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ABSTRACT 

The presence of arsenic in soil and water has become an increasing problem in many countries 
around the world. The exposure of high concentration of arsenic in its inorganic form in natural 
environment such as soil and water makes it harmful to both humans, wildlife and plants.  
This study considered the possibility of phytoremediation as a management tool for abandoned 
sites moderately contaminated with arsenic with the aim of reducing its spread and eventual 
leaching of the contaminant into the groundwater. Focus was placed on Salix tree crops with 
phytoremediation abilities in relation to arsenic contamination in Sweden. These sites are termed 
abandoned because they are of less priority for public funding for remediation and total cleanup.  
Using a theoretical framework, this study was carried out by searching, screening and reviewing 
of scientific publications of previous studies and reports. An economic benefit calculation was 
done using surveys carried out on few Salix plantations in Sweden, where the farmers were asked 
about the cost of production and how much revenue was generated from the sale of the harvested 
biomass for energy purposes.  
The results showed that Salix has the potential to effectively phytostabilize arsenic in Sweden as 
the tree crop is known to preferably/actively accumulate arsenic in its roots and belowground 
biomass which is a key feature of Phytostabilization. In addition to its Phytostabilization 
capabilities, Salix has a good biomass production ability, producing woody biomass at a range of 
7 – 10 tonnes of dry matter/ha/year regardless of the soil condition or quality as Salix has a good 
physiological adaptation mechanism and ecological resilience which helps them thrive in various 
climate zones and site conditions coupled with their rapid woody biomass production ability as a 
short rotation coppice. The economic benefit calculations revealed that private remediation firms 
can invest in the remediation of these abandoned sites and still generate revenue of as much as 
8,000 – 10,000 SEK/ha/year and make a reasonable profit of up to 57% through the sale of the 
harvested woody biomass to energy producing plants. These woody biomass has little or no arsenic 
accumulated in them because the accumulation of arsenic is in the root of the Salix tree, thereby 
meeting the quality requirement for energy production  
From the survey used for calculating potential profit generated from the cultivation of Salix, the 
Salix plantations studied were cultivated on agricultural soils with good soil quality. Therefore 
they produced woody biomass with an average of 9 tonnes of dry matter/ha/year. Nevertheless, it 
was feasible to relate the cultivation of Salix and biomass yield produced by Salix on an 
agricultural soil to those cultivated on brown fields or soils with poor quality as the findings in this 
study showed that the quality or condition of soils does not significantly affect the biomass 
production and yield of Salix tree crops.  

Keywords: 

Phytostabilization, Leaching, solubility and mobility, economic benefits. 
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POPULAR SCIENCE SUMMARY 

Arsenic contamination of soil and groundwater has become an increasing problem in many countries of the 
world because of its harmfulness to humans, plants and wildlife when ingested through drinking water or 
food consumption. To reduce the risk associated with arsenic contamination, certain guideline values have 
been set in reference to the land use, which in Sweden can be either sensitive or non-sensitive land use. For 
a sensitive land use such as farming, the guideline value for arsenic concentration is set at a concentration 
of 10 mg/kg and for non-sensitive land use such as recreation purposes, the concentration of arsenic can be 
as high as 25 mg/kg without further actions needed to be taken.  

In Sweden, a good number of sites is said to be contaminated with arsenic and these sites needs to be cleaned 
up to prevent direct or indirect effects on human health since the risk for the contaminant leaching to the 
groundwater increases as long as the contaminant is left in the soil.  

Due to certain reasons, some of these arsenic-contaminated lands are not remediated and are abandoned 
because they are of less priority for public funding for a total cleanup. Some of these sites can be moderately 
contaminated in comparison to others with high contaminant concentration. Even if these sites are being 
moderately contaminated, there might still the risk of arsenic leaching into the groundwater.  

In the light of this, this study looks into how these abandoned sites can be managed to prevent the 
contaminants from contaminating the groundwater through its spread and leaching. This study evaluated 
the possibility of using phytoremediation as a management tool, which involves the use of plants as annuals, 
perennials, cash crops or trees to take up contaminants from the soil, or immobilize them, thereby reducing 
the risk of contaminant spreading and leaching into the groundwater. In addition to this, this study also 
evaluated the possibility of making profit from this cleanup process, by considering tree crops with 
phytoremediation abilities for cleanup as harvestable woody parts of the tree crop can be sold to energy 
producing plants so that they can be burned into energy.  

The result of the study showed that; 
 Salix trees can be used as the phytoremediation tree crop for arsenic contaminated sites in Sweden as

the tree species has the ability to take up arsenic and accumulate it in its root and also thrive well in
regions with harsh climatic conditions such as Sweden.

 Salix trees have the ability to produce a good amount of harvestable woody parts which are not affected
by the soil quality or condition. With a life cycle of 25 years, the Salix tree can be harvested down to
the shoot in a 4 - 6 year harvest cycle without a need for replanting.

 The harvestable woody parts can give a yield of up to 7 – 10 tonnes of dry matter/ha/year and according
to certain studies, this is enough to generate a profitable revenue.

 An average of 8,000 – 10,000 SEK/ha/year can be generated from the sales of the harvested woody
biomass and when compared to the cost of production, there is a potential of making up to 57% in
profits.

With the above findings, private individuals/firms can be encouraged to invest in the remediation of these 
moderately contaminated sites using phytoremediation and can be sure of making a substantial profit in the 
process.    
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1. INTRODUCTION  

The presence of arsenic (As) in soil and water has become an increasing problem in many countries 

around the world. Exposure to sufficiently high concentrations of arsenic in its inorganic form in 

natural environments such as water, sediments and soils has proven to be very harmful to 

organisms. The main pathway of arsenic exposure to organisms, especially humans, includes the 

ingestion of drinking water and food consumption. Arsenic is a contaminant that is toxic to a broad 

range of organisms (Bhattacharya et al., 2007). It belongs to the top class of human carcinogenic 

substances (Ravi Naidu, 2006). Unlike organic contaminants, As cannot be decomposed 

chemically or biologically (Bisone et al., 2016). Fine-textured soils often contain higher 

concentration of potentially toxic elements than coarse-textured soils due to the higher clay content 

in the former, thereby making them have more binding sites (Collins, 2013). However in recent 

studies carried out in Australia, it was revealed that even in strongly sorbing soils such as Oxisols, 

the mobility of As may be increased under certain soil and environmental conditions.  

Different factors that increase the release of As into the soil solution also increase the potential for 

As leaching from the soil. Soil properties such as pH, CEC, the nature of clay, organic matter and 

soil solution composition influence the As retention capacity of soils (Naidu et al 2006).  

