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Abstract

Fire in ecology is a very variable factor and its effects are best described as a complex feedback
system with other biotic and abiotic factors. These feedback systems need to be understood to
enable generalized conclusions about the influence of fire regimes. The concept of pyrodiversity
describes the variability in the characteristics of fire, such as fire intensity or frequency. This study
investigated how the feedback mechanism between grassland structure in the form of grazing lawn
abundance and distribution, and fire frequency affect the abundance of ticks (Class: Arachnida,
Subclass: Acari), which are highly connected to both factors. | sampled tick abundances in 30 plots in
the Hluhluwe-iMfolozi Park (South Africa) via tick drags. While neither of the parameters had an
effect in itself, the interaction between grazing lawn coverage and long-term fire frequency
significantly affected tick abundances leading to lower abundances with increasing lawn coverage in
areas of low, but not at high, fire frequencies. The heterogeneity of their distribution was dependant
on the heterogeneity of grass biomass, herbivore density and an interaction between the average
grass biomass and the short-term fire frequency in the last 17 years. Tick distribution was more
heterogeneous in areas of high grass biomass or zero short-term fire frequency, but more variable in
areas with low fire frequencies above zero. This indicates that the effect of pyrodiversity on certain
species could vary with other environmental factors important for the species. It also suggests that
the disappearance of grazing lawns could lead to an increase in tick abundance if fire management
plans are not adapted accordingly, potentially leading to higher herbivore tick infestations.

Keywords: ticks, acari, pyrodiversity, grassland structure, fire ecology, fire frequency, grazing lawns
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1. Introduction

The view on fire in ecology and conservation has changed considerably over the last few decades.
Before the 1970s, it was often treated as a disruptive event that “upsets the balance of nature”
based on equilibrium theory (Parr and Andersen 2006). This lead, in its most extreme form of
application, to the enforced complete exclusion of fire, while it is now seen as a necessary factor
driving ecosystem dynamics in both ecology and conservation (Parr and Andersen 2006). This is
especially true for biomes like savannahs, in which frequent burning leads to a diversity of flora and
fauna that have adapted to these disturbance events, making fire a key ecosystem driver (Parr and
Andersen 2006; Abades, Gaxiola, and Marquet 2014). However, fire is a highly variable factor.
Individual fires differ in their properties such as fire extent and intensity, which will alter their direct
impact on the environment but lead, over time, to distinct fire regimes (Archibald et al. 2013). These
fire regimes are characterized by a typical combination of attributes such as size, intensity,
frequency, seasonality and their spatial and temporal dimensions which are summarized by the
concept of pyrodiversity (Martin and Sapsis 1992; Hempson et al. 2018). When this concept was first
established by Martin and Sapsis (1992), they additionally hypothesized that “pyrodiversity begets
biodiversity” by promoting habitat heterogeneity and consequently offering a higher amount of
ecological niches (Martin and Sapsis 1992; Parr and Andersen 2006; Hempson et al. 2018). While this
concept was highly influential in shaping fire management strategies (eg. in the form of patch mosaic
burning which introduces heterogeneity in fire management), the empirical evidence for this
paradigm is rather inconclusive with different outcomes depending on species, scale and biome
(Kelly, Brotons, and McCarthy 2017). Potential reasons for this are that different studies used
different proxies for pyrodiversity and/or that the effects of pyrodiversity interact with other
environmental variables, such as local climate. For example in a study over the whole African
savannah biome, the positive relationship between pyrodiversity and the species richness of birds
and mammals was much stronger in wet savannahs (>650 mm/yr.) than in dry savannahs (Beale et al.
2018). Additionally, individual factors within the concept of pyrodiversity, like fire frequency, could
interact with other environmental variables important for a particular species, introducing further
variability (Bowman et al. 2016). If for example abundances and composition within a certain species
guild are dependent on pyrodiversity in some of their habitats, but not in others, studies about this
connection could come to conflicting conclusions depending on which habitat was investigated.
Recent research therefore rather highlights that pyrodiversity interacts with other drivers such as
landscape structure, climate and herbivory in a complex feedback system (Bowman et al. 2016;
Archibald and Hempson 2016; Hempson et al. 2018).

One of these feedback mechanisms in savannahs is the interaction between grassland structure (as
created and maintained by herbivory) and fire-patterns. As herbivores and fire compete for the same
resource (vegetation), they consequently influence each other on several levels (Bowman et al. 2016;
Archibald and Hempson 2016; Johnson et al. 2018). Grazing, for example, may reduce fire frequency
by reducing grass fuel load (Archibald and Hempson 2016). An extreme example of this are grazing
lawns, which are distinct grass communities dominated by short, prostrate-growing stoloniferous



