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Denna uppsats beskriver virusgulsot i sockerbetor och omfattar både äldre och nyare kunskap 

om virus, vektorer och värdväxter, samt kontrollmetoderna mot sjukdomen. Syftet är att utforska 

nya potentiella kontrollmetoder och hur sjukdomen kan komma att påverka jordbruket i framtiden.  

 Sockerbetor kan bli drabbade av ett flertal sjukdomar och virusgulsoten är en av de viktigaste. 

Virusgulsot hos sockerbetor orsakas av beet yellows virus (BYV), beet mild yellowing virus 

(BMYV), beet chlorosis virus (BChV) och beet western yellows virus (BWYV). Infektioner orsakar 

visuella symptom på bladen som kloros och nekros och även en minskad tillväxt hos grödan. 

Infektioner leder till att avkastningen på socker minskar i samband med att biomassan och 

sackaroskoncentrationen reduceras samt att blåtalet blir förhöjt. De virus som orsakar virusgulsot 

hos sockerbetor har olika stora värdkretsar men infekterar främst växter från familjen 

Amaranthaceae. Mottagliga ogräs och grödor kan vara infektionskällor och bör tas i beaktning om 

sjukdomen förekommer i sockerbetsfält.  

Persikbladlusen (Myzus persicae) och betbladlusen (Aphis fabae) är de mest effektiva vektorerna 

för sjukdomen. Virusgulsot hos sockerbetor sprids genom att virussmittade bladlöss suger på bladen. 

Storleken på bladlössens populationer påverkas av förekomsten av deras primära värdväxter, 

naturliga fiender och vädret. Varmt och torrt väder resulterar oftast i fler migrerande bladlöss som 

kan fångas i luftströmmar och driva längre sträckor. Hög förekomst av virusgulsot hos sockerbetor 

i Sverige har främst orsakats av att virussmittade bladlöss migrerat från söder. Temperaturen 

påverkar även mängden övervintrande bladlöss i stukor eller på värdväxter. Tidigare har de låga 

temperaturerna i Sverige motverkat övervintring av aktiva bladlöss, men det är en stor risk för att 

övervintring blir mer vanligt förekommande i framtiden som resultat av klimatförändringarna.  

Sedan tidigt 1900-tal har virusgulsot hos sockerbetor orsakat bekymmer för både odlare och 

sockerproducenter, vilket har lett till internationella sammarbeten och omfattande forskning inom 

området. Under det senaste århundradet har förekomsten av virusgulsoten hos sockerbetor varierat 

mellan låga och höga nivåer. De senaste årtiondena har förekomsten av virusgulsoten varit låg på 

grund av utvecklingen av effektiva insekticider och prognosmetoder. Kontrollmetoder mot 

virusgulsot består av att så tidigt, minska lagringen i stukor och övervintrande sockerbetor samt att 

använda insekticider. Nya kontrollmetoder har för närvarandet blivit aktuellt med tanke på att 

neonikotinoider blev förbjudna i EU 2018, vilket var den mest förekommande kontrollmetoden mot 

virusgulsot i sockerbetor. Bristen på effektiva kemiska bekämpningsmedel mot den högt 

insekticidresistenta M. persicae tyder på att virusgulsoten hos sockerbetor kan bli mer 

förekommande i framtiden. Utveckling eller tillåtelse av nya insekticider i sockerbetsodling, 

utveckling av resistenta sorter och användandet av biologisk kontroll är kontrollmetoder som borde 

bli utforskade i framtiden.  

 

Nyckelord: virusgulsot, sockerbetor, BYV, BMYV, BWYV, BChV, Myzus persicae, persikbladlus, 

Aphis fabae, betbladlus, neonikotinoider  
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This thesis describes virus yellows in sugar beets and converse both older and new knowledge 

about the viruses, vector and host relations and the control measures against the disease. The aim is 

to explore new potential control measures and to predict how the disease may affect agriculture in 

the future.  

Sugar beets are affected by various diseases, with virus yellows being one of the most important 

ones. Virus yellows in sugar beets is caused by beet yellows virus (BYV), beet mild yellowing virus 

(BMYV), beet chlorosis virus (BChV) and beet western yellows virus (BWYV). Infections cause 

visual symptoms like leaf chlorosis, brittleness, necrotic spots and decreased growth. Infections 

result in sugar yield loss by the reduction in biomass and sucrose concentration as well as  by 

increasing juice impurity levels. The host ranges of the viruses causing virus yellows are narrow to 

large and mainly include species in the family Amaranthaceae.  Weeds and crops, which are 

susceptible to virus yellows can act as infection sources and should be taken into consideration if 

the disease is occurring in sugar beet crops.  

The green peach aphid (Myzus persicae) and the black bean aphid (Aphis fabae) are the most 

important vectors for the disease. Virus yellows is spread by viruliferous aphids via feeding. Aphid 

populations are influenced by the occurrence of their primary host plants, natural enemies and the 

weather. Warm and dry weather usually results in more migrating aphids, which can get caught in 

the wind and drift over longer distances. When the incidence of virus yellows has been high in 

Sweden, the cause has been that viruliferous aphids have migrated from the south. The temperature 

does also influence the number of overwintering aphids in clamps or on host plants. In the past, the 

temperatures in Sweden have disfavoured overwintering of active aphids. However, there is a great 

risk that overwintering aphids become more common in the future due to climate change.  

Since the early 1900’s, virus yellows has caused concern to both farmers and sugar 

manufacturers, which has led to international corporations and extensive research on the issue. 

Throughout the 1900’s, the incidence of virus yellows has fluctuated between low and high levels. 

During the last decades, the incidence of virus yellows has been low because of the development of 

effective insecticides and virus yellows forecasting. Control measures against virus yellows consist 

of early sowing, limiting clamps and overwintering sugar beets as well as of insecticide usage. New 

control measures are now of importance since the ban of neonicotinoids in the EU in 2018, which 

limits the most used control measure against vectors of virus yellows. The lack of effective chemical 

control measures against the highly insecticide-resistant M. persicae suggests that virus yellows 

might become more frequently occurring in sugar beets in the future. Development or introduction 

of new insecticides for sugar beet production, development of resistant cultivars and using biological 

control are control measures that should be explored in the future.  

Keywords: virus yellows, BYV, BMYV, BChV, BWYV, sugar beet, Myzus persicae, green peach 

aphid, Aphis fabae, black bean aphid, neonicotinoids. 
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Being one of the most important diseases in sugar beet, virus yellows has 

historically affected the agricultural industry and research significantly. Virus 

yellows had the largest impact between 1930-1995 and a lot of research about the 

disease has been carried out through these years (Dunning 1988; Qi et al. 2004). 

During the last decades, virus yellows have had a low incidence predominantly 

because of the development of effective insecticides, which eliminate vectors, and 

virus yellows forecasting (Qi et al. 2004; Hauer et al. 2017). Neonicotinoids, such 

as imidacloprid, clothianidin and thiamethoxam have been used as a seed coating 

in almost all conventionally grown sugar beet crops but they were banned in the 

European union (EU) in 2018 (Hauer et al. 2017; European Commission 2020). 

Neonicotinoid resistance has also started developing in the main vector, which is 

the green peach aphid (Myzus persicae) (Srigiriraju et al. 2010; Slater et al. 2012; 

Umina et al. 2014; Panini et al. 2014; Voudouris et al. 2017). New control measures 

are now of importance since the main control measure has been limited.   

The low incidence of virus yellows during the last decades has resulted in a lack 

of recent research and review articles in the subject. Research on virus yellows 

seems to gaining more interest again because of the prevailing situation and 

overview articles that collect both recent and older information about virus yellows 

would prove useful. This thesis describes the sugar beet production today and 

revisits the history of virus yellows to understand the impact it has had on sugar 

beet production. The viruses, symptoms, vector, and host relations are also 

described and discussed for a better understanding of the spread of virus yellows. 

