Journal, vol. 
13 (4), pp. 514–525 

Lindman, B., Karlström, G. & Stigsson, L. (2010). On the mechanism of dissolution 
of cellulose. Journal of Molecular Liquids, vol. 156 (1), pp. 76–81 

Liu, Q., Luo, L. & Zheng, L. (2018). Lignins: Biosynthesis and Biological 
Functions in Plants. International Journal of Molecular Sciences, vol. 19 
(2), p. 335 

Mathai, J.K., Liu, Y. & Stein, H.H. (2017). Values for digestible indispensable 
amino acid scores (DIAAS) for some dairy and plant proteins may better 
describe protein quality than values calculated using the concept for protein 
digestibility-corrected amino acid scores (PDCAAS). British Journal of 
Nutrition, vol. 117 (4), pp. 490–499 

Maulfair, D.D., Fustini, M. & Heinrichs, A.J. (2011). Effect of varying total mixed 
ration particle size on rumen digesta and fecal particle size and digestibility 
in lactating dairy cows. Journal of Dairy Science, vol. 94 (7), pp. 3527–
3536 

Mendowski, S., Chapoutot, P., Chesneau, G., Ferlay, A., Enjalbert, F., 
Cantalapiedra-Hijar, G., Germain, A. & Nozière, P. (2019). Effects of 
replacing soybean meal with raw or extruded blends containing faba bean 
or lupin seeds on nitrogen metabolism and performance of dairy cows. 
Journal of Dairy Science, vol. 102 (6), pp. 5130–5147 

Mendowski, S., Chapoutot, P., Chesneau, G., Ferlay, A., Enjalbert, F., 
Cantalapiedra-Hijar, G., Germain, A. & Nozière, P. (2020). Effects of 
pretreatment with reducing sugars or an enzymatic cocktail before extrusion 
of fava bean on nitrogen metabolism and performance of dairy cows. 
Journal of Dairy Science, vol. 103 (1), pp. 396–409 

Mertens, D.R. (1997). Creating a System for Meeting the Fiber Requirements of 
Dairy Cows. Journal of Dairy Science, vol. 80 (7), pp. 1463–1481 

Mosier, N. (2005). Features of promising technologies for pretreatment of 
lignocellulosic biomass. Bioresource Technology, vol. 96 (6), pp. 673–686 

Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C. & Gerber, P. (2017). 
Livestock: On our plates or eating at our table? A new analysis of the 
feed/food debate. Global Food Security, vol. 14, pp. 1–8 

Murphy, J., Braun, R., Weiland, P. & Wellinger, A. (2011). Biogas from Crop 
Digestion. p. 24 

Nasrollahi, S.M., Imani, M. & Zebeli, Q. (2015). A meta-analysis and meta-
regression of the effect of forage particle size, level, source, and 
preservation method on feed intake, nutrient digestibility, and performance 
in dairy cows. Journal of Dairy Science, vol. 98 (12), pp. 8926–8939 

Nasrollahi, S.M., Imani, M. & Zebeli, Q. (2016). A meta-analysis and meta-
regression of the impact of particle size, level, source and preservation 
method of forages on chewing behavior and ruminal fermentation in dairy 
cows. Animal Feed Science and Technology, vol. 219, pp. 144–158 

Oba, M. & Allen, M.S. (2000). Effects of Brown Midrib 3 Mutation in Corn Silage 
on Productivity of Dairy Cows Fed Two Concentrations of Dietary Neutral 



52 

 

 

Detergent Fiber: 1. Feeding Behavior and Nutrient Utilization. Journal of 
Dairy Science, vol. 83 (6), pp. 1333–1341 

Oikonomou, N.A. & Krokida, M.K. (2012). Water Absorption Index and Water 
Solubility Index Prediction for Extruded Food Products. International 
Journal of Food Properties, vol. 15 (1), pp. 157–168 