grasses. These occur as patches of different size surrounded by tall, upward-growing bunch-grass.
Grazing lawns are considered to be too short in stature to carry fire (Archibald et al. 2005; Waldram,
Bond, and Stock 2008). They are highly nutritious grazing areas as the grasses are kept in a constant
young-growth state (Archibald et al. 2005; Bonnet et al. 2010; Cromsigt and te Beest 2014). While
they are maintained by multiple herbivores, their abundance and size is substantially higher in areas
with white rhino (Ceratotherium sinum sinum) and hippopotamus (Hippopotamus amphibious),
suggesting a strong link between large grass-feeding herbivores and lawn occurrence (Lock 1972;
Cromsigt and te Beest 2014). Since grazing lawns need high grazing pressure to be maintained, it can
be assumed that the disappearance of these large herbivores would lead to a substantial drop in
their occurrence and size. Furthermore, these grazing lawns stand in a complex relationship with fire.
On the one hand, they stop fires from spreading, and therefore modulate pyrodiversity, by acting as
natural fire barriers which lowers local fire frequencies and increase the spatial heterogeneity of fire
spread (Archibald and Hempson 2016; Donaldson et al. 2018; Archibald 2008). It was suggested that
above a threshold of 30% proportional amount of grazing lawn, an area burns infrequently if at all
(Archibald et al. 2005). On the other hand, herbivores are attracted to the fresh re-growth on
recently burned areas which can disperse them widely and prevent the highly intense and localized
grazing necessary for lawn maintenance, turning them into more flammable bunch grass again
(Archibald et al. 2005; Donaldson et al. 2018). Furthermore, as fire frequency is dependent on a lot of
factors, areas more dominated by bunch grasses can have low fire frequencies as well (eg. by low
ignition events), while it will be uniformly low in areas dominated by grazing lawn. While multiple
recent studies have established more universal measurements of pyrodiversity, the factors driving it
and its impact on biodiversity on a large, biome-wide scale, more investigation is needed on the
elasticity of individual genera to these feedback systems (Parr and Andersen 2006; Hempson et al.
2018).

A taxon highly impacted by both of these factors, grassland-structure and fire, are ticks (Class:
Arachnida, Subclass: Acari). Ticks are obligate, blood-feeding ectoparasites with an almost world-
wide distribution (but a particular abundance in the afrotropical region) that feed on basically all
mammals, birds and reptiles (Madder, Horak, and Stoltsz 2014). Ticks may influences their hosts
negatively, either directly (e.g. exsanguination, anemia) and/or indirectly as a common vector for
pathogens (Madder, Horak, and Stoltsz 2014). Therefore, an improved understanding of the drivers
of tick abundances and distribution will contribute towards understanding parasite risk. On
domesticated cattle in sub-saharan Africa, there are four groups of tick-borne diseases,
anaplasmoses, babesiosis (African and Asiatic redwater), bovine ehrlichioses (Heartwater) and
theilerosis (Yawa et al. 2018). Ticks can be found on short grasses, but they are often described as
being in higher numbers in taller grasses (Fyumagwa et al. 2007; Yawa et al. 2018). Fire lowers their
abundance in an area considerably due to direct mortality and/or because of the reduction/
elimination of their refugia in the field layer (Goodenough et al. 2017). In fact, beside acaricides, fire
is the most common strategy to control tick populations on commercially used land (Gleim et al.
2014). The direct timing when their populations recover to pre-burn levels was shown to be at least
three years in African savannah in Tanzania (Fyumagwa et al. 2007), but could be shorter in other
biomes (Adams et al. 2013). Another study in the South African Highveld on tick abundance showed
that tick abundance peaked 2-3 years after a fire (Goodenough et al. 2017).

This leads to an intriguing problem in terms of predicting general tick abundances on a landscape
level. The higher the proportional amount of grazing lawns, the lower the fire frequency (fig.1, red



lines). In bunch grass dominated landscapes, the fire frequency varies more than in lawn dominated
landscapes (Fig.1, dashed red line). Areas with higher fire frequencies are expected to have relatively
low tick abundances as their refugia and populations constantly need to recover (Fig.1, red area). At
the same time, areas with high proportional amounts of grazing lawns experience barely, if any,
burnings. However, the expected relative abundance of ticks in these areas is lower as well due to
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Figure 1. Hypothesized relationship between grassland-structure (proportional amount of grazing lawn in an area), fire
frequency (red line, right y-axis) and the expected tick abundance (black line, left y-axis). Dashed lines indicate the
variability of fire-frequency in bunch grass dominated areas and its associated effect on tick abundance.
the short-grass dominated habitats that are unfavourable for ticks due to the lack of a humid micro-
climate (Fig.1, green area). The investigation of this dynamic would shed further light on the interplay
between landscape structure and pyrodiversity and its direct consequence to tick populations.
Additionally it would further reveal the impact of natural or managed fire regimes on the parasitic
load of a landscape, with the possibility to potentially adapt fire management towards targeted
control. To investigate these relationships, this study will answer the following hypotheses:

1) The higher the proportional amount of grazing lawn in an area, the lower the tick
abundance.

2) The higher the fire frequency of an area, the lower the tick abundance.

3) The lowest tick abundances will be in areas that burn very frequently or have a high

proportional amount of grazing lawn.