The already existing and potential control measures for virus yellows are also 

explored. The aim was to collect information on the factors that contribute to the 

spread of virus yellows and to get a general overview of the disease. As well as, to 

predict how virus yellows could affect the agriculture in the future.  

1. Introduction   
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Sucrose is a common sugar that is consumed widely by humans. It is obtained from 

two crops, sugar cane and sugar beet, with sugar beet providing 20% of the world 

demand for sugar (Draycott 2008; Finkenstadt 2013). The sugar beet stores sucrose 

and nutrients in the hypocotyl, which is the part between the root and stem and used 

for sugar production (Anderberg & Anderberg 2005). The sucrose concentration is 

between 13-22% in sugar beets, depending on cultivar (Cattanach et al. 1991). 

Beets were first grown as a garden vegetable, about 2000 years ago (Draycott 

2008). It was later used for fodder and from the 1700’s and onwards, mainly 

cultivated for sucrose (Biancardi et al. 2012). The origin of sugar beet is the wild 

beet, Beta vulgaris ssp. maritima, which grows around shores. Different wild beets 

in the Mediterranean were probably first to be selected and later used for breeding 

(Draycott 2008). From the Middle Ages in Europe until today, sugar has been 

widely used for sweetening purposes (Draycott 2008). Sugar beet is primarily 

grown for human consumption, but also for bioenergy, bioplastics and animal feed 

(Cattanach et al. 1991; Finkenstadt 2013). The residues from the industrial sucrose 

production, such as the sugar beet pulp and molasses, can be used as a feed 

supplement for livestock (Cattanach et al. 1991). The molasses are also used for 

alcohol production, pharmaceuticals and for yeast in the baking industry (Cattanach 

et al. 1991). 

Apart from sugar beet (B. vulgaris ssp. vulgaris var. altissima), there are three 

more groups of beets which are cultivated: the mangelwurzel, or field-beet/fodder 

beet (B. vulgaris var. macrorhiza), which has a lower concentration of sucrose and 

is used for livestock (Anderberg & Anderberg 2005), as well as chard (B. vulgaris 

ssp. vulgaris, Cicla-Group) and beetroot (B. vulgaris ssp. vulgaris Conditiva-

Group), which are used for culinary purposes (Anderberg & Anderberg 2005). 

 Sugar beet is grown in about 50 countries in Mediterranean, temperate and 

continental climates (Qi et al. 2004; Draycott 2008). The production is mainly 

located between 30 º and 60 º N, with Europe accounting for more than half of the 

sugar beet production (Draycott 2008). Beets can be grown on soils with relatively 

high amounts of sodium because it is originally a shore species. 

In 2019, sugar beets were grown over an area of 27 300 hectares in Sweden, by 

1300 companies (Jordbruksverket 2019). The total arable land usage in Sweden was 

2 551 500 hectares, which means that sugar beets account for 1.07 % of the arable 

2. Sugar beet 
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land usage (Jordbruksverket 2019). Sugar beet farming has been reduced by 28 200 

hectares since the year 2000 (Jordbruksverket 2019). In 2015, there was an excess 

amount of sugar beets in the EU, which lead to an agreement between farmers and 

sugar producers to regulate the production, resulting in a decrease in sugar beet 

production in 2015/2016 (Jordbruksverket 2019). The production of sugar beets in 

Sweden is mainly conventional, only 150 hectares are farmed organically (Ekoweb 

2019). This is primarily because of the lack of organic sugar beet processing 

facilities in Sweden. All the organic sugar beets are today grown under contract to 

Nordic Sugar and shipped to Denmark for processing (Ekoweb 2019). 

    To be able to store a great amount of sugar, the sugar beet needs resources to be 

able to produce a large number of roots and leaves for photosynthesis. This is 

achieved by cultural practises like application of fertilizers and liming as well as 

the use of weed and pest control. Several pests can reduce yield in sugar beets. Pests 

are different insects, nematodes, fungi and viruses (Viketoft et al. 2019). Pests can 

decrease the growth by damaging or deforming the root and reducing healthy 

foliage and sucrose concentration (Viketoft et al. 2019).  One of the most important 

ones is the disease virus yellows, which can severely reduce the number of healthy 

leaves, increase juice impurities, reduce photosynthesis, growth, and storage of 

sugar (Clover et al. 1990; Stevens et al. 2004). Another disease is rhizomania, 

which is caused by beet necrotic yellow vein virus (BNYVV), and can severely 

reduce root mass and sucrose content (Viketoft et al. 2019). Aphids, thrips, beet fly 

(Pegomya betae), pygmy mangold beetle (Atomaria linearis), centipedes and the 

silver Y (Autographa gamma) are some of the most important pests that cause 

feeding damage on sugar beets (Viketoft et al. 2019). Nematodes like the beet cyst 

eelworm (Heterodera schachtii) and the yellow beet cyst nematode (H. betae) can 

also deform and damage the sugar beet root (Viketoft et al. 2019).  
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Virus yellows is induced by a complex of viruses and the disease can be caused by 

one or more viruses at a time (Nilsson & Larsson 1990). Beet yellows virus (BYV) 

was the first virus discovered causing virus yellows (Nilsson & Larsson 1990). 

Later a virus inducing milder symptoms was found and established in 1958 as beet 

mild yellowing virus (BMYV) (Russell 1958). Throughout the years, more mild 

variants of BYV have been found (Nilsson & Larsson 1990), and it is not always 

the case that BYV causes more severe symptoms than BMYV. There is also an 

American species called beet western yellows virus (BWYV) that causes virus 

yellows much alike BMYV. The latest one to be discovered, beet chlorosis virus 

(BChV), does also cause virus yellows (Stevens et al. 2005a).  

3.1. BYV 

Beet yellows virus is a virus from the family Closteroviridae and a member of the 

genus Closterovirus (Agranovsky & Lesemann 2011). It was first described in 

1936. The family Closteroviridae contains three genera of plant viruses with 26 

species causing infections in a variety of crops such as cucumber, grapevine, beet, 

and cereals (Agranovsky & Lesemann 2011). Important viruses of this family are 

Grapevine leafroll-associated virus 3, Lettuce infectious lettuce virus and Citrus 

tristeza virus (Agranovsky & Lesemann 2011).  

      The virus particles of members of the family Closteroviridae are characterized 

by their helical, filamentous and flexuous structure (Agranovsky & Lesemann 

2011). The length of the virus particle is between 1250-2200 nm and it has a 

diameter of 12 nm (Agranovsky & Lesemann 2011). The genome consists of a 

single molecule of positive-sense single-stranded RNA, ssRNA (+), encapsidated 

with two coat proteins, one major and one minor coat protein (Agranovsky & 

Lesemann 2011; Biswas et al. 2017). The 22-25 kDa major coat protein forms the 

main part of the virion whereas the minor coat protein encapsidates the 5´-terminal 

part of the genome, forming a 75-100 nm segment at this end which results in a 

characteristic rattlesnake structure (Agranovsky & Lesemann 2011; Biswas et al. 

2017).  

3. Virus yellows 
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3.2. BMYV, BChV and BWYV 

Beet mild yellowing virus, Beet chlorosis virus and Beet western yellows virus are 

viruses of the genus Polerovirus in the family Luteoviridae (Stevens et al. 2005a). 

The poleroviruses have icosahedral virus particles with a diameter of 24-26 nm (van 

den Heuvel et al. 2011). The genome consists of a single molecule of ssRNA (+) 

(Stevens et al. 2005a). Other plant viruses in the genus are Potato leafroll virus, 

Cereal yellow dwarf virus-RPV and Cucurbit aphid-borne yellows virus (van den 

Heuvel et al. 2011).  

      The classification of the poleroviruses have been changed throughout the years. 