Although arsenic occurs naturally in the soil, human activities also lead to the deposition of As 

due to pesticides use, mining and ore processing operations, operation of coal-burning power 

plants, wood treatment and preservation, and waste treatment. This has led to extensive 

contamination of soils throughout the world (Naidu et al., 2006). The concentration of As in a non-

contaminated soil is usually in the range of 5 to 10 mg/kg of soil and when the concentration 

exceeds this range, the soil is said to be As-contaminated. (Smith et al., 1998). In Sweden, the 

guideline value for a soil to be considered As-contaminated is between 10 mg/kg and 25 mg/kg of 

soil depending on the land use. The health limit of As in drinking water is set to 10 µg/L by the 

World Health Organization due to its toxicity  (Bhattacharya et al., 2010, WHO Edition, 2008). 

There are several methods of removing arsenic from the soil or to reduce the concentration and 

spread of arsenic. These methods can either be physical, chemical or biological. Each of these 

methods have their advantages and disadvantages. Some of these methods are: washing with 

sulfuric acid, nitric acid, phosphoric acid and hydrogen bromide, immobilization of soluble arsenic 

using cements, soil flushing using aqueous solutions such as surfactants and co-solvents, 
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stabilization using nanosized oxides and Fe(0) (particle size of 1 to 100 nm), immobilization of As 

in the solid phase through microbial oxidation, reduction of arsenic using phytoremediation (Lim 

et al., 2014).   

Phytoremediation consists of the use of plants and associated microorganisms to remove, contain, 

inactivate or degrade harmful environmental contaminants in order to revitalize contaminated 

sites. The performance of phytoremediation as an environmental remediation technology depends 

on several factors including: the availability and accessibility of contaminants for rhizosphere 

microorganisms and uptake into roots and also the ability of the plant and its associated 

microorganisms to intercept, absorb, accumulate and/or degrade the contaminants (Vangronsveld 

et al., 2009). As an emerging technology, phytoremediation requires the use of specific and 

efficient plants to clean up contaminated sites (Lasat, 2000). Remediation in general, whether in-

situ or ex-situ, has the goal of either removing the contaminants from the contaminated site (site 

decomposition or clean-up techniques) or reducing the risk posed by the contaminants by reducing 

exposure (site stabilization techniques) (Vangronsveld et al 2009).  

 

1.1.  Aim of the study  

The aim of this study is to;  

1. Evaluate (by reviewing previous research on the phytoremediation of arsenic using tree crops) 

if it is possible to use phytoremediation as a management tool in the remediation of abandoned 

sites contaminated with arsenic in order to reduce its spread in the soil and eventual leaching 

to the groundwater.  

2. Carry out economic benefit calculations to see how profitable the whole process will be if the 

remediation process is done with an intention of profit making. 

 The focus is on abandoned contaminated sites because they are of less priority for public funding 

for a total clean up.  
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2. LITERATURE REVIEW  

2.1.  Arsenic contamination in Sweden  

One of the main quality objectives of the Swedish environmental protection agency is to have a 

non-toxic environment with a high concern on remediation of contaminated sites (Swedish EPA 

2019). When remediating contaminated sites, a high priority is given to sites posing high risks to 

human health and the environment (Forslund et al., 2010). The focus on a limited number of high-

priority sites will cause other sites to be abandoned. Although the abandoned sites may currently 

have a low effect on human health, concerns are that they could affect the wildlife and have long-

lasting effects due to the spread and release of arsenic into the biosphere.  

 An average of 85,000 sites in Sweden are contaminated and over a thousand of these sites have 

been classified as sites with very high risk to human health and the environment (Swedish_EPA, 

2019). Of the contaminated sites with very high risk, about 30% are contaminated with metals 

(Forslund and Barregård, 2008). Of these sites, 26% were contaminated with As and it appears 

that As is the most common primary metal contaminat. Most arsenic emissions into the Swedish 

soils are from the use of wood impregnating substance/chemicals, which are used to preserve wood 

and to improve its characteristics (Forslund et al., 2010). 

 

2.2.  Remediation of arsenic contaminated sites 

Removal of As from contaminated sites is necessary to reduce its toxic effects on humans and the 

environment (Pandey et al., 2018). Soils contaminated with As can be remediated using different 

approaches and methods. These approaches can be physical, chemical or biological (Wang and 

Mulligan, 2006). 

Forslund et al. (2010) carried out an assessment on a few contaminated sites in Sweden with As 

contamination giving records of the concentration of As before and after remediation procedures 

had taken place. The concentration of arsenic on the sites before the remediation action was taken 

from site-specification investigation reports and from consultants involved in the remediation of 

these sites. The concentration of arsenic on the sites after the remediation has been completed was 

taken from the Swedish EPA quarterly report of quarter 4 of 2007 (Swedish EPA 2007; Forslund 

et al 2010). All site where the remediation is finalized have As concentration below 25 mg/kg 

(Table 1) which is in agreement with the guideline value for non-sensitive land-use with 
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concentration less than 25 mg/kg for the site to be termed uncontaminated. These sites went 

through different forms of remediation which were not documented. 

Table 1: Site-specific characteristics of selected sites in Sweden contaminated with arsenic, from 

Forslund et al. (2010) 

 
Arsenic concentration (mg/kg) No. of exposed 

individuals  
Accessibility  Land-use   

(non-
sensitive)  Pre Post 

Akterspegeln 163 15 100-1000 Open Recreation 
Robertsfors 250 15 10-100 Enclosed  Recreation 
Burträskbygden 260 40 1-10 Open Industry  
Tvärån 608 17 10-100 Open Industry  
Svartbyn 80 15 1-10 Open Housing 
Sjösa 30 6 10-100 Enclosed  Industry  
Lyshälla 170 15 1-10 Open Housing  
Mjölby 46 40 1-10 Enclosed  Industry  
Rimforsa  49 15 1-10 Open Industry  
Hjulsbro  87 15 10-100 Open Recreation 
Glasbrukstomten  102 20 100-1000 Open Industry  
Grimstorp 424 10 1-10 Open Industry  
Elnaryd  130 40 1-10 Enclosed   Industry  
Högsby-Ruda 55 5 10-100 Open  Housing 
Tröingeberg 23 15 10-100 Open Housing  
Oxhultc 94 15 1-10 Open Housing  
Gudarp  119 80 10-100 Enclosed  Recreation 
Konsterud 119 15 10-100 Open Housing  
Kramfors 500 15 1-10 Open Industry  
Svanö 418 100 10-100 Open Recreation 
Svartvik 150 40 1-10 Open Recreation 
Forsmo 1128 10 1-10 Enclosed  Recreation 
Fagervik  65 40 10-100 Open Recreation 

 
Pre: Arsenic concentration (mg/kg) before remediation actions are carried out.  

