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Abstract

It is generally known that wind power has an offsetting effect on emissions by crowding out
fossil dependent energy sources. What has not been studied to any further extent is the
variability in environmental impacts caused by wind turbine erection and manufacturing. Also,
it is not known how economic incentives could affect these impacts. The argument made in this
thesis was that the Danish price-premium feed-in tariff system provides incentives for WF
operators to upscale, as this maximizes profit. Upscaling in turn is hypothesized to reduce the
environmental impacts of the Danish wind farm (WF) fleet. The aim was to investigate whether
the Danish wind subsidization policies indirectly have a positive effect on environmental
efficiency for WFs, and if so, what factors mediate this effect. An environmental and
operational two-stage LCA + DEA (SBM-I) efficiency analysis on a sample of 75 onshore and
offshore Danish WFs was performed. The second stage analysis showed a strong association
between environmental efficiency and feed-in tariffs per MW. There is suggestive evidence that
the main driving factors behind this association are upscaling related variables, as well as
production type. Such that Danish policy makers explicitly want to target environmental impact
reductions of the WF fleet, it is recommended to promote large-scale operations, and preferably
offshore.



Sammanfattning

Det &r allmant kant att vindkraft har en utslappsminskande effekt nar denna energikalla ersatter
fossila energikallor. Nagot som ar mindre beforskat ar variabiliteten i miljopaverkan inom
vindkraften — en variabilitet vars ursprung framst kan hérledas till vindkraftverkets
tillverknings- och installationsfas samt lokala forhallanden. Det ar inte heller kant i vilken
utstrackning — eller om — subsidier har ndgon effekt pa vindkraftsbetingade miljopaverkan. |
denna uppsats argumenteras att det danska s.k. relativprisbaserade feed-in-tariffsystemet (sv.
inmatningstariff) har en positiv inverkan pa den miljomassiga effektiviteten. Vidare medlas
denna effekt genom de storskalighetsincitament som denna subventionstyp skapar. Syftet
bakom uppsatsen var att undersoka de hypotiserade positiva miljémassiga externa effekter som
orsakas av detta subventionssystem — och om evidens for denna effekt finns, undersoka vilka
exogena faktorer som paverkar den miljomassiga effektiviteten for vindkraftsparker. En
miljoinriktad och en verksamhetsinriktad effektivitetsberdkning, kallad two-stage LCA + DEA,
genomfordes pa sjuttiofem land- och havsbaserade danska vindkraftsparker. Den statistiska
analysen gav indicier for en stark association mellan feed-in-tariffer per MW och miljémassig
effektivitet. Ytterligare fanns indikativ for att den medlande effekten &r graden av storskalighet,
liksom produktionstyp (havsbaserad vindkraft & mer miljomassigt effektiv). Om danska
beslutsfattare énskar att specifikt inrikta sig mot att minska vindkraftsflottans miljépaverkan
rekommenderas att premiera havsbaserad vindkraft och storskalighet i bade turbin- och
parkstorlek.
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By alphabetical order

BCC
CCR
DEA
DMU
ENS
FIT
KW
KWh
LCA
LCI
LCIA
MW
MWh
NPV
OLS
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Renewable energy source
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1 Introduction

As environmental concerns grow due to ecological degradation and climatological issues,
policy makers around the world try to find feasible and sustainable solutions to energy
production. A common haven is renewable energy sources (RES), which have been growing
rapidly in past decades. It is generally known that switching from fossil dependent energy
sources to RES will effectively decrease the environmental footprint of the economy. Wind
power is one of the most popular alternatives when progressing towards a minimized
environmental footprint. These generators convert kinetic energy — that is wind — to electrical
energy. There are two production types of wind power: onshore and offshore. These essentially
build on the same technology, whereas the offshore alternative needs an additional substructure
to keep it above the surface and avoiding corrosion. The reason for installing offshore turbines
is mainly higher and more stable wind speeds, which results in a higher electricity production.
Other reasons are space limitations on land and visual degradation. RES’s are generally not as
competitive in pricing as conventional energy sources. To support the deployment of RES’s,
many countries provide these with subsidies. These subsidies come in many shapes and forms,
such as investment support and quantity (quota) support, although the most common is the feed-
in tariff (FIT) support. Couture & Gagnon (2010) describe two main types of FIT: the premium
price and the fixed-price regimes. The most commonly used is the market price independent
fixed-price regime, where the operator is guaranteed a certain remuneration per KWh.
Denmark, on the other hand, practices a two-part price-premium FIT: the price supplement and
the balancing reimbursement. The price supplementation is a traditional price premium,
whereas the balancing reimbursement part is a consequence of the energy balancing system of
Europe, commonly referred to as the European Network of Transmission System Operators for
Electricity (ENTSO-E). The energy balancing system is essentially an electricity import and
export scheme intended for the EU electricity market. As the output of RES’s is hard to regulate
or predict, the EU reasoned it would be beneficial for all countries to export occasional
overcapacity and avoid capacity congestion within an economy (ENTSO-E, 2009). The
additional balancing tariff is due to transmission losses, stemming from electric potential loss
when transmitting the current for longer distances.

A benefit from wind turbines is that they have no associated adverse by-products at the
operational stage, such as C0O, emissions. Furthermore, the median lifecycle C0O,-eq. per KWh
for wind power is the lowest for all types of RES’s according to the Intergovernmental Panel
on Climate Change, IPCC (2018). This combined with upscaling potential makes this energy
source an attractive alternative to fossil fuels for many economies. This, on the other hand, does
not mean that they are without environmental impacts. As the trend in most Western countries
is steering away from fossil dependency, it could become of interest for these economies to
investigate environmental cross-sectional fleet optimality of wind power. This since there is
further environmental impact reduction potential in operationally optimizing the fleet, as
suggested by Iribarren et al. (2013). The natural resources used for a wind turbine could lead to
substantial emissions per MWh and varies strongly, based on the background processes
involved in the manufacturing and erection phase. Life cycle assessments (LCAS) are used to



evaluate the environmental impact over the whole lifecycle of a good. LCAs are done in two
stages:

1. life cycle inventory (LCI): the evaluation of actual or estimated materials used for a
given unit, and

2. life cycle impact analysis (LCIA), where the materials are attributed environmental
impacts, usually with the help of a computer modelling software.

There have been several LCA case studies on WFs, but up to this date just one has been done
for a whole fleet of turbines — the Danish wind turbine fleet. Average impacts and average
performances were evaluated for the Danish WF fleet by Besseau et al. (2019) and Sacchi et al.
(2019), wherein it was found that offshore turbines and high capacity turbines were more
efficient than onshore small-scale turbines. However, no research has yet targeted the individual
performance of Danish wind turbines. Sometimes it is sufficient to look at averages, but if the
variability is high in terms of environmental impacts, it is crucial to investigate the causes
behind this variability. One typical way of evaluating individual performance among a set of
decision-making units (DMUSs), that is WFs, is by employing a data envelopment analysis
(DEA). A relatively recent addition to the many variations of DEA is the LCA + DEA method,
proposed by Lozano et al. (2009), which combines material inventories, environmental impacts,
and the production for a set of DMUSs.

The aim behind subsidizing wind power in Denmark, and arguably for any country, is to
maintain the profitability of current wind turbines when competing with cheaper alternatives,
such as nuclear or coal plants. Also, it is to incentivize the undertaking of new wind turbine
projects as described by Jenner et al. (2013). In other words, a subsidy is a way for policy
makers to control the direction in which the energy supply mix is heading. However, the way
in which a subsidy is designed could potentially alter the incentive structure for the operator
from a microeconomic perspective. A price support, of which the FIT is one possible design,
incentivizes the operator to minimize the costs per KWh according to Nordensvard & Urban
(2015). In Denmark, this is mainly achieved by upscaling wind turbines and WFs. Larger
turbines should also lead to the minimization of environmental footprint, as found by Sacchi et
al. (2019). In other words, my argument is that there is a potential positive external effect from
this type of subsidy. The objectives of this thesis are the following:

1. By using an LCA + DEA (SBM-I) efficiency estimation model, estimate the
environmental and operational performance for a sample of utility scale WFs (>100 kW)
in Denmark for the year 2016.

2. Perform a second-stage analysis to evaluate to what extent a larger modelled FIT
allotment is related to environmental efficiency among WFs in Denmark and investigate
whether upscaling factors are facilitating this contingent effect.



The argument made in this thesis is that the price-premium FIT through economic incentives
promotes upscaling of WFs in Denmark, which causes higher environmental efficiency as a
positive external effect. By illuminating this possible association, | aim to contribute to the FIT
literature by investigating whether this system, as hypothesized, is discriminatory against
environmentally inefficient WFs in Denmark. The purpose is to introduce a new perspective
for consideration when implementing energy policies for — in particular, but not exclusively —
wind power. The success of a policy so far is mainly judged on additional deployment and
permanence of wind power, whereas the overarching goal of renewable energy policies is
reducing environmental impacts. It should follow that an environment-focused policy
evaluation of the economic incentives is of importance. Moreover, by identifying
environmental and operational efficiency facilitating factors, | aim to provide a basis for policy
makers to design policies or subsidy systems which explicitly target the minimization of
environmental impacts of the wind power fleet.



2 Earlier research

The LCA + DEA framework has been put to test in several different contexts and for different
types of DMUs. Iribarren et al. (2013) applied the methodology on Spanish WFs, using a one-
stage input-oriented slacks-based measure (SBM-I). The authors had LCA accounts and labor
data for a sample of 25 Spanish onshore WFs. The efficiency estimation results were given in
two consecutive steps: operational efficiency estimation and a conversion of operational
savings to environmental savings. The inputs used for the operational estimation was a selection
of LCI accounts; concrete, steel, epoxy resin, lubricating oil, iron, paint and fiberglass; and
average number of hours worked per WF. It was found that, while the operational efficiency
was rather high, the WFs on average had a lower environmental efficiency. Also, the authors
found that a high nameplate capacity tends to yield a higher efficiency score, which will be
further investigated in this thesis. The authors concluded that the method is feasible for
application on WFs. They did not analyze offshore WFs. As this turbine type is becoming
increasingly more popular, it would be beneficial for the overall understanding of wind power
to include this production type in an LCA + DEA efficiency framework. Other applications
where the LCA + DEA method has been used are, among others, Avadi et al. (2014) and
Lorenzo-Toja et al. (2015). The former used LCls on fishery ventures in Peru, where the
environmental efficiency of vessels was estimated. The authors followed the methodology as
in Iribarren et al. (2013) and analogically concluded the operational efficiency was high, albeit
further potential environmental savings could be made without reducing production. Lorenzo-
Toja et al. (2015) applied the SBM-I model onto Spanish wastewater treatment plants.

Wu et al. (2016) performed a two-stage Charnes-Cooper-Rhodes (CCR) DEA and Banker-
Charnes-Cooper (BCC) DEA on 42 Chinese utility scale onshore WFs. A discussion on
efficiency models can be found below. The inputs used for the efficiency estimation was
capacity, auxiliary electricity consumption (electricity consumed by the WF itself) and wind
density; and the outputs being electricity production and availability. This is, to my knowledge,
the first two-stage DEA performed on wind power. Whereas earlier studies, as those mentioned
above, analyze patterns in the efficiency scores by studying e.g. scatterplots, none feature an
explicit second stage analysis. The authors regress on the efficiency scores using a tobit
regression model. The exogenous variables are age, wind curtailment rate and a dummy for WF
operators. The authors found that the age has a significant effect on the performance of a WF,
as well as the wind curtailment rate. It is also suggested by Green and Staffell (2014) that the
age approximately reduces the output of an onshore WF by 16% per decade. Therefore, an age
variable, acting as a confounding factor will be added to the second stage analysis of this thesis.
Wau et al. (2016) did not find significant differences between any of the WF operators. The
operators were located in separate regions of China, which suggests there are no regional
differences between the efficiency scores given the inputs used by the authors. There is still
reason to suspect differences between regions with respect to environmental and operational
efficiency, as there may be differing average local conditions, which may either influence the
output or input variables. This is also proposed by Sameie & Arvan (2015). Area and
manufacturer variables will be included as control variables to the second stage analysis.