When BMYV was described by Russel (1958) in the UK, an American version of 

the virus was noted not long after and was initially called Radish yellows and then 

re-named BWYV (Stevens et al. 2005a). This American species of BWYV has a 

wide host range in weeds, many species in the family of Amaranthaceae, which 

includes sugar beet and spinach, but also crops in other families, like lettuce and 

broccoli (Stevens et al. 2005a). BMYV has a narrower host range, mainly plants 

from Amaranthaceae, like beets and spinach, but also weeds from different families, 

like Capsella bursa-pastoris and Senecio vulgaris (Stevens et al. 2005a). However, 

another virus yellows variant was found later in Europe that seemed to be alike 

BWYV concerning the wide host range, but that did not infect beets (Stevens et al. 

2005a). The name BMYV has since then been used to describe European isolates 

that are able to infect beets and the European BWYV variant that did not infect 

beets, but most importantly lettuce and Brassica crops, is now called turnip yellows 

virus, TuYV (Stevens et al. 2005a). There might be more strains or species of the 

genus Polerovirus established in the future. Hauser et al. (2002) suggested that the 

name Brassica yellowing virus should be used for BWYV isolates that did not infect 

beets but a large group of Brassica species. When comparing the genome, Hauser 

et al. (2002) argued that TuYV should be considered a distinct serotype of Brassica 

yellowing virus. Recent studies by Newbert (2016) have found TuYV present sugar 

beets, but it is not yet proven if TuYV contribute to the symptoms.  

BChV was identified in 1989 and through various studies, including antibody 

testing, analysing symptoms, identifying host range etc, it was established as a new 

species of the genus Polerovirus in 2002 (Stevens et al. 2005a). 
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3.3. Symptoms and impact of virus yellows 

Infections with BYV, BMYV, BWYV and BChV induce symptoms like chlorosis 

in the leaves and growth reduction, which impact the yield of the sugar beet as well 

as changed nutritional aspects like sugar and sodium concentration. Yield loss 

caused by virus yellows has been reported to be up to 30% in the UK (Qi et al. 

2004). The decrease in sugar yield has been calculated from field trials and can be 

up to 29% in trials with BMYV, up to 36% with BWYV, up to 24% for BChV and 

47% with BYV (Lewellen & Skoyen 1984; Smith & Hallsworth 1990; Stevens et 

al. 2004).  

BMYV, BChV and BWYV induce yellowing spots in the elder leaves and these 

spots develop 4-6 weeks after inoculation (Olsson Nyström 2019). With time, the 

yellowing spreads throughout the leaves, which get thickened and crispy (Fig. 1) 

(Olsson Nyström 2019). BChV induces milder yellowing than BMYV and BYV 

and these symptoms are distinguished by interveinal chlorosis as the tissue around 

the midrib with lateral veins remain green in most cases (Stevens et al. 2004). It is 

possible that the beet becomes infected with more than one of the viruses at the 

same time, which makes it harder to visually identify the virus through symptoms 

(Nyström & Hansen 2019). BMYV-affected leaves are also more susceptible to 

infection with fungi, for example Alternaria ssp. (Nilsson & Larsson 1990).  

 

  
Figure 1. BMYV-infected sugar beet leaves (pictures from MariboHilleshög). 

 

Infections early in the season causes severe yield losses while infection after the 

end of June does not usually have any great impact (Smith & Hallsworth 1990). A 

field study by Stevens et al. (2004) found that most damaging to sugar yield, 19-

27% decrease, was if plants became infected with BMYV at the 4-6 leaf stage. 

However, BChV had a greater impact on older plants compared to BMYV and a 

more variable effect on yield, between 8-24%, depending on year, strain and 

inoculation time (Stevens et al. 2004).  

The outcome of the sucrose extraction process depends on the sucrose content 

and the juice quality (Syngenta 2016). The juice quality is determined by how low 

the concentrations are of amino-nitrogen, potassium and sodium (Syngenta 2016). 
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Infections with BMYV and BChV will increase the sodium content in the root and 

this is not dependent on inoculation date (Stevens et al. 2004). However, the 

potassium content is not clearly affected according to Stevens et al. (2004). The 

amino-nitrogen content can also be increased by infection with BMYV and BChV. 

However, the effects of BChV infection were more variable depending on the year 

in field trials, and the impact of BChV infection was only noticed one year when 

the inoculation date was early (Stevens et al. 2004).  

      BYV mainly targets the phloem, where virus particles accumulate in 

intracellular inclusions (Nilsson & Larsson 1990). Closteroviruses can be 

distinguished by their ability to induce clusters of vesicles containing double-

stranded RNA (dsRNA) (Agranovsky & Lesemann 2011).  

The different strains of BYV induce symptoms of varying degree (Nilsson & 

Larsson 1990). The leaves get yellow spots or yellowing at the edges and the 

symptoms generally develop 3-4 weeks after inoculation if infected early in the 

season (Nilsson & Larsson 1990). With time, the yellowing spreads throughout the 

leaves and lateral veins. Necrotic spots can appear and join together in older 

infected leaves (Fig. 2) (Nilsson & Larsson 1990). However, leaves that are fully 

developed before infection will remain green (Nilsson & Larsson 1990).  

 
Figure 2. BYV-infected sugar beets (Picture from MariboHilleshög). 
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BYV can severely damage growth of the beet root, but usually the sugar 

concentration is not that effected (Olsson Nyström 2019). In field trials by Clover 

et al. (1999), BYV-infected sugar beets had a significantly increased concentration 

of potassium, amino nitrogen, and sodium. The net photosynthesis was also 

reduced, with the period right after infection having the highest decrease in net 

photosynthesis (Clover et al. 1999).  

      There is a difference in symptoms and incubation time if infection takes place 

later in the season, between August and September when the plant is more 

developed (Nilsson & Larsson 1990). The incubation time increases then to 8-9 

weeks and the yellowing is more limited to certain leaf areas (Nilsson & Larsson 

1990). Usually, sugar production beets are harvested in late September-October 

before the frost arrives (Cattanach et al. 1991), and late infection does not affect the 

yield as much because the plant has mostly developed by this time.  
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In Europe, virus yellows has been observed in sugar beet fields since the early 

1900’s, but the causal agent was not identified as a virus until the 1930’s in the 

Netherlands (Björling 1948; Björling 1949). The origin of virus yellows is the coast 

of southeastern England where wild beet had been sighted with the disease before 

the outbreak in cultivated sugar beet (Schlösser 1953). Viruliferous aphids were 

probably caught in the coastal wind and flew to the Netherlands and France where 

they could continue the spread of virus yellows (Schlösser 1953).   

      An international collaboration between European nations began in 1930, but it 

was postponed due to World War II and it was resumed around the year of 1950.  

In both the UK and Sweden, the disease has been surveyed since 1946, which has 

helped establishing control measures and forecasts (Björling 1956; Qi et al. 2004).  

      In Sweden, about 10-15% of the sugar beet fields in western Skåne were 

affected by virus yellows between the years 1946-1948 and 1% of the fields in the 

southeastern part of Skåne called Österlen (Björling 1956). With time, the disease 

started to spread more widely within Sweden, probably due to the increase in 

planting of peach trees and cultivation of rape crops, and in 1954, 15% of the beets 

were infected in Skåne and 10% in Österlen (Björling 1956). In 1953-1954, 

systemic insecticides started to be used in sugar beet seed crops, which reduced the 

infections to 1.5% in Sweden, with exception of the epidemic in 1959 (Nilsson & 

Larsson 1990). The year of 1959 brought the highest infection rate to date in 

Sweden, almost all beet fields in Skåne were affected in October and the disease 

rate was as high as 57% (Nilsson & Larsson 1990). Even regions in Sweden that 

until this date had not been affected were also infested by viruliferous M. persicae 

(Nilsson & Larsson 1990). The warm weather in Europe this year contributed to 

high numbers of aphids that migrated with the wind over the Baltic Sea and Öresund 

(Nilsson & Larsson 1990). Since then, infections have been low, only with some 

yearly fluctuations, but in the year of 1974 sugar beets in the UK were severely 

affected by virus yellows due to the mild winters reducing the sugar yield by 40% 

and losses were estimated to be 14 million GBP (Russell 1978; Qi et al. 2004). 

