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Abstract 
Current forestry practices have led to a decline of deadwood availability in Swedish forests. Even 

though deadwood has increased somewhat in Swedish forests in later years, it is still far from 

estimated deadwood threshold levels and of those found in natural systems. This has in turn led to a 

decline in species associated with deadwood e.g. saproxylic beetles, which will be the focus group 

of this study. In order to halt this development, it is essential to study how different landscape 

management systems might influence saproxylic beetles. It is also of great importance to understand 

the major drivers of biodiversity, such as habitat amount or habitat heterogeneity. Ecoparks are 

Sveaskog’s landscape parks with a majority of the forest land being of conservation concern. Two 

of Sveaskog’s Ecoparks, one in northern and one in southern Sweden were the selected sites of this 

study, representing a multi-purpose driven forest landscape. Ecoparks are landscape-scale forest 

parks where at least 50% of the forest land is exempt from forestry measures. Reference sites where 

chosen to represent conventionally managed landscapes, but with similar properties as respective 

Ecoparks. Beetles were collected during 3 years in sun-exposed plots, where local (20m radius) 

habitat structure data was collected as well. Ecoparks held larger abundance and richness of red-

listed beetles, but not of  all saproxylic (deadwood dependent) beetles, compared to reference sites. 

Ecoparks contained different beetle community assemblages from reference sites. Deadwood 

amount had a positive relationship with the abundance of saproxylic beetles, as well as richness of 

facultative saproxylics in southern Sweden. Abundance of red-listed beetles also showed positive 

relationship with deadwood amount in southern Sweden. Deadwood diversity showed no conclusive 

effect other than being important for southern Sweden beetle community assemblages. Deadwood 

amount showed negative relationships to abundance within Ecoparks, compared to reference sites. 

Results show that more diverse and complex landscapes host different saproxylic community 

assemblages and larger amounts of red-listed beetles. This study supports the habitat amount 

hypothesis but not the habitat heterogeneity hypothesis. There are also indications that landscape 

complexity might influence local deadwood responses, giving support to the landscape intermediate-

complexity hypothesis. The results suggest that deadwood amount, in conventionally managed 

landscapes, should be increased at local levels. In more diverse landscapes, maintaining diversity 

and habitat size should be the main focus. 

  

Keywords: deadwood, saproxylic beetles, habitat amount hypothesis, habitat heterogeneity 

hypothesis, landscape ecology, landscape intermediate complexity hypothesis  
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Degradation, fragmentation and loss of habitats as a result of human impact has led 
to species going extinct or being threatened, and are some of the greatest threats to 
biodiversity (Wilcox & Murphy 1985, Wilson 1989, Tilman et al 1994, Wilcove et 
al 1998, Harrison & Bruna 1999, Convention on Biological Diversity 2010, Haddad 
et al 2015). Lack of deadwood, caused by current forestry practices, promoting 
even-aged monocultures that are felled at lower ages and bereft of natural 
disturbances such as fire has in turn led to a decline in species bound to deadwood 
(Zackrisson 1977, Zackrisson & Östlund 1991, Niklasson & Granström 2000, 
Sandström et al 2015, Seibold et al 2015). In result, 30 and 50 percent of species 
present in the Finnish and Swedish red-list, respectively, are forest-dwelling 
(ArtDatabanken 2015, Hyvärinen et al 2019). 
Although there has been a slight increase in national deadwood volumes from the 
middle of the 90’s from 6.1 m3 per hectare to 8.3 m3 per hectare today (Jonsson et 
al 2016, Forest statistics 2018), it is still far from levels found in natural boreal 
forests, ranging from 50-120 m3/ha (Siitonen 2001, Rouvinen et al 2002). It is 
estimated that levels of 20-50 m3/ha are required to support the majority of forest-
dwelling taxa (Müller & Bütler 2010). 
Beetles are one of the organism groups with the highest number of species (Gaston 
1991). Many of these are saproxylic, which means that they are deadwood 
dependent during part of their lifecycle (Speight 1989), whether they are facultative 
or obligate saproxylics (Dahlberg & Stokland 2004).  
Saproxylic beetles play a vital part in ecosystem functioning through tree 
decomposition and nutrient cycling (Harmon et al 1986, Grove 2002). Their 
abundance, richness and species composition in boreal forests vary with the amount 
and diversity of deadwood (Jonsell et al 1998, Martikainen et al 2000, Siitonen 
2001, Hjältén et al 2007, Lassauce et al 2011, Hjältén et al 2012, Gao et al 2015, 
Seibold et al 2016). 
There are several theories regarding the major drivers and influencers of 
biodiversity, which is essential to understand in order to make the right decisions 
in terms of conservation and restoration. 
Island theory (MacArthur & Wilson 1963, 1967) has been a cornerstone in 
ecological research alongside with patch size and isolation theories. The general 
theory is that with larger patch sizes, abundance and in that, richness, increases. 

1. Introduction 
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This has been challenged by Fahrig, stating that the patch size theory is mainly 
driven by sample size and introducing the habitat amount hypothesis (HAH), which 
suggests that the abundance increases with amounts of habitat, regardless of the 
patch size (Fahrig 2013). Although HAH cannot fully disprove island theory, HAH 
has still proven to be a useful baseline in ecological studies (Seibold et al 2017, 
Martin 2018). Another hypothesis, the habitat heterogeneity hypothesis (HHH) 
states that with increased habitat heterogeneity, species richness increases 
(Whittaker 1972, González-Megías et al 2011, Seibold 2016, Hamm & Drossel 
2017).   
In more recent years, the surrounding landscape has gained more attention in 
ecological studies, proving to be influential on forest biodiversity (Edman 2008, 
Rubene et al 2015, Hallinger et al 2018). Extensive harvesting in the landscape can 
have negative effects on species communities (Ranlund & Viktorsson 2018) by 
homogenizing the forest landscapes and decreasing the amount of mature forests 
and volumes of decaying wood. At the same time, harvesting creates sun-exposed 
landscapes that can be beneficial for early successional, open-habitat or disturbance 
favoured beetles (Koivula et al 2002, Lindhe et al 2005, Selonen et al 2005, Gibb 
et al 2006). Restoration measures in the stand scale can have positive effects on 
insect communities (Hekkala et al 2014, Hägglund et al 2015, Hjälten et al 2017), 
but the success of restoration measures might be affected by the structure and 
complexity of the landscape, according to e.g. the intermediate-landscape-
complexity hypothesis (Tscharntke et al 2005, Kouki et al 2012, Tscharntke et al 
2012).   
Although beetles are a well-studied group, together with their habitat associations, 
investigating general ecological hypotheses together with the effect of the 
surrounding landscape is not as well-studied (Tscharntke et al 2012, Seibold et al 
2015, Hekkala & Roberge 2018). Sveaskog, the Swedish state-owned forest 
company, have created so called Ecoparks in order to maintain a multifunctional 
forest landscape. Ecoparks (‘ECO’ from hereon) consist of at least 50 percent set-
aside forests for conservation and restoration, where the remaining forests are being 
managed with  more conventional methods (Angelstam & Bergman 2004). At the 
same time, Business as usual landscapes (‘BAU’) are mainly used for production 
with only general consideration of valuable habitats. 
This paper will use the HAH and HHH as the leading stones, to investigate the main 
drivers of abundance, richness and species communities of saproxylic beetles. 
These hypotheses will be tested in two Ecoparks and their reference sites, as well 
as for the entire landscape, to see if the landscape structure have an influence on 
these hypotheses. This study is a part of a long-term project to evaluate the effects 
of Sveaskog’s Ecoparks on biodiversity. 
The aims of this study were to determine whether or not (I) ECO-parks hold higher 
species richness and abundance of saproxylic, facultative and obligatory, and red-



9 

 
 

listed beetles than their respective reference BAU-sites, (II) species richness and 
abundance of facultative and obligatory saproxylic as well as red-listed beetles 
increase with increasing deadwood diversity (HHH), (III) species richness and 
abundance of facultative and obligatory saproxylic and red-listed beetles increase 
with increasing volumes of deadwood (HAH), and (IV) ECO-parks contain 
different beetle community assemblages than BAU-sites determined by local 
substrate factors (deadwood). 
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2.1. Study areas & sites 

This study is part of a long-term project with the aim to investigate the effects of 
landscape scale management on biodiversity, running from 2009-2033, called 
Effekt 20. The study was conducted in two Ecoparks and two commercially 
managed reference landscapes in Sweden.  
Reference sites were chosen for their likeness to their respective ECO and where 
conventional forestry methods are carried out, so called business as usual (BAU) 
sites. In northern Sweden, Ecopark Käringberget with its reference site Vindeln in 
the central boreal zone (Ahti  et al 1968) was chosen as study sites. Ecopark Hornsö 
with reference site Hälleskog in the hemiboreal zone (Ahti et al 1968) was chosen 
for the study site in southern Sweden (Figure 1). Detailed maps of each site can be 
found in Appendix 1, figures 2-5. 
Ecopark Hornsö was established in 2004 due to its importance to insect 
communities and to preserve and restore habitats in the area. It is mainly dominated 
by Scots pine (Pinus sylvestris L.) with pedunculate oak (Quercus robur L.) and 
beech (Fagus sylvatica L.) occurring frequently as well. Up until the 1900’s, fire 
was a frequent disturbance in this landscape, which has greatly affected the state of 
this landscape (Sveaskog 2008).  
Ecopark Käringberget was established in 2005, also having a long tradition of fires. 
It is dominated by Scots pine but also Norway Spruce (Picea abies L. H.Karst) with 
some elements of birch (Betula pendula Roth., Betula pubescens Ehrh.) and aspen 
(Populus tremula L.). The Ecoparks are structurally different or hold significant 
natural values compared to the surrounding landscape, and even if much of the set-
aside areas are trivial today, restoration measures are being taken to further increase 
their natural values in the long term (Sveaskog 2005). 
Both Ecoparks have similar distributions of forests of conservation concern and 
production forests, with a majority of conservation forests being restoration sites, 
whereas BAU-sites are dominated by production forest sites (Table 1). Both 
Ecoparks have greater proportions of forests in higher age classes than their 
respective reference (BAU) sites (Figure 6). Production forests refer to forests that 

2. Materials & Methods 
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have active forestry activity, conservation concern refers to all productive forest 
land exempted from forestry. Within conservation concern there are three further 
classifications: Restoration, where measures are being taken to restore natural 
values or structures; Set-aside, areas that are voluntarily set-aside from forestry; 
and Protected, areas that are legally protected from exploitation. 