Oliveira, K.A., Macedo Junior, G.D.L., Silva, S.P. da, Araújo, C.M., Varanis, 
L.F.M. & Sousa, L.F. (2018). Nutritional and metabolic parameters of sheep 
fed with extrused roughage in comparison with corn silage. Semina: 
Ciências Agrárias, vol. 39 (4), p. 1795 

Olsson, L. & Hahn-Hägerdal, B. (1996). Fermentation of lignocellulosic 
hydrolysates for ethanol production. Enzyme and Microbial Technology, 
vol. 18 (5), pp. 312–331 

Paula, E.M., Broderick, G.A., Danes, M.A.C., Lobos, N.E., Zanton, G.I. & Faciola, 
A.P. (2018). Effects of replacing soybean meal with canola meal or treated 
canola meal on ruminal digestion, omasal nutrient flow, and performance in 
lactating dairy cows. Journal of Dairy Science, vol. 101 (1), pp. 328–339 

Plaizier, J.C., Krause, D.O., Gozho, G.N. & McBride, B.W. (2008). Subacute 
ruminal acidosis in dairy cows: The physiological causes, incidence and 
consequences. The Veterinary Journal, vol. 176 (1), pp. 21–31 

Pomerleau-Lacasse, F., Seguin, P., Tremblay, G. & Mongrain, D. (2017). 
Developmental stages of timothy and alfalfa. Minister of Agriculture and 
Agri-Food, (2017), p. 23 

Popescu, S., Borda, C., Diugan, E.A., Spinu, M., Groza, I.S. & Sandru, C.D. (2013). 
Dairy cows welfare quality in tie-stall housing system with or without 
access to exercise. Acta Veterinaria Scandinavica, vol. 55 (1), p. 43 

Redgwell, R.J., Curti, D., Robin, F., Donato, L. & Pineau, N. (2011). Extrusion-
Induced Changes to the Chemical Profile and Viscosity Generating 
Properties of Citrus Fiber. Journal of Agricultural and Food Chemistry, vol. 
59 (15), pp. 8272–8279 

Robbins, J.A., Roberts, C., Weary, D.M., Franks, B. & von Keyserlingk, M.A.G. 
(2019). Factors influencing public support for dairy tie stall housing in the 
U.S. (Loor, J. J., ed.) PLOS ONE, vol. 14 (5), p. e0216544 

Robin, F., Schuchmann, H.P. & Palzer, S. (2012). Dietary fiber in extruded cereals: 
Limitations and opportunities. Trends in Food Science & Technology, vol. 
28 (1), pp. 23–32 

Rodriguez, C., Alaswad, A., Benyounis, K.Y. & Olabi, A.G. (2017). Pretreatment 
techniques used in biogas production from grass. Renewable and 
Sustainable Energy Reviews, vol. 68, pp. 1193–1204 

Saini, J.K., Saini, R. & Tewari, L. (2015). Lignocellulosic agriculture wastes as 
biomass feedstocks for second-generation bioethanol production: concepts 
and recent developments. 3 Biotech, vol. 5 (4), pp. 337–353 

Scheller, H.V. & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant 
Biology, vol. 61 (1), pp. 263–289 

Scherer, R., Gerlach, K. & Südekum, K.-H. (2015). Biogenic amines and gamma-
amino butyric acid in silages: Formation, occurrence and influence on dry 
matter intake and ruminant production. Animal Feed Science and 
Technology, vol. 210, pp. 1–16 

Sjaunja, L.O., Baevre, L., Junkkarinem, L., Pedersen, J. & Setälä, J. (1990). A 
Nordic proposal for an energy corrected milk (ECM) formula. International 
Comitte for Recording the productivity of milk animals. Available at: 
https://www.researchgate.net/publication/284193091_A_Nordic_proposal
_for_an_energy_corrected_milk_ECM_formula [2020-05-06] 

Smith, J., Sones, K., Grace, D., MacMillan, S., Tarawali, S. & Herrero, M. (2013). 
Beyond milk, meat, and eggs: Role of livestock in food and nutrition 
security. Animal Frontiers, vol. 3 (1), pp. 6–13 



53 

 

 

Spörndly, R. (2003). Fodertabeller för idisslare (Feed tables for ruminants). Report 
257. Dep. of Anim. Nutr. and Management, Swedish Univ. of Agric. Sci., 
Uppsala, Sweden. 