Post: Arsenic concentration (mg/kg) after remediation activities are finalized   

 

2.3.  Phytoremediation approach  

From Figure 1, we see that the main biological method for remediation is the phytoremediation 

process. Phytoremediation can take place in the form of extraction, stabilization and volatilization. 

These procedures are usually carried out in-situ. Phytostabilization involves the cultivation of 
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plants on contaminated soils with the aim of reducing the mobility or spread of the contaminant 

through accumulation by the plant root or immobilization of the contaminant by the rhizosphere 

(Bolan et al., 2011). Phytoextraction is the most commonly used phytoremediation technique and 

it involves the use of plant-hyper accumulators for the absorption of contaminants mostly heavy 

metals from the soil. These contaminants are accumulated in the harvestable biomass of the plants 

such as the shoot and/or leaves (Pajevic et al 2016). Phytovolatilization is a process in which plants 

take up contaminants from the soil and release them as volatile forms into the atmosphere through 

transpiration (Biotechnology, 2011) 

  
Figure 1: Comparison of different soil clean-up methods (Khalid et al., 2017), permission to 

reproduce image obtained from RightsLink copyright clearance center, Aug. 11, 2020, order 

number: 4885930074215. 

 

For the successful implementation of phytoremediation, the main prerequisite is to identify native 

plants that are able to take up, extract or degrade hazardous contaminants from the 

soil/environment (Pajević et al., 2016). 
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2.4.  Plant for phytoremediation  

Plants have been able to evolve with effective strategies and mechanisms to survive environments 

that have highly contaminated sites (Gawronski and Gawronska, 2007). The interaction between 

soils, contaminants, microbes and plants has an important role to play in the use of plants for 

remediation (Lasat, 2000). Plants can survive environments with concentrations of contaminants 

that are hardly tolerated by humans. For contaminants such as metals, plants overcome their 

toxicity in various ways such as detoxification or degradation of contaminant, ability to store this 

contaminant or toxic metals in specialized cells or cell compartments and also exclusion 

(Gawronski and Gawronska, 2007). Plants that exhibit these survival mechanisms are referred to 

as hyper-accumulators (Vatamaniuk et al., 2001). One of the reasons why these plants can detoxify 

or carry out detoxification of heavy metals is due to the presence of phytochelatins in the plant 

(Vatamaniuk et al., 2000). The phytochelatin is produced by the enzyme called phytochelatin 

synthase (Gawronski and Gawronska, 2007, Vatamaniuk et al., 2001). 

Hyperaccumulator plants are plants that are capable of accumulating metals in quantities greater 

than the ones non-accumulator plants would take up (Lasat, 2000). Hyperaccumulators mostly 

belong to the botanic families of the Brassicaceae, Poaceae, Papilionaceae, Caryophyllaceae and 

Asteraceae. These families provide most of the plants that can remediate heavy metals (Gawronski 

and Gawronska, 2007). Some plants that belong to the family of Salicaceae can also be used in 

the phytoremediation of heavy metals due to their effectiveness against a range of pollutants 

(Marmiroli et al., 2011). 

The use of tree crops for phytoremediation is favored over other plant species due to their long 

term growth and high biomass of tissue that helps with the accumulation of much more 

contaminants in the plant parts (Marmiroli et al., 2011) coupled with their economic value 

(Gansauer, 2012). Trees have strong tendencies of growing and thriving in areas with not so good 

soil quality for other plants due to their large, microbially diverse rhizosphere. Thereby they are 

of great help for the ecological restoration of contaminated areas (Gansauer, 2012). Trees such as 

willows (Salix), mulberry (Morus), eucalyptus and poplar trees have been used for 

phytoremediation to stabilize, volatilize, extract and degrade chemical contaminants in the soil. 

Among all the tree species used for phytoremediation, the Salicaceae have the capability of 

manifesting fast growth with a deep root possibility which is a positive trait for phytoremediation 

(ITRC, 2009).  
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2.5.  Arsenic accumulation in plants  

Arsenic is considered a non-essential element for plants, animals and microbes. The uptake of 

arsenic by different plant species depends on the total concentration of arsenic and its speciation 

in the soil (Abbas et al., 2018). Arsenic enters the plant in an inorganic form as either arsenite or 

arsenate through proteins that work as transporters. The uptake is usually controlled by the As 

gradient between growth media and plant cells (Lundh et al., 2010, Gulz et al., 2005, Bergqvist, 

2011, Bergqvist, 2013, Bergqvist and Greger, 2012). 

 
Figure 2: The different components involved in As uptake, transportation and detoxification in the 

plant. (Abbas et al., 2018). Right to reuse under open access creative common CC by license 

(https://www.mdpi.com/openaccess).  

 

The main driving force for the uptake of the two species of arsenic (arsenite and arsenate) is a 

concentration gradient between the source and the sink. Arsenate uses various P-channels to enter 

into the plant cell due to its similar chemical characteristics with P, while arsenite enters the plant 

cell using various protein channels. The movement of arsenite is bi-directional resulting to a to 

and fro movement between the plant cell and the growth medium (Abbas et al., 2018).    

https://www.mdpi.com/openaccess
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Taking up arsenic could have a dangerous biochemical effect on the plant at the subcellular level 

which is the production of the reactive oxygen species (ROS). These ROS are dangerous to the 

plants metabolism as they can cause irreversible damages to important macromolecules such as 

lipids, proteins, carbohydrates and DNA (Abbas et al 2018).  

The composition of the soil has a strong influence on the availability of arsenic for plant uptake. 

Factors such as pH, redox potential influencing the availability, solubility and mobility of arsenic 

in the soil are important (Masscheleyn et al 1991). When the soil contains a higher amount of other 

elements like iron, calcium and aluminum, the availability of As is usually very low as arsenic 

may be sorbed to compounds that these elements form (Bergqvist, 2013). There is a growing 

interest in the use of phosphate fertilizers to aid the uptake of arsenic by plant (Tu and Ma, 2003). 

Accumulation of arsenic in terrestrial and emergent plants generally occurs via the roots and on 

very few occasions via the shoot in areas with atmospheric deposition of As (De Temmerman et 

al., 2012). 

For most terrestrial and emergent plants, arsenic is usually accumulated in the root (Di Lonardo et 

al., 2011), but can be higher in the shoot for some species that has the ability to hyperaccumulate 

(Smith et al., 2008). For an arsenic hyperaccumulating plant, the concentration of arsenic in the 

plant biomass can exceed 1 g/kg (Branquinho et al., 2007). 