 
Figure 1. Location of study sites within the “Effekt 20” project. Study sites highlighted with grey 
markings. Sites used in this study highlighted with names. 
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Area 
Northern 

Sweden 
 Southern 

Sweden 
 

Treatment ECO BAU ECO BAU 

Site Käringberget Vindeln Hornsö Hälleskog 

Coordinates 
64° 04' N; 

18° 41' E 

64° 03' N; 

18° 43' E 

57° 00' N; 

16° 09' E 

56° 50' N;  

15° 39' E 

Mean annual 

temperature 
2.5 C°  2.5 C°  7.8 C°  7.8 C°  

Mean annual 

precipitation 
705mm 705mm 513 mm  513 mm  

Size (ha) 13963 21181 9242 9144 

Production 5786 (54%) 20066 (95%) 4438 (53%) 8570 (94%) 

Conservation 

concern  
4989 (46%) 1115 (5%) 4014 (47%) 574 (6%) 

-Restoration 2817 (26%) 18 (0%) 3227 (38%) 124 (1%) 

-Set-aside 1615 (15%) 331 (2%) 485 (6%) 381 (4%) 

-Protected 557 (5%) 766 (4%) 302 (4%) 69 (1%) 

Dominating  

vegetation 

VT(38%), 

MT(27%) 

VT(46%), 

MT(27%) 

CT(38%), 

MT(35%) 

CT(46%), 

MT(12%) 

Table 1. Location, area distribution and dominating vegetation for each study site. The size 
includes all land, productive and non-productive. Other areal distribution information is 
productive forest land. Percentages of restoration, set-aside and protected areas are calculated 
from the total of conservation concern areas. BAU=Business as usual. ECO=Ecopark. 
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Figure 6. Production and nature forest area per age class for different sites. PF = Production 
forests. CF = Conservation forests. Mind the different axis-scales. 

2.2. Sampling design 

In each landscape, 26 plots were chosen with at least 1 km between each plot, to 
diminish spatial correlation of insect trappings (See Appendix 1, Figures 2-5). Each 
plot was chosen for its exposure to the south and west. In more closed plots, in order 
to open up the canopy, trees were removed to expose the plot to the sun in these 
directions. Plots were also chosen for their representativity of the site and 
accessibility from roads. In each plot, high stumps were created in pairs in 2010 for 
northern Sweden and 2011 for southern Sweden. Each pair of high stumps consisted 
of pine and birch, but in some cases pine and pine or birch and birch were chosen. 
The height of each high stump was 2.5 meters, diameter 14-42 cm, and they were 
placed with ca 1-5 meter apart from each other.  

2.3. Insect sampling and classification 

Insects were sampled with two trunk-attached window traps per high stump (Kaila 
1993). The window traps consisted of a 10 x 20 cm, 2 mm thick, transparent 
plexiglass sheet that was attached to the trunk of each high stump, with a 0.5-litre 
aluminium mould to capture insects. Propylene glycol diluted to ca 60 percent with 
a small amount of detergent was used as preserving liquid in the traps. The traps 
were placed on 1.1 and 1.6 meters from the ground, facing south. The traps were 
set at the end of May and removed at the end of July. The traps were emptied twice 
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each sampling season for 3 consecutive years, 2010-2012 in northern and 2011-
2013 in southern Sweden. Insects were then identified to species or genera level, 
separate for each high stump. The main purpose of species identification was to 
identify saproxylic beetles with high conservation value, thus some known non-
saproxylics were not identified at all. Precision of species identification was higher 
in northern than southern Sweden where some families such as Staphylinidae were 
not fully identified, and bark beetles were identified to genera-level (Appendix 2). 
Thus, the species counts in northern and southern study areas are not comparable, 
while within the area, comparisons between BAU and ECO are valid. 
Mean temperatures during the months (June-August) of beetle collection was 13.6 
C° in N Sweden and 16.2 C° in S Sweden (Swedish Meteorological and 
Hydrological Institute 2019). 

2.4. Field measurements 

Measurements on tree stand structure were carried out in circular sample plots (20 
m radius) in 2019. The centre of each plot was placed between the two high stumps 
and the sample plots’ borders were measured using an ultra-sound distance 
measuring device.  
Living tree diameters at breast height(1.3m,  DBH) were recorded for each tree with 
a DBH >4.5 cm and a height of >1.3m as well as their respective tree species. B. 
pendula and pubescens were both measured and classified as birch, and Q.robur 
and Q. petraea (Matt., Liebl.) as oak. 
In order to measure canopy closure/gap, hemispherical photos were taken using a 
fish-eye lens. These photos were then processed in ImageJ (Schneider et al 2012) 
using the plugin Hemispherical 2.0 (Beckschäfer 2015) to obtain values for canopy 
closure/gap. 
The species, DBH, height and decay class were recorded for standing dead trees 
and snags. For lying dead trees, also the top (to minimum value 4.5 cm) and bottom 
diameters were recorded for trees over 4.5 cm in diameter and at least 1.3 m in 
length. Type of substrate was also recorded, whether it was a standing dead tree, 
snag or lying deadwood log. 
Four decay classes were used to describe the decomposition stage of deadwood 
logs, adjusted from Gibb et al 2005: (1) Hard wood with intact bark >50%, (2) Hard 
wood with smooth surface beginning to soften, <50% bark remaining, (3) crevices 
and holes, soft wood surface, free of bark, (4) soft wood, possibly with a hard core 
remaining, hard to define surface and outline. The broadleaves in later decay stages 
were classified according to decay classes (3) and (4), disregarding the percentage 
cover of bark. Standing trees and snags were classified according to Jung et al 1999 
and Parker & Thomas et al 1979.  Field vegetation was classified using Cajander’s 
vegetation classification (Cajander 1926). The dominating vegetation type was 
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chosen, in cases where the vegetation type was shifting, the two most dominating 
types were chosen.   

2.5. Calculations 

Both living trees and all deadwood were divided into 10 cm diameter classes, 
starting from 4,5 cm up to >50cm, totalling in six different diameter classes. Basal 
area and deadwood volumes were calculated to per hectare values for each plot. 
Living tree and deadwood diversity index was calculated, modified by Siitonen et 
al 2000 and Hekkala et al 2016. Living tree diversity was calculated as different 
combinations of tree species and diameter class for each plot. Deadwood diversity 
was calculated similarly as for living trees with tree species, diameter class adding 
deadwood type or decay class for deadwood. Deadwood diversity would then be 
the number of different combinations of species, size and decay class for each plot. 
Volumes of intact standing dead trees (classes 3-5, Parker & Thomas 1979) was 
calculated based on diameter and height. Brandel’s functions for pine, spruce and 
birch for Northern and Southern Sweden were used (Brandel 1990). Birch functions 
were used for all broadleaves >6m (Brandel 1990). Volumes of logs, snags and high 
stumps were calculated as cylinders based on diameter and height/length. 
Broadleaves <6 m were calculated as cylinders using DBH. See formulas used for 
calculations in appendix 3. Red-listed beetles were classified according to 2010’s 
red list (Gärdenfors 2010). 
Classification of facultative and obligate saproxylics was made using a datafile with 
compiled data on saproxylic classification (Hjältén unpublished), based on 
literature and expert opinions (Appendix 2). 

2.6. Analysis 

All insect trappings were pooled for each plot (four traps per plot), divided by site 
and year. Only plots with pine and birch stump-pairs were used, resulting in 22-24 
pairs used per landscape. Species richness and abundance for all red-listed, all 
saproxylic, obligate and facultative beetles was calculated. R version 3.5.1 was used 
for all analysis (R core team 2018). 
Linear models (LM) were used to test differences in tree stand structures between 
Ecoparks and reference sites. GLM (generalised linear model) and GLMER 
(generalized linear mixed effect model) using the lme4-package (Bates et al 2014) 
with Poisson distribution were used to explore relationships and differences in 
species richness and abundance between deadwood volume (HAH) and diversity 
(HHH) as well as between Ecoparks and their reference sites. ECO or BAU is 
henceforth referred to as treatment. GLMER was used to test treatment and 
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deadwood effects on saproxylics, using year as a random factor to account for 
repeated measures. When testing treatment and deadwood effects for red-listed 
beetles, GLM was used for each year of collected insect data separately, to ensure 
model convergence. 
Using the bblme package (Bolker 2017), Akaike Information Criterion (AIC) was 
compared between models from the same dataset. Models with ΔAIC ranging 
between 0-2 were considered the best models. 
Deadwood volumes were log-transformed prior to testing. Separate models were 
made for each saproxylic classification, facultative and obligate. 
Beetle community assemblages were visualized by Non-metric multidimensional 
scaling (NMDS) using the vegan package, and then analysed with Permutational 
Multivariate Analysis of Variance Using Distance Matrices, Adonis (Oksanen et al 
2007), using year as stratified variable (Species ~ Treatment, strata=Year. 
Permutations = 1000).Northern and southern study areas were analysed separately. 
Environmental (deadwood amount and diversity) vectors were fitted to the NMDS 
plots (Oksanen et al 2017). 
In order to test hypothesis (I) treatment (ECO or BAU) was used as fixed effects. 
To test hypothesis (II), treatment*deadwood diversity and/or treatment+deadwood 
diversity. Hypothesis (III), treatment*deadwood amount and/or 
treatment+deadwood amount. To test hypothesis (IV), NMDS was used to illustrate 
the community assemblages and Adonis was used to test the differences in 
assemblages. 
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In total, 43263 individuals of 230 saproxylic beetle species and 214 individuals of 
23 red-listed beetle species were found in northern Sweden. In southern Sweden, 
respective numbers were 11067 individuals of 120 saproxylic beetle species and 
423 individuals of 42 red-listed beetle species. Hylastes brunneus was the most 
numerous species in northern Sweden, making up 18% of individuals, followed by 
Trypodendron lineatum (15%) and Rhizophagus ferrugineus (7%). Enicmus 
rugosus made up (18%), Ampedus balteatus (9%) and Hylobius abietis (5%) in 
southern Sweden (Appendix 2).The mean richness and abundance of all saproxylic 
species decreased over years in northern Sweden and increased in southern Sweden 
(Figure 7).  Mean values of species richness and abundance of saproxylic beetles 
between years of insect trappings can be found in Figure 3, of red-listed beetles in 
Figure 8. Deadwood volume and diversity were greater in Ecoparks in both 
northern and southern study areas, in the south also living tree diversity and basal 
area were greater in the Ecopark in comparison to BAU (Table 2). 
  