The 3Rs | NC3Rs. Available at: https://www.nc3rs.org.uk/the-3rs [2020-05-31] 
Udén, P. (1984). The effect of intake and hay: Concentrate ratio upon digestibility 

and digesta passage. Animal Feed Science and Technology, vol. 11 (3), pp. 
167–179 

Udén, P. & Sutton, J.D. (1994). Retention of Cr-labelled grass hay and silage in 
different segments of the gastrointestinal tract of dairy cows. Livestock 
Production Science, vol. 37 (3), pp. 297–309 

Um, B.-H., Choi, C.H. & Oh, K.K. (2013). Chemicals effect on the enzymatic 
digestibility of rape straw over the thermo-mechanical pretreatment using a 
continuous twin screw-driven reactor (CTSR). Bioresource Technology, 
vol. 130, pp. 38–44 

Wattiaux, M.A., Satter, L.D. & Mertens, D.R. (1992). Effect of microbial 
fermentation on functional specific gravity of small forage particles. 
Journal of Animal Science, vol. 70 (4), pp. 1262–1270 Oxford Academic. 

Weiss, W.P. & Shockey, W.L. (1991). Value of Orchardgrass and Alfalfa Silages 
Fed with Varying Amounts of Concentrates to Dairy Cows. Journal of 
Dairy Science, vol. 74 (6), pp. 1933–1943 

Weng, R.-C. (2019). The effects of dietary replacement with extruded whole plant 
forage corn silage on gestation and lactation performances of sow and litter. 
Journal of Agricultural and Crop Research, vol. 7 (8), pp. 137–147 

Wilkinson, J.M. (2011). Re-defining efficiency of feed use by livestock. animal, 
vol. 5 (7), pp. 1014–1022 

Williams, B.A., van der Poel, A.F.B., Boer, H. & Tamminga, S. (1997). The Effect 
of Extrusion Conditions on the Fermentability of Wheat Straw and Corn 
Silage. p. 8 

Wüstholz, J., Carrasco, S., Berger, U., Sundrum, A. & Bellof, G. (2017). Silage of 
young harvested alfalfa (Medicago sativa) as home-grown protein feed in 
the organic feeding of laying hens. Organic Agriculture, vol. 7 (2), pp. 153–
163 

Yang, H., Rustas, B.-O. & Eriksson, T. (2018). Rumen in vitro total gas production 
of timothy, red clover and the mixed silage after extrusion. Proceedings of 
Nordic Feed Science Conference, June 2018. pp. 181–183. SLU 

Yang, L., Xu, F., Ge, X. & Li, Y. (2015). Challenges and strategies for solid-state 
anaerobic digestion of lignocellulosic biomass. Renewable and Sustainable 
Energy Reviews, vol. 44, pp. 824–834 

Zebeli, Q., Aschenbach, J.R., Tafaj, M., Boguhn, J., Ametaj, B.N. & Drochner, W. 
(2012). Invited review: Role of physically effective fiber and estimation of 
dietary fiber adequacy in high-producing dairy cattle. Journal of Dairy 
Science, vol. 95 (3), pp. 1041–1056 

Zebeli, Q., Dijkstra, J., Tafaj, M., Steingass, H., Ametaj, B.N. & Drochner, W. 
(2008). Modeling the Adequacy of Dietary Fiber in Dairy Cows Based on 
the Responses of Ruminal pH and Milk Fat Production to Composition of 
the Diet. Journal of Dairy Science, vol. 91 (5), pp. 2046–2066 

Zhang, M., Bai, X. & Zhang, Z. (2011). Extrusion process improves the 
functionality of soluble dietary fiber in oat bran. Journal of Cereal Science, 
vol. 54 (1), pp. 98–103 

Zheng, J., Choo, K. & Rehmann, L. (2015). The effects of screw elements on 
enzymatic digestibility of corncobs after pretreatment in a twin-screw 
extruder. Biomass and Bioenergy, vol. 74, pp. 224–232 

 



54 

 

 

I would like to express my thanks to my supervisors Bengt-Ove Rustas and Torsten 

Eriksson for their help and feedback. I would also like to thank the people that were 

involved and assisted during this experiment.  