2. Material and Methods

2.1 Site selection and sampling procedure

| conducted the study in the Hluhluwe-iMfolozi Park (KwaZulu Natal, South Africa; hereafter
HiP), a provincial protected area that is known for its high density of white rhino. In total, 30 plots
were selected and sampled in HiP (appendix, Tab.Al). Their selection was based firstly on
accessibility and a near continuous grass layer with a woody component sparse enough to allow tick
drags over the whole area. Secondly, | selected plots that varied strongly in the dominance of lawn
versus bunch grass and that spanned the full range of fire frequencies between 1955 and 2019 and
time since last burn (Fig.2 A, B, C). On each plot seven parallel transects spaced 50m apart were
sampled. Each transect was 300m long and tick-drags of 10m were conducted every 60m along them.
This resulted in 35 approximately equally spaced tick drags on each plot covering 350 m in total. The
exceptions were Plot 1 which consists of five 500m and two 300m transects with tick drags of 20m
every 100m and 50m respectively (coverage 680m) and Plot 2 with five 20m, seven 10m and 23 5m
drags along 300m transects (coverage 285m). This inconsistency was due to an early adjustment to
sampling protocol due to unforeseen logistical constraints. They were subsequently excluded from
the analysis of certain response variables as specified in each analysis below. This resulted in 1047
usable tick drags records from all plots. The device used for the tick drags was a 1.10 x 1.10 m thick
canvas cotton cloth, which was attached at the front side of a back-angled T-frame constructed from
wood and a broom-stick (Fig.3). This design ensured the controlled contact of the cloth with the
surface for the whole drag and minimized the potential human influence on the sampling by enabling
the cloth to be pushed in front of the researcher (Fig.3). A study in the south-eastern US showed that
tick drag methods are comparable to other methods to sample ticks on grassland (Mays, Houston,
and Trout Fryxell 2016). The cloth had two equally spaced cuts of 70cm in the back which divided the
lower part of it into three strips with wire spreader bars inserted into their ends to avoid twisting
during a drag. A centred 1x1m field was marked on the underside of the cloth and only ticks within
this area were counted. Each drag was conducted by slowly walking 10m while pushing the drag
device with the cloth in full contact with the surface at all time (Fig.3). After each drag, the number of
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tick immatures and adults within the marked area on the cloth were counted. While the immatures
were removed after the drag, the adults were collected in 70% ethanol for later identification.

Additionally, another study conducted at the same time measured the grassland structure
along the same transects. Disc pasture measurements (DPM), which measure grass biomass by

dropping a round metal plate from a fixed height and recording how far it compressed the grass from

the guiding rod, were conducted every 5 m and the dominant grassland type (lawn or bunch grass)

was recorded (resulting in 60 measurements per transect, 420 per plot, 12600 in total). Furthermore

the approximate number of trees and shrubs in a 10m radius was assessed every 50m in five

categories (0-15; 15-30; 30-45; 45-60; 60+).
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Figure 2. Plots sampled (1-30) in the Hluhluwe-iMfolozi Park, South Africa in relation to A - long-term fire
frequency from 1955 - 2019; B - days since last burn; C - percentage of lawn coverage and D - in a unconstrained
PCA with all independent variables (Total inertia 9, PC1 48%, PC2 17%). Maps A+B in 500m resolution, major

rivers (blue) and section boundaries (dark red) added in map C. Small inset map in map B shows position of the park

in southern Africa.
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Figure 3. Picture of Thilo Heinecke conducting a tick drag on grazing lawn.

2.2 Explanatory variables and statistical analysis

All geographic information and maps were calculated and visualized in ArcGIS (version 10.6)

while all statistical analysis was conducted in R and RStudio (RStudio Team 2018; R Core Team 2019).

2.2.1 Fire-frequency

The fire frequency for HiP was calculated using a 500 x 500 m raster map from three different

sources (Fig.2 A).

1)

2)

3)

For the years 1955 — 2002 historic fire maps as recorded annually and provided by HiP
management were used. These showed the total area of the park that burned each year and
were combined by summing the number of times at least 50% of each raster cell was
covered by a recorded burn (47 polygons, one per year).

For 2002 — 2015, shapefiles which combine the records from HiP (mentioned above) with
burned area satellite maps from the MODIS MCD64A product were used (Herkenrath 2019).
These maps were additionally ground-truthed during the animal census every second year
along 34 line transects spread across the park. As such, these maps were likely the most
accurate of the three sources, albeit only available for a shorter time period.

The years 2016 — 2019 were mapped purely from the MODIS MCD64A burned area satellite
product (Giglio et al. 2018). These monthly satellite images in 500m resolution record if a
pixel burnt through changes in surface reflectance. The number of times each pixel was
recorded as burnt between January ‘16 and March '19 were summed.
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The three sources described above were combined to obtain a fire frequency value for the entire
period 1955 — 2019. Furthermore, as the MODIS MCD64A additionally records the date a pixel burnt,
the last time each raster cell was recorded as burning since November 2000 was extracted from the
images and converted into days before the 01.04.2019. This information was used to create three
maps for the fire characteristics of HiP:

FF5519: The fire frequency from 1955 — 2019 from all three sources in a 500 m
resolution ranging in total from 0 to 37 fires (Fig.2 A).

FF0219: The more recent fire frequency from 2002 — 2019 based only on the last two fire
frequency sources in a 500 m resolution ranging in total from 0 to 13 fires.

DSLB: The days since each 500 m raster cell burned before the 01.04.2019, ranging in
total from 142 to 6608 days (Fig.2 B).

The sampled plots did not exactly align with the raster cells of the maps. However, there was
mostly no geographical/physical reason within the field plots to expect a differing fire regime (eg.
roads or rivers that split the plot). Exceptions are the plots 4, 6 and 7 in which roads had to be
crossed to successfully sample full and comparable transects. The sometimes large differences in fire
variable estimates between adjacent raster cells are expected by the nature of their compilation.
Therefore the fire frequency for each individual drag in a plot was extracted and their mean value
used to characterize the plot in general. For the days since last burn, the minimum recorded value
was used as there are several reasons why the satellite product would not be able to identify a fire
(eg. satellite passing interval, reflectance change too small to be registered). Therefore it is a
reasonable assumption that if a fire was identified, it would impact the whole plot and the major
uncertainty is if there was a later fire that was not picked up by the satellite. As some of the plots
were in areas that could not be assigned a DSLB as they did not burn in the timeframe for which
satellite data are available, the variable was analysed as a category for plots that burned within the
last year (0-1), within the last 19 years (1-19) or not within the last 19 years (19+).