 

2.6.  Salix for phytoremediation and biomass for energy.  

Sweden is a country with temperate climate and the choice of plants to be used for remediation is 

streamlined to plants that can only thrive in cold regions. Most phytoremediation with tree crops 

carried out in the past has been done with use of the Salix species and this is because of its ability 

to thrive across Sweden. The Salix species are known to have good physiological adaptation 

mechanism and ecological resilience, which help them thrive in various climate zone and also at 

adverse micro sites (Wani et al., 2011). In addition, Salix species also have a rapid production 

ability of shoots and roots making them suitable for both phytoextraction and phytostabilization 

(Meers et al., 2007). The Salix is a genus of about 500 species distributed mainly in the northern 

parts of America, Europe and mountains of China and peculiar to these regions is their cold climate 

(Argus, 1986). The growth habit of Salix varies from species with height of about 20 m to those 

with height of about 6 m which are usually referred to as shrubs (Argus 1965). 
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Salix has been cultivated on approximately 10,500 ha of land across Sweden (Jordbruksverket, 

2017) and is also known as a short rotation coppice (SRC). As a short rotation coppice, it is an 

energy crop that is densely planted for high yielding biomass used for renewable energy 

(Commission, 2006)  and the renewable energy can be used to replace fossil fuels (WMO 2016). 

Salix are planted as stem cuttings with lengths of 18-20 cm. A Salix plantation is expected to 

remain productive for at least 25-30 years and during this time the biomass can be harvested 

between 6 and 10 times in a growing and re-sprouting cycle of 3 to 5 years and after each harvest, 

new shoots sprout from the cut stumps producing a dense coppice (Larsson et al., 2003).  

Mola-Yudego et al. (2015) reviewed several academic publications concerning the commercial 

cultivation of Salix across Sweden. The average yield recorded for biomass production was 

between 4.6 odt ha-1year-1 to 7.7 odt ha-1year-1 (odt = oven dried tonnes for biomass measurement)  

  

In a study carried out by Tlustoš et al. (2007) on the variation in the uptake of arsenic, cadmium, 

lead and zinc by different species of  Salix growing in contaminated soils, it was found that the 

ability to accumulate lead and arsenic in the aboveground biomass and harvestable part by Salix 

was found to be negligible. Instead arsenic was retained in the roots. 

Since plant species with an ability to hyperaccumulate arsenic into the harvestable biomass of the 

plant are rare, as for Salix, it can be said that for phytoremediation of arsenic using Salix 

phytoextraction cannot be possible, but phytostabilization is. For phytostabilization, the spread of 

the contaminant within the soil and the leaching of the contaminant to the groundwater is reduced 

as the contaminant is been held up in the root and as the root grows bigger and longer it continues 

to take up the contaminant.   
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3. METHODS 

3.1.  Literature search  

This study was based on searching, screening and review of literature, articles, scientific papers 
and previous studies using keywords such as phytoremediation, arsenic, Salix, leaching, 
fertilization, phytostabilization etc. These searches were done online from different academic 
website such as Google Scholar (scholar.google.com), CLU-in (clu-in.org), Web of Science 
(www.webofknowledge.com), Researchgate (www.researchgate.net) and Science direct 
(www.science-direct.com) to list a few. 
   
3.2.  Data extraction and analysis  

Data that are relevant to this study were extracted through the review of different experimental 

studies and used to theoretically analyze the potential of the processes considered in this study.  

 

3.3.  Economic benefit calculations 

Economic benefit calculation was made to analyze the benefit of the action by comparing the cost 

of production to the revenue generated from the production process to see if there was any potential 

for profit making. With this we can determine if the action of using phytoremediation as a 

management tool to remediate abandoned sites contaminated with arsenic is feasible and viable 

for investment.  

With the intention to focus on tree crops as the remediating plants, the cost of cutting harvested 

trees into wood chips was be inquired for from accessible wood chip makers. The cost of 

purchasing wood chips for energy production by energy producing plants was also inquired from 

relevant sources. Revenue generated from the sales of wood chips are then compared to the cost 

of production to see if cultivation of Salix for both phytoremediation and biomass production has 

a profit making potential for investment.  
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4. RESULTS AND DISCUSSION 

4.1.  Potential of Salix for phytostabilization of arsenic and biomass production  

Phytostabilization of arsenic should include low accumulation of arsenic in the shoot of the plant 

species used and a higher accumulation of arsenic in the root (Bergqvist and Greger, 2012, Butcher, 

2009). Tree plants are mostly preferred for phytostabilization due to their high evapotranspiration 

ability (Pulford and Watson, 2003). These abilities help to retain arsenic and to reduce the flow of 

water down the soil profile resulting in the reduction of leaching of pollutants to the groundwater 

table. The elongated roots of trees helps them take up contaminants from deeper soil depth 

compared to other plant types (Negri et al., 2003). When phytostabilizing with trees, priority is 

usually placed on the use of native tree species in order to prevent introducing invasive plant 

species to remediation sites (Mench et al., 2010). Salix species are native to Sweden and most cold 

regions of the world. Its high biomass producing abilities made it the plant in focus of this study 

for the remediation of abandoned contaminated sites in Sweden, with a joint aim of producing as 

much biomass as possible for conversion into wood chips for energy production by energy plants. 

Several experiments have been carried out to investigate the phytostabilization capacity of 

different tree species.  

The experiments summarized in Table 2 were carried out on contaminated sites to see the how 

much arsenic is accumulated in different part of a Salix plant. From the results obtained from all 

the experiments it was confirmed that arsenic accumulated more in the root of Salix and very little 

in the shoot and leaves.  

The experimentnof Sylvain et al. (2016) was able to deduce that Salix has a good phytostabilizing 

ability as it accumulated a very high amount of arsenic in its root compared to its aboveground 

biomass. Moreover, the cultivation of Salix on contaminated sites did not affect the growth of the 

tree crop. Salix is known for its preference in accumulating Zn, Cd, Cu etc. in its aboveground 

biomass and its capacity to accumulate arsenic in its belowground biomass (Keller et al., 2003, 

Rosselli et al., 2003). This accumulating preference was further verified in an experiment 

conducted by Vamerali et al. (2009) where the result showed the accumulation of arsenic and zinc 

in the above-ground biomass of Salix alba. The concentration of arsenic accumulated in the above-

ground biomass was as low as 5 mg/kg in comparsion to that of zinc that was as high as 509.6 

mg/kg. 
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Table 2: Different experiment on the phytostabilization abilities of Salix spp 

Reference Soil Condition Aim of study  Period/Duration  Plant Species used Amount of Arsenic accumulated in plant 

biomass (mg/kg) 

Sylvain et al. 

(2016) 

Gold mine area  Stabilization potential of 2 

different Salix species on 

As, Pb and Sb 

45 days  Salix viminalis (S1) 

and Salix purpurea 

(S2) 

 S1: Root (2000 mg/kg), Shoot (225 mg/kg), 

leaves (100 mg/kg) 

 

S2: Root (3500 mg/kg), Shoot (150 mg/kg), 

leaves (50 mg/kg) 

Vamerali et al. 