Papiez et al. (2019) conducted a two-stage DEA on the efficiency of European wind power.
The authors used five models with differing inputs and outputs. The inputs are installed capacity
per country and average wind density per country. The outputs are electricity production per
country, economic savings aspects (the price of fossil fuels being replaced by wind),
environmental aspects (avoided emissions by producing with wind power) and energy security
aspects (decreased imports dependency). A second-stage analysis was conducted, where the
efficiency scores per country are regressed on institutional factors, such as FITs per country,
investment support, regulatory support, or policy related promotion schemes. Among other
things, the authors find that FITs increase the efficiency of wind power in a country. Also, they
find indices on that the fraction of offshore wind power is positively related to a higher wind
efficiency score. The authors do not necessarily cover why the FITs cause higher efficiency in
a country, which is where the objectives of this thesis fit (pun not intended) in the literature, as
it will be possible to illuminate how the policy incentives could affect the wind fleet
composition with respect to overall sizing. Within the FIT literature field, one common policy
effect studied is additional deployment, as has been done by Couture and Gagnon (2010) and
Jenner et al. (2013). Couture and Gagnon (2010) provide with a literature review on studies
conducted on different types of subsidization schemes and how these have been found affecting,
among other factors, the additional capacity deployment for RES’s. The review generally
suggests a positive association with deployment rate. Jenner et al. (2013) instead argue that
earlier studies did not control for country-specific fixed effects, which could have caused
spurious correlations. They found no evidence of additional capacity deployment resulting from
the FIT. As discussed above, there may still be structural effects resulting from such a policy,
without necessarily increasing the total capacity. Moreover, previous FIT research has not to
my knowing covered whether there are environmental aspects to these kinds of subsidization
systems.

2.1 Efficiency estimation model

An LCA + DEA estimation, as proposed by Lozano et al. (2009), will be performed on a sample
of 75 Danish WFs using cross-sectional data for the year 2016. After deliberation, | argue that
the most adequate efficiency model is the SBM-I. Lorenzo-Toja et al. (2015), Avadi (2014),
Iribarren et al. (2013) recommend using this efficiency model for LCA + DEA applications.
SBM accounts for non-radial inefficiencies, meaning that it computes the non-radial (relative)
input use (e.g. concrete to metal use) and the radial input use (input to output) simultaneously
—not only radial, or proportional, input decreases as in the CCR. A CCR would proportionately
decrease the input use (e.g., a 20% overall decrease in input use), whereas the SBM can compute
unique input reduction potentials. This is a desirable property in a context where there are loose
interconnections between the inputs, as argued by Lorenzo-Toja et al. (2015). For instance, it
is not apparent how logistics relates to the concrete use, or the acidification with the
eutrophication. One input may easily be reduced, whereas another is hard to dispose of. Low
disposability could be reflected in low variability in a specific input use among DMUs. Another
desirable property is that SBM is unit invariant as opposed to CCR. For instance, a CCR would
yield different scores if one unit of measure were transformed from kg to tons, as the



proportions would change. This is not the case for SBM, which makes it more robust in this
setting, where many inputs use differing units. The drawback of SBM is that it is instead not
translation invariant, according to Tone (2001). This means it is sensitive to negative numbers
or zeroes in the dataset. Fortunately, this is not an issue in the dataset used for this thesis.
Iribarren et al. (2013) defined the SBM-I minimization problem as

@; = min(1 - %Zli\il Sio /Xio0) Q)
subject to

Y1 AjoXij = Xio — Sig )

29;1 AjoYj = Yo 3)

Ajo = 0,575 = 0. (4)

®; is the efficiency score. M is the number of inputs to be minimized. s;, is the potential
reduction (slack) in input i for DMU 0. x;, is the amount of input i used by DMU 0, and y, the
production of DMU 0. 4;, is coefficients of linear combination to be solved for DMU 0 against
the remainder of DMUs. The lambda values will in the optimal solution outline an efficient
frontier (called “best practice”) onto which DMUs are projected. What is meant by “linear
combination” is that any production point on the efficient frontier is assumed to be feasible. In
other words, the best practice frontier is based on interpolation between one or more input usage
points. It should be noted that this is not an SBM-specific assumption but a foundational
assumption of DEA in general. By constraint (4) is assumed that 4;, = 0, meaning only positive
coefficients of evaluation are allowed, thus hindering optimal solutions with negative
combinations of resource use. By imposing the restriction at 0, the efficiency estimations are
non-weighted (no specific weight given to specific lambdas) and display constant returns to
scale, analogously to a CCR-CRS (constant returns to scale) model. Considering the inputs and
number of observations, the optimization problems to be solved for DMU 0 in this thesis is the
following:

Q)OP:min(l_i%_0+@+&+M+ﬁ+i+&+sf_w+s‘;_so+ﬁ (5)
0 10 |Xmo  Xpo Xco Xwdo Xffo Xlo Xto Xfco Xwso  Xfito

subject to
Y721 Ajoxij = Xip — Sig (6)
Y721 4 oMWh; = MWh, (7
Ajo = 0,575 = 0. (8)



Where m=metals in kg, p=plastics in kg, c=concrete in kg, wd=wire drawing in kg-m, ff=fossil
fuels in kg, I=logistics in ton-m, t=number of turbines, fc=farm capacity in MW, ws=wind speed
in meters per second, and fit=FIT on the WF level in tDKK. MW h, is the output in MWh in
2016 for DMU 0. For the operational efficiency estimation M=10, N=75. The environmental
efficiency estimation is analogically then

OENY = min(1 - 1 [Sz;nofo N Sgwpo N Spdfo n Ssomo + sgdpo]) )
Xpnofo Xgwpo Xpdfo Xsomo Xodpo
subject to
721 A0%i; = Xio — Sig (10)

Where pnof=terrestrial and freshwater acidification, measured in H+ equivalents; gwp=global
warming potential, measured in kg C0,-eq.’s; pdf=freshwater eutrophication, measured in
phosphorus-eq.’s; som= land use, measured in kg displaced or occupied soil; odp= ozone layer
depletion, measured in kg CFC’s. For the environmental efficiency estimation, M=5, S=1 and
N=75. The Data section below describes these inputs more in-depth.



3 Method

The two types of efficiency score will be analyzed in a second-stage analysis by performing
tobit regressions on key technological, spatial, and temporal variables. A tobit regression is a
type of censored regression model, where thresholds can be imposed on the dependent variable.
As 0 < @ < 1, this implies an efficiency score can never be larger than one, but one or more
observations are by necessity one. As several DMUSs are attributed full efficiency, there will be
a hoarding of observations at the upper limit (and theoretically, the lower limit). This method
has been used by Wu et al. (2016) as described in the Earlier research section. The latent two-
limit Tobit (2LT) regression model is specified by McDonald & Moffitt (1980) as

Vi = Bxi +w, (13)
u;|x;~N(0,02) i.i.d, (14)

where x; is a vector of 1 X k observations, 8 a vector of k x 1 coefficients. u; is a true random
error term, which by expression (14) asymptotically is identically and independently distributed
with a mean of 0, also known as the Gauss-Markov assumption. The right-hand side of the
regression specification is analogous to an ordinary least squares (OLS), with a suppressed
intercept. y; is an unobservable, or underlying, value of the observed y;. In the context of the
second-stage analysis, this means

Ify; <0,theny; =0
If0<y/ <1 theny, =y;
Ify; >1,theny; =1.

This implies the true (or underlying) y;s are censored by the observed y;s. Within the
uncensored boundaries, the specification is like an OLS. The previous conditions can be
rewritten as

lify; =21

yi =4y if 0<y; <1, (15)
0ify; <0

Given all above conditions, these can be fitted into a likelihood function, which was specified
by McDonald (2009). The likelihood function implies that, if an observation is within the
uncensored range (0 < y; < 1), the interpretation of the coefficient B is equal to a standard
OLS. If interested in values above or below the threshold (y; = 1,y; < 0), this interpretation
is not valid (McDonald & Moffitt, 1980). The coefficient must in this case be multiplied by the
probability of an observation being on the threshold, which implies that 8 < S,.s. For the sake
of the commencing second-stage analysis, there is no meaningful interpretation of values below
or above the threshold. In other words, in the context of this thesis, the interpretation of the
results is analogous to an OLS. In this thesis, the empirical models are then



SN = By + BilogFMW; + BrlogCap; + P3logLT; + BylogWs; + Bsi. Off; +u;,  (16)

where FMW; is FIT per MW for WF j. Cap; is the capacity per turbine in MW of WF j. LT; is
the expected lifetime of WF j. WS; is the average wind speed in 2016, measured at WF j. i. Of f;
is a dummy variable indicating if WF j is offshore.

O = By + BilogCap; + B,logLT; + BslogRotor; + PulogHH; + BslogWs; +
Bsi-Age; + B7i. Of f; + Pgc. Man; + foc. Area; + u; (17)

d)jop* =By + ﬁllogCapj + ,ézlogLY} + [%logRotorj + [?4logHHj + ,E’SlogWSj +
Bsi-Age; + B71.Of f; + Pgc. Man; + foc. Area; + u; (18)

Rotor; is the rotor diameter of WF j in meters. HH; is the hub height of WF j in meters. i. Age;
is @ dummy variable indicating if WF j is above (i. Age;=1) or below (i. Age;=0) 10 years of
age as of 2016. c. Man, is a categorical variable for manufacturer 0-5 (where 0 is the base level)
for WF j. c. Area; is also a categorical variable for area 0-5 (where 0 is the base level) for WF
J- The interpretation of the coefficients is %, as the specifications are level-log; if X; increases

by one unit, it will change ®; by % units. The age dummy was originally perceived as a

continuous variable, however, there was a significant grouping of observations above 12 years
and below 8 years of age and none in between. Consequently, a dummy was created to better
capture this idiosyncrasy. While arguably being endogenous to the operational efficiency score,
| regard the wind speed variable as a confounding variable which likely affects the other
exogenous variables. Lastly, to address the mediating effect of size related variables, a
specification using FIT per MW as the dependent variable is specified:

logkMW; = Bo + ,éllogCapj + ,@zlogLTj + ,@3logR0t0rj + ﬁ4l0gHHj + leogWSj +
,[?6i.Agej + Bi. off; + [?gc.Manj + ﬁgc.Areaj + u;. (19)

This regression specification is log-log and of a multiple OLS regression type. The
interpretation is in terms elasticities, i.e. a 1% increase in X; yields a f3; percent change in the
dependent variable.

3.1 Regression diagnostics

As an assumption of the empirical model is i.i.d., some pre-analysis tests were run to check the
validity of the assumption. The validity relies on non-collinearity of predicting variables and
homoscedasticity of residuals. Some predicting variables are potentially correlated, which
means | must check for collinearity. While collinearity does not necessarily affect the bias of
f;, it could cause an unnecessary rejection of the alternative hypothesis due to large standard
errors, commonly referred to as variance inflating factors (VIFs). By running the chosen



regressions in STATA and then running the command estat vif it is possible to check for
collinearity. Generally, a VIF score below 10 is deemed as good-enough for further analysis.
This is a condition which optimally should be fulfilled, as an assumption of the empirical model
is independently distributed error terms. If there is significant correlation between the predicting
variables, there is a risk of the error terms not being independently distributed. High VVIF scores
could happen due to two main reasons: there is a significant correlation between two predictors,
or many uncorrelated variables without explanatory power are added to the model. It was found
that all three size related variables — rotor diameter, capacity per turbine and hub height — were
collinear. None of these proxies the others well with respect to an efficiency score. | decided to
compromise by first regressing on the collinear variables separately, and then in the last
specification add all together. Generally, if out for causal inference, collinearity could be
naturally caused by some unknown relation between predictors. This is not necessarily a
problem for the accuracy of the regression model. To further test the specification of the
regression models, a factor analysis is performed in Appendix 2. All size related variables are
factored together to an underlying size factor, which solved the collinearity issues. The size
factor is not used as a main predictor due to the infeasibility of interpretation.

The condition of homoscedasticity instead affects the bias of the coefficient estimate B;.
Heteroscedasticity happens because the residuals are not evenly distributed along the x axis.
This means that there is a significantly higher or lower residual variance as x — oo. If
heteroscedasticity is detected, the slope of f; is likely biased. To detect this type of i.i.d.
violation, the STATA command estat hettest is run. This command executes the Breusch-Pagan
test for heteroscedasticity, where a low p value (and high chi-squared value) result implies the
point estimate is heteroscedastic. Usually heteroscedasticity does not cause too much trouble,
as STATA can run robust standard errors. This type of standard error is the most commonly
used, regardless of heteroscedasticity or not as a safety measure, which is the case in this thesis
as well. Having a sense of the collinearity and heteroscedasticity in the dataset is nonetheless
paramount for the understanding of overall fitness and robustness of the results.