2.2.2 Grassland structure
The grassland structure of each plot was characterized by compiling the grassland
measurements from the accompanying study into the following variables.

La_p: The number of DPM measurements on lawn grass species at the plot in percent with
a range between 0 — 95.06% (Fig.2 C).

Ratio_lb: The ratio between the measurements on lawn and bunch grass in percentage (La_p -
bunch %)/ (100/(La_p + bunch %))), thereby putting the lawn cover percentage in
relation to bunch grass and eliminating other surfaces (bare soil, forbs, etc.), which
ranged from -100 (pure bunch grass) to 92.26 (almost pure lawn grass).

Mn_dpm: The mean DPM measurement value across all measurements on the plot which
ranged from 2.6 to 25.2 to quantify grass biomass.

Cv_dpm: The coefficient of variation of the DPM measurements on the plot ((Standard
Deviation/Mean) x 100) to characterize the variability of grass biomass within the
plot, ranging from 26.78 to 75.83.
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2.2.3 Additional Covariates

Additional variables that were available and expected to have an influence on tick
abundances were the following:

Tree_mn: The mean number of trees per plot, calculated by taking the mean number of the
recorded categories (7.5, 22.5, 37.5, 52.5 and 66.5) and multiplying this value by the
number of times this category was recorded. This approximately quantifies the
overall openness of the plot and ranges from 12.26 to 61.48 trees.

H_trees: The evenness of the tree count, calculated via a Shannon index of the categorical
counts on a plot. It characterizes the variation in the openness of a plot and ranges
from 0.62 to 1.6 with low values indicating homogenous and high values indicating
heterogeneous distribution of trees.

Hv_dens: The herbivore density (from the size of a red duiker to a white rhino, not containing
elephants and black rhino) as compiled by combining the annual census counts of the
last 14 years from transect based, distance sampled density estimates and supplied
by HiP park management. After resampling the map to the same 500m resolution,
the density at the point of each individual drag was extracted and their mean used to
characterize the plot in the same way as the fire frequencies. It ranged from 25.72 to
93.48.

Collinearity between independent explanatory variables were assessed by calculating their
Variance inflation factor (VIF; (package: usdm (Naimi et al. 2014)). Above the commonly used
threshold of five were the two fire-frequency variables (FF5519 and FF0219) and the two lawn
variables (La_p and Ratio_lb) (Akinwande, Dikko, and Samson 2015). Furthermore, a pairwise
correlation VIF test revealed the mean DPM to be highly correlated with the lawn variables (La_p: -
0.81, Ratio_Ib: -0.82). An additional PCA showed that both lawn variables and both fire-frequency
variables have similar explanatory power (Fig.2 C, Package: vegan (Oksanen et al. 2008)). All these
variables were therefore modelled separately of each other. A relative high level of correlation was
additionally present between the fire-variables and La_p/Ratio_|b (-0.58 to -0.63) and Mn_dpm (0.71
to 0.73). As these dynamics are however of major interest to this study, they were tested in separate
pairs including their interaction.

2.3 Dependant variables and statistical analysis

The general abundance of ticks was investigated via two response variables. Firstly by the
total number of ticks counted on an individual plot and secondly by the coefficient of variation of the
tick counts amongst the individual drags on a plot. To exclude potential differences in tick activity
over the time of day, which could influence their potential to be collected in a tick drag and thereby
introducing a sampling bias, the tick counts in each drag were modelled against the sampling time.
The counts in the individual tick drags were highly zero inflated and best described by a Zero-Inflated
Sichel distribution (ZISICHEL, GAIC 7505.43). They were modelled against the predictor time with the
plot as a random effect.

The general analysis and model selection followed the same scheme for both response
variables. As they showed quite unusual and complicated distributions, the models were fitted in the
more flexible gamlss framework (Generalized additive models for location, scale and shape, Package:
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gamlss (Rigby and Stasinopoulos 2005)). This framework expands the range of potential distributions
and allows a high level of control by enabling the modulation of individual distribution parameters.
Initially the best fitting distribution was identified via the lowest Akaike information criterion (AIC),
followed by the fitting of six saturated models (all non-inflated co-variates and a combination of
three grassland variables and two fire-frequency variables). This was done in all distributions within a
range of two units in generalized AIC (bias corrected for small sample size, GAICc) of the best fitting
one. The GAICc was used on a plot level due to the small sample size of 28-29 and was consequently
minimized via step-wise deletion of terms until a minimal adequate model was identified. These
models were then again analysed if another distribution would lead to a further reduction in GAICc.
To avoid over-parameterization, only the interaction between fire and grassland variable was
included at first. When a minimal adequate model was found, the additional interactions were
included stepwise and checked for improvements in GAICc. All resulting models were further
checked if the addition of smoothing terms or a modulation of the gamiss specific distribution
parameters for scale (o) or shape (v), which allow the variance to vary along the linear scale and can
correct for highly skewed or kurtotic density estimates, would improve the model. In all steps, the
general fit of the models were validated and the models disregarded when they showed problematic
signs.