3. Results
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Southern 
Sweden  p 

Northern 
Sweden  p 

Treatment BAU ECO  BAU ECO  

Site Hälleskog Hornsö  Vindeln Käringberget  

Basal area 
(m2/ha) 9.4±0.5 14.6±0.7 0.001 10±0.8 12.7±0.6 0.05 

Living tree 
diversity 8.3±0.3 12.2±0.4 <0.001 7.6±0.4 9±0.3 0.1 
 
Deadwood 
volume  
(m3/ha) 4.4±0.2 9.3±0.6 0.02 6.6±0.6 11.6±1.7 0.047 

Deadwood 
diversity 7±0.3 9.5±0.5 0.02 7.6±0.5 12.2±0,8 0.004 

 
Gap 
fraction 27±0.01 37±0.02 0.001 40±0.02 38±0.01 0.5 

 
  

Table 2. Stand structure data. Mean±SE for stand structures. p-value results from LM models 
provided under “p-value”. Numbers highlighted as bold hold significance, p <0.05. 
BAU=Business as usual. ECO=Ecopark.  
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Figure 7. Mean richness and abundance of saproxylic beetles per treatment between different 
years. a = Mean richness in northern Sweden. b = Mean abundance in northern Sweden. c = 
Mean richness in southern Sweden. d = Mean abundance in southern Sweden. Whiskers show 
±SE. 

 
Figure 8. Mean richness and abundance of red-listed beetles per treatment between years. a = 
Mean richness in northern Sweden. b = Mean abundance in northern Sweden. c = Mean richness 
in southern Sweden. d = Mean abundance in southern Sweden. Whiskers show ±SE. 
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3.1. Hypothesis  

In northern Sweden, both richness and abundance of all saproxylic beetles were 
lower in the Ecopark in comparison to BAU (Figure 9 a). In southern Sweden, 
richness of facultative beetles was higher in the Ecopark, while richness and 
abundance of obligates was lower (Figure 9 b). Richness and abundance of red-
listed beetles was generally higher in the Ecopark in northern Sweden (Figure 10 
a). Southern Sweden Ecopark also held higher richness and abundance of red-listed 
species (Figure 10 b). 

3.2. Hypothesis II (HHH) 

The abundance of obligate saproxylics was positively related to deadwood diversity 
within the north Sweden Ecopark (Figure 9 a). Deadwood diversity had low or no 
relationship with beetle communities in the northern Swedish landscape, BAU and 
ECO combined (Figure 9 a). Deadwood diversity had negative relationships with 
richness and abundance of red-listed beetles during the first year of trappings in 
northern Sweden (Figure 10 a). Within the northern Sweden Ecopark, deadwood 
diversity had a negative relationship to abundance of red-listed species only in the 
last year of trappings (Figure 10 a). 

3.3. Hypothesis III (HAH) 

The abundance of facultative saproxylics was negatively related to deadwood 
volume in the north Sweden Ecopark (Figure 9 a). 
Facultative species richness and obligate richness and abundance had a positive 
relationship to deadwood volume in the southern Swedish landscape, BAU and 
ECO combined (Figure 9 b).  
In the southern Swedish Ecopark, richness in year one and abundance in years one 
and two had negative relationships with deadwood volume (Figure 10 b). 
Deadwood volume show positive relationship with richness in year one, and 
abundance all years in the southern Swedish landscape, ECO and BAU combined 
(Figure 10 b). More model results can be found in Appendix 4, tables 3 and 4. 
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Figure 9. GLMER results for saproxylic beetles. For significance, estimate+SE bar must not cross 
the 0.0 line. The further away from 0, the larger effect. Model formulas: 
x=y~(Treatment*logm3/dwdiv, Treatment+logm3/dwdiv, Treatment+(1|Year), Poisson. Only the 
best performing model results for each response variable are shown (see Supplementary table 4 in 
Appendix 3 for all models). (a) = northern Sweden. (b) = southern Sweden. Mind the different axis 
scales. 

 
Figure 10. GLM results for red-listed beetles separate for each year of beetle trappings. For 
significance, estimate+SE bar must be higher or lower than 0.0. The further away from 0, the 
larger effect. GLM = x=y~(Treatment*logm3/dwdiv, Treatment+logm3/dwdiv, Treatment), 
Poisson. (a) = northern Sweden. (b) = southern Sweden. R = richness. A = abundance. Mind the 
different axis scales. 



22 

 
 

3.4. Hypothesis IV 

The beetle assemblages differed between Eco and BAU both in the northern 
Sweden,  (Adonis: F=3.09, p=0.001, Figure 11 a), and southern Sweden (Adonis: 
F = 7.4, p=0.001, Figure 11 b). Community assemblages differed between all years 
in northern Sweden (Figure 11 a). In southern Sweden, assemblages differed most 
during the first year, then becoming more similar in the following 2 years, 2012, 
2013, although maintaining differences between Ecopark and BAU (Figure 11 b). 
Deadwood volume (p=0.03, R=0.478), deadwood diversity (p=0.005, R=0.0707) 
and year (p=<0.001) had significant linear correlation with beetle assemblages in 
southern Sweden. Deadwood had no correlation with assemblages in northern 
Sweden.  

 
Figure 11. NMDS plot visualizing differences in beetle community assemblages between 
treatments and years in (a) northern Sweden, stress = 0.19 and (b) southern Sweden, stress = 
0.20. Ellipsoids visualize the centroids of treatments and years with standard error, conf 
= 0.95. Mind differences in axis numbers.  
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4.1. General findings  

The key finding of this study were that Ecoparks held higher richness and 
abundance of red-listed beetles, but no conclusive differences in saproxylic beetles.  
This study did not find results neither supporting nor rejecting that deadwood 
diversity would increase species richness. Ecoparks, in some cases, presented 
negative relations to deadwood, compared to BAU-sites. 
Deadwood amount had a positive effect on both saproxylic and red-listed beetles, 
mainly abundances.  
Ecoparks contained different assemblages than BAU, most evident in southern 
Sweden. 

4.2. Ecoparks importance for beetles 

Both Ecoparks and reference sites (BAU) showed variations in both local stand 
structures as well as in species richness and abundance. Both Ecoparks held higher 
richness and abundance of red-listed beetles. However, the southern Swedish 
Ecopark held only higher richness of facultative saproxylics, while northern 
Swedish Ecopark being lower on all saproxylics. This could be due to the large 
proportion of restoration sites (Table 1), and that not enough time has passed since 
restoration measures to really see the effects, since there can be a time-lag between 
restoration measures and noticeable effects, a so called colonization credit (Watts 
2020). It could also be the case, that restoration measures being carried out do not 
achieve the goal of increasing general diversity of saproxylic beetles, but only 
favours red-listed beetles. 
Both Ecoparks does, however, hold differing assemblages of saproxylic beetles 
from their respective BAU-site, which indicate that Ecoparks might house species 
assemblages that are not found to the same extent in the managed landscape. 
Although forestry activities are being performed within the Ecoparks, there are still 
large areas that are exempted from forestry.  

4. Discussion 
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The results showing that Ecoparks, in this regard representing larger, landscape 
conservation areas, house more red-listed species and greater abundance, goes in 
line with other studies showing that the landscape composition is important for 
threatened species and the general species richness (Ranius & Fahrig 2006, 
Hallinger et al 2018, Ranius et al 2019). In our measurements, Ecoparks contained 
larger amount and diversity of deadwood than reference BAU-sites, as well as more 
forests of conservation concern, and older forests. This in combination with the 
differing saproxylic communities and higher red-listed beetle abundance and 
richness, shows the importance of large, landscape-scale conservation measures, 
and the maintenance of more natural structures in the landscape.  
 
In some cases, relationships between beetle species richness or abundance and 
deadwood amount or diversity showed either no effect or slightly negative effects. 
The intermediate landscape-complexity hypothesis, mainly with support from 
agricultural landscapes (Tscharnke et al 2012) suggests that the complexity of the 
landscape dictates the effectiveness of conservation and restoration work. In 
complex landscapes with more than 20% non-crop areas, local conservation work 
would have a lower effect due to the overall high biodiversity in the landscape. In 
intermediate complex landscapes however (1-20% non-crop), local conservation 
work would have a large effect, due to the overall lack of complexity or 
biodiversity.  
If Ecoparks represent the complex landscape, with at least 50% forests exempt from 
forestry, in this example, equivalent of non-crop, then reference (BAU) sites 
represent intermediate complexity, with their 5-6% forests exempted from forestry. 
This could explain why we may see negative (or no) relationships between local 
deadwood and richness and abundances in Ecoparks, and why there are some 
positive relationships in the reference (BAU) sites. This would be in line with the 
intermediate landscape-complexity hypothesis which, although originating from 
agricultural systems, have had some support in forest system (Pardini et al 2010, 
Mori et al 2017). Rubene et al 2017 also highlights that the landscape composition 
affects outcome of conservation. However, in contrast to this study’s results, 
Rubene’s study indicates that increased deadwood amount increases richness in 
landscapes already rich on deadwood. Landscape complexity could also explain 
why differences in community assemblages and red-listed species richness and 
abundance between Ecoparks and BAU is greater in southern Sweden than in 
northern Sweden, and why deadwood have shown relationships to the community 
assemblages there and not in northern Sweden. Northern Sweden generally have 
larger amounts of deadwood in the landscape (Fridman & Walheim 2000). The 
reason that measured structural differences between Ecoparks and BAU are lesser 
in northern Sweden, could be that, although the northern Sweden Ecopark does 
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differ from BAU and other surrounding landscapes, it does not differ as drastically 
as in southern Sweden.  
Southern and central Sweden have a long history of extensive land-use and change, 
where natural forests containing broadleaves, large and old trees have been 
converted into dense, coniferous forests of young ages and short rotations (Esseen 
et al 1997, Björse & Bradshaw 1998, Linder & Östlund 1998, Axelsson & Östlund 
2001, Lindbladh et al 2014) This conversion from natural to managed systems is 
true for other systems than forests as well (Cousins et al 2007). This has led to 
fragmented remnants of species confined to small unmanaged patches, indicating 
extinction debts (Dahlström et al 2006, Nilsson & Franzén 2006, Bommarco et al 
2014). Although there are indications of extinction debts in northern Sweden as 
well (Berglund & Jonsson 2005, 2008), this might not have taken as much of an 
effect yet as in southern Sweden, thus explaining the differences in results in 
southern and northern Sweden. E.g. the larger contrast in red-listed beetles in 
southern Sweden between Ecopark and BAU, also indicating an extinction debt in 
the southern Swedish Ecopark. 
As discussed further down, these Ecopark landscapes have not been Ecoparks for 
very long. And enough time might not have gone by to develop more natural or 
semi-natural structures. The effects of landscape might increase over time (Jonsell 
et al 2019, Gran & Götmark 2019), which might very well be the case with these 
Ecoparks as well. 