3.2 Misspecification issues of second stage empirical models

Simar and Wilson (2007) point out that all DEA estimations suffer from serial correlation,
which would make any specification using normal or robust standard errors to be inadequate.
Serial correlation occurs when a temporal variable is correlated with itself, e.g. if the production
of a DMU has been decreasing and the decrease is underestimated for ten years, all ten
observations have serially correlating error terms. In the context of a DEA, this is a problem if
one is researching e.g. firm efficiency and is using panel data for a series of estimations. In this
thesis, | am assessing one point of production, and the estimates should thus not suffer from
serial correlation. As of today, there is no consensus on which empirical model is the most
appropriate to use for this purpose. McDonald (2009) argues that efficiency scores are neither
censored nor corner solution types of data, but fractional — meaning are by definition non-
parametrical. While agreeing with the sentiment of Simar and Wilson (2007), he argues that a
statistical model which yields very different results to an OLS should rise suspicion and argues
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further that an OLS is not mis-specified due to the reason above. Furthermore, McDonald
(2009) means that what is often the case with statistical models is a tradeoff between ease of
interpretation and accuracy of the model. While there may or may not be some degree of
misspecification for OLS, these still yield results which would likely be close to any other type
of regression model, it is argued. | would analogically argue this is the case for a tobit
specification in this setting. Super efficiency estimations have gained in popularity, where a
DMU may be attributed a higher efficiency score than one. In this sense, the standard SBM or
CCR act censoring, as there may be DMUs that are more efficient than other efficient DMUs —
which most likely would be evident if running a second efficiency estimation but only using
previously efficient DMUs. For the sake of comparison, the sensitivity analysis in Appendix 3
compares the differences in the estimators, where it is found that tobit yields almost identical
results to OLS.
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4 Data

4.1 Operational and environmental parameters

The Joint Research Centre (JRC) of the European Commission (2012) describes that common
approaches for damage assessment is midpoint or endpoint, which both are part of the so-called
ReCiPe method of damage estimation in LCIA. Midpoint refers to a broad matrix of different
specific environmental damages which are caused by a given activity. Each damage has damage
pathways, such as increased risks for respiratory diseases, or reduction in the number of animal
species. A midpoint damage can give rise to several damage pathways. The endpoint measure
Is an aggregate of the damage pathways, divided into three broader categories: human health
impacts, ecosystem impacts and resource impacts. Blending these impact categories could thus
cause double counting of some damages. Therefore, only midpoint damages were chosen for
this thesis, as they can be more directly related to a specific type of damage. It should also be
noticed that the emission of one type of chemical might cause two or more types of damages.

Table 1. Summary statistics on environmental and operational parameters

Non-material inputs Mean St. Dev Min Max Descriptio
n

Turbines 11.37 20.69 4.00 111.00 11

Capacity, WF, MW 25.29 58.91 1.25 399.60 11

Wind speed, 2016, m/s 7.57 0.78 6.53 9.31 11

FIT, WF, tDKK, year 22707 63 837 440 437 797 11

Environmental impacts (per

year)

Acidification, PNOF, mol H+- 6 677 17 216 316 108 953 12

eq.

Global warming potential, 1066 794 2683428 49376 1995064 12

GWP, kg CO2-eq

Eutrophication, PDF, kg P-eq. 660 1772 27 10 896 12

Land use, SOM, kg soil 1914 452 3918139 114331 24588443 12

Ozone layer depletion, ODP, kg 0.0658 0.1545 0.0034 0.9561 12

CFC-11

Material inputs (per year)

Metals, kg 236 476 616 371 9316 3665671 11

Plastic components, kg 25 055 69 785 862 490 813 11

Concrete, kg 23735582 87300175 9165 468 272 676 11

Wire drawing, m-kg 1525 4710 68 31 862 11

Fossil fuels, kg 761 1283 82 7 332 11

Logistics, ton-meter 504 607 551 659 4251 2857528 11

Electricity production

2016, MWh 82251 235199 1 605 1662027 01,02

11: Input for the operational efficiency estimation; 12: Input for the environmental efficiency estimation; O1,
02: Output for both efficiency estimations.

Freshwater and terrestrial acidification (PNOF) is mainly caused by the emission of NH;
(ammonia), NO, (nitrogen dioxide) and SO, (sulfur oxide) (JRC, 2012). Emissions of any of
these matters from any activity in the life cycle of a wind turbine will be attributed a certain
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impact on the acidification category, which is then converted to mole equivalents. Mole is a
given count of hydrogen ion (H+) particles needed to react with an acid base. Different
chemicals release different amounts of hydrogen ions, enabling a point of comparison between
acids. Global warming potential, GWP, is the number of kg C0,-eq.’s all environmental
impacts give rise to, calculated from their climate warming potentials over a timeframe of 100
years. For instance, the above-mentioned mole-eq.’s can be converted to GWP. Freshwater
eutrophication (PDF) is mainly caused by NH;, NO, or P (phosphorus) being released into the
air or freshwater. Phosphorus is the so-called limiting factor for freshwater eutrophication and
is the unit of measure in kg’s of phosphorus (P) equivalents. Land use (SOM) is the kg’s of soil
a given wind turbine is occupying and/or displacing. Ozone layer depletion (ODP) is caused by
the emissions of freons to the air — in the case of wind turbine activities it is the CFC-11’s
(chlorofluorocarbon-11) that are the main source of ozone depletion. This impact is measured
in kg’s.

For this thesis, the metals category is an aggregate of chromium steel, rolled sheet steel,
reinforcing steel and cast iron. These are measured in kg’s. The plastic components category is
constituted by all components that either are plastics or related to plastic constructions, such as
the rotor of a wind turbine. The inputs aggregated are glass fiber, polypropylene, polyethylene,
polyvinylchloride and epoxy resin. These are measured in kg’s. In the raw data set, concrete is
measured as cubic meters. For the purposes of this thesis and for ease of interpretation, this unit
was converted to kg’s. The wire drawing input is the amount of copper used to connect a wind
turbine to the main grid. The measurement is kg-m. The kg-m measure is interchangeable,
which means it could either be interpreted as one kg or one meter, since it is assumed that one
meter of copper wire weighs one kg. For the purposes of this thesis, it is regarded as one meter.
The fossil fuels category is an aggregate of diesel consumed by the time of construction and for
daily maintenance operations and the amount of lubricating oil consumed over the lifetime of
a wind turbine. In the raw dataset, the diesel consumption was described in megajoules, but for
the purposes of this thesis and for ease of interpretation this unit was converted to kg’s. The
logistics input category is an aggregate of transportation by lorry and by barge (ship). The unit
of measurement is ton-km, which is the number of km’s a lorry or barge has transported the
equivalent of one ton. For instance, if a lorry transports a rotor blade which weighs six tons and
has travelled one km, it is reported as six ton-km’s.

Furthermore, not all material categories are accounted for in this thesis due to a limited number
of observations. An efficiency estimation has an upper observations-to-parameters ratio, thus a
judgment call had to be made on which inputs to include. Considering the material inputs used
by Iribarren et al. (2013), a “material input category” solution was reached, which allows for
including a larger number of inputs at the expense of more granularity. This aggregation method
may be more sensitive than for the previous application, as | also consider two production types.
There is in other words a risk for excluding an input which disproportionately is higher or lower
for either production type.

Another input for the operational efficiency estimation is the annual FITs, which | define as the
discounted value of the average subsidy per expected lifetime year, per WF. This is a modelled
variable. For this input | had to assume that all WFs of the sample consist of utility scale WFs
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and are owned by utility companies. This is not an unreasonable assumption, as the frequency
of privately owned utility scale WFs in Denmark is — if not non-existent — very small. The type
of ownership matters, as it is the foundation on which the size of the subsidy is based. Table 2
describes the size and conditions of the subsidies. All WF operators are allowed to individually
negotiate the level of price supplementation, thus it should be noted that there may be individual
positive deviations to these subsidy regimes, as what is assumed is the very minimum subsidy
per KWh,

Table 2. Description of FITs

Type of WF Price supplement | Condition Balancing Condition
(DKK per KWh) reimbursement
(DKK per KWh)
Omnshore 0.33 Maximum 10 years. 0.1 Until
decommissioning,.
Offshore 0.353 Maximum 42000 full- | 0.1 Until
load hours. decommissioning,.

Full-load hours are calculated as follows:
FLHye; = Cy * 6600, (20)

Cy. is the median capacity factor for a vector of wind turbines k belonging to WF j. Here, it is
the median measured capacity factor that is used instead of the wind speed, as the actual wind
speed data only covers 2016 and could become misleading if used as a representative average.
The factor of 6600 is referring to the number of hours in a year. Simply put, the full load hour
measure is the number of hours per year that a given WF is working at its highest capacity. The
total subsidy for a given WF is calculated as

FITj|onshore = Y.K_, FLH, KW, (0.1ELT; + 3.3) k € j, (21)
and

42000 .
FITjlof fshore = TX_; FLH KW (0.1ELT; + 0.35320) k € ). (22)

k is a vector of wind turbines belonging to WF j, and K is the number of turbines belonging to
WEF j. FLH,, is the median full load hours of wind turbine k. KW, is the nameplate capacity in
KW of wind turbine k. The discounted average subsidy per lifetime year (DFIT;;) is then
calculated as

FIT ;

FIT )05+ 2
DFITys = —— (23)
where
r=0.07, (24)
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FIT;,, = FIT;;, = FIT;r.. (25)

FIT; ,_is the total of subsidy s in year 0 for WF j. ¢, denotes year t of subsidy s. T is the number
of years eligible for subsidy s. r is the social discount rate. In other words, a social discount rate
of 7% is assumed for this thesis. A lower discount rate would yield a higher FIT for WFs that
have a longer expected lifetime. An artefact of calculating the average subsidization by
discounting on the expected lifetime is that a longer expected lifetime effectively will decrease
the FIT. There are in other words two mechanisms — average annual output (measured as FLH)
and expected lifetime — which are expected to have a mutually offsetting effect with respect to
environmental efficiency. This parameter goes to the efficiency estimation as the subsidy inputs
per WF and will also be used for the second stage analysis but is for this purpose divided by the
overall capacity of the WF.

4.2 Exogenous variables

Table 3 describes the exogenous variables used for the second stage analysis. Here, FIT per
MW was used instead of FIT per WF, as the subsidy is highly dependent on the farm size and
number of turbines. This is easily accounted for by dividing the FIT per WF by the total farm
capacity, which generates a FIT per MW measure instead. The effect looked for is the
environmental efficiency score depending on average subsidization per MW. Capacity per
turbine is one of three size related variables and is the maximum momentaneous output
(nameplate capacity) for a given turbine in a WF. The rotor diameter is a reflection of the swept
area of a wind turbine and is generally larger, the larger the capacity per turbine. Analogously
— as the rotor diameter increases the hub height increases to accommodate for larger blades.
The hub height is measured from the foundation up to the rotor hub of the turbine. The expected
lifetime is an estimate based on decommissioned turbines and is used as a control variable in
this context. The wind speed is the average wind speed of 2016, measured at the center of a
given WF at an altitude equaling the hub height. The expected lifetime and wind speeds will be
further discussed below.

Table 3. Summary statistics. Exogenous variables

Variable Obs Mean Std. Dev. Min Max
FIT per MW, 2019, tDKK 75 632.97 222.63 271.51 1122.41
Capacity per turbine, MW 75 1.8 .99 23 3.6
Expected lifetime, years 75 20.75 2.49 16.25 25.75
Rotor diameter, m 75 73.55 24.84 29 120
Hub height, m 75 64.34 18.43 31 94
Wind speed, 2016, m/s 75 7.57 .78 6.53 9.31

The categorical variables used for the second stage analysis are age, offshore, manufacturer and
area. Age denotes whether the WF is 10 years or newer. Offshore denotes whether the WF is
located offshore. Manufacturer is a categorical variable consisting of six manufacturers, where
0=Siemens, 1=NEG Micon, 2=MHI Vestas, 3=Nordex, 4=Bonus and 5=Wind World. There
are relatively few observations for 1, 3, 4 and 5, as Siemens and MHI Vestas are
disproportionately more common manufacturers. Area is also a categorical variable consisting
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of six areas, where 0=The Northmost tip of Jylland, 1=Mid-East Jylland, 2= Mid-West Jylland,
3=South Jylland, 4=North-West Jylland, and 5= Lolland & Sjelland.