The tick counts per plot ranged from 22 to 3819 ticks (Total tick abundance, TTA). For
modelling purposes, the plots one and two were excluded as they differed from the other plots in
their sampling effort through the drag distance. An initial assessment showed the data to be severely
over-dispersed (Residual Deviance 16738 on 27 df, Ratio variance/mean = 654). Within the gamlss
framework, the model was first fitted with the geometric (GEOM, GAICc 431.57, 1 df) and the
negative binomial (NBI, GAICc 433.97, 2 df) distribution, which are both robust against over-
dispersion. While the NBI model was not within the desired range of 2 units in GAICc from the
geometric model, it was still included to achieve more statistical reliability. Both models contained
the same combination of independent variables in their reduced minimal adequate state (GAICc:
GEOM 431.49; NBI 432.65) and could not be further improved. However, in this combination of
explanatory variables a double Poisson (DPO) distribution showed an improvement of GAICc to
430.55.

To evaluate the pattern of tick distribution within plots, the coefficient of variation between
the individual drags on a plot level ((Standard Deviation/Mean) x 100) was additionally tested as a
response to the available independent variables and ranged between 120.47 and 398.27 (CVT). Plot 2
was excluded due to the different drag distances, while plot 1 was included as the individual drags
were consistent in length (20m), which makes its heterogeneity comparable. A histogram of the CVT
showed a pronounced right skew (D’Agostino test = 0.96) and slight leptokurtosis (Anscombe-Glynn
test = 3.15). The distributions Inverted Gamma (IGAMMA, GAICc 323.05, 2 df), inverse Gaussian (IG,
GAICc 323.96, 2 df), log-normal (LOGNO2, GAICc 324.09, 2 df) and Box-Cox-Cole-Green (BCCGo,
GAICc 324.85, 3 df) were all within a range of two units in GAICc. As the BCCGo distribution required
1 more degree of freedom, the six saturated models were only reduced in the first three distributions
(IGAMMA, 1G and LOGNQO2). Their minimal adequate models again contained the same independent
terms (GAICc: IGAMMA 315.71; 1G 314.12; LOGNO2 315.73). The gamlss framework showed a
Weibull (WEI) model to decrease the GAICc further (GAICc: WEI 313.72) which could not be further
improved.
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3. Results

The time of sampling had no significant effect on the number of ticks collected (ZISICHEL; t
(33.6, 1047) = 0.496, p=.62).

3.1 Total tick abundance (TTA)

For the total tick abundance (TTA) the minimal adequate models in all distributions included the
same independent variables, lawn percentage (La_p), fire frequency 1955-2019 (FF5519) and their
interaction (Tab.1, La_p:FF5519). The lowest GAICc was achieved in the DPO model at 430.55, with
the GEOM (431.49) and NBI (432.25) models within the comparable explanatory range. As the GEOM
model requires one degree of freedom less, parsimony would make it preferable. However, for both
the GEOM and the NBI model the difference in GAICc between these models and their respective
zero-models, with only a random intercept fitted, was less than two units (Tab.1, AGAICc ZM: GEOM -
0.23, NBI -1.72). Additionally, the DPO and PIG models explained considerably more of the variation
within the tick counts (Tab. 1, Nagelkerke R2). All models showed the interaction between lawn
percentage and long-term fire frequency (La_p:FF5519) to be significant (Tab.1; DPO: t (5, 28) =
2.988, p =.007; GEOM: t (4, 28) = 2.339, p = .03; NBI: t (5, 28) = 2.777, p = .01; PIG: t (5, 28) = 2.33, p =
.03). While the models returned similar intercepts, the individual term coefficients varied by some
margin with only the GEOM and the NBI models returning comparable values. The DPO model shows
the direction of the interaction effect to change from negative to zero or positive at a threshold of
approximately 30% lawn coverage and a log-term fire frequency of approximately 18 (Fig.4 A+B). Tick
abundances decreased when fire frequency increased in plots with low lawn coverage while being
relatively stable in areas with high lawn coverage (Fig.4 C). At low fire frequencies below 18/64 yrs.,
tick abundance declined with increasing lawn coverage, but not at higher fire frequencies (Fig.4 D).

Table 1. Coefficients for the intercept and the variables lawn percentage (La_p), fire frequency 1955-2019 (FF5519)
and their interaction with standard error in brackets and significance level as returned by the double Poisson (DPO),
geometric (GEOM), negative binomial (NBI) and Poisson inversed Gaussian (PIG) models for the total tick abundance
(TTA). Lower part shows goodness of fit statistics including AGAICc ZM which indicates the difference in GAICc of
the model to a zero model with only a random intercept fitted.

DPO GEOM NBI PIG

Intercept 682" 6.83" 6.83 684
(0.16) (0.23)  (0.19) (0.28)
La p 025 -031 -031 -0.54
(0.18) (0.24)  (020) (0.22)
FF5519 036 -027 -027 -0.40

(0.19) (0.22) (0.18) (0.25)
La pFF5519 0617 054" 053 052

(0.20) (0.23) (0.19) (0.22)
Num. obs. (df) 28(5) 28(4) 28(5) 28(5)
Nagelkerke R2 037  0.24 029 036
AGAICcZM -491 -023 -172 -4.33
Gen. AICc 430.55 43149 43225 44090
“p<0.001: "p<0.01; p<0.05

While the variances in the residuals of both variables are notable, tick abundances were considerably
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higher in areas of low lawn coverage and low historic fire frequency. The slopes even indicate a slight
increase of TTA in high lawn, high fire frequency areas, however, this is mostly due to plot 8 that
showed the unusual combination of very high lawn (92%), high fire frequency (24.3/64 yrs.) and high
TTA (1624 ticks). As the plot showed a much lower short-term fire frequency (3.7/17 yrs.), the areas
probably underwent considerable structural changes within the last decades and transitioned to a
grazing lawn.