(2009) 

Contaminated waste 

derived from mineral 

roasting for Sulphur 

extraction 

Comparing the growth 

and uptake of trace 

element of populus and 

salix in a pot and field trial 

2 years  Populus alba (Pa), 

Populus nigra (Pn), 

Populus tremula (Pt), 

Salix alba (Sa) 

Pa: Leaves (2.4 ± 0.39), Fine roots (779±8.5) 

Pn: Leaves (2.0 ± 0.28), Fine roots (144.5±77.08) 

Pt: Leaves (2.3 ± 0.63), Fine roots (62.0±13.08) 

Sa: Leaves (5.0 ± 0.54), Fine roots (59.2±14.76) 

Otones et al. 

(2011a) 

Mining area affected 

by the abandoned 

exploitation of an 

arsenical tungsten 

deposit  

To assess its arsenic 

pollution level and the 

feasibility of native plants 

for being used in 

phytoremediation 

approach on two different 

sites named B1 and B2  

 Several plants were 

used including Salix 

atrocinerea  

Accumulation of arsenic in the below ground 

biomass of Salix was of a moderate amount with 

up to 119 mg/kg accumulated and a very low 

accumulation in the aboveground biomass as low 

as 18.4 mg/kg 

Sandhi and 

Greger (2012) 

Mine area  Screen the possibility of 

locally grown Salix spp for 

phytostabilization of 

arsenic.  

 Salix alba 1 (Sa1) 

Salix caprea (Sc) 

Salix alba 2 (Sa2) 

Arsenate:  

Sa1: Root (116.0±13.5), Stem (1.36±1.03), 

Leaves (0.57±0.3) 

 Sc: Root (103.7±18.0), Stem (0.15±1.00), 

Leaves (2.94±0.4) 

Sa2: Root (228.0±109.6), Stem (3.64±1.8), 

Leaves (0.36±0.4) 

Arsenite:  

Sa1: Root (136.7±37.6), Stem (0.91±0.57), 

Leaves (1.73±1.1) 

 Sc: Root (78.3±19.5), Stem (1.26±0.92), Leaves 

(5.98±0.5) 

Sa2: Root (109.04±41.8), Stem (3.30±0.74), 

Leaves (0.75±1.2) 

Navazas et al. 

(2019) 

Arsenic 

contaminated 

brownfield  

To further verify the ability 

of certain plants to 

tolerate and accumulate 

arsenic using Salix spp 

 Salix atrocinerea  Root: 2400 mgAs/kg 

 

Leaves: 25 mgAs/kg  

Malik and 

Qayyum (2018) 

Arsenic affected soil  Assess the potential of 

three tree seedlings to 

reclaim an arsenic 

affected soil  

24 months   Eucalyptus 

camadulensis (Ec) 

Terminalia arjuna (Ta) 

Salix tetrasperma (St) 

Ec: Aboveground biomass (37.25), Belowground 

biomass (6.55).  

Ta: Aboveground biomass (24.13), Belowground 

biomass (4.22) 

St: Aboveground biomass (35.76), Belowground 

biomass (6.03) 
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This conclusion was also supported by Otones et al. (2011a) after their experiment showed arsenic 

been much accumulated in the root of Salix species compared to other part of the tree with as much 

as 119 mg/kg of arsenic accumulated in the root and as low as 18 mg/kg accumulated in the shoot 

Navazas et al. (2019) also documented that despite arsenic being very toxic with deleterious 

effects, it can be tolerated and accumulated by Salix and some other plant species due to their 

arsenic tolerant mechanism. This is was further verified through an experiment in a controlled 

condition where a Salix clone (Salix atrocinerea) was planted in an arsenic contaminated medium 

for 30days and at different points after short and long time exposure, with several data taken such 

as As accumulation in different plant parts. The results showed that the Salix clone had a high 

tolerance for arsenic as it did not affect the growth and also accumulated arsenic as much as 2400 

mg As/kg in the root and around 25 mg As/kg in the leaves. This result further emphasizes the fact 

that arsenic can be phytostablised with Salix but not phytoextracted.  

Malik and Qayyum (2018) designed a study to assess the potential of tree seedlings in restoring an 

arsenic contaminated site by studying their accumulation of arsenic. The tree seedlings were of 

different tree types and species namely Eucalyptus camaldulensis, Terminalia arjuna and Salix 

tetrasperma and were all 6 months old at the time of use. The experiment was carried out in four 

treatments with arsenic applied to each treatment in different concentrations of 0.5, 1, 2.0 and 4.0 

mg/L at different intervals for 18 months and after which the vegetative part of the trees are 

harvested and analysed for arsenic concentration. The result of the analysis showed the highest 

accumulation of arsenic in the root of the trees. From the fourth treatment in which 4.0 mg/L As 

was applied at several interval over 18 months, the As concentration accumulated in the roots of 

the trees were  37 mg/kg (Eucalyptus camaldulensis), 36 mg/kg (Salix tetrasperma) and 24 mg/kg 

(Terminalia arjuna), which was significantly higher than the amount of arsenic accumulated in the 

leaves of the trees: 6.5 mg/kg, 6.0 mg/kg and 4.2 mg/kg respectively. 

In as much as Salix is not a good phytoextractor of arsenic due to the fact that it does not have a 

good transporter for arsenic and arsenic cannot be transported from the belowground biomass to 

the aboveground biomass, it still keeps arsenic accumulated in its belowground biomass (root) 

which causes stabilization as the element is held up in the root and prevented from spreading 

through the soil and also leaching down the soil profile to the groundwater.  
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Salix is good for biomass production and also stabilization of arsenic makes it a good tree crop for 

the simultaneous purpose to carry out remediation and biomass production, as the aboveground 

biomass is not contaminated with arsenic. 

The presence of heavy metals in the biomass of energy trees reduces its worth as most energy 

plants that uses the wood chips made from it have to spend more funding in disposing its metal-

containing ashes. Therefore they prefer wood chips made from tree biomass that are free of heavy 

metal contaminants. Since Salix accumulates arsenic in its roots, Salix grown for biomass 

production can be grown on sites with high arsenic contamination to help reduce the spread of the 

contaminants and also its leaching to groundwater with the assurance that the aboveground 

biomass will still be profitable as its heavy metal content is quite low. 