      In the beginning of the survey of the disease in Sweden, BYV was the 

predominant virus, but in the 1950’s a shift began and BMYV occurred more 

frequently onwards (Björling & Möllerström 1974). For only one year, 1959, BYV 

4. History and importance of virus yellows 
in Sweden and Europe  
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was more dominant and the reason for this was probably the wind-spread aphids 

that were transferred from continental Europe to Sweden (Björling & Möllerström 

1974). For some years, regional differences were observed, where BYV was more 

dominant, but generally, BMYV was predominant in the surveys which continued 

until 1973 (Björling & Möllerström 1974). This is the case in the UK as well, where 

BMYV has been predominant between 1980-2004 (Qi et al. 2004). Generally, 

BMYV is more common in the northern and western parts of Europe, whereas BYV 

is more common in the Mediterranean regions (Stevens et al. 2005b).  

      The spread of virus yellows in Sweden has probably been relatively small 

because the weather conditions do not allow overwintering of adult aphids and 

because beet seed production discontinued around the late 1960’s - early 1970’s 

(Björling & Möllerström 1974; Wiktelius 1977). Wind and warm weather are two 

conditions that induce greater spread of aphids and symptoms of virus yellows 

(Björling & Möllerström 1974). In Sweden, aphids may not migrate early in the 

season because of the cold weather, but only later when the crop is no longer as 

susceptible, which reduces the impact of virus yellows.  
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The viruses causing virus yellows are spread by different aphid vectors. The green 

peach aphid (Myzus persicae) is the most effective one being able to transmit all 

viruses and Aphis fabae is a vector for BYV. The transmission efficiency for BYV 

with apterous A. fabae was calculated by Limburg et al. (1997) as 34%, compared 

to 60% for apterous M. persicae. Through experiments by Schliephake et. al. (2000) 

a transmission rate for BMYV of 1.1% for A. fabae has been established, something 

that is so low that it probably is of no importance.  

    Aphids of up to 22 species including also Macrosiphum euphorbiae, Myzus 

ascalonicus and Myzus certus, have been reported to spread virus yellows, but not 

all with the same efficiency (Heathcote 1988a). However, M. euphorbiae had only 

a transmission rate of 1.8% for BMYV, compared to a transmission rate of 28.6% 

with M. persicae (Schliephake et al. 2000).  

    The poleroviruses causing virus yellows are persistent, meaning that they are 

non-propagative and circulative (Gray & Gildow 2003; Stevens et al. 2005a). This 

means that BMYV, BChV and BWYV are not replicating inside the aphid, but 

circulating inside the aphids and are transported through the cells via 

endocytosis/exocytosis (Gray & Gildow 2003). In aphids, the virus is transported 

through the gut tissue and into the hemocoel and exits through the salivary glands, 

which enables the virus to be transferred to the phloem of plants via feeding (Gray 

& Gildow 2003; Brault et al. 2007). 

 To become viruliferous, the aphids need to feed on an infected plant for a certain 

amount of time. The type of virus that is present influences the time. For a 

viruliferous aphid to spread infection, it does also need a certain feeding time on 

healthy plants (Watson & Russell 1940).  

      The acquisition time for BYV is 7 minutes and inoculation in a healthy plant 

takes 30 minutes (Watson & Russell 1940). BYV has a retention time in M. persicae 

of 72 hours and in A. fabae of between 24-48 hours. The virus is not present after 

moulting and this is because the virus is semi-persistent and not circular (Russell 

1962; Nilsson & Larsson 1990; Limburg et al. 1997).   

 The acquisition time for BMYV is longer compared to BYV since it is a 

persistent virus (Nilsson & Larsson 1990). BMYV has a latency period of 24 hours 

after acquisition (Nilsson & Larsson 1990). Russel (1962) concluded through 

experiments that a minimum of 24 hours of feeding on infected plants is necessary 

5. Aphids and virus transmission  
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for efficient transmission by M. persicae to healthy plants, with 48-72 hours of 

feeding on infected plants being the most effective for inoculation. Because of the 

circulative nature of BMYV, the virus can be present in the aphid even after 

moulting (Russell 1962). This indicates that BMYV can be present in M. persicae 

for its whole life and that viruliferous M. persicae can spread BMYV to many sugar 

beet plants during its lifetime (Smith 1988).  

5.1. The green peach aphid, Myzus persicae 

 

The green peach aphid is widespread and for a long time it has been recognized as 

the main vector for virus yellows (Heathcote 1988a). The lifecycle of M. persicae 

is complex, some aphids are holocyclic, i.e., sexual forms that develop under a short 

photoperiod and reproduce by laying eggs on primary host plants (Blackman 1972). 

There are also anholocyclic aphids which reproduce parthenogenetically on 

secondary host plants (Blackman 1972). Intermediate aphid populations that 

produce both sexual and asexual forms can also be found (Blackman 1972).   

     Under the growing season, the aphid can produce up to 20 generations in mild 

climates and the development of a generation takes about 10-12 days (Capinera 

2001). There is a difference in appearance of the aphid depending on its 

developmental stage (Björling et al. 1955). During summer, there are wingless 

(apterous), yellowish green ones and winged (alatae), shiny black-spotted ones 

(Fig. 3) (Björling et al. 1955).  The precursor form to the alatae is red. The summer 

aphids are all females called fundatrigeniae and can give non-fertilized birth during 

the season (Björling et al. 1955). The host plants are a wide range of weeds, garden 

plants and herbaceous crops (Björling et al. 1955).  

 
Figure 3. Different development stages of M. persicae, alatae (left) and apterous (right) (Pictures 

from MariboHilleshög). 

In autumn, a new generation of aphids is born as female alatae and males that 

search winter shelter on their primary host plants (Björling et al. 1955). The most 

important primary host plant is the peach tree, but also other Prunus species like 

the apricot tree and wild black cherry, Prunus serotine (Björling et al. 1955). The 
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aphids can lay their eggs on other plants as well, but the non-primary host plants 

are often not as suitable as a feeding source for the progeny and can result in death 

for the new-borns (Björling et al. 1955).  

On the primary host trees, the winged female aphids give unfertilized birth to 

apterous sexual females (oviparae), which are alike in the appearance to the 

apterous summer aphids, but a bit redder in colour (Björling et al. 1955). The 

oviparae reproduce with the males and produce eggs which are laid on the cortex 

adjacent to the buds and overwinter (Capinera 2001).  

In spring, the eggs hatch with apterous fundatrices, also named stem mothers, 

which start feeding on flower buds and young foliage (Capinera 2001). The stem 

mothers reproduce asexually, giving birth to living progeny (fundatrigenia), which 

in turn reproduce in the same manner as the stem mothers (Björling et al. 1955). 

When the population is dense enough, a generation of alatae are born that fly away 

from the primary host plant in May - June and attack herbaceous crops, weeds and 

gardens (Björling et al. 1955; Heie & Petersen 1961). During the summer, many 

generations of fundatrigenia and alatae are produced (Björling et al. 1955).  

Aphids are generally poor flyers and cannot control the direction or speed if the 

wind speed exceeds 1 metre per second (Wiktelius 1977). Therefore, winged aphids 

can drift by the wind and be transported in the air for long distances (Wiktelius 

1977). However, the migration of aphids is disadvantaged by rain and cold weather 

which can limit the migration to overwintering host plants during autumn, 

particularly in Scandinavia (Heie & Petersen 1961).  