4.3. Deadwood diversity 

The hypothesis that the abundance and richness of beetles increases with increasing 
deadwood diversity was only partially supported by this study. The abundance of 
obligate saproxylics was positively affected by deadwood diversity. Richness and 
abundance of red-listed beetles in northern Sweden had a negative relationship with 
deadwood diversity during the first year, and the abundance in Ecopark in the third 
year. As these results differ quite a bit between obligatory, facultative and red-listed  
species, no general conclusion can be drawn on deadwood diversity and its impact 
on saproxylic beetles in this study.  One explanation to these inconclusive results 
could be that because the sites history of forestry, which is still carried out at 
different intensities, not enough deadwood diversity has developed, to impact beetle 
communities. 
There are several studies that have shown the relationship between heterogeneity 
of both deadwood (Similä et al 2003, Bouget 2013, Seibold 2017) and habitat 
(Mcgeoch 2007, Joelsson et al 2018) and that of diversity and richness of beetle 
species. As deadwood volume and diversity can be strongly correlated (Kunttu et 
al 2015), it is possible that we fail to uncover the true diversity in deadwood. 
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It could also be that we do not pay enough attention to the amount of different 
deadwood characteristics, as this has proved to be influential on beetle richness and 
species assemblages (Økland et al 1996, Brin et al 2011, Ranius et al 2015, 
Procházka & Schlaghamerský 2019). It could be that, by for example using 10 cm 
diameter classes, and each diameter class getting 1 individual score to deadwood 
diversity, deadwood diversity could be misleading. Perhaps more attention should 
have been paid to amounts of different decay stages and especially large diameter 
deadwood. 
Perhaps it is not either amount or diversity of deadwood, but the amount of certain 
qualities that is important. Deadwood diversity can still be influential and important 
as a complement to deadwood amount (Kraut et al 2016). Future studies should 
focus more on unravelling the importance of certain decay stages, diameters and 
types of deadwood. It can of course also be possible that more diversity has 
developed in the time between insect trappings and measurement of structure data, 
as will be discussed further down in the discussion, regarding methodology. We 
have therefore not acquired enough evidence to support the habitat heterogeneity 
hypothesis. 

4.4. Deadwood volume 

Results of this study supports the HAH, that increasing habitat (deadwood) amounts 
increase species abundance. As discussed above, increase in deadwood amount is 
often correlated with increase in deadwood diversity as well, which can be 
influential for richness and abundance (Kunttu et al 2015, Seibold et al 2016). 
However, as deadwood diversity and volume were tested separately, and deadwood 
volume showed more conclusive results, this study supports deadwood amount as 
being important. This goes in line with several previous studies of habitat amount, 
among a range of organism groups (Fahrig 2013, Melo et al 2017, Seibold et al 
2017, Percel et al 2018, 2019, Watling et al 2020). It should be noted, however, that 
there are also studies that contradicts habitat amount (Haddad et al 2017, Bueno & 
Peres 2019). Several studies also dictate that not only one factor of deadwood or 
habitat characteristics matter, but rather several, or a combination of several 
different characteristics (Similä et al 2003, Lassauce et al 2011, Kunttu et al 2015, 
Martin 2018). 
Many studies show that sun-exposed sites hold higher richness (Horák & Rébl 
2013, Koch Widerberg et al 2012, Seibold et al 2016). However, the reason behind 
this could be a rise in temperature (Müller et al 2015) or that there is often more 
deadwood in naturally open areas (Bouget & Duelli 2004, Müller et al 2010), and 
that these factors matter more than the open canopy (Vodka, Konvicka & Cizek 
2008, Hjältén et al 2012). As the effect of canopy openness was not accounted for, 
its effect cannot be wholly disregarded. However, all plots were considered open 
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and sun-exposed at the time of insect trappings, and therefore it is not likely a major 
factor. This study’s results indicate that deadwood amount has a positive effect on 
saproxylic beetles, mainly abundances. It should also be remembered that these 
sites are not unmanaged, natural forests. They have all been managed at one point, 
and these Ecoparks have not existed 20 years yet, why natural deadwood dynamics 
might not have had the time to form yet, and that deadwood diversity has not yet 
formed in order to impact beetle communities.  

4.5. Methodology 

Focus of species identification in this study has been on saproxylic species, 
especially rare and red-listed beetles. This has led to grouping some species to 
genera level instead of species-level (such as most bark beetles) and there has been 
inconsistence between the two taxonomic experts how they have identified species.  
However, the variation in identification precision is only between northern and 
southern areas, making it impossible to compare them. On the other hand, due to 
great distance between the two study areas, such a comparison would be invalid 
due to differences in climate and species pool. However, comparisons between 
Ecoparks and respective BAU-sites can be done since they have the same 
identification precision.  
In future studies, more detailed species identification would be valuable, allowing 
for example analyses on species specific interactions in Ecoparks and BAU-
landscapes. 
Trunk-attached window traps were used, which catches a wider range of insects, 
from those utilizing the local deadwood to visiting insects without affinity to the 
surrounding structures (Hyvärinen et al 2006). However, window traps are most 
efficient in terms of catches, and they do catch many species representative to the 
local species pools (Alinvi et al 2006, Sverdrup-Thygeson & Birkemoe 2008). For 
this reason, only saproxylic beetles were identified. To further secure species 
affinity to specific deadwood however, emergence traps could be used, as in Hjältén 
et al (2012).  
There is also the issue of time, seeing as the structural data was measured in 2019, 
while insect trappings were done in 2010-2013. This time lag in measurements can 
of course result in slightly higher basal areas and canopy closure than at the time of 
insect trappings. However, no measures to create new deadwood have taken place 
and this time lag is likely not enough to result in any large amounts of newly created 
natural deadwood other than the occasional tree. In boreal forests the accumulation 
and decay of deadwood is a very slow process. 
One should also consider, when interpreting these results, that local structure data 
is taken within the proximity of the traps (20 m), and that traps were placed close 
to roads, resulting that most 20 m radius sampling areas were crossed by roads. The 
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sites for the traps were also selected based on canopy structure and light conditions. 
Stand structure data therefore only represents the proximity to the traps, and for 
example deadwood amounts can be influenced by the presence of roads, decreasing 
the per hectare amounts of deadwood. Stand structure data is therefore not fully 
representative for the sites, but representative of the surroundings of the traps. The 
high number of plots however, 22-24 per landscape should be enough to cover 
variations, and the methodology was similar in all areas, resulting in comparable 
values between the landscapes. 

4.6. Implications for management 

Stating that only one factor, such as deadwood amount, being the most important 
for saproxylic beetle communities is probably a simplification, it is rather a 
combination of factors of different habitat qualities that matter (Lassauce et al 2011, 
Kunttu et al 2015). However, the importance of having a landscape view is strongly 
shown in this study, seeing that communities differ in assemblages and responses 
to deadwood depending on the surrounding landscape (Ecopark or Business as 
usual). Local deadwood factors do not seem to have positive relationships with 
beetles within the Ecoparks, but they do within BAU-areas. The results of this study 
are in line with the habitat amount hypothesis as well as the intermediate landscape-
complexity hypothesis. Although the intermediate landscape-complexity 
hypothesis was not tested in this study per se and can therefore not be fully 
answered. The main priority should therefore be, in more complex landscapes, to 
maintain and enhance the complexity of habitats as well as their cover and the 
amount of deadwood throughout the landscape, rather than focus on directed local 
measures, for saproxylic and red-listed beetles. However, some species are likely 
in need of specific interventions, and this should be regarded as well. In the more 
conventionally managed landscape, local measures to increase the general amount 
of deadwood in the landscape could be most efficient. As my results do not provide 
enough support for the habitat heterogeneity hypothesis, recommendations to 
increase deadwood diversity based on this study alone cannot be given. However, 
there are plenty of studies that have shown that deadwood diversity is  important as 
well (Gonzáles-Megías et al 2011, Hamm & Drossel 2017, Seibold et al 2016) and 
should therefore not be disregarded. 
 
Loss of biodiversity is a pressing matter and it is of great importance. Sweden´s 
goals for sustainable forests have not been met by 2020 (SEPA 2019), and the state 
of red-listed species in Swedish forests shows a negative trend (ArtDatabanken 
2020). Therefore, the need to study how to hinder and change this trend is vital. It 
is important to know so that conservation and restoration measures can be done 
correctly, for the best effect, and at the same time being cost-efficient, as correctly 
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guided measures will give value in terms of effect. This study may be used to help 
provide some guidance in future conservation work. 
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Figure 2. Map of Ecopark Käringberget with plot positions and target classes. Plots marked with 
stars. NO = Environmental goals with undisturbed forest. NS = Environmental goals with adapted 
management. PF = Production goals with reinforced considerations. PG = Production goals with 
general environmental considerations. 

 

 

Appendix 1. Maps of each site with plot 
positions and target class.  
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Figure 3. Map of reference site Vindeln with plot positions and target classes. Plots marked with 
stars. NO = Environmental goals with undisturbed forest. NS = Environmental goals with adapted 
management. PF = Production goals with reinforced considerations. PG = Production goals with 
general environmental considerations. 