Acknowledgements 



55 

 

 

Particle size 
The information regarding the particle size is presented in Table 9. Extrusion 

resulted in a noted decreased in FPS with no particles retained on the upper sieve 

(pore size 19 mm). In extruded diets, the majority of the particles were collected in 

the bottom pan indicating an average FPS of less than 8 mm. 

Table 7. Percentage of particles retained in the sieves of Penn State Particle Separator per 

experimental silage and silage refusals 

Sieve size Early Extruded Early Control Late extruded Late control 

Offered silage     

19 mm 0 % 19 % ± 11 % 0 % 25% ± 10% 

8 mm 48 % ± 12 % 45 % ± 5 % 42 % ± 14 % 41% ± 6% 

Bottom pan 52 % ± 12 % 36 % ± 6 % 58 % ± 14 % 34% ± 5% 

Silage refusals     

19 mm 0% 21 % ± 11 % 0 % 25 % ± 9 % 

8 mm 60 % ± 7 % 45 % ± 6 % 48 % ± 16 % 42 % ± 6 %  

Bottom pan 40 % ± 7 % 34 % ± 5 % 52 % ± 16 % 33 % ± 3 % 
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Energy and protein requirements 
The available information regarding the average bodyweight of the animals, their 

milk yield and their milk composition were used to calculate the expected energy 

and protein requirements. The calculations were performed according to Spörndly 

(2003) and are presented in Table 10.  

Table 8. Calculation of Metabolizable energy and Intestinal Amino Acid requirements. 

 Early harvest  Late Harvest 

Extruded Control Extruded Control 

ME Requirements (MJ/d)      

BW kg 650 650  650 650 

MEm = 0.507 MJ/BW0.75 65.3 65.3  65.3 65.3 

ECM yield kg/d 36.9 36.2  36.8 33.7 

MEl = 5 MJ / kg ECM 184.5 181  184 168 

Corrected ME requirements = 
1.11 × (MEm + MEl) -13.6  

263.7 259.8  263.1 245.4 

IAAS requirements (g/d)      

IAAS (g/d) = ME × 7.6 2004 1974  2000 1865 

MEm = Metabolizable energy maintenance, MEl = Metabolizable energy lactation, IAAS = Intestinal 

Amino Acid Supply, BW = Body Weight, ECM = Energy Corrected Milk 

Calculated based on Spörndly (2003) 

The metabolizable energy content of the diets, the Intestinal Amino Acid Supply 

and the Rumen Nitrogen Balance are presented in Table 11. Calculation was based 

on Spörndly (2003). 

Table 9. Calculation of diet Metabolizable energy, Intestinal Amino Acid Supply and Rumen 

Nitrogen Balance 

 
Compound 

feed 
Soybean Meal 

Concentrates 
Early Harvest Late harvest 

Fistulated Intact Average 

ME MJ/kg DM 13.4 13.8 13.5 13.48 13.49 10 8.26 

IAAS g/kg DM 114 292 158.5 149.6 154.05 69 62 

RNB g/kg DM 13 79 29.5 26.2 27.850 14 -1 

ME = Metabolizable energy, IAAS = Intestinal Amino Acid Supply, RNB = Rumen Nitrogen 

balance 

The results from tables 10 and 11 were used to calculate the Metabolizable energy 

Balance, the Protein Balance and the expected Body Weight (Table 12). It is 

interesting to note that animals receiving late extruded diets are in a similar negative 

energy balance as animals receiving late control diets (Late extruded -6.55 MJ/d; 

Late Control -6.37) despite having significantly higher milk yield (Late extruded 