The fundatrigenia and alatae can survive in their active form during the winter 

if plants are available and the temperature is high, between 4-10℃ (Capinera 2001). 

M. persicae can also survive being inactive during severe frost for a shorter period 

and the eggs are also rarely affected (Heie & Petersen 1961; Heathcote 1988b). This 

means that the aphids can continue to reproduce asexually throughout the autumn 

and winter if the environment allows it (Björling et al. 1955). Glasshouses can have 

suitable conditions for overwintering, but the number of aphids is usually limited 

and restricted to a few plants (Heie & Petersen 1961). Storage clamps can be of 

importance, because aphids can seek shelter there and feed on the beets (Nilsson & 

Larsson 1990). Studies by Heie and Petersen (1961) showed that M. persicae cannot 

survive in clamps if the temperature is below 4℃ for three months in succession. 

Actions have been taken in Sweden because of this, for example by limiting the 

presence of outdoor clamps and shortening the storage time to the first of April 

(Björling & Möllerström 1974).   

There is a possibility that overwintering of adult aphids becomes more common 

in the future in otherwise colder climates. In Sweden, data from SMHI shows an 

average temperature of 4-5℃ in the south of Sweden between December 2019 and 

March 2020 (SMHI 2020). The mean minimum temperatures all exceeded 0℃ 

(SMHI 2020), and these are suitable conditions for overwintering of M. persicae. 
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The mean temperatures between 1961-1990 were below 0℃ during the winter 

months which concludes a drastic temperature rise during the latest decades (SMHI 

2020) favouring overwintering for a large number of different insects.   

5.2. The black bean aphid, Aphis fabae  

The body of the black bean aphid (Aphis fabae) is dark green to black with dark 

antenna and cornicles (Fig. 4 & Fig. 5). It has an apterous developmental stage and 

alatae can occur if colonies become crowded or stressed (Godfrey & Trumble 

2008). Usually, it forms colonies under the foliage (Godfrey & Trumble 2008), 

which reduces the efficiency of sprays, for example with pyrethroids. 

 
Figure 4. Apterous A. fabae (Kohlmann 2013).         Figure 5. Alatae of A. fabae (Dupont 2014). 

      The black bean aphid is widespread, having over 200 different host plants 

globally and mainly causing yield losses in crops such as sugar beet and broad bean 

(Saruhan 2018). In sugar beet crops, A. fabae is the aphid that causes most feeding 

damage, to both young and older plants (Heathcote 1988a). 

      Winter hosts for A. fabae are mainly European spindle (Eunymus europaeus) 

and Guelder rose (Viburnum opulus) (Heie & Petersen 1961). If populations are 

dense on their primary winter host E. europaeus, there is a higher probability for 

reduced impact of natural enemies and populations often increase (Way & Banks 

1968). As for other aphids, the occurrence and frequency of A. fabae are influenced 

by the weather, where warm and dry years usually result in higher aphid populations 

(Heie & Petersen 1961). Variation in population size of A. fabae can also be related 

to fluctuations in the presence of natural enemies, like parasitic fungi (Heie & 

Petersen 1961). 

       Large A. fabae populations might not always result in considerable spread of 

virus yellows. The number of A. fabae in sugar beet plants did not seem to correlate 

with the occurrence of virus yellows in field trials made by Heie & Petersen (1961). 

However, they did find a possible connection between the number of M. persicae 

and the occurrence of virus yellows. Possible explanations might be that A. fabae 

sometimes migrate to fields of sugar beet only late in the summer, which can give 
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M. persicae an advantage and probably account for the spread of virus yellows 

(Björling & Möllerström 1974). A. fabae also moves less frequently between plants 

compared to M. persicae, which limits spread (Heathcote 1988a).  
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During the last 100 years, agricultural practises have advanced a lot, and this is a 

contributing factor to the low virus incidence in crops today. The main principles 

for limiting yield reduction by virus yellows are either to prevent virus transmission 

by vectors or to reduce infection symptoms via resistance or tolerance. Today, 

controlling spread and impact of virus yellows consists of using insecticides, 

limiting wintering clamps and early sowing. Because the aphids prefer to feed on 

young leaves, damage can to some extent be prevented by sowing early (Olsson 

Nyström 2019). An older plant will also have higher resistance to both the virus and 

foliar damage caused by aphids (Nilsson & Larsson 1990).  

6.1. Insecticides 

To limit virus yellows, managing the presence of vectors is the key control measure. 

Over the years, this has been done using different insecticides. Systemic 

insecticides were introduced in the 1950’s and helped controlling aphid populations 

onwards (Nilsson & Larsson 1990). These insecticides were mainly 

organophosphates and carbamates, some containing compounds with high toxicity 

that are banned in most parts of the world today (Rapini & Marrazza 2016; 

Silberman & Taylor 2020). A few organophosphates and carbamates are still used 

in some European countries (Hauer et al. 2017), but the development of resistance 

in insects and new better alternatives have reduced the usage of these insecticide 

classes (Tomizawa & Casida 2005).  

      Today, neonicotinoids are the main insecticide class used for seed treatments of 

beets (Hauer et al. 2017). Imidacloprid was the first type of neonicotinoid 

introduced commercially in 1991 (Elbert et al. 1990). Around this time, several 

different types of neonicotinoids were discovered and patented. This includes the 

heterocyclic neonicotinoids: nithiazine, imidacloprid, thiacloprid, thiamethoxam as 

well as the the acyclic neonicotinoids: nitenpyram, acetamiprid, clothianidin and 

dinotefuran (Tomizawa & Casida 2005). Since then, no new major class of 

insecticides has been developed and put into market (Tomizawa & Casida 2005). 

Neonicotinoids are mainly used for seed treatments and are not efficient as a contact 

insecticide (Tomizawa & Casida 2005).  

      The neonicotinoids imidacloprid, thiamethoxam and clothianidin act 

systemically and protect the whole plant from sucking and piercing arthropods 

(Tomizawa & Casida 2005; Hauer et al. 2017). When used as a seed treatment, the 

6. Control measures 
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insecticide protects the plant for up to 12 weeks, which is the most critical growing 

stage (Dewar et al. 1996; Tomizawa & Casida 2005). In a field study by Dewar et 

al. (1996) the importance of imidacloprid was studied and it was concluded that the 

average yields of the four study sites were 19% higher than for the untreated control 

plots.  

      Imidacloprid is a worldwide-used neonicotinoid and surveys from the last years 

have shown imidacloprid resistance developing throughout the world in M. 

persicae (Srigiriraju et al. 2010; Umina et al. 2014; Voudouris et al. 2017). 

Myzus persicae is one of the most resistant species to date and has developed a 

broad resistance to up to 75 different types of compounds used in insecticides 

(Sparks & Nauen 2015). The resistance to organophosphates, carbamates and 

pyrethroids is widespread in M. persicae (Nauen & Elbert 2003).  Several studies 

have demonstrated that a broad resistance also to imidacloprid is starting to occur 

in M. persicae. Umina et al. (2014) carried out a survey in Australia, where they 

found high levels of resistance in M. persicae to both carbamates and synthetic 

pyrethroids, moderate levels of resistance to organophosphates and indication of 

resistance to neonicotinoids (Umina et al. 2014). Even more recent field data from 

tobacco crops in Greece shows that imidacloprid resistance is developing in M. 

persicae (Voudouris et al. 2017). Imidacloprid resistance in M. persicae has also 

been detected at peach farms in Italy (Panini et al. 2014) and in southern France 

and Spain (Slater et al. 2012). Resistance has also been found in eastern USA, 

where surveys in 2010 found moderate resistance to imidacloprid in M. persicae 

(Srigiriraju et al. 2010).   