 
Figure 4. Map of Ecopark Hornsö with plot positions and target classes. Plots marked with stars. 
NO = Environmental goals with undisturbed forest. NS = Environmental goals with adapted 
management. PF = Production goals with reinforced considerations. PG = Production goals with 
general environmental considerations. 
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Figure 5. Map of reference site Hälleskog with plot positions and target classes. Plots marked 
with stars. NO = Environmental goals with undisturbed forest. NS = Environmental goals with 
adapted management. PF = Production goals with reinforced considerations. PG = Production 
goals with general environmental considerations. 
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Saproxylic species Hälleskog 

(BAU) 

Hornsö 

(ECO) 

Vindeln 

(BAU) 

Käringberget 

(ECO) 

Total Sx 

category 

Abdera affinis 0 0 2 4 6 SxO 

Acanthocinus aedilis 0 0 12 16 28 SxO 

Acidota crenata 0 0 22 34 56 SxF 

Acmaeops septentrionis 0 0 3 7 10 SxO 

Acritus nigricornis 2 0 0 0 2 SxF 

Agathidium nigripenne 0 0 0 6 6 SxF 

Agathidium seminulum 0 0 14 0 14 SxF 

Agrilus viridis 15 6 8 4 33 SxO 

Allandrus undulatus 1 1 0 0 2 SxO 

Alosterna tabacicolor 2 3 1 0 6 SxO 

Ampedus balteatus 589 433 148 142 1312 SxO 

Ampedus nigrinus 30 12 571 293 906 SxO 

Ampedus nigroflavus 2 2 0 0 4 SxO 

Ampedus pomonae 5 8 0 0 13 SxO 

Ampedus pomorum 10 16 0 0 26 SxO 

Ampedus sanguineus 5 6 0 0 11 SxO 

Ampedus tristis 10 5 119 113 247 SxO 

Anaspis arctica 0 0 8 27 35 SxO 

Anaspis marginicollis 0 0 38 40 78 SxO 

Anaspis rufilabris 0 0 41 30 71 SxO 

Anastrangalia reyi 19 15 45 22 101 SxO 

Anastrangalia 

sanguinolenta 

255 82 21 8 366 SxO 

Anidorus nigrinus 17 6 0 0 23 SxO 

Anisotoma axillaris 0 0 500 235 735 SxO 

Anisotoma castanea 0 0 44 7 51 SxO 

Anisotoma glabra 0 0 393 269 662 SxO 

Appendix 2. Species list 

Table 3. Species list. Total abundance of saproxylic and red-listed species for each site. Red-listed 
species displayed further down separately. Sx category = saproxylic category. SxO = Obligate 
saproxylic. SxF =  Facultative saproxylic. NT = Near threatened. VU = Vulnerable. EN = 
Endangered. 
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Anisotoma humeralis 0 0 41 7 48 SxO 

Anthaxia quadripunctata 139 46 150 21 356 SxO 

Anthrenus museorum 31 37 27 13 108 SxF 

Anthribus nebulosus 56 36 1 1 94 SxF 

Aplocnemus nigricornis 12 8 0 0 20 SxO 

Aplocnemus tarsalis 0 0 2 0 2 SxO 

Arhopalus rusticus 77 133 12 15 237 SxO 

Asemum striatum 10 3 89 56 158 SxO 

Aspidiphorus orbiculatus 12 11 18 1 42 SxF 

Athous subfuscus 142 70 67 58 337 SxF 

Atrecus affinis 0 0 0 1 1 SxO 

Atrecus longiceps 0 0 5 5 10 SxO 

Atrecus pilicornis 0 0 1 2 3 SxO 

Bisnius puella 0 0 5 3 8 SxF 

Bolitophagus reticulatus 1 1 4 6 12 SxO 

Buprestis rustica 8 1 2 0 11 SxO 

Callidium coriaceum 0 1 0 0 1 SxO 

Calopus serraticornis 0 0 0 1 1 SxO 

Cardiophorus ruficollis 140 77 41 17 275 SxO 

Carpophilus marginellus 0 0 8 12 20 SxF 

Cerylon deplanatum 0 1 0 0 1 SxO 

Cerylon ferrugineum 0 0 20 78 98 SxO 

Cerylon histeroides 0 0 520 328 848 SxO 

Chrysanthia geniculata 0 0 1 0 1 SxO 

Chrysanthia viridissima 0 0 0 1 1 SxO 

Chrysobothris chrysostigma 5 3 15 5 28 SxO 

Cis bidentatus 0 0 4 9 13 SxO 

Cis boleti 42 54 428 149 673 SxO 

Cis castaneus 0 0 0 1 1 SxO 

Cis comptus 0 0 82 114 196 SxO 

Cis dentatus 0 0 2 2 4 SxO 

Cis glabratus 0 0 10 12 22 SxO 

Cis jacquemartii 0 0 9 7 16 SxO 

Cis lineatocribratus 0 0 1 2 3 SxO 

Cis punctulatus 0 0 19 9 28 SxO 

Corticeus linearis 11 2 72 42 127 SxO 

Cortinicara gibbosa 13 23 170 202 408 SxF 

Cryphalus saltuarius 0 0 0 1 1 SxO 

Cryptolestes abietis 0 0 0 3 3 SxO 

Crypturgus cinereus 0 0 34 40 74 SxO 
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Crypturgus hispidulus 0 0 23 21 44 SxO 

Crypturgus pusillus 0 0 7 20 27 SxO 

Crypturgus subcribrosus 0 0 12 18 30 SxO 

Curtimorda maculosa 13 1 16 8 38 SxO 

Dacne bipustulata 62 87 139 128 416 SxO 

Dasytes niger 148 153 19 31 351 SxO 

Dasytes obscurus 15 9 211 82 317 SxO 

Dasytes plumbeus 137 318 2 0 457 SxO 

Dendroctonus micans 0 0 1 0 1 SxO 

Dendrophagus crenatus 1 0 0 4 5 SxO 

Dendrophilus pygmaeus 0 0 3 0 3 SxF 

Denticollis borealis 4 7 26 53 90 SxO 

Denticollis linearis 2 0 6 3 11 SxO 

Dictyoptera aurora 0 0 10 13 23 SxO 

Dolichosoma lineare 0 0 3 0 3 SxO 

Dorcatoma dresdensis 7 10 2 4 23 SxO 

Dorcatoma robusta 14 26 17 19 76 SxO 

Dromius agilis 0 0 3 5 8 SxF 

Dryocoetes autographus 0 0 314 191 505 SxO 

Dryocoetes hectographus 0 0 11 6 17 SxO 

Dryophilus pusillus 3 0 0 0 3 SxO 

Endomychus coccineus 84 105 182 16 387 SxO 

Enicmus fungicola 0 0 0 1 1 SxF 

Enicmus rugosus 728 1242 791 1054 3815 SxO 

Ennearthron cornutum 0 0 1 5 6 SxO 

Ernobius explanatus 0 0 0 2 2 SxO 

Ernobius nigrinus 0 0 1 0 1 SxO 

Euglenes pygmaeus 1 0 21 7 29 SxO 

Gaurotes virginea 3 0 1 0 4 SxO 

Glischrochilus hortensis 22 64 117 17 220 SxF 

Glischrochilus 

quadripunctatus 

18 12 378 668 1076 SxO 

Globicornis emarginata 3 8 35 49 95 SxO 

Gnathacmaeops pratensis 0 0 1 0 1 SxO 

Gnathoncus buyssoni 0 0 38 25 63 SxF 

Gnathoncus nannetensis 0 1 13 11 25 SxF 

Gonotropis dorsalis 2 0 1 3 6 SxO 

Hadreule elongatula 49 14 22 12 97 SxO 

Hadrobregmus pertinax 6 16 40 37 99 SxO 

Hallomenus binotatus 2 0 1 2 5 SxO 
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Hylastes brunneus 0 0 4465 3192 7657 SxO 

Hylastes cunicularius 0 0 1180 982 2162 SxO 

Hylastes opacus 0 0 34 26 60 SxO 

Hylobius abietis 340 205 242 244 1031 SxO 

Hylobius pinastri 3 2 8 0 13 SxO 

Hylurgops glabratus 0 0 4 8 12 SxO 

Hylurgops palliatus 0 0 96 88 184 SxO 

Ips typographus 3 0 62 51 116 SxO 

Judolia sexmaculata 4 2 3 1 10 SxO 

Lasconotus jelskii 0 0 0 1 1 SxO 

Latridius hirtus 4 36 23 56 119 SxO 

Latridius minutus 0 0 17 18 35 SxF 

Leptura quadrifasciata 146 89 16 6 257 SxO 

Lepturobosca virens 0 0 0 1 1 SxO 

Litargus connexus 4 13 12 11 40 SxO 

Lordithon lunulatus 0 1 130 71 202 SxF 

Lordithon speciosus 0 0 1 0 1 SxO 

Lordithon thoracicus 0 0 1 0 1 SxF 

Lordithon trimaculatus 0 0 0 7 7 SxO 

Lygistopterus sanguineus 25 11 4 5 45 SxO 

Magdalis duplicata 0 0 20 5 25 SxO 

Magdalis frontalis 0 0 5 1 6 SxO 

Magdalis phlegmatica 0 0 2 1 3 SxO 

Magdalis ruficornis 0 0 1 1 2 SxO 

Magdalis violacea 0 0 50 34 84 SxO 

Malthinus biguttatus 0 0 1 0 1 SxO 

Malthodes brevicollis 0 0 21 19 40 SxO 

Malthodes flavoguttatus 0 0 1 3 4 SxO 

Malthodes fuscus 0 0 7 2 9 SxO 

Malthodes guttifer 0 0 3 4 7 SxO 

Malthodes marginatus 0 0 4 0 4 SxO 

Malthodes minimus 0 0 2 1 3 SxO 

Megasternum concinnum 0 0 9 2 11 SxF 

Megatoma undata 34 98 30 20 182 SxF 

Melanotus castanipes 190 44 735 437 1406 SxO 

Melanotus villosus 159 100 0 0 259 SxO 

Micrambe abietis 0 0 6 0 6 SxF 

Microscydmus minimus 0 0 0 1 1 SxO 

Molorchus minor 12 26 11 26 75 SxO 

Monochamus sutor 2 0 3 0 5 SxO 
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Mycetina cruciata 3 1 0 0 4 SxO 