32.7 kg/d; Late Control 30.6 kg/d).  
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Table 10. Energy, Protein Balance and expected Body Weight change 

 Early harvest  Late Harvest 

Extruded Control Extruded Control 

Silage DM intake kg/d 18.4 17  18.5 16.2 

Silage ME intake MJ/d 184 170  152.81 133.81 

Silage IAAS intake g/d 1269.6 1173  1147 1004.4 

Silage RNB g/d 257.6 238  -18.5 -16.2 

      

Concentrate DM intake kg/d 7.61 7.76  7.69 7.8 

Concentrate ME intake MJ/d 102.66 104.68  103.74 105.22 

Concentrate IAAS intake g/d 1172.32 1195.43  1184.64 1201.59 

Concentrate RNB g/d 211.94 216.12  214.17 217.23 

      

Total Intake      

ME MJ/d 286.66 274.68  256.55 239.03 

IAAS g/d 2441.92 2368.43  2331.64 2205.99 

RNB g/d 469.54 454.12  195.67 201.03 

      

Balance      

ME MJ/d 22.96 14.88  -6.55 -6.37 

IAAS g/d 437.92 394.43  331.64 340.99 

      

Expected BW change kg/d      

Based on ME balance1 0.64 0.42  -0.19 -0.18 

Based on IAAS balance 1.75 1.58  1.33 1.36 

ME = Metabolizable energy, IAAS = Intestinal Amino Acid Supply, RNB = Rumen Nitrogen 

Balance 

1Metabolizable energy per 1 kg gain Bodyweight 35.8 MJ, 1 kg loss of Body Weight 34.5 MJ 

2Intestinal Amino Acid Supply per 1 kg gain Bodyweight 250 g, 1 kg loss of Body Weight 185g 

 Calculated based on Spörndly (2003) 
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Human food production 

Livestock traditionally has been used as a means of converting feeds into useful 

animal products of high nutritional value. The increasing use of grains in the 

nutrition of farm animals has, however, resulted in increasing criticism by the 

public regarding the potential competition between humans and animals for the 

same resources. One common argument during these debates is the high feed 

conversion ratio of livestock. However, this term is a simplification that fails to 

consider that most of the feed consumed by livestock is inedible by humans. The 

term human-edible fraction has been used by Wilkinson (2011) and Ertl (2015, 

2016) to describe the fraction of gross energy and crude protein of the feedstuff that 

would be available for human consumption through processing. On Table 13 the 

human edible fractions of feedstuffs and the milk are presented for different 

processing scenarios. The Digestible Indispensable Amino Acid Score (DIAAS) is 

a method of evaluating the protein quality proposed by FAO (2013). Comparisons 

based on crude protein content can result in misleading conclusion since they do 

not take into consideration the amino acid composition and the digestibility of the 

proteins.  

Table 11. Human-edible fractions (% of protein and energy) and DIAAS of feedstuffs (Wilkinson 

2011; Ertl et al. 2016).  

 Protein % Energy %   

Feed Minimum Maximum Minimum Maximum Energy = 

Protein 

DIAAS % 

Barley 40 80 40 80 80 47.2 

Rapeseed meal 30 87 26 47 20 70.2 

Wheat bran 0 20 0 20 20 48.8 

Oats 50 75 50 75 80 56.7 

Wheat 60 100 60 100 80 40.2 

Molasses (sugar beet) 0 80 0 80 20 n.d. 

Sugar beet pulp - 20 - 20 20 n.d. 

Plant fats - - 0 80 20 n.d. 

Vitamins and minerals 0 0 0 0 0 n.d. 

Soybean Meal 50 92 42 65 80 97 

Grass silage 0 0 0 0 0 n.d. 

Milk 100 100 100 100 100 115.9 

DIAAS = Digestible Indispensable Amino Acid Score. E = Energy, P = Protein, n.d. = not determined. 