4.3 Data collection and discussion

The LCA_WIND DK dataset by Sacchi et al. (2019) and Besseau et al. (2019) consists of
11281 observations of planned, operational and decommissioned wind turbines. 2560 turbines
are planned, 3125 are decommissioned and 5596 are operational as of 2019. For this thesis |
discarded turbines that are either in the planning stage or decommissioned as of 2016. 2016
output is chosen as the output variable, as that is the latest year of actual outputs in the
LCA_WIND_DK dataset. It is utility scale wind farms that are of interest, which in this thesis
is defined as a wind turbine with a maximal output of > 0.1 MW. Many observations had to be
discarded due to lack of sufficient data on vital supplementary information, such as
manufacturer, capacity, tower height or rotor diameter. Another variable which many
observations lacked was actual median capacity factors, which is an important variable for
estimating the total lifetime subsidy.
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Figure 1. Distribution of WFs. Yellow: Northmost tip of Jylland;
Blue: Mid-East Jylland, Green: North-West Jylland; Red: Mid-
West Jylland; Purple: South Jylland, Orange: Lolland & Sjelland.
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Asthe LCA_WIND_DK dataset consists of single turbines, these had to be aggregated to WFs.
I chose to define a WF as a constellation of >4 wind turbines that are situated in close proximity.
“Proximity” has a loose definition here, as there is a significant difference in distance to the
closest turbine between different WFs. Mostly, the grouping of turbines is obvious due to close-
matching IDs, turbine types and locations. For some occasions, the proximity criterium showed
to be intricate to apply. In such cases | grouped turbines by referring to their longitudinal and
latitudinal coordinates and other parameters which matched well. Undoubtedly, the WF
grouping process introduced some amount of arbitrariness to the sample selection. All in all,
852 individual turbine observations, totaling 75 (whereof 65 onshore and 10 offshore) WFs,
were deemed feasible for further analysis given the criteria above and the exclusion of
incomplete observations. Moreover, WFs containing two or more manufacturers of turbines
were separated into two or more separate DMUs. A typical case is the Rgnland offshore WF,
where four turbines are manufactured by Bonus and four by MHI Vestas. As the sample was
selected, the coordinates were transferred to Google Maps for a visual inspection of the
distribution over the Danish map. The distribution can be seen in Figure 1. As most WFs of the
population are located in Western Jylland, there should not be a considerable spatial bias. The
WFs were grouped into six areas, covering all of Denmark besides Bornholm.

As the wind turbines are grouped into WFs, the respective input and output parameters had to
be aggregated. There are two possible ways of going about the aggregation process, where the
first is to simply add all inputs and outputs together for each WF. The second option is to
aggregate the total inputs and outputs per expected lifetime year. | argue choosing the first
option of aggregating could lead to treating WFs with high expected lifetime unfairly, as this is
expected to increase the overall efficiency positively. Thus, the aggregation method chosen is

YR_vi ,
ELT; = YX_, ELT, /K 27)

Where Y, ; is input i of WF j, k is a vector of wind turbines belonging to WF j, y; is input i
of wind turbine k, and ELT; is the expected lifetime of WF j. The expected lifetime of WF j is
the average expected lifetime of each wind turbine belonging to WF j. The aggregation process
is analogous for both input sets. The output of 2016 is simply aggregated for each WF, as it is
already on an annual basis.

The information on subsidy rates was gathered from ENS (2017) and consists of predicted
minimum price supplements for utility scale wind turbines of both offshore and onshore types
for 2020. The wind speed data from 2016 was collected from Renewables Ninja (2020).
Renewables Ninja is a data source which focuses on key RES inputs, such as wind speeds, sun
hours and precipitation, as predicted by MERRA-2 simulations.! The simulations are based on
weather satellite data. By not relying on weather stations, coordinates can be used to locate the

1See Staffell & Pfenninger (2016) and Pfenninger & Staffell (2016) for a more elaborate
account on how these data points were predicted. The interactive platform can be accessed via
https://www.renewables.ninja/.
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onsite wind speed. The raw wind speed data is given hourly, at an altitude equaling the hub
height of the wind turbines in each WF. The hourly wind speeds were then averaged to a yearly
average wind speed per WF. A drawback in relying on wind speed simulations is that satellites
may be granular in the predictions and there is a chance of disregarding highly local factors.
However, relying on adjacent weather stations would likely not increase the precision of the
data, as these are often not onsite; and if so, not necessarily in the middle of the WF.

Before presenting the results, I will discuss the reliability and accuracy issues of the dataset
used for this thesis. LCA studies are in most cases associated with a significant degree of
uncertainty — especially the LCIA step. It is depending on a number of assumptions and on
imposed restrictions on degrees of separation from the original emissions source. A given DMU
could in other words be causing additional impacts to the environment, and this would not be
accounted for, as the inventories are based on an a priori LCA method. There could be many
differences between LCAs performed a priori and a posteriori, where the latter could account
for this type of idiosyncratic impacts. There are on the other hand instances where these event-
caused impacts could be less interesting. For instance, maintenance work which is above or
under the estimate level is not necessarily interesting unless it is caused by an explanatory
variable. Accounting for such events could on the contrary potentially reduce the external
validity of the results. Nonetheless, such maintenance work could be reflected in an a posteriori
LCA through e.g. additional metal use or plastics use. For this thesis, | would argue an a priori
LCA method is likely more feasible than the prior.
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Figure 2. 4-step chart on fleet-wide LCAs in Denmark, as published in Sacchi et al. (2019).
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The dataset this thesis is mainly based on is a tailormade fleetwide LCA authored by Sacchi et
al. (2019) and Besseau et al. (2019), as mentioned above. The LCI is built on, among other
things, manufacturer data, spatial information (such as location, on/offshore, distance to main
grid), production type specific information (e.g. additional material for an offshore turbine),
ecoinvent directories for background processes, local installation proceedings, year of
installation/manufacturing and service time. The synthetization of the dataset is described
thoroughly in both authors above. A flow-chart over the process is displayed in Figure 2. An
important difference between other LCAs is that this one targets the whole fleet, rather than a
subset of turbines, such as 2 MW turbines, or a specific WF. While enabling this type of
analysis, it inevitably also introduces some arbitrariness to the dataset. For instance, exceptional
maintenance work (e.g. if a turbine fails) cannot be accounted for, as mentioned above.
Generally, for the turbines themselves, the inventories are based on the manufacturer’s LCI
data. If these do not exist, the authors interpolated the inventories based on known upscaling
ratios, such as foundation weight to tower height, or rotor diameter to hub height. In the chosen
sample, which was described above, these are discarded to enhance the reliability. Spatially
dependent inventories, such as wire drawing, are based on known parameters, such as the
distance to the main grid. It is also conditioned on the nominal output of the turbine. The
logistics, road builds and lubricating inputs are based on ecoinvent inventories on background
processes and interpolated, conditional on the capacity of a given wind turbine. This since
ecoinvent inventories on wind turbines are categorized by capacity.

As is common practice for LCA analyses, the LCIAs are modelled using an LCA software as
the inventories are created. A unique feature of this dataset and which sets it apart from most
other LCAs is that it does not assume values on proven crucial factors of lifecycle impacts, such
as the expected operational lifetime or capacity factor. Most other LCAs assume a capacity
factor as reported by the manufacturer and a lifetime of 20 years. While there were no
significant differences in expected lifetime between installation year, manufacturer or capacity,
Besseau et al. (2019) and Sacchi et al. (2019) found a normal distribution of decommissioned
turbines with respect to their lifetime, and randomly assigned expected lifetimes to operational
turbines based on this distribution. Other problems arising from interpolating data, which could
affect the results of the efficiency estimation, especially concern spatially dependent variables.
Technology-specific upscaling algorithms are used for most LCAs and have proven feasible.
There is a higher degree of stochasticity in the spatial variables, however. For instance, the
concrete use is probably strongly affected by the soil type, as harder soil would imply less
grouting for the foundation. Furthermore, different kinds of vessels may have been used for
different transports, which could significantly alter the ton-km’s required for transportation.
Generally, the authors’ LCAs lie within the realm of previous LCA studies in terms of GWP
per KWh, based on a sample of 500 KW, 1 MW and 2 MW (offshore/onshore) turbines. This
indicates the fleet wide LCA is sufficiently reliable for further studies. Other factors which the
authors analyze for their fleetwide LCA is recycling rates and mode of recycling. These factors
were not used in this thesis, as they are strongly temporally dependent as noted by the authors.
As all turbines of the chosen sample are operational as of 2016, | argue it would introduce
additional uncertainty if hypothesizing on the future recycling rate of different materials.
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5 Results and discussion

5.1 Efficiency estimation results

In Table 4 and Table 5, summary statistics describe the operational efficiency estimation and
the environmental efficiency estimation. Just as in Lozano et al. (2009), there seems to be a
discrepancy between the two efficiency scores, where WFs generally score higher in the
operational efficiency score. The complete results, where individual efficiency scores are
presented for the environmental and operational estimation, can be found in Appendix 1.

Table 4. Summary statistics. Operational efficiency estimation.

Variable Obs. Mean Std. Dev. Min Max
Operational efficiency scote, ®°F 75 7 2 37 1

Input slack, turbine count 75 3.54 5.35 0 33.29
Input slack, WE capacity, MW 75 3.24 5.18 0 37.77
Input slack, wind speeds, m/s 75 4.37 2.58 0 7.84
Input slack, FITs, tDKK 75 733.76 2313.34 0 16045.15
Input slack, metal, kg 75 37080.75 108439.6 0 729958.4
Input slack, plastics, kg 75 1935.86 3301.94 0 18390.63
Input slack, fossil fuel, kg 75 201.44 276.11 0 1692.11
Input slack, concrete, kg 75 3080000 1.73e+07 0 1.14e+08
Input slack, wire drawing, m/kg 75 171.46 574.27 0 4915.76
Input slack, logistics, ton-km 75 116115.1 166174.2 0 1130000

Table 5. Summary statistics. Environmental efficiency estimation.

Variable Obs.  Mean Std. Dev. Min Max
Environmental efficiency score, ®EN 75 .54 17 25 1

Input slack acidification 75 2005.54 44421 0 24135
Input slack GWP, CO2-eq.’s 75 320219.1 680133.6 0 3990000
Input slack eutrophication 75 194.05 494.02 0 2752.69
Input slack land use, kg soil 75 772854.9 1060000 0 6260000
Input slack ozone depletion, CFC-eq.’s 75 .02 .04 0 24

In the operational efficiency estimations, 16 WFs were fully efficient, of which 10 are sited
onshore and 6 offshore. Of all onshore WFs, 15.3% are reported efficient, whereas 60% of the
offshore WFs are efficient. On average, it was found that most WFs could use less operational
inputs to achieve a given output level. As is evident, most input slack categories displayed large
standard deviations, stretching well beyond the mean. This could be explained by the
differential in farm sizes, as can be seen in Table 1 in the Data section, as well as offshore farms
generally using more concrete per turbine. In the environmental efficiency estimations, two
WFs were reported efficient. Among these, one was situated onshore and one offshore; 1.5%
of the onshore WFs were efficient, and 10% of the offshore WFs. Summary statistics on
efficient DMUs from both estimations can be found in Appendix 1.

20



A Spearman rank correlation test was carried out to investigate whether the internal ranking of
efficiencies differ significantly. The internal ranking correlation was found to be .9365
(p<.001), which implies that the efficiency ranking of DMUs between the two estimations
highly correlates.

Table 6. Two-sample T test with unequal variances

Obs., Obs., Mean, Mean, Dif. SE T value P value
onshore offshore onshore offshore
DENV 65 10 .676 .85 -173 065 2.7 .009
POP 65 10 515 .699 -.183 056 -3.3 .002

As both offshore and onshore WFs are included in the estimation sample, a Welch’s T test was
performed to evaluate the hypothesized mean difference between the two production types. The
results are displayed in Table 6. The differences in means are significant on the 1% level for
both types of efficiency scores, which suggests that an offshore farm on average is more
efficient than its’ onshore counterpart, which is analogous to the findings of Sacchi et al. (2019).
The point estimate in difference is 17-18% higher for offshore WFs for both types of efficiency.
This also suggests there is a significant heterogeneity in the sample, which should be addressed
by adding an offshore dummy to the second stage analysis.