Mycetochara flavipes 16 26 12 3 57 SxO 

Mycetochara obscura 0 0 9 32 41 SxO 

Mycetophagus fulvicollis 0 0 0 3 3 SxO 

Mycetophagus 

multipunctatus 

0 0 13 44 57 SxO 

Mycetophagus populi 1 2 3 2 8 SxO 

Nepachys cardiacae 0 0 5 9 14 SxO 

Nudobius lentus 0 0 119 135 254 SxO 

Orchesia fasciata 0 1 3 0 4 SxO 

Orchesia micans 10 5 13 13 41 SxO 

Orthocis alni 8 7 43 34 92 SxO 

Orthotomicus laricis 0 0 1 1 2 SxO 

Orthotomicus proximus 0 0 8 5 13 SxO 

Othius subuliformis 0 0 0 1 1 SxF 

Oxymirus cursor 4 2 11 7 24 SxO 

Pachyta lamed 0 0 7 5 12 SxO 

Palorus depressus 1 6 0 0 7 SxF 

Pediacus fuscus 0 0 4 8 12 SxO 

Philonthus addendus 0 0 1 0 1 SxF 

Philonthus marginatus 0 0 4 0 4 SxF 

Philonthus politus 0 0 11 0 11 SxF 

Phloeotribus spinulosus 0 0 4 0 4 SxO 

Phyllodrepa melanocephala 0 0 2 0 2 SxO 

Pissodes castaneus 1 0 0 0 1 SxO 

Pissodes harcyniae 0 0 2 1 3 SxO 

Pissodes pini 137 36 41 28 242 SxO 

Pissodes piniphilus 7 6 6 12 31 SxO 

Pityogenes bidentatus 0 0 56 31 87 SxO 

Pityogenes chalcographus 110 10 571 394 1085 SxO 

Pityogenes quadridens 0 0 3 2 5 SxO 

Pityophagus ferrugineus 49 18 724 357 1148 SxO 

Pityophthorus 

micrographus 

0 0 11 3 14 SxO 

Platycerus caprea 0 0 9 2 11 SxO 

Platycerus caraboides 0 1 0 0 1 SxO 

Platycis minutus 0 0 0 1 1 SxO 

Platysoma angustatum 0 0 24 8 32 SxO 

Platysoma deplanatum 2 6 0 0 8 SxO 

Plegaderus caesus 0 5 0 0 5 SxO 
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Plegaderus vulneratus 22 50 513 594 1179 SxO 

Pocadius ferrugineus 0 0 8 1 9 SxF 

Pogonocherus decoratus 0 0 3 2 5 SxO 

Pogonocherus fasciculatus 15 4 88 57 164 SxO 

Polygraphus poligraphus 0 0 28 13 41 SxO 

Polygraphus punctifrons 0 0 5 0 5 SxO 

Polygraphus subopacus 0 0 51 45 96 SxO 

Pterostichus 

oblongopunctatus 

0 0 0 2 2 SxF 

Pyropterus nigroruber 3 2 0 0 5 SxO 

Pytho depressus 0 0 17 17 34 SxO 

Quedius brevis 0 0 1 0 1 SxF 

Quedius maurus 0 0 8 2 10 SxO 

Quedius mesomelinus 0 0 4 0 4 SxF 

Quedius plagiatus 0 0 50 50 100 SxO 

Quedius tenellus 0 0 25 7 32 SxF 

Rabocerus gabrieli 0 0 4 7 11 SxO 

Rhagium inquisitor 134 121 496 668 1419 SxO 

Rhagium mordax 18 46 88 156 308 SxO 

Rhizophagus bipustulatus 8 27 17 23 75 SxO 

Rhizophagus cribratus 0 0 2 1 3 SxO 

Rhizophagus dispar 0 0 58 55 113 SxF 

Rhizophagus fenestralis 2 6 0 0 8 SxO 

Rhizophagus ferrugineus 122 113 2068 1146 3449 SxO 

Rhyncolus ater 1 29 9 9 48 SxO 

Rhyncolus sculpturatus 18 85 11 11 125 SxO 

Salpingus ruficollis 51 31 52 73 207 SxO 

Saperda scalaris 17 24 3 1 45 SxO 

Schizotus pectinicornis 4 6 5 14 29 SxO 

Selatosomus aeneus 8 20 60 35 123 SxF 

Sepedophilus littoreus 0 0 6 0 6 SxF 

Serropalpus barbatus 2 1 0 0 3 SxO 

Silvanoprus fagi 9 2 6 4 21 SxO 

Silvanus bidentatus 0 3 4 1 8 SxO 

Soronia grisea 31 35 55 117 238 SxO 

Soronia punctatissima 17 10 20 59 106 SxO 

Sphaeriestes bimaculatus 0 0 0 1 1 SxO 

Sphaeriestes stockmanni 1 0 0 0 1 SxO 

Sphaerites glabratus 0 0 5 1 6 SxF 

Sphindus dubius 99 145 29 23 296 SxF 
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Stagetus borealis 0 1 1 0 2 SxO 

Stenichnus bicolor 0 0 2 0 2 SxF 

Stenurella melanura 102 81 3 2 188 SxO 

Stephanopachys substriatus 0 0 1 1 2 SxO 

Stephostethus pandellei 0 0 15 45 60 SxF 

Stephostethus rugicollis 0 0 54 69 123 SxF 

Stictoleptura maculicornis 20 13 1 1 35 SxO 

Stictoleptura rubra 13 5 0 0 18 SxO 

Synchita humeralis 13 15 8 3 39 SxO 

Tachinus subterraneus 0 0 1 0 1 SxF 

Tachyta nana 0 1 2 6 9 SxO 

Tetratoma ancora 0 0 8 15 23 SxO 

Tetropium castaneum 6 4 58 15 83 SxO 

Thanasimus femoralis 20 21 84 79 204 SxO 

Thanasimus formicarius 177 264 452 529 1422 SxO 

Tomicus minor 0 0 9 4 13 SxO 

Tomicus piniperda 0 0 574 473 1047 SxO 

Tomoxia bucephala 246 227 0 0 473 SxO 

Trichius fasciatus 116 61 0 1 178 SxO 

Trichophya pilicornis 0 0 1 0 1 SxF 

Triplax aenea 3 0 22 48 73 SxO 

Triplax rufipes 0 23 0 0 23 SxO 

Triplax russica 28 62 43 149 282 SxO 

Triplax scutellaris 0 0 9 15 24 SxO 

Trypodendron domesticum 0 0 14 39 53 SxO 

Trypodendron laeve 0 0 6 40 46 SxO 

Trypodendron lineatum 0 0 3502 2916 6418 SxO 

Trypodendron signatum 0 0 13 6 19 SxO 

Tyrus mucronatus 0 0 2 3 5 SxF 

Xantholinus tricolor 0 0 1 1 2 SxF 

Xylechinus pilosus 0 0 0 1 1 SxO 

Xylita laevigata 6 3 103 108 220 SxO 

Zilora ferruginea 0 0 1 1 2 SxO 

Grand Total 5592 5475 24036 19227 54330 
 

Red-listed Species Hälleskog 

(BAU) 

Hornsö 

(ECO) 

Vindeln 

(BAU) 

Käringberget 

(ECO) 

Total Red-list 

Acmaeops septentrionis 0 0 3 7 10 NT 

Aegomorphus clavipes 32 58 0 0 90 NT 

Ampedus cinnabarinus 8 6 0 0 14 NT 

Ampedus nigroflavus 2 2 0 0 4 NT 
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Ampedus sanguinolentus 4 6 0 0 10 NT 

Anaesthetis testacea 0 5 0 0 5 VU 

Anoplodera sexguttata 0 3 0 0 3 NT 

Aplocnemus impressus 0 1 0 0 1 NT 

Carphacis striatus 0 22 0 0 22 VU 

Cerylon deplanatum 0 1 0 0 1 NT 

Cis dentatus 0 0 2 2 4 NT 

Colydium elongatum 0 10 0 0 10 EN 

Corticeus bicolor 0 0 0 2 2 NT 

Cryptocephalus 

distinguendus 

1 0 1 0 2 NT 

Denticollis borealis 4 7 26 53 90 NT 

Dermestes palmi 0 0 1 1 2 VU 

Dicerca furcata 0 0 0 1 1 NT 

Dircaea australis 0 11 0 0 11 EN 

Drapetes mordelloides 4 1 0 0 5 VU 

Enedreytes sepicola 0 1 0 0 1 NT 

Ennearthron laricinum 0 0 0 2 2 NT 

Exocentrus adspersus 0 1 0 0 1 VU 

Glischrochilus 

quadrisignatus 

0 1 0 0 1 NT 

Gonotropis dorsalis 2 0 1 3 6 NT 

Harminius undulatus 0 0 2 4 6 NT 

Ipidia binotata 1 3 0 0 4 NT 

Lacon conspersus 0 0 4 2 6 NT 

Lacon fasciatus 0 0 8 12 20 NT 

Lasconotus jelskii 0 0 0 1 1 VU 

Microrhagus lepidus 0 1 0 0 1 NT 

Monochamus 

galloprovincialis 

1 1 0 0 2 NT 

Mordellistena humeralis 0 0 2 0 2 NT 

Mycetochara obscura 0 0 9 32 41 NT 

Mycetophagus 

decempunctatus 

0 1 0 0 1 VU 

Mycetophagus fulvicollis 0 0 0 3 3 NT 

Necydalis major 19 15 2 1 37 NT 

Orchesia fasciata 0 1 3 0 4 NT 

Osphya bipunctata 0 2 0 0 2 VU 

Pedostrangalia pubescens 7 33 0 0 40 VU 

Phloiotrya rufipes 0 1 0 0 1 NT 
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Phyllodrepa clavigera 0 0 0 3 3 NT 

Phymatodes alni 0 14 0 0 14 NT 

Platysoma deplanatum 2 6 0 0 8 NT 

Platysoma minus 0 1 3 7 11 NT 

Pyrrhidium sanguineum 0 11 0 0 11 NT 

Saperda perforata 0 1 0 0 1 NT 

Stagetus borealis 0 1 1 0 2 NT 

Stenagostus rufus 0 2 0 0 2 VU 

Strangalia attenuata 0 13 0 0 13 VU 

Tachyta nana 0 1 2 6 9 NT 

Tragosoma depsarium 0 20 0 0 20 VU 

Triplax rufipes 0 23 0 0 23 NT 

Uloma rufa 0 1 0 0 1 NT 

Xyleborinus saxesenii 0 2 0 0 2 NT 

Xyleborus monographus 0 4 0 0 4 NT 

Xylotrechus antilope 1 41 0 0 42 NT 

Zilora ferruginea 0 0 1 1 2 NT 

Grand Total 88 335 71 143 637 
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H = Height of tree from ground surface to the top branch of the crown. 

D = Diameter at breast height, 1,3 m (DBH). 

L = Length of log. 