3.2 Heterogeneity of tick distribution (CVT)

Regarding the homogeneity of the number of ticks in the individual drags, the minimal
adequate model in all distributions again contained the same terms, the heterogeneity of the DPM
measurements (Cv_dpm), the herbivore density (Hv_dens) and the interaction between average
grass biomass (Mn_dpm) and the short-term fire frequency in the last 17 years (Tab.2, FF0219). The
lowest GAICc was achieved by the WEI model, with the IG, IGAMMA and LOGNO models within the
same explanatory range (Tab.2, Gen. AlCc). While all models returned similar coefficients and levels
of significance for Hv_dens, Cv_dpm and the interaction Mn_dpm:FF0219, they differed by some
margin in both parameters for the individual terms FF0219 and especially Mn_dpm. This led to
Mn_dpm being identified as highly significant by the WEI and BCCGo models while being insignificant
for the IG the IGAMMA and the LOGNO models (Tab.2). In the WEI model, the homogeneity of ticks
decreased by about 15% (+0.03) when Hv_dens increased by a standard deviation of 12.6 (WEI: t(7,
29) =-4.883, p< .001) and by about 10% (+0.03) when Cv_dpm increased by a standard deviation of
19.8 (WEI: t(7, 29) = -3.839, p< .001). All models showed the interaction between Mn_dpm and
FF0219 to be significant (Tab.2, WEI: t(7, 29) = 3.278, p = .003; IG: t(7,29) = 3.058, p= .005; IGAMMA:
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Figure 4. The conditional effect and confidence intervals of lawn percentage on long-term fire frequency (A) and vice versa
(B) for their significant interaction as identified in a double Poisson model (DPO, t (5,28) = 2.988, p = .007**) with a
histogram added (top). C and D show the tick abundance (TTA) against the gradient of FF5519 (C) and La_p (D) with the
other variable categorized at the thresholds indicated by the vertical lines in A and B. Points are observed TTA, horizontal
lines are the predicted TTA as returned by the DPO model and the vertical, dotted lines show the confidence interval of the
fit at the points of observation.
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t(7,29) = 2.971, p=.007; LOGNO: t(7,29) = 2.981, p= .006; BCCGo: t(8,29) = 3.579, p=.001). Both, the
interaction found for TTA and CVT are indirectly connected as the average grass biomass is
significantly connected to lawn coverage (Fig.5, t(4,30) = 3.376, p=.002**).

Table 2. Coefficients for the intercept and the variables average DPM (Mn_dpm), fire frequency 2002-2019 (FF0219),
herbivore density (Hv_dens), heterogeneity in DPMs (Cv_dpm) and the interaction Mn_dpm:FF0219 with standard error in
brackets and significance level as returned by the WEI, IG, IGAMMA, LOGNO and BCCGo models for the heterogeneity in
tick distribution (CVT). Lower part shows goodness of fit statistics including AGAICc ZM that indicates the difference in
GAICc to a zero model with only a random intercept fitted.

WEI IG IGAMMA LOGNO BCCGo
Intercept 544" 536 5297 534" 535
(0.04)  (0.04) (0.05) (0.04)  (0.14)
Mn_dpm 0.147 007 003 0.05 017"
(0.04)  (0.05) (0.05) (0.05)  (0.04)
FF0219 026 -0207" -0.19" 0207 -028""
(0.04)  (0.05) (0.05) (0.05)  (0.04)
Hv_dens 016 -0.17  -0.18"  -018 -0.14
(0.03)  (0.04) (0.04) (0.04)  (0.03)
Cv_dpm -0.1077 -0.08"  -0.09" 009" -0.11
(0.03)  (0.03) (0.04) (0.04)  (0.02)
Mn dpm:FF0219 0.11° 0.137 0.137 0.13"  0.10"
(0.03)  (0.04) (0.05) (0.04)  (0.03)
Num. obs. (df) 29 (7) 29(7) 29(7) 29(7)  29(8)
Nagelketke R2  0.67 057 054 0.55 0.58
A GAICc ZM -1742 984 734 -8.36 -8.92
Gen. AICc 31372 314.12 315.71 31573 315.93

p<0.001: "p <0.01; p<0.05

The effect of short term fire frequency (FF0219) on CVT was negative but decreases until it becomes
negligible at an average grass biomass (Mn_dpm) above approximately 18 (Fig.5 A). On the other
hand, the effect of grass biomass on CVT is increasingly positive at fire frequencies above
approximately 2.5 (Fig. 5 B). To visualize this effect the respective variables were again categorized,
albeit this time at their 1°t and 4" quartile as there were not enough measurements above/below the
thresholds of 18 in Mn_dpm and 2.5 in FF0219 to produce reliable predictions, which makes these
exact thresholds unreliable (Fig.5 C, D). The overall effect of FF0219 on CVT is negative but
considerably more so on plots within a range of 2.6 — 4.5 in Mn_dpm (Fig.6 C, green). In contrast, CVT
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Figure 5. Observed (points) and predicted (line) relation between average grass
biomass (Mean DPM) and lawn coverage on the sampled plots. Relation is significant
in an inverse Gaussian (IG) model (upper right).