5.2 Sensitivity analysis

A third efficiency estimation was carried out, where non-material inputs from the operational
efficiency estimation were omitted. The average efficiency score was .7, with lower variance
than the operational efficiency score. To investigate changes in internal ranking, another
Spearman rank correlation test was carried out. The correlation results were .929 (p<.001)
between the operational and material efficiency estimation, and .8955 (p<.001) between the
environmental and material efficiency estimation. This suggests the internal rankings are robust
to omitting inputs. To further test this contingent association, I tried to replicate the efficiency
score association found by Lozano et al. (2009), Avadi et al. (2014) and Vasquez-Rowe et al.
(2015). The results were comparable to those found by the authors, with a below-one point
estimate for the environmental and operational efficiency score. The associations were further
compared with an OLS to examine how close the point estimates are. No significant difference
between OLS and the preferred tobit specification was found. By the same token, the material
efficiency score was regressed to check further robustness of this association. The results from
this sensitivity analysis (including material efficiency estimation results and summary statistics)
can be found in Appendix 3. All in all, the sensitivity analysis suggests that the efficiency
estimations are robust to input omission and are highly correlated, indicating operational,
material and environmental efficiency all depend on similar facilitating factors.
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5.3 Second stage results

The following coefficient interpretations are in a 95% confidence interval if nothing else is
specified. A central aim of this thesis was to predict the association between environmental
efficiency and annual subsidy grants per MW. Column 1-3 of Table 7 describes the results of
the FITs, regressed on the environmental efficiency score. Column 1 only regresses ®£NV on
the FIT and controlling for offshore WFs, while column 2 addresses all variables which could
affect the FIT. Column 3 additionally controls for differences with respect to age, manufacturer,
and area. The results of the FIT seem robust, with statistically insignificant coefficient
differences. The point estimate varies from .3748+.08 (p<.01) to .3148+.117 (p<.01). From the
latter, a 1% increase in FIT per MW is on average predicted to increase ®£NV by .00315 units.
An interesting find is that being situated offshore does not have explanatory power in this
specification. This does not contradict the results in the previous section, as it means that the
differences in efficiency between onshore and offshore WFs can largely be explained by the
components of the FIT variable. It be pointed out that the results of these three specifications
are not to be interpreted causally. It is unlikely that a higher subsidy would encourage WF
operators to become more environmentally efficient. The FIT per MW reflects underlying
factors by design, such as increased output, higher capacity factors, and lower expected lifetime.
Moreover, it does not seem like there are differences with respect to manufacturer or area when
regressing on the residual values of FIT per MW, although adding to the model’s overall
significance. It seems this predictor provides a very good fit to predicting environmental
efficiency, which suggests that the first part of the argument presented in this thesis holds.
Further investigation on the factors mediating this effect is feasible.
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Table 7. Second stage analysis. Environmental efficiency score

) ) ® @ ) © 0
Tobit Tobit Tobit Tobit Tobit Tobit Tobit
FIT per MW, tDKK, 0.3748%¥* 0.3653*** 0.3189*#k
log (0.0408) (0.0384) (0.0597)
Offshore 0.0327 -0.0030 0.0485 0.1474%* 0.1464** 0.1732%%* 0.1787***
(0.0467) (0.0396) (0.0513) (0.0589) (0.0603) (0.0561) (0.0577)
Expected lifetime, 0.6562%% 0.5058** 0.3834* 0.3298* 0.4255* 0.3637
years, log (0.1397) (0.2101) (0.2209) (0.1822) (0.2199) (0.2255)
Capacity per turbine, 0.1084*** 0.1538**k 0.1689*** 0.2613%*
MW, log (0.0212) (0.0437) (0.0524) (0.1079)
Wind speed 2016, m/s, 0.1482 -0.0276 0.2176 0.2725 0.3077 0.2651
log (0.1430) (0.2082) (0.2479) (0.2599) (0.2363) (0.2258)
New WF (<10 years) -0.0830 -0.0065 0.0502 0.0486
(0.0887) (0.0948) (0.0790) (0.0903)
Rotor diameter, m, log 0.29571%##* -0.5756**
(0.0775) (0.2364)
Hub height, m, log 0.3483** 0.3841*
(0.0912) (0.2052)
Manufacturer
(Siemens=0)
1. NEG Micon -0.0522 -0.1031 -0.0719 -0.0456 -0.1167
(0.0695) (0.0713) (0.0482) (0.0654) (0.0728)
2. MHI Vestas -0.0227 -0.0738 -0.0525 -0.0485 -0.0973%*
(0.0518) (0.0488) (0.0484) (0.0467) (0.0478)
3. Nordex -0.1216 -0.3250%+* -0.2664%F* -0.1844** -0.281 9%k
(0.0979) (0.0847) (0.0605) (0.07406) (0.1047)
4. Bonus -0.0867 -0.0957 -0.0634 -0.0477 -0.1049
(0.0783) (0.0913) (0.0694) (0.0837) (0.0896)
5. Wind wotld -0.0434 -0.0895 -0.0718 -0.0676 -0.1395*
(0.0585) (0.0747) (0.0808) (0.0774) (0.0764)
Area (Jylland,
Northmost tip=0)
1. Jylland, Mid-East -0.0709 -0.0908* -0.0795%* -0.0693 -0.0803
(0.0533) (0.0537) (0.0455) (0.0503) (0.0541)
2. Jylland, Mid-West -0.0282 -0.0135 -0.0194 -0.0160 -0.0032
(0.0478) (0.0552) (0.0516) (0.0502) (0.0521)
3. Jylland, South -0.0654 -0.0635 -0.0595 -0.0581 -0.0570
(0.0433) (0.0512) (0.0513) (0.0464) (0.0469)
4. Jylland, North-West 0.0005 0.0346 0.0252 0.0314 0.0439
(0.0582) (0.0639) (0.0669) (0.0642) (0.0593)
5. Lolland & Sjzlland -0.1050 -0.1596%* -0.1508%* -0.1534%* -0.1684**
(0.0642) (0.0688) (0.0676) (0.0721) (0.0704)
Obs. 75 75 75 75 75 75 75
Pseudo R2 -1.8012 -2.1689 -2.3979 -1.9618 -1.8137 -1.9844 -2.1308
F 53.1903 38.0268 49.2334 17.8389 16.6102 18.1630 16.6311

Standard errors are in parenthesis
xRk p<0.01, ** p<0.05, * p<0.1

Column 4-7 are specifications which analyze the mediating factors of environmental efficiency.
As discussed in the Method section, capacity per turbine, rotor diameter, and hub height are
strongly collinear in Table 7. These were first regressed in three separate specifications (column
4-6 of Table 7). The age dummy also showed signs of collinearity in column 5 and was omitted.
This way of addressing the collinearity was chosen throughout the remainder of the results and
is mainly intended for comparative purposes to the full specification. Put differently, the first
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three columns are to be interpreted as predictive findings, whereas the full specification is closer
to a causal interpretation. The full specification in column 7 has a mean VIF of 10.86 and
individual predictors up to 62. This does not necessarily bias the coefficients but inflates the
coefficient standard error and causes lower significance levels for collinear variables. This
likely also explains the overall significance of column 7, as it is lower than for the previous
models, despite having relatively many significant results. A quite robust find is that capacity
per turbine has a positive effect on ®ENV. The coefficient almost doubled in column 7 (8, =
261 +.212), which is an interesting find. This is likely due to the strong confoundedness with
the rotor diameter; the rotor diameter was predicted to affect ®ENV positively (8; = .295 +
.152) in column 5, while in column 7 it is predicted to strongly decrease ®£N" by —.00576 +
.00463 units. The finding suggests, despite high collinearity that including collinear variables
is preferable as it is not always obvious in which way they affect other predictors. The results
from this specification would further indicate that a single size variable is not sufficient to
analyze the overall size effect. Instead, it is the compound of these which are of most interest
for a causal interpretation. For the remainder of the results discussion, | will mainly focus on
the specifications which account for all size factors.

It seems the hub height has an overall positive effect on ®EMV, and which seems relatively
robust in column 6 and 7. A possible explanation is that higher or more stable wind speeds at a
higher altitude offset the additional material needed for construction, or is simply proxying an
underlying quality of environmental economies of upscaling. Also, offshore WFs are
consistently and significantly differing from the baseline intercept. They are predicted to on
average be .17+.113 units more efficient than being onshore. As the FIT per MW predictor
caused the offshore WF intercept to become insignificantly different to onshore WFs, the
explanation is likely found in the components of this variable. It is likely due to an on average
higher capacity factor, meaning a higher output per MW, everything else being equal. A high
capacity factor can be reached either through high wind speeds or stable wind speeds
(commonly referred to as wind curtailment rate) — or a combination of both. Wu et al. (2016)
found wind curtailment rates to be of high explanatory value in their second stage analysis, and
it is likely an omitted factor in these specifications. A more general discussion on omitted
variables and heterogeneities with respect to manufacturer and area will be held below.

Table 8 displays the results of the second stage analysis of the operational efficiency score. It
can be noticed that the point estimates on average are higher for this efficiency score. This is
due to a generally higher operational efficiency score among WFs, as noted in the Efficiency
estimation results section above. Also, coefficients above one occur in this table. This does not
imply a larger effect size than the allowed range, as a level-log specification is interpreted as
Bi

o3 as described in the Method section.
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Table 8. Second stage analysis. Operational efficiency score

M @ ©) @
Tobit Tobit Tobit Tobit
Capacity per turbine, 0.1041 0.1659
MW, log (0.0878) (0.1700)
Expected lifetime, 0.9527** 0.6221* 1.0700%** 0.9332**
years, log (0.3699) (0.3339) (0.3681) (0.3839)
Wind speed 2016, m/s, 0.7435 0.7796 0.7672 0.8824**
log (0.5038) (0.5128) (0.4717) (0.4393)
New WF (<10 years) 0.2278 0.2096 0.3469**
(0.1649) (0.1412) (0.1468)
Offshore 0.2427%* 0.1999* 0.2581** 0.3237#%*
(0.1153) (0.1123) (0.1028) (0.0917)
Rotor diameter, m, log 0.3134%* -1.0881**
(0.15406) (0.4719)
Hub height, m, log 0.3566* 0.9905**
(0.1868) (0.3875)
Manufacturer
(Siemens=0)
1. NEG Micon 0.0576 -0.0293 0.0941 0.0660
(0.1103) (0.08306) (0.1029) (0.1123)
2. MHI Vestas 0.0146 -0.0052 0.0366 -0.0123
(0.0818) (0.0837) (0.0765) (0.0798)
3. Nordex -0.1961 -0.2930¢* -0.1038 -0.0228
(0.1372) (0.1041) (0.1178) (0.1751)
4. Bonus -0.0509 -0.1668 -0.0460 -0.0425
(0.1465) (0.1375) (0.1399) (0.1415)
5. Wind wotld 0.0954 0.0493 0.1327 0.0112
(0.1648) (0.1854) (0.16206) (0.1760)
Area (Jylland,
Northmost tip=0)
1. Jylland, Mid-East -0.0453 -0.0746 -0.0452 -0.0205
(0.0702) (0.0662) (0.0654) (0.0652)
2. Jylland, Mid-West 0.0421 0.0144 0.0322 0.0538
(0.0925) (0.0884) (0.0859) (0.0773)
3. Jylland, South -0.0609 -0.0628 -0.0637 -0.0408
(0.0818) (0.0821) (0.0748) (0.0637)
4. Jylland, North-West 0.0407 -0.0024 0.0344 0.0533
(0.1182) (0.1208) (0.1156) (0.1104)
5. Lolland & Sjzlland -0.1257 -0.1454 -0.1294 -0.1408
(0.0850) (0.0906) (0.0875) (0.0876)
Obs. 75 75 75 75
Pseudo R? 1.3951 1.2404 1.5015 1.7426
F 17.4308 12.5872 11.8897 6.9673

Standard errors are in parenthesis
X p<0.01, ** p<0.05, * p<0.1

A surprising find is that capacity per turbine is not driving ®°% in column 1 or 4, albeit with a
positive point estimate. Possibly it could be explained by that the operational efficiency
estimation has a broader spectrum of inputs than the environmental estimation, and of which
not all inputs become relatively smaller per MW with higher turbine capacity (e.g. wind speed,
number of turbines). Also, the same effect on the rotor diameter variable is evident for ®°F in
column 4, but with a larger coefficient (53 = —1.088 + .925), which is to be expected. A 1%
increase in rotor diameter is expected to reduce ®°F by more than .01 units. That is, if the rotor
diameter is 100 meters, a 1-meter increase is expected to reduce ®°? by more than .01,
everything else being equal. This is a relatively large effect size. By the same token, the hub
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height is just weakly significant and positive in column 3, whereas in column 4 the coefficient
is larger, which again indicates negative confounding likely caused by the size variables. The
effect size in column 4 is smaller than for the rotor diameter variable (83 = —.991 +.76). As
above, the offshore WFs are significantly more efficient than onshore WFs, where the point
estimate in column 4 is .324+.18 efficiency units higher than onshore and are in line with the
findings of Sacchi et al. (2019). Other factors held constant, this is relatively large effect size.
The point estimate varies notably when adding and omitting size related variables and the
offshore dummy border-to being insignificant in column 2. This is likely due to that a
component of the offshore quality is an on average larger size.