 

Volume formula (dm3) for pine in southern Sweden, H>=4 m, D>=4,5cm, south of 60° 

(Brandel 1990) 

10-1,38903 x D1,84493 x (D+20,0)0,06563 x H2,02122 x (H-1,3)-1,01095 

 

Volume formula (dm3) for spruce in southern Sweden, H>=4 m, D>=4,5 cm, south of 60° 

(Brandel 1990) 

10-1,02039 x D2,00128 x (D+20,0)-0,47473 x H2,87138 x(H-1,3) -1,61803 

 

Volume formula (dm3) for birch in southern Sweden, latitude -56,9o, H>=6 m, D>=4,5 

cm  (Brandel 1990) 

10-0,89363 x D2,23818 x (D+20,0)-1,06930 x H6,02015 x(H - 1,3) -4,51472  

 

Volume formula (dm3) for pine in northern Sweden, H>=4 m, D>=4,5cm, north of 60° 

(Brandel 1990) 

10-1,20914 x D1,94740 x (D+20,0)-0,05947 x H1,40958 x (H-1,3) -0,45810 

 

Volume formula (dm3) for spruce in northern Sweden, H>=4 m, D>=4,5 cm, north of 60° 

(Brandel 1990) 

10-0,79783 x D2,07157 x (D+20,0)-0,73882 x H3,16332 x(H-1,3)-1,82622 

 

Volume formula (dm3) for birch in northern Sweden, latitude 59,0°-, H>=6 m, D>=4,5 

cm  (Brandel 1990) 

10-0,84627 x D2,23818 x (D+20,0)-1,06930 x H6,02015 x(H - 1,3) -4,51472  

 

Basal area per tree 

pi*(D/200)^2) 

 

Formula to calculate logs 

D1/2*D2/2*pi*L 

Appendix 3. Formulas 
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Northern Sweden        

Model Predictors 

Log-

mean SE p Random effect (year) dAIC weight 

Facultative richness Treatment (ECO) -0.05 0.18 0.802 σ2 = 0.17 1.9 0.146 

Treatment*logm3 (a) logm3 0.01 0.07 0.870 τ00  = 0.01 Year  

  Treatment(ECO)*logm3 -0.10 0.09 0.262 ICC = 0.07     

Facultative richness Treatment (ECO) -0.14 0.16 0.378 σ2 = 0.17 3.0 0.083 

Treatment*dwdiv (a) dwdiv 0.02 0.13 0.898 τ00  = 0.01 Year  

  Treatment(ECO)*dwdiv -0.10 0.15 0.520 ICC = 0.07     

Facultative richness Treatment (ECO) -0.23 0.07 0.002 σ2 = 0.17 1.2 0.211 

Treatment+logm3 (a) logm3 -0.04 0.05 0.358 τ00  = 0.01 Year  

          ICC = 0.07     

Facultative richness Treatment (ECO) -0.22 0.08 0.005 σ2 = 0.17 1.4 0.184 

Treatment+dwdiv (a) dwdiv -0.05 0.07 0.454 τ00  = 0.01 Year  

          ICC = 0.07     

Facultative richness Treatment (ECO) -0.25 0.07 <0.001 σ2 = 0.17 0.0 0.376 

Treatment (a)     τ00  = 0.01 Year  

          ICC = 0.07     

Facultative abundance Treatment (ECO) 0.37 0.12 0.002 σ2 = 0.08 0.0 1 

Treatment*logm3 (b) logm3 0.03 0.04 0.479 τ00  = 0.07 Year  

  Treatment(ECO)*logm3 -0.35 0.06 <0.001 ICC = 0.45     

Facultative abundance Treatment (ECO) 0.02 0.11 0.842 σ2 = 0.08 31.9 <0.001 

Treatment*dwdiv (b) dwdiv 0.02 0.08 0.845 τ00  = 0.07 Year  

  Treatment (ECO*dwdiv -0.28 0.10 0.007 ICC = 0.45     

Facultative abundance Treatment (ECO) -0.31 0.05 <0.001 σ2 = 0.08 47.9 <0.001 

Appendix 4. model results and dAIC 

Table 4. GLMER (generalized linear mixed effect model) results of saproxylic (facultative and 
obligate) in northern and southern Sweden. Log-mean higher than 0 shows positive effects vs 
intercept, lower than 0 is negative effect. Numbers highlighted as bold hold significance, p <0,05. 
GLMER = x=y~(Treatment,Treatment*logm3/dwdiv,Treatment+logm3/dwdiv)+(1|Year), Poisson. 
Bracketed letters () next to model name shows which models were compared for dAIC, models 
with the same letters were compared to each other. Lowest dAIC highlighted in yellow, models 
within 2 dAIC highlighted in orange. Dwdiv =deadwood diversity, logm3 =log-transformed 
deadwood volume. ECO = Ecopark, compared to BAU.  
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Treatment (b)     τ00  = 0.07 Year  

          ICC = 0.45     

Obligate richness Treatment (ECO) -0.07 0.07 0.271 σ2 = 0.03 6.6 0.019 

Treatment*logm3 (c) logm3 -0.02 0.03 0.531 τ00  = 0.01 Year  

  Treatment(ECO)*logm3 0.02 0.03 0.594 ICC = 0.25     

Obligate richness Treatment (ECO) -0.12 0.06 0.040 σ2 = 0.03 1.1 0.300 

Treatment*dwdiv (c)  dwdiv 0.02 0.05 0.728 τ00  = 0.01 Year  

  Treatment(ECO)*dwdiv 0.05 0.06 0.343 ICC = 0.25     

Obligate richness Treatment (ECO) -0.04 0.03 0.135 σ2 = 0.03 4.9 0.045 

Treatment+logm3 (c) logm3 -0.01 0.02 0.731 τ00  = 0.01 Year  

          ICC = 0.25     

Obligate richness Treatment (ECO) -0.07 0.03 0.015 σ2 = 0.03 0.0 0.520 

Treatment+dwdiv (c) dwdiv 0.06 0.02 0.024 τ00  = 0.01 Year  

          ICC = 0.25     

Obligate richness Treatment (ECO) -0.04 0.03 0.097 σ2 = 0.03 3.0 0.115 

Treatment (c)     τ00  = 0.01 Year  

          ICC = 0.25     

Obligate abundance Treatment (ECO) -0.33 0.03 <0.001 σ2 = 0.00 279.2 <0.001 

Treatment*logm3 (d) logm3 0.03 0.01 0.004 τ00  = 0.33 Year 

  Treatment(ECO)*logm3 0.04 0.01 0.002 ICC = 0.99     

Obligate abundance Treatment (ECO) -0.56 0.02 <0.001 σ2 = 0.00 0.0 1 

Treatment*dwdiv (d) dwdiv -0.09 0.02 <0.001 τ00  = 0.33 Year  

  Treatment(ECO)*dwdiv 0.28 0.02 <0.001 ICC = 0.99     

Obligate abundance Treatment (ECO) -0.24 0.01 <0.001 σ2 = 0.00 337.2 <0.001 

Treatment (d)     τ00  = 0.33 Year  

          ICC = 0.99     

Southern Sweden        

Model Predictors 

Log-

mean SE p Random effect (year) dAIC weight 

Facultative richness Treatment (ECO) 0.28 0.37 0.446 σ2 = 0.23 1.7 0.183 

Treatment*logm3 (e) logm3 0.26 0.18 0.134 τ00  = 0.02 Year  

  Treatment(ECO)*logm3 -0.11 0.22 0.608 ICC = 0.07     

Facultative richness Treatment (ECO) 0.28 0.26 0.279 σ2 = 0.23 4.4 0.049 

Treatment*dwdiv (e) dwdiv 0.20 0.25 0.432 τ00  = 0.02 Year  

  Treatment(ECO)*dwdiv -0.08 0.29 0.780 ICC = 0.07     

Facultative richness Treatment (ECO) 0.10 0.12 0.399 σ2 = 0.23 0.0 0.437 

Treatment+logm3 (e) logm3 0.19 0.10 0.059 τ00  = 0.02 Year  

          ICC = 0.07     

Facultative richness Treatment (ECO) 0.21 0.10 0.039 σ2 = 0.23 2.5 0.128 
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Treatment+dwdiv (e) dwdiv 0.14 0.13 0.295 τ00  = 0.02 Year  

          ICC = 0.07     

Facultative richness Treatment (ECO) 0.24 0.10 0.014 σ2 = 0.23 1.5 0.203 

Treatment (e)     τ00  = 0.02 Year  

          ICC = 0.07     

Facultative abundance Treatment (ECO) 0.40 0.26 0.122 σ2 = 0.12 0.8 0.3952 

Treatment*logm3 (f) logm3 0.36 0.12 0.003 τ00  = 0.10 Year  

  Treatment(ECO)*logm3 -0.16 0.15 0.280 ICC = 0.45     

Facultative abundance Treatment (ECO) 0.16 0.18 0.364 σ2 = 0.12 13.2 <0.001 

Treatment*dwdiv (f) dwdiv -0.03 0.18 0.865 τ00  = 0.10 Year  

  Treatment(ECO)*dwdiv 0.17 0.21 0.412 ICC = 0.45     

Facultative abundance Treatment (ECO) 0.14 0.08 0.110 σ2 = 0.12 0.0 0.6001 

Treatment+logm3 (f) logm3 0.25 0.07 <0.001 τ00  = 0.10 Year  

          ICC = 0.45     

Facultative abundance Treatment (ECO) 0.30 0.07 <0.001 σ2 = 0.12 11.9 0.0016 

Treatment+dwdiv (f) dwdiv 0.10 0.09 0.276 τ00  = 0.10 Year  

          ICC = 0.45     

Facultative abundance Treatment (ECO) 0.32 0.07 <0.001 σ2 = 0.12 11.1 0.0024 

Treatment (f) τ00  = 0.10 Year 

          ICC = 0.45     

Obligate richness Treatment (ECO) -0.07 0.15 0.625 σ2 = 0.04 1.7 0.2319 

Treatment*logm3 (g) logm3 0.19 0.07 0.005 τ00  = 0.00 Year  

  Treatment(ECO)*logm3 -0.05 0.08 0.566 ICC = 0.01     

Obligate richness Treatment (ECO) -0.08 0.10 0.455 σ2 = 0.04 4.3 0.0627 

Treatment*dwdiv (g) dwdiv 0.19 0.09 0.039 τ00  = 0.00 Year  

  Treatment(ECO)*dwdiv -0.01 0.11 0.935 ICC = 0.01     

Obligate richness Treatment (ECO) -0.16 0.05 0.002 σ2 = 0.04 0.0 0.5345 

Treatment+logm3 (g) logm3 0.16 0.04 <0.001 τ00  = 0.00 Year  

          ICC = 0.01     

Obligate richness Treatment (ECO) -0.08 0.04 0.042 σ2 = 0.04 2.3 0.1697 

Treatment+dwdiv (g) dwdiv 0.19 0.05 0.001 τ00  = 0.00 Year  

          ICC = 0.01     

Obligate richness Treatment (ECO) -0.04 0.04 0.286 σ2 = 0.04 12.2 0.0012 

Treatment (g)     τ00  = 0.00 Year  

          ICC = 0.01     

Obligate abundance Treatment (ECO) 0.06 0.08 0.419 σ2 = 0.01 0.0 1 

Treatment*logm3 (h) logm3 0.32 0.03 <0.001 τ00  = 0.03 Year  

  Treatment(ECO)*logm3 -0.12 0.04 0.007 ICC = 0.71     

Obligate abundance Treatment (ECO) -0.15 0.05 0.005 σ2 = 0.01 40.0 <0.001 
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Treatment*dwdiv (h) dwdiv 0.16 0.05 0.001 τ00  = 0.03 Year  