 

4.2.  Influence of plant on the solubility and leaching of arsenic 

Unlike organic contaminants, metal(loids) like arsenic do not undergo microbial or chemical 

degradation and persist for a long time after they have been introduced into the environment or 

soil.(Bolan et al., 2014). The solubility of arsenic is influenced by several factors of which the 

most important ones are redox potential and pH (Sadiq, 1997). Arsenic usually forms inorganic 

and organic complexes but the two biologically important species are the inorganic arsenate 

[As(V)] and arsenite [As (III)]. The redox potential and pH of the soil determine which one of the 

species of aresnic predominates. (Bergqvist and Greger, 2012, Tripathi et al., 2007). Masscheleyn 

et al (1991) in an experiment on the effect of redox potential and pH on arsenic species, arsenate 

[As(V)] and arsenite [As(III)] in  a controlled Eh-pH condition found that both redox status and 

pH had an effect on the solubility of the arsenic species. At an increasing pH and decreasing Eh, 

the solubility of arsenite increases while the solubility of arsenate decreases. This is shown 

in  Table 3 

Table 3: Concentration of As as affected by increasing pH and reducing Eh (Masscheleyn et al., 

1991) 

  
Concentration of 

Arsenic (mg/kg) 
  

pH Eh (Mv) As (III) As (V) 

5.6 340 1.4 5.6 

6.7 100 46.8 3.1 

7 -100 69.4 3.4 
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The solubility of arsenate increases with increasing pH and the solubility of arsenite increases with 

decreasing pH (Raven et al., 1998). It was discovered that at low concentration, the adsorption of 

arsenite to ferrihydrite increases from low pH to high pH. For arsenate, the adsorption decreases 

from low to high pH at low concentration and the adsorption at high concentration increases from 

low pH to high pH. This shows that the adsorption of arsenic species to surfaces in the soil such 

as ferrihydrite is influenced by the pH of the soil.  

Norini et al. (2019) were able to conclude from a review on the behavior of As that the ability of 

As to bind to surfaces on soils such as Fe, Al and Mn oxides is usually influenced by the pH and 

redox potential of the soil. These findings are in agreement with the results from Masscheleyn et 

al. (1991).  

Masscheleyn et al. (1991) and Norini et al. (2019) claimed that plants cultivated on the 

contaminated site did not significantly influence the solubility and leaching of arsenic. Several 

literature search on the effect of Salix on the solubility/leaching  of arsenic revealed that there is a 

knowledge gap on information relating to the influence of plant type and root chemistry on the 

leaching of arsenic. Consequently, further studies are needed to specifically investigate the 

influence of exudates from root of tree crops like Salix on the behaviour of arsenic in the soil. This 

will help with further justification of the phytostabilization of arsenic as the contaminants are 

trapped in the root of the soil all through their life cycle.  

 

4.3.  Effect of fertilizer usage on phytostabilization of arsenic contaminated soils  

Apart from pH and redox potential, another factor that influences the behavior of arsenic in the 

soil is the presence of phosphate (Fresno et al., 2012) as it competes with arsenic for adsorption 

sites in the soil as a result of their similar chemical characteristics (Peryea, 1991) 

Having a lot of phosphate present in the soil can cause an increase in the availability of soluble 

arsenic due to high desorption of the contaminant caused by the addition of phosphate in high 

doses (Cao et al., 2003, Tassi et al., 2004, Peryea, 1991) 

Fresno et al. (2012) carried out experiments to see how increasing doses of phosphate fertilizers 

will affect the behaviour of arsenic in a phytoremediation attempt using Salix atrocinerea. The 

outcome is shown in Figure 3. 
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Figure 3: Effect of phosphate fertilizer application on the behavior of As and its accumulation by 

Salix in a phytoremediation attempt (Fresno et al., 2012). TSP: Triple super phosphate fertilizer; 

NPK: Nitrogen – Phosphorus - Potassium fertilizer. [Image not reproduced but created using data 

from Fresno et al. (2012)] 

As seen in Figure 3, the application of phosphate fertilizers can cause a high mobility of arsenic 

and also help the accumulation of arsenic through phytostabilization due to the higher 

bioavailability of arsenic. To avoid heavy leaching of arsenic, phosphate fertilizers should be 

applied in small doses. This conclusion was further confirmed and agreed on  by Cao et al. (2003), 

Tassi et al. (2004) and Fayiga and Ma (2006) through their experiments showing that usage of 

phosphate fertilizers in moderate doses boosted the accumulation of arsenic by plants in a 

phytoremediation attempt. The application of phosphate fertilizer made the phytoremediation 

process more successful compared to when phosphate fertilizers were not applied. Coupled with 

the increased accumulation of arsenic in the root of the Salix tree, the application of fertilizer helps 

increase the woody biomass yield of the Salix tree planted (Fresno et al., 2012). In addition to 

phosphate fertilizers aiding the accumulation of arsenic by Salix roots, another means of stabilizing 

arsenic is by using aided phytostabilization by introducing certain oxides and hydroxides that sorb 
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arsenic in the root zone, thereby impeding its leaching. The sorption of arsenic to these oxides and 

hydroxides does not in anyway inhibit the uptake of arsenic by plants (Kumpiene et al., 2012).  

 

4.4.  Accumulation of arsenic in the root of salix   

The mobility of arsenic is relatively low in soils with high acidity and clay content (McBride, 

1994). With arsenic mostly partitioned in the residual fraction of the soil, the first extraction or 

accumulation of arsenic by Salix roots from an experiement carried out by Otones et al. (2011b) 

is said to be around 0.2% of the total concentration of arsenic in the soil with a bioaccumulation 

factor of 0.02. The bioaccumulation factor is  estimated by taking the ratio of the concentration of 

the arsenic accumulated in the root to the total concentration of arsenic in the soil. The use of 

phosphate fertilizers can help increase the bioaccumulation factor as phosphate competes with 

arsenic for adsorption sites due to their similar chemical characteristics resulting in more available 

arsenic for plant uptake.  

The root biomass of Salix is usually concentrated in the uppermost 10 – 40 cm of the soil with 

about 39 – 54% of the total root biomass in this depth (Heinsoo et al., 2009). According to 

Juliszewski et al. (2015), the measured root biomass per Salix stand after 5 years of planting ranged 

from 6 kg to 18 kg per square meter occupied by each Salix stand (from 30 stand measured) which 

was also estimated to a value of 6 to 10 t/ha.   

According to Fresno et al. (2012), the root of Salix from two experimental treatments with arsenic 

contamination and concentration of up to 45 mg As/kg and 30 mg As/kg was able to accumulate 

arsenic of up to 600 µg/kg and 480 µg/kg after 10 weeks. The bioaccumulation factor was then 

estimated to a value of  0.07 (0.7%) and ) 0.08 (0.8%), which was much higher compared to Otones 

et al. (2011b) value of 0.02 (0.2%). The difference in the bioaccumulation factor between Fresno 

et al. (2012) and Otones et al. (2011b) experiments could be as a result of phosphate fertilizer 

applied in Fresno et al. (2012) experiment that lead to more arsenic accumulated by the root of 

Salix due to more available arsenic for uptake. Otones et al. (2011b) and Fresno et al. (2012) were 

able to conclude that the root of Salix is effective in the stabilization of arsenic in arsenic-

contaminated soils or brownfields. 