The EU have put severe restrictions on usage of the neonicotinoids clothianidin, 

imidacloprid and thiamethoxan since 2013 in outdoor farming in flowering crops 

and in 2018 a total ban was established (European Commission 2020). Extensive 

data suggests that the components in neonicotinoids are contributing to the death of 

pollinators (European Commission 2020). Sugar beet was originally not affected 

by this ban, because sugar beet that is cultivated for sugar production does not 

flower (Hauer et al. 2017). However, the ban of neonicotinoids in 2018 came to 

affect the sugar beet production as well (European Commission 2020).  

Throughout the years, a few countries in Europe have got different exemptions 

which has led to some conflicts, for example, the exemptions for spring rape crops 

given to Finland but not to Sweden (Växtskyddsrådet 2016). The approval of 

clothianidin and thiamethoxan expired in 2019 and imidacloprid has an expire date 

of 31 July 2022 (European Commission 2020).  

The ban on neonicotinoids might increase the usage of pesticides like 

pyrethroids, which Hauer et al. (2017) argue might pose a greater risk to pollinators 

and non-target organisms than neonicotinoids currently do. However, pyrethroids 

are not usually used in beet production (Hauer et al. 2017). Non-systemic sprays 

and foliar insecticides need careful monitoring of thresholds, timing is of great 
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importance and the virus infections need to be high for the measure to be 

economically sustainable (Dewar et al. 1996). As mentioned before, M. persicae is 

resistant to pyrethroids, but the usage of pyrethroids might increase for controlling 

other pests.  

If no pest management would be able to control aphids, epidemics of virus 

yellows would probably be more frequent. Qi et al. (2004) estimated how high the 

percentage of infected fields in the UK would have been in the past without any 

pest management. Without any pest management, the UK would probably have had 

11 potentially severe epidemics in the eastern region and 8 epidemics in the 

northern region since the worst epidemic in 1974 (Qi et al. 2004).  

Since resistance in M. persicae has been noted, the efficiency and usage of 

neonicotinoids as a control measure against this particular pest might have been 

reduced in the future regardless. Having that in mind, the ban of neonicotinoids in 

the EU probably does not matter in the case of virus yellows. However, one thing 

is certain, new insecticides, which do not harm non-target organisms, are needed. 

Currently, there are few options for controlling aphids, and insects in general, and 

the risk for resistance is therefore higher (Hauer et al. 2017). There are currently 

some chemicals that might be good substitutions for neonicotinoids, but most of 

them are not available for use in beets at this moment (Hauer et al. 2017).  

6.2. Reducing clamps and overwintering 

The virus cannot persist in harvested beets in clamps or beet seeds, however, it is 

possible that the viruliferous aphids overwinter in clamps (Heie & Petersen 1961). 

To limit overwintering of aphids in clamps, it is important to limit the aphids on the 

beets by careful topping while harvesting, and by late clamping and covering up 

(Heie & Petersen 1961). Minimizing the time that beets are stored in clamps over 

all is also an important factor for reducing spread of virus yellows (Björling & 

Möllerström 1974).  

      It is also important to minimize overwintering beet plants and groundkeepers, 

because if infected they can spread disease the following year, and possibly to 

neighbouring fields (Björling & Möllerström 1974). A great way to minimize this 

is tillage after harvest.  

      Overwintering sugar beets and groundkeepers are usually not a problem in 

Sweden due to the cold weather (Björling & Möllerström 1974), but in warmer 

climates and when the weather has been warmer, this is for sure an important factor 

and might become a greater problem due to climate change. In beet seed crops, the 

crop is grown for two years, and this makes it possible for infected plants to 

overwinter and continue to spread the virus the second year. This might be 

problematic if neighbouring fields also are sown with beets or other susceptible 
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plants, like spinach, and weeds, like Capsella bursa-pastoris and Chenopodium 

foliosum, which might continue the spread (Björling & Möllerström 1974).  

6.3. Host plants 

The host range for BYV, BMYV, BWYV and BChV differs but they do share some 

host plants. BWYV has the largest host range, calculated to over 150 species in 23 

families, although some variants and strains of BWYV differs in host range 

(Yoshida & Tamada 2019).  BMYV has a more limited host range of 23 species in 

8 families (Appendix Table 1) (Duffus & Russel 1970). BYV has a host range of 

over 120 species in 15 families of dicot plants (Appendix Table 1) (Duffus 1973; 

Agranovsky & Lesemann 2011). Most research has been carried out with BYV 

because it was the first one of the yellowing viruses of sugar beet that was 

discovered (Duffus 1973), and it is therefore possible that there are additional hosts 

of BMYV that have not been discovered yet. 

The host plants are infection sources for virus yellows and can to some degree 

influence the amount of viruliferous aphids. Susceptible plants like autumn-sown 

spinach can influence the spread of virus yellows (Björling & Möllerström 1974). 

Infected overwintering weeds can be infection sources as well, particularly for 

BMYV (Jadot 1973). Perennial weeds can harbour viruses causing virus yellows 

for years in succession and are therefore of importance, Chenopodium bonus-

henricus is an example (Björling 1958). Weeds and crops susceptible to these 

viruses should be taken into consideration if affected fields of sugar beets are 

occurring, because these alternative hosts can become infection sources. Careful 

crop rotation, where susceptible plants are not close to each other, and weed control 

might limit local spread.  
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6.4. Biological pest control 

To use and promote natural enemies as pest control is a strategy preformed in IPM 

(UC IPM 2020). This is exercised in organic farming, but it is also a way to reduce 

the usage of chemical pesticides in conventional cropping systems. Natural enemies 

to aphids are parasitic fungi and different predatorial insects (Capinera 2001).  

There are many natural enemies for M. persicae and A. fabae. The most common 

ones are lady beetles, flower flies, lacewings, parasitic wasps and 

entomopathogenic fungi (Capinera 2001). Promoting these insects by providing 

habitat and overwintering sites, as well as by limiting insecticide usage, can 

increase the efficiency of biological pest control (Thornhill 1988; Godfrey & 

Trumble 2008).  

Pathogenic fungi have been used in biological pest control for decades where 

entomopathogenic fungi are important pathogens to Hemiptera and can regulate 

aphid populations through epizootics (Eilenberg et al. 2009). Fungi of the phylum 

Entomophthoromycota are naturally occurring in temperate regions and some 

species have the ability to regulate M. persicae (Ben Fekih et al. 2013). There have 

been incidents where entomopathogenic fungi have crashed aphid populations 

naturally, which indicates that they could be a possible microbial insecticide 

(Elkassabany et al. 1992). The problem with naturally occurring epizootics is that 

they often occur too late in the season, when damage already has been caused by 

aphids (Shah et al. 2004).  

There have been experiments with the efficiency of the pathogenic fungi of the 

phylum Entomophthoromycota against aphids and they seem to have a potential 

(Eilenberg et al. 2009). However, experiments with the release of 

Entomophthoromycota and if it would have a long-lasting effect have not been 

conducted yet (Eilenberg et al. 2009). A commonly studied fungus species is 

Pandora neoaphidis which can infect a broad range of aphids in temperate regions 

(Shah et al. 2004). In an experiment by Shah et al. (2004), A. fabae and M. persicae 

were found to be moderately susceptible to infection of P. neoaphidis.  

In an experiment by Saruhan (2018), six isolates of two entomopathogenic 

fungi, Lecanicillium muscarium (five isolates) and Simplicillium lamellicola (one 

isolate), were used against A. fabae with three different suspensions of conidia, 

1 × 104 ,1 × 105 and 1 × 106 conidia ml-1. For all fungal isolates and concentrations, 

treatments resulted in a high cumulative mortality rate (between 67 and 100%), with 

treatments using L. muscarium showing the highest cumulative mortality rate. For 

all fungal isoles, the highest concentration resulted in the highest cumulative 

mortality rate, peaking at six days after inoculation (Saruhan 2018).  Lecanicillium 

lecanii is also an interesting entomopathogenic fungus for control of M. persicae. 