18



is generally lower on plots with a lower average grass biomass and increases on plots with higher
biomass. This increase is sharper and more variable in mid fire frequencies above one than in higher
fire frequencies above six. However, the CVT on plots that did not burn at all is considerably higher
compared to the other plots with a low biomass, which disappears when it burned once (Fig.6 D,
blue). The overall highest heterogeneity was found at lower fire frequencies in the last 17 years while
lower heterogeneity were more likely on plots with low average mean DPM, independent of fire
frequency with the notable exception of plots that did not burn at all (Fig.5).
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Figure 6. The conditional effect of average DPM (Mean DPM) on short-term fire frequency 2002-2019 (A) and vice versa (B)
for their significant interaction as identified in a Weibull model (WEI, t(7,29) = 3.278, p = .003**) with a histogram added
(top). C and D show the tick distribution heterogeneity (CVT) against the gradient of FF0219 (C) and Mean DPM (D) with the
other variable categorized at the thresholds indicated by the vertical lines in A and B. Points are observed CVT, horizontal
lines are the predicted CVT as returned by the WEI model and the vertical, dotted lines show the confidence interval of the fit at
the points of observation.
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4. Discussion

This study investigated how the interaction between fire frequency and grassland structure
affects tick abundances on a landscape level. To achieve this, | tested if tick abundance decreased in
areas with increasing proportional amounts of lawn or increasing fire frequency and if the lowest
abundances are found in areas with the highest amount of grazing lawn and the highest fire
frequencies. In addition, | assessed the effect of both factors on the heterogeneity of tick distribution
throughout the landscape. Although not the main purpose of this study, the underlying assumption
was based on observations that fire frequency and lawn coverage are closely linked, with previous
studies postulating that fires cannot spread through areas with a lawn coverage of more than 30%
due to it acting as a natural fire barrier (Archibald 2008; Archibald and Hempson 2016; Donaldson et
al. 2018). The study presented here did not find such a clear threshold. While both short- and long-
term fire frequencies showed a steep decrease when lawn coverage increased to 20%, there was no
point after which either the long- or short-term fire frequencies uniformly dropped to their lowest
values (appendix, Fig. Al). This could however be a result of the relatively crude method of
calculation. Both the historic annual fire records and the satellite data are unlikely to be spatially
explicit enough to establish if a grazing lawn really burned, or just the bunch grass surrounding it.
However, it indicates the structural changes in grassland over time, as grazing lawn can turn into
bunch grass and vice versa (Cromsigt and te Beest 2014). For example plot 8 showed high lawn
coverage and a relative low short-terms fire frequency while the long-term fire frequency was
relatively high which suggests that the area turned into grazing lawn only recently. Therefore it
should be noted that the fire frequencies are long-term measurements while the lawn
measurements and tick abundances represent the current state, which complicates the
interpretation.

The tick abundance within an area did not universally decrease when lawn coverage or fire
frequency increased, which partially rejects hypotheses one and two. It did decrease with increasing
lawn coverage in areas with fire frequencies below approximately 18 fires in the last 64 years and
with increasing fire frequency when lawn coverage was below approximately 30% (Fig. 4). Neither
were the lowest tick abundances universally found in areas with very high lawn coverage or high fire
frequency, which rejects hypothesis three. While the tick abundances were on average low in both
circumstances, they were equally low at other points along the gradient of fire frequency and lawn
coverage. However, the highest tick abundances were found in areas that combine a low amount of
grazing lawn with a low long-term fire frequency (Fig.4). Therefore indeed, tick abundances are lower
in areas with high lawn coverage and independent of fire frequency. On the other hand, tick
abundances are indeed lowered to an equally low level by high fire frequencies in bunch grass areas.
While all four models tested here agreed in the significance of this interaction, it should be
acknowledged that two of them (GEOM and NBI) were not better in explaining the tick abundance
than a random model with a AGAICc ZM of less than -2 (albeit the NBI model being close with -1.72,
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Tab.1). Additionally, the tick distribution was more homogenous on plots with high lawn coverage,
and therefore low grass biomass, but only if it burned at least once in the last 17 years.