Due to the condition in which arsenic strongly adsorbs to clay colloids and specific minerals such 

as ferric oxides and hydroxides, arsenic has the potential of remaining in the root zone of the soil, 
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which increases the possibility of it been taken up by Salix roots especially in a situation where 

there is a presence of phosphorus in the soil (Woolson, 1983). 

 

4.5.  Effect of soil type on biomass yield of salix  

 Labrecque et al. (2003) conducted a field experiment to see the effect and importance  of soil type 

on the biomass yield of two different clones of Salix in the presence and absence of fertilizers. The 

yield were later measured after 6 years of planting (result in Table 4). 

Table 4: Biomass Yield of Salix after 6 years of planting as affected by soil type and fertilizer 

application (Labrecque and Teodorescu, 2003) 

 Salix discolor 

(Fertilized)  

Salix discolor 

(Unfertilized) 

Salix viminalis 

(Fertilized) 

Salix viminalis 

(Unfertilized) 

Soil Type Yield (tDM/ha) Yield (tDM/ha) Yield (tDM/ha) Yield (tDM/ha) 

Sandy  24.53    22.25    47.2    28.73 

Clay 31.48    31.52    70.36    61.97 

tDM/ha: tonnes of dry matter per hectare  

The yields from the two Salix clones cultivated on the clay soil were significantly higher than 

those for Salix cultivated on the sandy soil (for both fertilized and unfertilized treatments). This 

can be as a result of the clay soil having a better cation exchange capacity compared to that of the 

sandy soil, leading to a greater availability of nutrients, and to a near neutral pH in the clay soil. 

The sandy soil with its poor nutrient availability and low water retention capacity was still able to 

produce a considerable biomass yield for both Salix clones, which indicates that Salix trees would 

produce a considerable biomass yield regardless of the soil type. But a better biomass yield will 

be obtanied provided they are planted on sites and soils with good soil nutrient and qualities that 

matches up with the type of clones cultivated (Larsen et al., 2014).   

 

4.6.  How much biomass can be produced from one hectare of Salix plantation?   

In Sweden, commercial willow plantations have a double row design with 1.5 m and 0.75 m 

spacing between rows and approximately 0.75 m between plants in each row yielding a planting 

density of about 12,000 cuttings per hectare (Rytter, 2012). This can be compared to Northern 

England, were a single design spacing of 0.75 m between the individual rows and 1.5 m between 
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the pair of rows is used giving a total of 15,000 cuttings per hectare (Wilkinson et al 2007). These 

spacing are advised in order to give the plantation a good screen and windbreak. For a more dense 

hedge, the spacing can be closer (BowhayesTrees, 2019), giving an average of 20,000 cuttings per 

hectare.  

Table 5: Biomass produced by Salix per hectare 

Reference  Range of planting density 

per hectare 

Cycle of harvest Rage of biomass yield 

(tonnes of dry matter per 

hectare) 

Castaño-Díaz et al 2018 9 000 - 14 000 5 years  1.6 - 10.7 tDM/ha  

Bergkvist et al 1998  10 000 - 20 000 5 years  14.2 - 18 tDM/ha 

Yudego et al 2008 15 0000 3 years  2.6 - 4.5 tDM/ha  

 Labrecque et al 2003 20 000 6 years  22 - 70 tDM/ha  

Larsen et al 2014 10 000 - 20 000 3 years  1.12 - 25.35 tDM/ha 

tDM/ha: tonnes of dry matter per hectare  

 Castaño-Díaz et al. (2018) conducted a SRC trial on a former mining land in northern Spain over 

a period of five years with the aim of evaluating the effect of planting densities on the yield of 

three different clones of Salix cultivated on a contaminated land. The Bjorn clone (Salix schwerinii 

E. wolf x Salix viminalis L.), the Inger clone (Salix triandra L. x Salix viminalis L.) and the Olof 

clone (Salix viminalis L. x the Bjorn clone) were the three clones used and all were of Swedish 

origin. Two planting densities were used (9876 and 14,815 cuttings per hectare) with a spacing of 

0.75 m x 0.9 m spacing to achieve the low planting density and 1.5 m x 0.6 m to achieve the high 

planting density. Each planting density was subject to three treatments (control, NPK 6:20:12 and 

weed control using glyphosate herbicide). The yield per hectare was measured in mega-grams of 

dry matter per hectare (1 Mg = 1 ton) and this was done by multiplying the average dry biomass 

of the 5 stools collected by an expansion factor of 14,815 cuttings (0.6 m plant spacing within each 

row) or 9876.5 cuttings (0.9 m plant spacing within each row). The range of biomasses produced 

by the different Salix clones are seen in Table 5. Castaño-Díaz et al. (2018) were also able to 

conclude that the treatment effect had little effects on the yield.  

A similar study was carried out by Bergkvist and Ledin (1998) to see the effect of planting design 

and spacing on the biomass yield of Salix species (Salix viminalis) with an intended cycle of 5 

years before the first harvest. The planting spacing used, ranged from 10,000 - 20,000 cuttings per 

hectare. The biomass yield of the lower planting density is significantly lower than that of the high 
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planting density with 14.2 and 18 tonnes of dry matter per hectare respectively. From the study it 

was seen that planting spacing and the number of plant cuttings per hectare had more influence on 

the biomass yield compared to the planting design. Comparing with other studies in Table 6, it can 

be concluded that the denser the planting density, the higher the possibility of having more biomass 

yield after harvesting.  

Mola-Yudego and Aronsson (2008) carried out a yield model prediction for willow plantation for 

bio-energy production in Sweden. The model predicted a yield for the first three harvest cycles 

and the predictions were 2.6, 4.2 and 4.5 oven dried tonnes per hectare respectively.  

The yields shown in Table 5 correlate inversely with the harvest cycle as harvest of longer cycle 

had more yield compared to those of shorter harvest cycle even though they had more planting 

density.  

Several factors like missing plant stand after planting, fertilizer application, weed control, planting 

design and soil quality may affect the yield but not to a significant level, as these can be corrected 

with proper management procedures. Also, the quality of the soil in terms of contamination did 

not affect the biomass yield (Castaño-Díaz et al., 2018).  

In most European countries and the UK, it is considered that economic return is achieveable when 

the woody biomass of short rotation coppice yield up to 7 – 10 tons per hectare per annum (Mitchell 

et al., 1999). Since the yield produced by the three Salix species planted on arsenic-contaminated 

soil from the study of Navazas et al. (2019) and Sylvain et al. (2016) were in the range of 7 – 7.5 

tDM/ha/yr, it can be assumed that there is a potential for economic return when Salix is cultivated 

on arsenic-contaminated soils.  