The mortality of M. persicae nymphs after treatment with different isolates of L. 

lecanii was calculated in an experiment by Diaz et al. (2009) revealing a mortality 



29 

 

 

ranging between 57 and 95% when using a dose of 1 × 109 conidia ml-1. At daytime, 

the temperature was 23℃ and at night, it was 18℃.  

Similar results have occurred in experiments by Vu et al. (2007) where the most 

potent strain 41185 of L. lecanii induced 100% mortality after 4 days of treatment 

with conidia at 25℃ and 90% relative humidity. The same strain had a high 

virulence at 45% relative humidity with a broader temperature span, 25-30℃. The 

temperature influenced the conidial germination and the strain 41185 had a low 

growth at temperatures below 20℃ (Vu et al. 2007).  

If the most potent strain of L. lecanii or L. muscarium would serve as a biopest 

control, the usage would probably be limited to warm greenhouses or temperate 

and warm climates considering the temperature and relative humidity restrictions. 

Sweden is probably too cold in the spring for L. lecanii or L. muscarium, but more 

southern parts of Europe might fulfil the criteria of the fungus. One practical 

problem is also the usage of fungicides in sugar beet crops, if fungicides would be 

used in the crop, the entomopathogenic fungi would die as well. Fungi like 

Aphanomyces cochlioides and Pythium ultimum, which cause seedling damping-

off disease, Erysiphe betae which causes powdery mildew, and Ramularia 

beticola are important pests in sugar beet crops that are controlled with fungicides 

(Luterbacher et al. 2000; Thach et al. 2013). However, the use of natural enemies 

as pest control seems promising, and it would prove a good resource for 

controlling insecticide-resistant aphid species.  

 

 

6.5. Resistant sugar beets 

Developing resistant beet cultivars has been a goal for plant breeders since the 

1930’s when virus yellows became widespread (Björling & Möllerström 1974; 

Koch & Lowe 1988). Resistant beets would both reduce the costs of insecticides 

for farmers and have a positive environmental impact (Koch & Lowe 1988). With 

the effectiveness of insecticides and the low occurrence of virus yellows in crops 

today, resistance to virus yellows has not been a priority for plant breeders during 

the last decades. As discussed earlier, due to the ban of neonicotinoids in the EU, 

virus yellows could potentially become more frequent in the future and new control 

measures are therefore of importance (Hauer et al. 2017). Resistance or tolerance 

should be part of a broad control strategy because resistance can often be broken 

by the pathogen if it only is managed by a single control mechanism (Vale et al. 

2001). This is the case with insecticides as well, prolonged exposure to the same 

type of insecticide class results in resistance developing faster in pests. Durable 

resistance is preferred in breeding (Vale et al. 2001), but even if the resistance is 

broken within a relatively short time, it would serve as a useful component in 
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disease management. A combination of control measures would be most 

sustainable. 

     Lines of sugar beet, which are tolerant/partially resistant to virus yellows have 

been developed at USDA-Salinas in California and they were released in 2002 

(Lewellen 2004; Stevens et al. 2005a). These lines are multigerm, self-fertile 

diploid that segregate for male sterility (Lewellen 2004). They have shown 

tolerance to rhizomania, BYV, BChV and BWYV with a generally high sugar yield 

and low bolting (Lewellen 2004).  

Today, there are no commercial cultivars of sugar beets with resistance to virus 

yellows in the EU (SLU 2019). However, there is a possible market for it which 

recently has been noted by different plant breeders.  

In Sweden, the Danish/Swedish company MariboHilleshög in cooperation with 

SLU Grogrund attempts to develop resistant varieties to virus yellows (SLU 2019). 

The BMYV-resistant genotype shows no visual symptoms and has a considerable 

difference in foliage compared to susceptible genotypes (Fig. 6). 

 

 
Figure 6. Comparison of a BMYV-resistant sugar beet genotype (left) and a susceptible genotype 

(right) in a field trial by MariboHilleshög (Pictures from MariboHilleshög). 

 

In the past it has proven difficult to develop cultivars with resistance to virus 

yellows without compromising traits important for production like yield and bolting 

(Cleij 1964; Koch & Lowe 1988). Trials with sugar beet resistant to BYV and 

BMYV have been taking place in the EU several times with promising results (Cleij 

1964; Russel et al.1972; Koch & Lowe 1988). Some of these genotypes were not 

monogerm, which is otherwise normal in today’s agriculture (Koch & Lowe 1988).   
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Six possible types of resistance to BMYV and BYV have been proposed by 

Björling (1966b) and Russel (1978). Today, there is more precise information about 

the molecular mechanisms controlling resistance, but the explanations from Russel 

(1978), Russel et al. (1972) and Björling (1966) are nevertheless great basic 

knowledge which is focused on virus yellows in sugar beets.  

The first one is complete immunity, where the virus is not multiplying in the 

plant and there is no effect on the plant (Russell 1978). This is the case in all non-

susceptible crops and weeds. Immunity should not be confused with extreme 

resistance, because immunity is absolute and plants with extreme resistance become 

infected even though the effect of infection is low (Russell 1978).  

The second mechanism that was proposed by Russel (1978) is resistance to 

virus infections, when a susceptible plant escapes the infection even if it has been 

exposed to viruliferous aphids. This type of resistance is often preferred for 

breeding and successful trials of sugar beet genotypes with this trait have been 

carried out (Russel 1978). Breeding for resistance to both BYV and BMYV with 

this trait have proven difficult in the past (Russel 1978), but is a reality today 

(Lewellen 2004).  

The third mechanism of resistance is to minimize the spread of the virus in the 

plant. The virus is not spread further from the point of inoculation, which limits the 

risk of widespread symptoms in the plant and aphids becoming viruliferous (Russel 

1978). The most common resistance mechanism in this category is hypersensitivity, 

where cells die prematurely in response to a virus infection (Russell 1978). Many 

signals are involved in hypersensitivity, and the cell death is likely a signal to the 

plant to initiate its direct defence mechanisms (Heath 2000). Leaves usually 

develop necrotic spots, which are called local lesions, where inoculation has taken 

place. Typically, the virus stays in the local lesions or adjacent cells, but sometimes 

they re-localize to healthy tissues (Russel 1978). Factors like temperature and light 

can make it possible for the virus to re-localize and continue spreading (Russell 

1978).  

To the plant breeder, hypersensitivity has been one of the easiest and most 

effective resistance methods (Russell 1978). The downside of hypersensitivity is 

that it often is strain specific and loses effect if a virus strain would break the 

resistance (Russell 1978). This phenomenon is more frequently occurring for some 

plant families and crops compared to others, and plants of the family Solanaceae 

are often affected (Russell 1978).  

Antiviral properties of the host are also a factor when it comes to limiting the 

spread of virus yellows in the plant. If the plant has a strong antiviral response when 

inoculated, the spread will be limited (Russell 1978).   

      Resistance to virus multiplication is the fourth mechanism. The concentration 

of the virus decreases and as a result the uptake of virus by aphids can be lower. 
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The spread to neighbouring plants can in this way be reduced or delayed (Russell 

1978).  

      The term virus tolerance is used when a susceptible plant has reduced or barely 

any symptoms at all when infected (Russell 1978). True tolerance, where no 

symptoms are induced after infection, is the type of tolerance that is preferred in 

plant breeding programs. However, tolerance can be expressed in different ways 

and is not always absolute.  

For instance, there is a term called symptomless carrier, which is when the plant 

does not display any visual symptoms, but the infection still damages the host 

(Russel 1978). This can be expressed in infected sugar beets, where there are no 

symptoms like leaf yellowing, but root mass and sugar concentration are still 

reduced (Russel 1978). In sugar beets, this is not a tolerance trait that is preferred 

for breeding, because yield depends on the root mass and sucrose concentration.   