Human-edible fractions (% of protein and energy) of feedstuffs for minimum and maximum scenario are taken 

from Ertl et al. (2016) while Energy = Protein is taken from Wilkinson et al. (2011) and correspond to an 

equally efficient extraction for both the protein and energy fraction of the feedstuff. DIAAS (%) according to 

Ertl et al. (2016) 
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Values for “Minimum” and “Maximum” scenarios were taken from the “Low” and 

“High” scenarios of Ertl et al., (2015, 2016). The minimum scenario represents 

human edible fraction that can be easily achieved, through the processing of these 

feeds without high-end technology. The maximum scenario assumes high 

extraction rates due to the development of novel technologies or change in eating 

habits (consumption of whole grain products etc.).   

Data on gross energy (GE) values for feeds was used from Feedipedia database 

(INRA et al. 2020) while energy output was calculated using the gross energy using 

the caloric factors 23 kJ/g (protein), 38.9 kJ/g (fat), and 17.2 kJ/g (carbohydrates) 

according to Ertl et al., (2016). Net food production, as MJ of GE/d for energy or g 

of CP/d for protein, was calculated as the human edible content in the milk minus 

the human edible content in the feed consumed according to Ertl et al., (2016). 

Table 12. Effect of Extrusion and Harvest on Net Food production. 

 

 
Early harvest Late harvest  Effect (p -value) 

 Extruded Control Extruded Control SED Harvest Treatment 
Harvest x 

Treatment 

HeCP 

production 

g/d 

        

Minimum 308 250 290 171 27.5 (26.1) 0.02 < 0.001 0.128 

E = P  97.0 34.3 76.5 -45.8 27.5 (26.1) 0.016 0.001 0.092 

Maximum -465 -539 -491 -622 27.7 (26.3) 0.011 < 0.001 0.157 

DIAAS 

production 

g/d 

        

Minimum 611 549 593 459 31.9 (30.3) 0.024 < 0.001 0.122 

E = P 429 363 409 272 31.9 (30.2) 0.021 < 0.001 0.126 

Maximum -56.6 -132 -81.9 -226 32 (30.3) 0.015 < 0.001 0.14 

Gross 

energy MJ/d 
        

Minimum 54.3 50.8 53.0 43.0 2.57 (2.44) 0.02 0.001 0.087 

E = P 29.3 25.2 27.7 17.3 2.56 (2.43) 0.017 < 0.001 0.134 

Maximum 19.3 15.1 17.6 7.2 2.57 (2.43) 0.014 0.001 0.095 

HeCP = Human edible Crude Protein production, DIAAS = Digestible Indispensable Amino Acid Score. E = 

Energy, P = Protein. SED = Standard Error of the Difference.  
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Table 13. Main effect of Treatment and Harvest on Net food production 

 

 
Treatment Harvest  

 Extruded Control Early Late SED 

Net HeCP production g/d      

Minimum 299 211 279 231 19 

E = P 86.7 -5.75 65.6 15.3 18.9 

Maximum -478 -580 -502 -556 19.1 

Net Protein production based on DIAAS g/d      

Minimum 602 504 580 526 22 

E = P 419 317 396 340 22.0 

Maximum -69.3 -179 -94.3 -154 22 

Net Gross Energy production MJ/d      

Minimum 53.6 46.9 52.5 48.0 1.77 

E = P 28.5 21.3 27.2 22.5 1.77 

Maximum 18.5 11.1 17.2 12.4 1.77 

HeCP = Human edible Crude Protein production, DIAAS = Digestible Indispensable Amino Acid Score. E = 

Energy, P = Protein. SED = Standard Error of the Difference.  

 

Negative values on Tables 14 and 15 indicate that the total Net Protein or Energy 

production is negative since the animal output is less than the feed input. These 

values account only for milk production and don’t take into consideration other 

aspects of animal products such as meat production. It appears that with the current 

technology and eating habits, dairy production based on high forage diets 

significantly contributes the total food production. Finally, processing of forages 

with extrusion will allow higher intakes of silage and forages further decreasing the 

need for concentrates and human edible feedstuff. This will result in decreased 

resource competition and more sustainable animal production.  

 