Table 9. Second stage analysis. FIT per MW

0 ®) ®) @
OLS OLS OLS OLS
Capacity per turbine, 0.046 -0.607***
MW, log (0.073) (0.179)
Wind speed 2016, m/s, 0.773* 0.685 0.767* 0.902**
log (0.415) (0.415) (0.400) (0.413)
Expected lifetime, -0.374 -0.429 -0.269 -0.140
years, log (0.425) (0.391) (0.408) (0.343)
New WF (<10 years) 0.245%* 0.213** 0.255%*
(0.102) (0.090) (0.104)
Offshore 0.310%%* 0.257#%* 0.31 1% 0.313%**
(0.078) (0.075) (0.075) (0.086)
Rotor diameter, m, log 0.377++* 1.155%%*
(0.135) (0.325)
Hub height, m, log 0.233* 0.302
(0.119) (0.230)
Manufacturer
(Siemens=0)
1. NEG Micon -0.156* -0.211%* -0.136 0.035
(0.088) (0.083) (0.090) (0.098)
2. MHI Vestas -0.159** -0.158** -0.145%* -0.036
(0.067) (0.065) (0.066) (0.069)
3. Nordex -0.634*** -0.729%** -0.587+** -0.324*
(0.130) (0.120) (0.132) (0.163)
4. Bonus -0.025 -0.135 -0.033 0.110
(0.140) (0.115) (0.137) (0.140)
5. Wind World -0.142 -0.113 -0.109 0.042
(0.152) (0.156) (0.148) (0.173)
Area (Jylland,
Northmost tip=0)
1. Jylland, Mid-East -0.059 -0.105* -0.065 -0.030
(0.056) (0.057) (0.054) (0.055)
2. Jylland, Mid-West 0.049 0.015 0.039 0.015
(0.077) (0.076) (0.074) (0.066)
3. Jylland, South 0.008 -0.011 0.001 0.004
(0.083) (0.081) (0.078) (0.066)
4. Jylland, North-West 0.108 0.074 0.102 0.077
(0.093) (0.087) (0.091) (0.094)
5. Lolland & Sjalland -0.168* -0.182%* -0.172% -0.136
(0.088) (0.097) (0.090) (0.093)
Obs. 75 75 75 75
R-squared 0.823 0.827 0.830 0.860
F 35.226 46.262 43.407 42.521

Standard errors are in parenthesis
ek p<0,01, %* p<0.05, * p<0.1
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Contrary to the previous results on capacity per turbine, the FIT per MW is predicted to decrease
(B, = .607 +.351) from a higher turbine capacity in Table 9. Furthermore, regressing on this
variable it is instead the rotor diameter which is expected to positively affect the FIT per MW
(B; = 1.155 £ .637), whereas the hub height has an insignificant effect on the FIT per MW,
These results are conflicting to the previous two findings. As the two previous results also had
somewhat contradictory results, there seems to be some degree of randomness with respect to
which size variable predicts in which way. If averaging out the effect sizes from the size related
variables, there is suggestively a positive total size effect on both efficiencies and FIT per MW.
Due to the stochasticity in the size results, a factor analysis was carried out as a supplementary
analysis and can be found in Appendix 2. These results do indeed suggest a positive size effect,
alas the coefficients cannot be interpreted in any meaningful way. All indices taken together,
there does seem to be a positive turbine-specific upscaling effect on both efficiencies and the
FIT per MW. This partly confirms Nordensviard & Urban’s (2015) contention that upscaling
indeed maximizes profit, as the FIT is a significant part of the overall revenue per KWh. This
suggests these variables are indeed mediating the effect on the efficiencies from the
subsidization. However, this does not seem to be the whole story, as there also are other
variables which to varying degree seem to influence all three dependent variables, such as wind
speeds, average expected lifetime, and age. These are on the other hand truly exogenous,
meaning they cannot in any realistic way be altered and are from a policy perspective
uninteresting. Moreover, as the R-squared numbers are below 1 in the FIT per MW
specifications, there are also one or more omitted variables, of which one has been discussed
above. The pseudo R-squared results do unfortunately not say to what extent there is
unexplained residual variation, as the STATA software does not reveal which type of pseudo
R-squared is computed.

More broadly, there is quite robust evidence of heterogeneity with respect to production type,
as this dummy significantly and positively modifies the intercept in most specifications. This
would imply there is an internal quality to being situated offshore which is not explained by the
other predicting variables. It was originally anticipated that this dummy would become
insignificant when controlling for other confounding factors, which evidently is not case. A
factor which is not controlled for in this thesis is wind curtailment rate, as mentioned above. It
is reasonable to assume the wind curtailment rate is lower at sea than on land, as there are more
obstacles for the wind to overcome on land. A low curtailment rate would not necessarily be
absorbed by the average wind speed. More likely it would be reflected in the total production
per year, which would be higher, which positively affects all three dependent variables,
everything else being constant. For future studies, this would likely be a relevant variable to
include for the analysis.

There is weaker evidence with respect to manufacturer and area heterogeneity. Nordex is quite
consistently significantly less efficient than Siemens in many specifications. As there are quite
few observations of this manufacturer, as well as for the other smaller manufacturers (Bonus,
NEG Micon and Wind World), it cannot be ruled out that it mainly is due to local
confoundedness that this manufacturer becomes less efficient. MHI Vestas is an equally popular
alternative as Siemens, and there is suggestive evidence in the ®ENV specifications that it is a
less efficient manufacturer than Siemens. This is also apparent in most specifications of Table
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9. The reason behind inefficiency could have many possible explanations, as these
manufacturers likely have differing production processes and choices of material. As this is not
a consistent find, the robustness of this association could be questioned. As for area
heterogeneity, there is evidence that Lolland & Sjeelland is an environmentally less efficient
area to place a WF than the Northmost tip of Jylland. The effect is relatively intact for all ®ENV
specifications. This was reflected in Table 9 as well, although the effect disappeared when
adding all size variables. As these two regions are not exposed to the open sea as the other areas,
it could likely be explained by the same factor as for the offshore WFs, i.e., higher wind
curtailment rate than other areas. This factor is likely influential in most specifications and does
in other words weaken the causal interpretation in this context and should arguably have been
included. If the effect would still be evident when controlling for curtailment rates, there are
more aspects to spatial planning of WFs than maximizing efficiency. For instance, to reduce
electric potential loss and place them where the demand is highest. The electricity demand is
likely the highest in the Sjelland region, as this area harbors the capital Copenhagen, and could
be an explanation for the desire to still accommodate relatively inefficient WFs in this area.

Overall, the results suggest the profit maximization incentives, here measured as FIT per MW,
indeed has environmental impact reducing effects. This does on the other hand not necessarily
imply that an increased FIT per KWh vyields lower environmental impacts. What has been
studied here is the incentive structure caused by the FIT. Thus, it is not obvious an increased
FIT per KwWh would further incentivize upscaling of WFs. From an environmental efficiency
perspective, it could instead be further investigated how low the FIT can be to still yield such
results found above.
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6 Conclusion

The argument of this thesis was that higher FIT (i.e., profitability) per MW also tends to yield
higher environmental efficiency, which was hypothesized to be an effect mediated by upscaling
factors. As noted in the introductory section, in a premium-based subsidy scheme an operator
would maximize profit by minimizing the cost per KWh, while maximizing the FIT per MW.
The overall finding is that size factors on average seem to cause a higher profitability per MW.
Size factors are suggested to positively affect both environmental and operational efficiency.
Taken together, the results support the hypothesis presented in this thesis. The effect from the
size variables were on the other hand unreliable, and 1 would not recommend taking this
approach for further studies. Instead, a factor analysis as presented in Appendix 2 could be a
feasible approach if interested in a more aggregated size effect. A consistent finding is that
offshore WFs on average are more efficient than their onshore counterparts. This result was
also found to be robust for adding other explanatory factors. The “offshore effect” is likely due
to lower wind curtailment rates, which, everything else being equal, yields higher annual output.
For further studies, this variable should arguably be included.

If policy makers explicitly want to minimize the environmental footprint of the electricity grid
by targeting wind power efficiency, | would tentatively recommend promoting a general turbine
upscaling. There also seems to be environmental economies of scale in offshore projects. As
mentioned, however, it could once again be due to lower wind curtailment rates — which also
could explain the relative spatial inefficiency of Lolland & Sjeelland. There are on the other
hand more spatial aspects to WF planning than those considered in this thesis and could be a
reflection higher demand for electricity in these regions.

The contribution of this thesis was to add to the FIT literature by highlighting a contingent
positive environmental externality of this subsidization system. The contribution also lies in
combining onshore and offshore WFs in an efficiency estimation, and analyzing which factors
facilitate both onshore and offshore WF efficiency. While finding the combining of offshore
and onshore WFs a feasible and novel approach, | would for further studies recommend finding
a more robust proxy for general sizing. Moreover, only one type of subsidy was studied here.
For future studies, 1 would recommend performing a similar analysis on the fixed-price FIT.
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Appendix 1: Efficiency estimation results