There is also a tolerance term called disease tolerance that is the other way 

around, where the sugar beet plants display visual symptoms like leaf chlorosis, but 

the root mass and sugar concentration are not that affected (Russel 1978). If true 

tolerance would be hard to achieve, this would probably be the second-best option.  

The main problem with tolerance is that the yellowing viruses are still present 

in the host plants. Viruliferous aphids are then still able to spread the viruses to 

sugar beet fields with non-tolerant varieties or other host plants.  

      Resistance to virus yellows can also be achieved by making the plants resistant 

to aphids, i.e., resistance to aphid settling, aphid multiplication or tolerance to 

feeding damage (Russell et al. 1972). There have been experiments with different 

sugar beet genotypes resistant to both M. persicae and A. fabae. Russell et al. (1972) 

found that some variants of beets were less attractive for the aphids resulting in 

reduced aphid multiplication and settling. There seems to be different resistance 

mechanisms when it comes to controlling the vectors, because beet lines that were 

less attractive to M. persicae were more susceptible to A. fabae in experiments by 

Russell et al. (1972).  

      As mentioned, many experiments with virus yellows resistance in beets have 

been taking place and there are many different resistance mechanisms that can be 

taken into consideration. Because of the launching of resistant beets in the USA 

(Lewellen 2004), launching virus yellows resistant sugar beets in the EU does not 

seem to be impossible. If launched in the EU, virus-resistant cultivars would prove 

a great control measure against virus yellows. 

 

 

 

 



33 

 

 

There is a great risk that the incidence of virus yellow increases in the coming years 

because of several factors: climate change affecting aphid populations and stresses 

in sugar beets, the lack of effective available insecticides and the absence of 

resistant variants discussed earlier. With sugar beet being a very profitable crop 

(Nordic Sugar 2018), this is alarming for both farmers and producers.  

      Before virus yellows becomes more frequent again, using already established 

control measures and developing new ones are of importance. The promising future 

control measures for virus yellows that can be explored are the usage of biological 

control, resistant cultivars and allowing existing insecticides in sugar beet crops 

(Kosh & Lowe 1988; Hauer et al. 2017). The most sustainable option is to have a 

wide range of control measures to delay the time for pests developing resistance 

(Hoy 1998). The problem lately has been that many pesticides are banned or stop 

working due to resistance in pests, but no new insecticide classes have been put into 

market since 1991 (Tomizawa & Casida 2005). This only aggravates the problem 

with pest resistance.  

      Recent technical progress in plant breeding, like the usage of genome editing 

with CRISPR/Cas9, could increase the chances for breeders to successfully develop 

pest-resistant sugar beet cultivars (Belhaj et al. 2015). However, this technology is 

classified as GMO in the EU, which restricts its usage (Callaway 2018). It is 

possible to use conventional breeding techniques to achieve virus yellows 

resistance in sugar beets as well, which is something that has been proven in the 

past. However, having a wide range of breeding techniques available would be 

ideal. The UK has been severely affected by virus yellows in the past and the EU 

laws affected their agriculture as well as other EU countries. However, since their 

recent withdrawal from the EU, they might have the ability to modify these laws in 

the future.  

 

  

  

 

7. Discussion 
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Host plants 

 BYV BMYV 

Aizoaceae:   

Aizoon spp. + / 

Mesembryanthemum crystallinum + / 

Sesuvium portulacastrum + / 

Tetragonia echinata + / 

Tetragonia expansa / + 

   

Amaranthaceae:   

Achyranthes aspera + / 

Amaranthus retroflexus + / 

A. albus + / 

A. aureus + / 

A. cararu + / 

A. cruentus + / 

A. caudatus + / 

A. deflexus + / 

A. tricolor + / 

A. palmeri + / 

A. paniculatus + / 

A. patulus + / 

Atriplex canescens + / 

A. coronata + / 

A. coulteri + / 

A. elegans + / 

A. expansa + / 

A. hastata + / 

+ = susceptible     - = resistant / = unknown 

                                                 
1 (Russell 1965; Björling & Nilsson 1966a; Duffus 1973; Bar-Joseph et al. 1979; Stevens et al. 1994). 

Appendix 

Table 1. Host range for BYV and BMYV1.  
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Table 1 (continued) 

 BYV BMYV 

Amaranthaceae:   

A. microcarpa + / 

A. nitens + / 

A. patula + / 

A. rosea + / 

A. semibaccata + / 

A. siberica + / 

A. spongiosa + / 

Bassia hyssopifolia + / 

B. scoparia + / 

Beta atriplicifolia + / 

B. cicla viridis + / 

     B. hybrida + / 

     B. lomatagona + / 

     B. macrocarpa + + 

     B. maritima + + 

     B. patellaris + / 

     B. patula + / 

     B. procumbens + / 

     B. trigyna + / 

     B. vulgaris + + 

     B. vulgaris var. cicla + + 

     B. webbiana + / 

     Blitum capitatum + + 

     B. nuttallianum + / 

     Celosia argentea + / 

     C. cristata + / 

     Chenopodium album + - 

     C. amaranthicolor + - 

     C. bonus-henricus + + 

     C. foliosum + + 

     C. giganteum + / 

     C. glaucum + / 

     C. hybridum + / 

     C. jicifolium + / 

     C. leptophyllum + / 

     C. murale + / 

     C. nutans + / 

+ = susceptible     - = resistant / = unknown 
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Table 1 (continued) 

                                                                         BYV                 BMYV 

Amaranthaceae: 

C. opulifolium + / 

C. polyspermum + + 

C. quinoa + - 

C. suecicum + / 

C. urbicum + / 

C. vulvaria + / 

C. watsonii + / 

Cycloloma atriplicifolium + / 

Dysphania ambrosioides + / 

D. botrys + / 

Gomphrena globosa + + 

Oxybasis rubra + / 

Salsola kali + + 

Spinacia oleracea + + 

S. tetrandra + / 

Suaeda fruticosa + / 

S. nigra + / 

S. splendens + / 

   

Asteraceae:   

Glebionis segetum - + 

Senecio vulgaris + + 

S. macrophyllum + / 

Sonchus oleraceus + / 

Zinnia elegans - + 

   

Borgainaceae:   

Pectocarya pusilla + / 

   

Brassicaceae:   

Capsella bursa-pastoris + + 

Sinapis alba / + 

S. arvensis / - 

Thlaspi arvense + - 

   

   

   

+ = susceptible     - = resistant / = unknown 
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Table 1 (continued) 

 BYV BMYV 

Caryophyllaceae:   
Arenaria leptoclados / + 
Cerastium viscosum + / 
Dianthus deltoides + - 
Gypsophila elegans + / 
Silene armeria + / 
S. coronaria + / 
S. gallica + / 
S. verecunda + / 
Spergula arvensis + + 
Stellaria media + + 

   

Convolvulaceae:   

Cuscuta calijornica + / 

C. campestris + / 

C. gronovii + / 

Convolvulus occidentalis + / 

C. tricolor + / 

   

Fabaceae:   

Melilotus indica + / 

   

Lamiaceae:   

Lamium purpureum + + 

   

Myrsinaceae:   

Anagallis arvensis - + 

   

Papaveraceae:   

Papaver dubium + / 

P. rhoeas + + 

P. somniferum + / 

   

   

   

   

   

+ = susceptible     - = resistant / = unknown 
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Table 1 (continued) 

 BYV BMYV 

Plantaginaceae:   

Plantago erecta + / 

P. insularis + / 

P. lanceolata + / 

P. major + / 

P. rumosa + / 

Veronica spp. - + 

   

Portulacaceae:   

Claytonia perfoliata + + 

Portulaca grandiflora + / 

P. oleracea  + - 

   

Resedaceae:   

Reseda odorata + / 

   

Solanaceae:   

Nicotiana clevelandii + / 

N. quadrivalvis + / 

   

+ = susceptible     - = resistant / = unknown 
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