In general, ticks can be found in three “states”. Either feeding on a host, or free on the
ground where they either inactive or actively look for a new host (quest) (Madder, Horak, and Stoltsz
2014). Tick drags exclusively sample questing ticks (Mays, Houston, and Trout Fryxell 2016). Finding
lower abundances of questing ticks could indicate a higher mortality for them in areas with a high
amount of grazing lawn or high fire frequency. Multiple studies showed lower numbers of ticks in
areas with shorter grasses (Medlock et al. 2012; Yawa et al. 2018). As other studies were able to
demonstrate that the numbers of questing ticks are considerably lower after dry and hot days, this
could be due to higher exposure in these conditions (Burtis et al. 2016). Furthermore, it was shown
that burning reduces tick abundances, which is most likely due to their direct death through
combustion and the reduction/elimination of their refugia (Fyumagwa et al. 2007; Polito et al. 2013;
Gleim et al. 2014). However, the time until tick numbers after fire events return to their pre-burn
level (or even above this) differs considerably between studies, ranging from one to more than three
years (Fyumagwa et al. 2007; Adams et al. 2013; Goodenough et al. 2017). The results presented
here could offer an explanation for this as the effect of fire on tick abundances depends on grassland
structure. Intriguingly however, neither this study, nor the study of Goodenough et al. (2016) found a
significant effect of time since last burn on tick abundances. While they noted that the number of
ticks sampled from plots of different rotational burning regimes in another protected area in South
Africa were lower on plots that burned the year before, they found equally low numbers on plots
that burned more than three years ago. In contrast, the study presented here found no such pattern
and with the by far highest number of ticks (3819) on plot 2 that, although excluded from all analysis
due to sampling differences, burned only 221 days ago (appendix, Tab. Al). Additionally, they found
a significant interaction between fire and individual plots which was attributed to heterogeneity in
local environmental factors, one of which as this would study suggests, could be grassland structure
(Goodenough et al. 2017). This potentially indicates that differences in mortality due to fire is not
acting alone in determining the abundances of questing ticks in bunch grass dominated areas. The
influence of fire on tick abundances could be an indirect effect based on fire and grassland induced
changes in herbivore density and activity. While the study presented here did not find a significant
effect of herbivore density on tick abundance, this could be due to the nature of the proxy. As it was
a long term density calculated from annual, transect based game censuses, important small spatial
and temporal differences, especially between lawns and bunch grass areas, are most likely missed.
However, the herbivore density considerably homogenized the distribution of ticks throughout plots,
showing that there are connections between the two. Other studies showed that the density of
herbivores and how much time they spend in an area is higher on grazing lawns and in freshly burned
areas (S. Archibald 2008; Donaldson et al. 2018). Therefore over time, areas that are either grazing
lawns or burn frequently could have a higher availability of new hosts than areas that lack both over
the same time, although this would still need to be demonstrated. This could translate into lower
amounts of questing ticks in these areas as they quickly find new hosts and are therefore not
collectable via tick drags. Consequently, high abundances of questing ticks in high bunch grass, low
fire frequency areas could be a consequence of them accumulating due to the lack of hosts. This
would be supported by experiments in Kenya that showed that within 13 months the exclusion of
large herbivores lead to higher tick abundances, as potentially less ticks transfer from questing to
hosts (Titcomb et al. 2017; 2018). Additionally, although it is hard to distinguish cause and effect,
certain herbivores like African buffalo (Syncerus caffer) are more likely to frequent areas of taller
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grass and at the same time show a high level of infestation with ticks when compared to other
species (Fyumagwa et al. 2007; Donaldson et al. 2018). The magnet effect that attract more
herbivores into freshly burnt areas could in this regard offer an explanation for the disconnection
between the abundances of questing ticks and time since the last burn as the increased turnover of
hosts quickly re-stabilizes their numbers (Archibald et al. 2005). To further investigate these
mechanisms, the relationship between long and short-term fire frequencies and grazing lawns should
be established with a higher resolution to clearly establish the pattern between the three.
Furthermore, it should be assessed how temporal patterns in herbivore movement and activity in
relation to environmental parameters of the landscape influence the abundance of questing ticks and
their own level of tick infestation.

The results of this study have more general implications for fire ecology as well. Beale et al
(2018) showed in a study across African savannahs that while pyrodiversity had an increasing effect
on the biodiversity of birds and mammals, this effect was notably stronger in wet savannahs (>650
mm/year). Regarding tick abundance, we find a similar pattern in which the effect of a singular factor
of pyrodiversity, the fire frequency, depends on another environmental variable, the grassland
structure. When Bowman et al. (2016) conceptualized pyrodiversity as an extension of a food web
with fire competing with herbivores for vegetation, they emphasized the need for detailed studies of
spatio-temporal mosaic of fire with particular species guilds to avoid the often contradicting
conclusions linking bio- to pyrodiversity. The study presented here shows that sampling of ticks in
only one grassland type would have influenced the conclusion about the effect of fire on ticks.
Additionally our results strongly support the notion, that the interaction between fire and biotic
parameters is not clear cut and that to predict the impact of fire several other environmental
parameters have to be considered. These parameters need to be integrated into future studies,
especially concerning sampling strategies, when the effect of pyrodiversity on individual taxa, or
biodiversity as a whole, is investigated. As fire frequency changes tick abundance and heterogeneity
depending on grassland structure, further research will be needed if other pyrodiversity parameters
like seasonality and intensity are similarly affected.

Burning is the most common strategy to control tick populations beside acaricides, but only a
continuous higher fire frequency might be effective to reliably decrease the number of ticks and even
have no effect at all on certain grassland structures like grazing lawns (Gleim et al. 2014). In places
where they occur, grazing lawns are most likely strongly linked to the presence of large herbivores in
their formation and maintenance (Cromsigt and te Beest 2014). Therefore a decrease in large
herbivores and potential following decrease in grazing lawns will lead to an increase in tick
abundances if the fire frequency in the area is low.
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Fire frequency in relation to lawn coverage
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Figure Al: The long-term (FF5519) and short-term (FF0219) fire frequency of the plots in relation to lawn coverage (in %).
Lines are predictions from a double Poisson (DPO) model for FF5519 and a geometric (GEOM) model for FF0219 and are
significant (legend upper right). Points show the observed values from the 30 plots.
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