Operational efficiency estimation

Metal Plastics Fossils Conc. W,

Average - 0.70 3.54 3.24 4.37 734 37081 1936 201 3081009 171 116115 0.00

1 Lyngdrup by WF 42 0.64 33 484 5.18 327 45238 6280 303 111864 259 297887 0
2 Norrckar Enge WF 24 0.79 21 1.84 5.04 412 14607 2681 167 0 110 82358 0
3 Nyrup by WF 34 0.68 27 144 5.11 6 2811 422 116 0 23 0 0
4 Oppelstrup by WF 61 0.52 7.9 3.76 5.87 165 26070 784 341 0 85 175201 0
5 Vra Hovedgard WE 69 0.45 119 6.26 635 548 40179 1564 503 9069 147 267137 0
6 Horup by WF 53 0.55 34 1.33 563 77 9522 0 122 247 £ 64153 0
7 Filskov by 75 0.37 5.2 5.36 6.50 234 39307 2987 344 2662 205 222688 0
8 Urup by WF 70 0.44 43 443 6.49 161 22883 2145 271 0 151 106657 0
9 Horns rev 2 offshore WE 27 0.7 333 3.23 4.81 9385 729958 0 1692 114499784 4916 48123 0
10 Lammefiorden WF extension 67 0.47 3.6 6.57 6.94 335 72730 9234 392 229698 380 498560 0
11 Oslev by WF 23 0.80 17 175 5.09 566 9468 1866 107 0 67 55172 0
12 Munkebo WF 32 0.69 17 219 5.88 26 19175 2839 148 37169 118 122232 0
13 Rodsand WF 4 1.00 0.0 0.00 0.00 0 0 0 0 0 0 0 0
14 Katrincholm Hovedgird WF 52 0.56 19 2.80 611 1361 38398 5080 230 109411 209 258542 0
15 Overgaard WF extension 35 0.67 23 3.06 544 131 27736 3972 199 61547 164 179866 0
16 Sodring by WF 41 0.64 22 2.86 5.40 380 34855 4836 233 86370 200 229589 0
17 Svoldrup by WF 39 0.65 25 3.08 5.26 1209 41422 5783 281 100531 239 272012 0
18 Tolstrup by WF 19 0.88 08 071 435 62 2916 927 30 0 8 21903 0
19 Flemming by WF 63 0.50 45 2,61 6.26 78 14267 134 190 16571 44 107339 0
20 Harre by WF 40 0.65 2.6 .19 6.63 0 8778 0 122 12507 18 70320 0
21 Eggebwk WE 68 0.47 54 7.76 5.40 1963 78721 5518 453 8765 422 527128 0
22 Horns rev 1 offshore W 15 1.00 0.0 0.00 0.00 0 0 0 0 0 0 0 0
23 Gronhede WF 50 0.59 25 342 7.78 457 19458 2291 230 0 188 93316 0
24 Ronland offshore WF 1 14 1.00 00 0.00 0.00 0 0 0 0 0 0 0 0
25 Ramme WF 4 1.00 0.0 0.00 0.00 0 0 0 0 0 0 0 0
26 Gundtoft by WF 20 0.85 11 114 2.47 899 13658 1628 164 0 134 64753 0
27 Brejning WF 33 0.68 1.8 030 6.18 1098 18589 1286 217 85928 121 134622 0
28 Rens Burkal WF 29 0.75 20 579 454 568 14795 0 179 11883 141 84075 0
29 Gilbjerg by WF 49 0.60 2.0 5.54 5.92 725 39728 215 191 0 177 294735 0
30 Dostrup by WE 31 0.69 24 6.89 5.33 820 18853 0 228 15142 179 107131 0
31 Odum kirkeby WEF 21 0.82 2.9 9.44 1.52 0 19401 0 230 17742 189 109740 0
32 Bandbol by WF 13 1.00 0.0 0.00 0.00 0 0 0 0 0 0 0 0
33 Sogard WF 4 1.00 0.0 0.00 0.00 0 0 0 0 0 0 0 0
34 Slagelse offshore WF 1 1.00 00 0.00 0.00 0 0 0 0 0 0 0
35 Restrup hovedgird WE 26 0.78 15 433 4.10 306 10303 0 125 8275 98 58547 0
36 Anholt offshore WF 3 1.00 00 0.00 0.00 0 0 0 0 0 0 0 0
37 Lyderslev WE 60 0.53 3.4 141 5.96 80 10493 0 128 7623 32 71630 0
38 Skarbak WE 4 0.62 48 1.66 521 0 12063 0 169 0 35 79770 0
39 Dyrcbjerg WF 57 0.54 35 148 6.04 64 8965 0 113 5004 27 60716 0
40 Bindslev by WF 55 0.54 35 131 658 52 8452 54 108 3670 27 51855 0
41 Burby WF 48 0.61 33 114 7.19 39 6702 0 94 0 20 39958 0
42 Hollandsbjerg by WF 43 0.64 71 7.77 3.66 0 27973 2540 416 0 157 148092 0
43 Ravnhoj WF 74 0.41 45 2.98 629 74 19726 1259 220 20422 66 136725 0
44 Balle by WF 64 0.49 35 1.97 677 81 15011 846 186 7930 a 103275 0
45 Nasbjerg by WF 65 0.48 3.6 2.25 6.59 114 12159 678 152 5978 38 83607 0
46 Foldby by WF 71 0.44 3.7 1.93 634 177 12856 519 158 3925 47 85632 0
47 Hjortnms WE 37 0.66 3.0 1.07 5.92 0 8182 0 103 3569 4 62647 0
48 Falsig by WF 66 0.47 45 2.23 7.83 169 16165 591 207 1512 59 107148 0
49 Alstrup by WF 46 0.62 4.1 1.69 6.14 44 11153 101 149 0 19 80160 0
50 Over soen WE 56 0.54 9.6 463 5.84 60 29928 844 392 0 94 202389 0
51 Bonnet WF 18 0.88 0.5 0.00 475 1 2764 0 44 0 0 22900 0
52 Vodder WE 54 0.55 34 158 613 134 9988 219 132 0 27 68946 0
53 Thorup by WE 4 .00 0.0 0.00 0.00 0 0 0 0 0 0 0 0
54 Copenhagen's offshore WF 58 0.53 58 7.95 7.84 131 73292 2269 263 16895812 56 5554 0
55 Lerchenborg hovedgird WE 17 0.89 0.7 3.37 2.81 2585 2201 1078 33 0 21 0 0
56 Barde by WE 30 0.73 14 3.53 5.64 654 24289 2195 122 0 112 160993 0
57 Ostergard hovedgrd 4 1.00 0.0 0.00 0.00 0 0 0 0 0 0 0 0
58 Tingsted (Guldborgsund) WF 36 0.67 307 37.77 630 8228 603554 13259 1522 97497944 386 13796 0
59 Ronland offshore W 2 4 .00 0.0 0.00 0.00 0 0 0 0 0 0 0 0
60 Lammefjorden WF 62 0.51 29 4.65 7.60 153 21498 3089 218 0 208 90221 0
61 Overgaard WF 45 0.62 9.3 14.80 325 242 53469 10092 725 0 674 140837 0
62 Kobelev WF 47 0.62 6.6 3.81 4.68 111 22797 7576 299 0 86 57651 0
63 Dejbjerg WE 25 0.78 44 0.11 1.95 40 1916 1011 15 0 45 0 0
64 Arild WF 73 0.42 35 1.40 5.95 139 14925 564 136 10014 48 93662 0
65 Hanstholm WF 4 1.00 0.0 0.00 0.00 0 0 0 0 0 0 0 0
66 Vrcjlev WE 72 0.42 46 0.74 6.63 32 7254 592 57 0 [ 45124 0
67 Bejstrup by WF 4 1.00 0.0 0.00 0.00 0 0 0 0 0 0 0 0
68 Kastrup WF 59 0.53 35 117 6.06 71 10181 430 114 0 31 57094 0
69 Degneboligen WE 2 .00 0.0 0.00 0.00 0 0 0 0 0 0 0 0
70 Klim by WF 15 1.00 00 0.00 0.00 0 0 0 0 0 0 0 0
71 Bur by WF 51 0.56 43 17.87 420 16045 167066 18391 550 634869 834 1126704 0
72 Lem WF 2 0.81 03 091 4531 1051 35873 3941 126 148767 161 259877 0
73 Norre Vium WF 38 0.65 15 475 4.84 1272 68945 7574 242 285920 309 499467 0
74 Velling WF 4 1.00 00 0.00 0.00 0 0 0 0 0 0 0 0
75 Vejrum WE 28 0.76 0.4 122 6.48 889 27389 3009 96 113585 123 198419 0
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Environmental efficiency estimation
D e D R A D OD O

Average 0.54|- 2005.5 320219.1 194.1| 772854.9, 0.02179 0
1|Lyngdrup by WF 0.51 39 1873.6 344778 136.4 1105278 0.02572 0
2|Norrekaer Enge WF 0.65 17 982.3 194873 55.6 780854 0.01598 0
3|Nyrup by WF 0.53 34 211.4 28243 18.7 110836 0.00272 0
4|Oppelstrup by WEF 0.38 62 827.4 132587 69.0 471318 0.01175 0
5|Vri Hovedgird WF 0.33 69 1255.6 200278 106.6 675918 0.01729 0
6|Horup by WF 0.40 56 289.0 44258 249 173384 0.00420 0
7|Filskov by 0.25 75 1163.1 177301 103.0 498761 0.01353 0
8| Urup by WF 0.31 71 844.7 127132 75.7 362016 0.00986 0
9|Hotns rev 2 offshore WF 0.69 15 221875 3204115 2752.7 4845807 0.18585 0
10|Lammefjorden WF extension 0.34 67 2464.4 434000 201.4 1225237 0.03110 0
11| Dslev by WF 0.67 16 699.2 141775 36.7 605889 0.01203 0
12|Munkebo WF 0.56 31 884.7 167098 60.0 588731 0.01301 0
13|Rodsand WF 0.62 24 24135.0 3986073 2489.6 6259638 0.24052 0
14| Katrineholm Hovedgird WF 0.44 52 1446.0 260757 111.3 776767 0.01891 0
15| Overgaard WF extension 0.54 33 1210.5 225360 85.7 752955 0.01717 0
16|Sedring by WF 0.51 38 1432.7 263566 104.9 846054 0.01975 0
17|Svoldrup by WF 0.51 36 1714.8 317108 123.9 1043062 0.02399 0
18| Tolstrup by WF 0.72 13 428.5 91976 16.4 440033 0.00820 0
19|Flemming by WF 0.38 61 448.9 73504 38.7 270466 0.00675 0
20|Harre by WF 0.48 45 314.9 51998 25.9 220187 0.00520 0
21| Eggebak WE 0.37 63 1998.4 329198 164.5 1181453 0.02688 0
22|Homs rev 1 offshore WF 0.75 12 10781.0 1550444 1336.4 2231068 0.09224 0
23|Gronhede WF 0.48 43 890.6 133483 92.1 404995 0.01092 0
24|Ronland offshore WF 1 1.00 1 0.0 0 0.0 0 0.00000 0
25|Ramme WF 0.76 10 382.1 69769 9.6 635041 0.00986 0
26|Gundtoft by WF 0.64 20 843.9 145369 52.2 794203 0.01475 0
27|Brejning WE 0.56 32 858.6 161016 60.6 627644 0.01365 0
28|Rens Burkal WE 0.61 26 740.8 127503 58.8 673724 0.01345 0
29| Gilbjerg by WF 0.50 41 880.3 144976 77.4 626626 0.01382 0
30| Dostrup by WF 0.58 29 834.5 140896 69.4 701973 0.01443 0
31| @dum kirkeby WEF 0.63 22 1042.1 180480 80.8 1006050 0.01968 0
32|Bandbol by WF 0.76 8 368.7 69765 18.8 660569 0.01095 0
33|Sogird WF 0.76 9 553.3 97576 30.4 1006699 0.01676 0
34/Slagelse offshore WF 0.76 11 836.2 101381 124.1 197302 0.00760 0
35|Restrup hovedgird WI 0.64 19 530.9 90931 41.8 526539 0.01023 0
36| Anholt offshore WF 0.89 4 13997.9 1722266 1295.2 2507932 0.07288 0
37| Lyderslev WF 0.37 64 311.3 47604 27.0 182546 0.00448 0
38|Sketbak WE 0.44 51 397.8 60997 335 249941 0.00590 0
39|Dyrebjerg WF 0.39 60 268.1 40949 23.1 160138 0.00390 0
40|Bindslev by WF 0.39 57 261.8 40150 21.5 149814 0.00363 0
41|Bur by WF 0.44 50 2322 36017 18.6 138221 0.00320 0
42|Hollandsbjerg by WF 0.48 44 1338.9 198657 129.3 614172 0.01695 0
43|Ravnhoj WF 0.30 72 623.2 102403 52.1 326407 0.00846 0
44| Balle by WF 0.37 66 488.9 80956 39.8 275155 0.00689 0
45| Nesbjerg by WF 0.37 65 397.0 65753 323 224420 0.00561 0
46|Foldby by WF 0.32 70 401.9 64131 34.2 213623 0.00549 0
47|Hjortnzes WE 0.50 40 275.2 44177 21.2 183695 0.00427 0
48| Falsig by WF 0.34 68 505.8 81229 42.8 278536 0.00702 0
49| Alstrup by WF 0.47 46 361.5 57703 28.7 231222 0.00552 0
50|Over soen WF 0.39 59 952.7 151954 79.0 547840 0.01364 0
51|Bonnet WF 0.60 27 214.8 34810 14.9 181464 0.00389 0
52|Vodder WF 0.41 54 334.5 54079 27.4 192584 0.00469 0
53| Thorup by WF 0.64 18 277.3 44747 17.5 255167 0.00531 0
54| Copenhagen's offshore WF 0.51 37 1852.4 292779 197.4 420753 0.01748 0
55|Lerchenborg hovedgird WEF 0.85 5 409.1 60359 48.9 158098 0.00497 0
56|Barde by WF 0.72 14 704.6 114304 69.3 282106 0.00809 0
57| Dstergird hovedgird 0.90 3 193.2 25968 27.4 70515 0.00244 0
58| Tingsted (Guldborgsund) WF 0.57 30 16154.5 2610476 1708.5 3802064 0.14945 0
59|Ronland offshore WE 2 0.82 6 419.1 74237 37.6 110316 0.00427 0
60| Lammefjorden WF 0.40 55 921.2 137384 81.7 382643 0.01035 0
61|Overgaard WF 0.46 49 2987.6 441051 269.3 1250961 0.03359 0
62|Kobelev WEF 0.46 48 1156.3 185948 81.7 394766 0.01142 0
63|Dejbjerg WF 0.46 47 200.0 31665 14.2 92346 0.00208 0
64| Arrild WF 0.27 73 436.1 68360 372 203724 0.00543 0
65|Hanstholm WF 0.61 25 252.0 39250 16.9 185093 0.00400 0
66| Vrejlev WE 0.26 74 234.1 37375 21.6 93006 0.00255 0
67|Bejstrup by WF 0.52 35 138.6 21242 9.1 91927 0.00179 0
68| Kastrup WF 0.39 58 3322 53945 25.7 165812 0.00419 0
69| Degneboligen WF 0.63 21 3519.2 695129 228.4 23064848 0.05200 0
70| Klim by WF 1.00 1 0.0 0 0.0 0 0.00000 0
71|Bur by WF 0.43 53 5653.3 998097 458.4 2722998 0.07086 0
72|Lem WF 0.62 23 1693.8 337970 111.7 1133744 0.02559 0
73|Norre Vium WF 0.49 42 2485.2 458834 193.9 1323549 0.03329 0
74| Velling WF 0.77 7 1486.4 362827 40.6 1708249 0.03193 0
75|Vejrum WE 0.60 28 1190.1 231087 82.7 766647 0.01775 0
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Summary statistics. Operatively efficient DMUs by production type

Offshore

N Mean Std. Dev Min Max
Turbine capacity, MW 10 21.133 18.318 2 49.5
Wind speed, 2016, m/s 10 7.948 762 6.9 9.045
FIT, WF, year, tDKK 10 16751.53 14581.48 773.085 37607.73
Turbines 10 8.4 4274 4 15
Metals, kg 10 142000 136000 9315.878 402000
Plastic components, kg 10 17037.97 17378.6 1173.963 44190.64
Concrete, kg 10 638000 697000 12026.81 1790000
Wire drawing, m-kg 10 773.702 676.033 72.096 1859.208
Fossil fuels, kg 10 707.422 503.494 125.304 1520.919
Logistics, ton-meters 10 962000 975000 45017.17 2860000
Output 2016, MWh 10 65132.97 59443.03 3097.598 149000

Onshore

Turbine capacity, MW 6 133.633 155.855 8 399.6
Wind speed, 2016, m/s 6 8.665 766 7.264 9.285
FIT, WF, year, tDKK 6 141000 171000 7966.021 438000
Turbines 6 49.167 49.769 4 111
Metals, kg 6 1350000 1520000 70089.6 3670000
Plastic components, kg 6 148000 192000 6175.038 491000
Concrete, kg 6 1.95e+08 2.03e+08 1.34e+07 4.68e+08
Wire drawing, m-kg 6 9419.087 12224.43 337.525 31861.97
Fossil fuels, kg 6 3031.353 3162.312 213.941 7331.985
Logistics, ton-meters 6 132000 160000 4250.529 406000
Output 2016, MWh 6 511000 639000 32321.83 1660000

Summary statistics. Environmentally efficient DMUs by production type

Onshore

N mean sd min max
acidification 1 7761.334 . 7761.334 7761.334
gwp 1 1340000 . 1340000 1340000
ozone dep 1 .087 . .087 .087
eutrophication 1 600.729 . 600.729 600.729
land use 1 3320000 . 3320000 3320000

Offshore

acidification 1 1846.608 . 1846.608 1846.608
gwp 1 294000 . 294000 294000
ozone dep 1 .017 . .017 .017
eutrophication 1 186.708 . 186.708 186.708
land use 1 429000 . 429000 429000
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Appendix 2: Supplementary second stage analysis

The factoring procedure yielded similar loading for all three factors, meaning that the factors

explain the underlying size construct to a similar degree.