 

4.7.  Wood chips production and sale  

Swedish bioenergy use has grown from 40 Terawatt hours (TWh) per year in the 1970s to over 

140 TWh in 2012, overtaking oil to become the country's leading energy source (BASIS 2012). In 

Sweden an average of 6 848 000 oven-dried tonnes of wood per year is consumed nationwide for 

energy production. 56% of this is consumed by combined heat production plants (CHP) and 44% 

is consumed by heating plants. In comparison to this an average of 67,687,500 oven dried tonnes 

of wood/year is consumed by other industries in Sweden. These industries include pulp mills, 

pellet manufacturers, wood log users etc. During a phone interview with the president of Svebio 

(The Swedish Bioenergy Association), Gustav Melin (April 2020), he said that wood chips are 



21 
 

purchased per MWh or GJ of energy and that the price could range from 190 to 200 SEK/MWh. 

He also mentioned that to calculate the energy content of wood chips, factors such as the moisture 

content of the wood chip, weight in kg, ash content etc. must be known. The cost of cutting 

harvested woody biomass into wood chips varies depending on the wood chipper used as different 

wood chipping machines have different efficiency and turn in time. This cost can range from 44 

SEK/m3 to 47 SEK/ m3 (Unpublished data from a survey carried out by the research institute 

Skogforsk) 
 

4.8.  Economic benefit calculations.  

To determine how much profit can be made from cultivating a hectare of Salix, a survey containing 

the cost of production of two different farms in Sweden was reviewed. This survey, which was 

carried out by Dimitriou and Rutz (2015), showed the cost incurred by the farmers of the two farms 

in the process of cultivating Salix over a year, for details see Table 7. The cost of land purchase 

and initial planting cost were not included because these costs do not reoccur and only reoccurring 

expenses were selected. These were totaled and compared with the amount generated from the 

harvest yield to see its profit margin. Salix farmers in Sweden also get up to 10,000 SEK as subsidy 

for planting Salix per hectare (Andersson, 2012). 

 

Table 6: Cost of Salix production and revenue generated from sales of wood chips from two Salix 

farms in Puckgården and Enköping, Sweden (Dimitriou and Rutz, 2015) 

 Expenses Amount (SEK/ha/yr.) 

(Dimitriou and Rutz, 2015) 

Amount (SEK/ha/yr.) 

(Dimitriou and Rutz, 2015) 

Farm Location Puckgården  Enköping 

Fertilizers  342 - 

Maintenance  198 198 

Harvest  1251 2 142 

Transportation 945 1 332 

General Expenses  495 495 

Interest rate  99 135 

Total  3 330 4 302 

Biomass Produced  9.5 tDM/ha/yr. 9  tDM/ha/yr. 

Revenue  Amount (SEK/ha/yr.) Amount (SEK/ha/yr.) 

Sale of Wood Chips (For Energy 

in (KWh)) 

7 776 8 064 



22 
 

 Expenses Amount (SEK/ha/yr.) 

(Dimitriou and Rutz, 2015) 

Amount (SEK/ha/yr.) 

(Dimitriou and Rutz, 2015) 

Wastewater compensation  1 971 

Total  7 776 10 035 

Profit/loss  Amount (SEK/ha/yr.) Amount (SEK/ha/yr.) 

Profit  4 446 (57% profit made) 5 733 (57% profit made) 

 

The calculation in Table 6 for the Puckgården farm was made from a Salix field of 4 years harvest 

cycle. All costs were included except the land ownership cost, the cost of ploughing and the cost 

of planting. The reason for this is because the cost were calculated after the fifth harvest equaling 

20 years after setting up the forest plantation. The planting was first done in 1991 and the fifth 

harvest was done in 2011. For the farm in Enköping the calculation was made from a Salix field 

of 4 years harvest cycle after the third harvest equaling 12 years after the first planting. The first 

planting was done in 1999 and the third harvest was done in 2011.    

From the calculations on the economy of willow short rotation coppice made by Dimitriou & Rutz, 

2015, it can be seen that apart from the possibility of having willow trees for phytoremediation, 

they are also able to generate revenue through sales of their biomass for energy production when 

converted into woodchips.  

Granting that the soil quality in the farms in which the survey shown in Table 6 were obtained 

from was of good quality as the soils were on agricultural land, the calculations made are still 

feasible to use as a reference for Salix cultivated on arsenic-contaminated soils, which is in 

agreement with the conclusions made by Labrecque and Teodorescu (2003) and Larsen et al. 

(2014) according to which the soil type and quality did not have a significant effect on the biomass 

yield of Salix. Salix can be planted on an arsenic-contaminated soil and still produce considerable 

biomass yield which will be enough to generate substantial profit. To further support this claim, 

the amount of biomass yield produced by Salix cultivated on contaminated soil was reviewed and 

compared to the yield obtained from the survey. According to Navazas et al. (2019) and Sylvain 

et al., (2016), the biomass yield produced by Salix cultivated on a gold mine area and on a brown 

field ranged between 7 and 7.5 tDM/ha/year, which as stated earlier is enough to achieve economic 

returns and to make profit. 
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5. CONCLUSION 

 Based on multiple studies reviewed, Salix was found to tolerate arsenic and that it can be 

cultivated on brown fields contaminated with arsenic to accumulate arsenic in its below ground 

biomass.  

 The accumulation of arsenic in the below ground biomass of contributes to phytostabilization 

as the spread and leaching of the contaminant is mitigated by the tree as the contaminant is 

accumulated in its roots. But due to limited studies on the effect of Salix plant on the leaching  

and solubility of arsenic, the phytostabilizing potential of Salix cannot be fully evaluated and 

these calls for further investigation on the relationship between the root and root exudates of 

Salix and the leaching of arsenic.  

 To aid a higher accumulation of arsenic in the root of Salix, sorbents such as ferric oxides and 

hydroxides can be introduced as they will help stabilizing arsenic in the soil which is known 

as aided phytostabilization.    

 Cultivating Salix on arsenic-contaminated soil or brown-field also has a good potential for 

profit-making as the tree crop can survive on arsenic contaminated soil with the ability to 

produce biomass yield up to an average of 7 tDM/ha/year, which is sufficient for economic 

returns. The revenue generated from a hectare of Salix could range from 8,000 to 10,000 

SEK/ha/year through the sales of the biomass for energy production, regardless of whether it 

has been cultivated on agricultural soil or on an arsenic-contaminated brown-field, as arsenic 

is accumulated in the below-ground biomass of Salix, leaving the above-ground biomass 

contaminant free and of good quality for energy production.  
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