Environmental efficiency with size factor

M ®) ®) @
Tobit Tobit Tobit Tobit
Size factor 0.13238*+* 0.11499%F*  0.14240%F*  0.11328***
(0.04194) (0.03784) (0.02268) (0.01650)
Expected lifetime, 0.39219* 0.62586%F*  0.58547***
years, log (0.20614) (0.17283) (0.18882)
Wind speed 2016, m/s, 0.28356 0.62145%F*  0.70559***
log (0.24233) (0.16810) (0.16445)
New WF (<10 years) -0.02294 0.06910
(0.09760) (0.06564)
Offshore 0.14413%* 0.08184
(0.05867) (0.04994)
Manufacturer
(Siemens=0)
1. NEG Micon -0.06401
(0.06425)
2. MHI Vestas -0.05352
(0.04652)
3. Nordex -0.23060%*
(0.07272)
4. Bonus -0.07242
(0.08685)
5. Wind World -0.09171
(0.08359)
Area (Jylland,
Northmost tip=0)
1. Jylland, Mid-East -0.07579
(0.04890)
2. Jylland, Mid-West -0.02722
(0.05084)
3. Jylland, South -0.04948
(0.04519)
4. Jylland, North-West 0.02995
(0.06430)
5. Lolland & Sjazlland -0.14329%*
(0.06557)
Obs. 75 75 75 75
Pseudo R? -2.00611 -1.61963 -1.53646 -0.97725
F 20.77111 24.21169 23.91453 47.14803

Standard errors are in parenthesis
% p<0.01, ** p<0.05, * p<0.1
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Operational efficiency with size factor

0 @ ®) @
Tobit Tobit Tobit Tobit
Size factor 0.12049* 0.08713 0.15689%F*  0.11177%+*
(0.06975) (0.06172) (0.03477) (0.02708)
Expected lifetime, 1.02239%** 1.08021*F%F  0.91662%**
years, log (0.35548) (0.34520) (0.33990)
Wind speed 2016, m/s, 0.75706 1.03269%%*  1.11735%%*
log (0.48292) (0.29902) (0.26152)
New WF (<10 years) 0.16118 0.18753
(0.16570) (0.11785)
Offshore 0.23338** 0.12681
(0.11289) (0.09959)
Manufacturer
(Siemens=0)
1. NEG Micon 0.07715
(0.10169)
2. MHI Vestas 0.02887
(0.07760)
3. Nordex -0.14689
(0.11497)
4. Bonus -0.06152
(0.14219)
5. Wind Wotld 0.10325
(0.16939)
Area (Jylland,
Northmost tip=0)
1. Jylland, Mid-East -0.04451
(0.06599)
2. Jylland, Mid-West 0.02488
(0.08829)
3. Jylland, South -0.05443
(0.07691)
4. Jylland, North-West 0.03324
(0.11579)
5. Lolland & Sjzlland -0.12007
(0.08472)
Obs. 75 75 75 75
Pseudo R? 1.47413 1.20004 1.07214 0.47462
F 17.08764 11.68709 15.47534 17.02987

Standard errors are in parenthesis
w0k 5<0.01, ¥ p<0.05, * p<0.1
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FIT per MW with size factor

M @ ) @
OLS OLS OLS OLS
Size factor 0.08465* 0.06870 0.18659%F*  0.26849***
(0.04898) (0.05170) (0.04163) (0.02203)
Expected lifetime, -0.29683 0.09136 -0.18657
years, log (0.42645) (0.41710) (0.42860)
Wind speed 2016, m/s, 0.75381* 1.31830%%*  1.49266%+*
log (0.40258) (0.26239) (0.242063)
New WF (<10 years) 0.16989* 0.31782%k*
(0.10097) (0.09645)
Offshore 0.29353%F* 0.24356*+*
(0.07825) (0.06327)
Manufacturer
(Siemens=0)
1. NEG Micon -0.14802*
(0.08827)
2. MHI Vestas -0.14835%*
(0.06568)
3. Nordex -0.61668***
(0.12490)
4. Bonus -0.04762
(0.13954)
5. Wind Wotld -0.12626
(0.150060)
Area (Jylland,
Northmost tip=0)
1. Jylland, Mid-East -0.06800
(0.05442)
2. Jylland, Mid-West 0.03298
(0.07400)
3. Jylland, South 0.00753
(0.07883)
4. Jylland, North-West 0.10205
(0.09167)
5. Lolland & Sjzlland -0.16458*
(0.08980)
Obs. 75 75 75 75
R-squared 0.82931 0.76380 0.70821 0.55900
F 39.72819 66.62778 78.58118 148.59030

Standard errors are in parenthesis
w0k 5<0.01, ¥ p<0.05, * p<0.1
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Average
1 Lyngdrup by WF
2 Notreker Enge WF
3 Nyrup by WF
4 Oppelstrup by WF
5 Vri Hovedgird WF
6 Horup by WF
7 Filskov by
8 Urup by WF
9 Hotns rev 2 offshore WF
10 Lammefjorden WF extension
11 Gslev by WE
12 Munkebo WF
13 Rodsand WF
14 Katrincholm Hovedgard WF
15 Overgaard WF extension
16 Sedring by WF
17 Svoldrup by WF
18 Tolstrup by WF
19 Flemming by WF
20 Harre by WF
21 Eggebazk WF
22 Horns rev 1 offshore WF
23 Gronhede WF
24 Reonland offshore WF 1
25 Ramme WF
26 Gundtoft by WEF
27 Brejning WF
28 Rens Burkal WF
29 Gilbjerg by WE
30 Dostrup by WF
31 @dum kirkeby WF
32 Bandbol by WF
33 Sogird WF
34 Slagelse offshore WE
35 Restrup hovedgard WF
36 Anholt offshore WF
37 Lyderslev WF
38 Skarbak WF
39 Dyrebjerg WF
40 Bindslev by WF
41 Burby WE
42 Hollandsbjerg by WF
43 Ravnhoj WF
44 Balle by WF
45 Naesbjerg by WF
46 Foldby by WF
47 Hjortnzes WF
48 Falsig by WF
49 Alstrup by WEF
50 Over soen WF
51 Bonnet WF
52 Vodder WF
53 Thorup by WF
54 Copenhagen's offshore WF
55 Lerchenborg hovedgird WF
56 Barde by WF
57 Ostergard hovedgard
58 Tingsted (Guldborgsund) WF
59 Renland offshore WF 2
60 Lammefjorden WF
61 Overgaard WF
62 Kobelev WF
63 Dejbjerg WE
64 Arrild WF
65 Hanstholm WF
66 Vrejlev WF
67 Bejstrup by WF
68 Kastrup WF
69 Degneboligen WF
70 Klim by WF
71 Bur by WF
72 Lem WF
73 Norre Vium WEF
74 Velling WF
75 Vejram WF

Rank @

45
20
25
58
66
47
75
70
31
74
16
33
40
60
39
46
44
13
59
37
68
35
50

1

1
17
38
21
43
27
19
11
12
29
18

1
55
34
52
48
32
41
73
64
63
69
28
65
36
57
15
49

1
67
14
26

1
51

1
62
54
42
25
72

1
71

1
56
22

1
61
24
53

1
30

0.70
0.63
0.81
0.78
0.56
0.49
0.63
0.36
0.45
0.71
0.42
0.84
0.70
0.66
0.54
0.67
0.63
0.63
0.94

0.61

0.75

Material efficiency estimation results
DMU Name

Metal

67042
85114
42080

2811
26552
41065

9366
33060
22925

764115
98348
29910
40441
949331
61078
55562
65440
79398

7835
14683

9804
70336

419828
29884
0

0
21277
43012
28002
42029
35259
36886
0

2790
30597
19207

0
10282
11396

8804

7927

5714
38235
20111
15423
12500
13126

8158
16549
11122
30403

2456
10060

0
74532

7942

25781
0
617583
0
25652
79213
22875

1916

14925
0

6231

0
10261
173618
0
250415
92848
117462
0
66631

Plastics Fossils
5207 2491110
4963 8955
1660 0
422 0
1480 15044
2415 35685
159 307
3279 47618
2228 28548
80781 9459749
8388 163585
1106 0
2110 0
99530 58332048
4331 50879
3037 0
3826 7439
4529 2525
T44 0
534 29079
206 15054
5731 72240
29194 56549900
1904 914
0 0
0 0
1344 0
480 22901
0 0
129 0
0 0
0 0
0 0
0 0
615 3404151
0 0
0 0
215 2313
111 0
163 964
265 0
165 0
2269 0
1629 31985
1242 20325
1006 16228
778 12038
125 0
960 13063
444 0
1675 15192
132 0
551 2766
0 0
5758 12304078
659 0
2140 0
0 0
52735 45548956
0 0
2922 8606
9134 0
7540 0
1011 0
564 10014
0 0
672 2673
0 0
703 2875
4457 0
0 0
15638 419767
2059 1728
5972 160711
0 0
1713 12313
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Appendix 3: Sensitivity analysis

Concrete Wire

436
228
65
23
67
117
31
186
127
11709
360
33
95
4668
192
139
176
209

30

415
4780
171

122
102
115
173
145
152

109
3690

198
632
89
45
48

48

26
293

769
116
271

92

317

130

197

164

158

45
83

133
162
117
108

84
382
196
160
130
141
108
183
143
355

41
122

190
36
115

Logistics O
219389
668448
360186
0
183948
284271
60373
176243
118589
136280
736625
261891
325505
101804
469306
441724
513809
624921
71640
115391
80144
462564
94525
199082
0
0
141802
361575
212668
318008
267787
280144
0
21193
3999
145875
0
66536
74607
56841
45399
32307
247697
144168
111255
90205
90855
60376
114584
78664
210664
20401
69750
0
9326
54246
176089
0
56467
0
134999
401175
57832
0
93662
0
38944
0
58157
1414642
0
1901255
789343
950329
0
563085
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Summary statistics on inputs slacks from material efficiency estimation

Variable Obs Mean Std.Dev. Min Max
Material efficiency score 75 7 18 .36 1
Input slack in metal 75 67042.4 160300.8 0 949331.2
usage

Input slack in plastics 75 5206.85 15928 0 99529.97
usage

Input slack in concrete 75 2490000 1.07e+07 0 5.83e+07
usage

Input slack in wire 75 436.12 1574.83 0 11709.15
drawing dist

Input slack in fossil fuel 75 159.41 173.14 0 788.12
usage

Input slack in logistics 75 219389.1 320370.1 0 1900000
usage

Inter-efficiency association

m

4 5 6 ) 7 8 9
Operative efficiency score

Fittedvalues ¢ Environmental efficiency score

Inter efficiency association (y=Environmental efficiency score)

0 @ ) @
Tobit OLS Tobit OLS
Operative efficiency 0.773*+% 0.798***
(0.015) (0.060)
Material efficiency 0.771%x* 0.845%x*
(0.016) (0.067)
Obs. 75 75 75 75
R-squared n/a 0.814 n/a 0.757
F 2562.772 179.072 2302.661 156.993

Standard errors are in parenthesis
X p<0.01, ** p<0.05, * p<0.1
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