  Treatment(ECO)*dwdiv 0.16 0.06 0.006 ICC = 0.71     

Obligate abundance Treatment (ECO) 0.05 0.02 0.017 σ2 = 0.01 144.7 <0.001 

Treatment (h)     τ00  = 0.03 Year  

     ICC = 0.71   

Northern Sweden       

Model Predictors Log-mean SE p dAIC weight 

Richness '10 Treatment (ECO) 0.89 0.78 0.255 8.9 0.0078 

Treatment*logm3 (a) logm3 -0.11 0.35 0.740   

  Treatment (ECO)*logm3 -0.13 0.42 0.764     

Richness '10 Treatment (ECO) 1.04 0.69 0.131 2.0 0.2551 

Treatment*dwdiv (a) dwdiv -0.78 0.74 0.290 

  Treatment (ECO)*dwdiv -0.13 0.83 0.871     

Richness '10 Treatment (ECO) 0.68 0.33 0.042 7.0 0.0203 

Treatment+logm3 (a) logm3 -0.20 0.19 0.301   

              

Richness '10 Treatment (ECO) 0.94 0.34 0.006 0.0 0.6846 

Treatment+dwdiv (a) dwdiv -0.89 0.34 0.008   

              

Richness '10 Treatment (ECO) 0.59 0.32 0.068 6.1 0.0321 

Treatment (a)       

              

Abundance '10 Treatment (ECO) 0.93 0.75 0.214 10.9 0.0030 

Treatment*logm3 (b) logm3 -0.02 0.32 0.948   

  Treatment (ECO)*logm3 -0.16 0.39 0.690     

Abundance '10 Treatment (ECO) 0.93 0.64 0.149 2.0 0.2620 

Treatment*dwdiv (b) dwdiv -0.94 0.71 0.188   

  Treatment (ECO)*dwdiv 0.04 0.79 0.956     

Abundance '10 Treatment (ECO) 0.66 0.31 0.035 9.1 0.0076 

Treatment+logm3 (b) logm3 -0.13 0.18 0.476   

              

Table 5. GLM (generalized linear model) model results of red-listed beetles in northern and 
southern Sweden separated for each year. Log-mean higher than 0 shows positive effects vs 
intercept, lower than 0 is negative effect. Numbers highlighted as bold hold significance, p <0,05. 
GLM = x=y~(Treatment,Treatment*logm3/dwdiv,Treatment+logm3/dwdiv), Poisson. Bracketed 
letters () next to model name shows which models were compared for dAIC, models with the same 
letters were compared to each other. Lowest dAIC highlighted in yellow, models within 2 dAIC 
highlighted in orange. Dwdiv =deadwood diversity, logm3 =log-transformed deadwood volume. 
ECO = Ecopark, compared to BAU.  
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Abundance '10 Treatment (ECO) 0.96 0.32 0.003 0.0 0.7112 

Treatment+dwdiv (b) dwdiv -0.90 0.31 0.004   

              

Abundance '10 Treatment (ECO) 0.60 0.30 0.047 7.6 0.0160 

Treatment (b)       

              

Richness '11 Treatment (ECO) 0.87 0.72 0.232 3.3 0.065 

Treatment*logm3 (c) logm3 -0.11 0.35 0.753   

  Treatment (ECO)*logm3 -0.04 0.40 0.912     

Richness '11 Treatment (ECO) 0.48 0.68 0.483 1.9 0.133 

Treatment*dwdiv (c) dwdiv -0.81 0.81 0.314   

  Treatment (ECO)*dwdiv 0.54 0.85 0.525     

Richness '11 Treatment (ECO) 0.79 0.31 0.011 1.3 0.175 

Treatment+logm3 (c) logm3 -0.14 0.17 0.406   

              

Richness '11 Treatment (ECO) 0.88 0.32 0.006 0.3 0.292 

Treatment+dwdiv (c) dwdiv -0.33 0.26 0.203   

              

Richness '11 Treatment (ECO) 0.72 0.30 0.016 0.0 0.335 

Treatment (c) 

              

Abundance '11 Treatment (ECO) 0.89 0.66 0.176 3.9 0.048 

Treatment*logm3 (d) logm3 -0.12 0.33 0.711   

  Treatment (ECO)*logm3 0.09 0.37 0.803     

Abundance '11 Treatment (ECO) 0.78 0.62 0.208 1.6 0.156 

Treatment*dwdiv (d) dwdiv -0.76 0.76 0.313   

  Treatment (ECO)*dwdiv 0.51 0.79 0.520     

Abundance '11 Treatment (ECO) 1.04 0.28 <0.001 2.0 0.127 

Treatment+logm3 (d) logm3 -0.05 0.14 0.739   

              

Abundance '11 Treatment (ECO) 1.15 0.29 <0.001 0.0 0.341 

Treatment+dwdiv (d) dwdiv -0.30 0.21 0.161   

              

Abundance '11 Treatment (ECO) 1.01 0.27 <0.001 0.1 0.328 

Treatment (d)       

              

Richness '12 Treatment (ECO) 1.05 0.70 0.137 1.7 0.16 

Treatment*logm3 (e) logm3 0.38 0.26 0.145   

  Treatment (ECO)*logm3 -0.47 0.34 0.169     
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Richness '12 Treatment (ECO) 0.98 0.57 0.087 1.7 0.16 

Treatment*dwdiv (e) dwdiv 0.52 0.43 0.228   

  Treatment (ECO)*dwdiv -0.80 0.52 0.124     

Richness '12 Treatment (ECO) 0.16 0.27 0.556 1.6 0.17 

Treatment+logm3 (e) logm3 0.10 0.16 0.540   

              

Richness '12 Treatment (ECO) 0.24 0.29 0.413 1.9 0.14 

Treatment+dwdiv (e) dwdiv -0.06 0.24 0.809   

              

Richness '12 Treatment (ECO) 0.21 0.26 0.432 0.0 0.37 

Treatment (e)       

              

Abundance '12 Treatment (ECO) 1.82 0.55 0.001 4.7 0.085 

Treatment*logm3 (f) logm3 0.33 0.22 0.136   

  Treatment (ECO)*logm3 -0.72 0.28 0.009     

Abundance '12 Treatment (ECO) 1.68 0.46 <0.001 0.0 0.904 

Treatment*dwdiv (f) dwdiv 0.38 0.38 0.308   

  Treatment (ECO)*dwdiv -1.18 0.45 0.009     

Abundance '12 Treatment (ECO) 0.48 0.21 0.025 8.8 0.011 

Treatment (f) 

              

Southern Sweden       

Model Predictors Log-mean SE p dAIC weight 

Richness '11 Treatment (ECO) 4.94 1.09 <0.001 0.0 0.9259 

Treatment*logm3 (g) logm3 1.96 0.55 <0.001   

  Treatment (ECO)*logm3 -2.23 0.60 <0.001     

Richness '11 Treatment (ECO) 2.67 0.72 <0.001 5.3 0.0666 

Treatment*dwdiv (g) dwdiv 1.92 0.67 0.004   

  Treatment (ECO)*dwdiv -1.63 0.72 0.025     

Richness '11 Treatment (ECO) 1.40 0.26 <0.001 9.6 0.0075 

Treatment (g)       

              

Abundance '11 Treatment (ECO) 5.27 0.93 <0.001 0.0 0.954 

Treatment*logm3 (h) logm3 2.13 0.47 <0.001   

  Treatment (ECO)*logm3 -2.38 0.51 <0.001     

Abundance '11 Treatment (ECO) 2.56 0.61 <0.001 6.1 0.046 

Treatment*dwdiv (h) dwdiv 1.98 0.57 <0.001   

  Treatment (ECO)*dwdiv -1.46 0.61 0.016     
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Abundance '11 Treatment (ECO) 1.46 0.22 <0.001 18.0 <0.001 

Treatment (h)       

              

Richness '12 Treatment (ECO) 1.60 0.97 0.098 3.5 0.068 

Treatment*logm3 (i) logm3 0.55 0.53 0.300   

  Treatment (ECO)*logm3 -0.45 0.59 0.439     

Richness '12 Treatment (ECO) 0.94 0.70 0.178 2.0 0.141 

Treatment*dwdiv (i) dwdiv 0.48 0.73 0.510   

  Treatment (ECO)*dwdiv -0.02 0.79 0.980     

Richness '12 Treatment (ECO) 0.90 0.31 0.003 2.1 0.136 

Treatment+logm3 (i) logm3 0.18 0.23 0.433   

              

Richness '12 Treatment (ECO) 0.92 0.27 0.001 0.0 0.382 

Treatment+dwdiv (i) dwdiv 0.47 0.28 0.098   

              

Richness '12 Treatment (ECO) 1.03 0.26 <0.001 0.7 0.273 

Treatment (i)       

              

Abundance '12 Treatment (ECO) 2.21 0.88 0.012 0.0 0.442 

Treatment*logm3 (j) logm3 1.12 0.50 0.023 

  Treatment (ECO)*logm3 -0.56 0.52 0.282     

Abundance '12 Treatment (ECO) 1.66 0.52 0.002 1.2 0.248 

Treatment*dwdiv (j) dwdiv 1.17 0.51 0.022   

  Treatment (ECO)*dwdiv -0.82 0.56 0.140     

Abundance '12 Treatment (ECO) 1.02 0.23 <0.001 6.1 0.021 

Treatment+logm3 (j) logm3 0.08 0.17 0.628   

              

Abundance '12 Treatment (ECO) 0.97 0.20 <0.001 1.2 0.237 

Treatment+dwdiv (j) dwdiv 0.47 0.21 0.023   

              

Abundance '12 Treatment (ECO) 1.08 0.20 <0.001 4.3 0.052 

Treatment (j)       

              

Richness '13 Treatment (ECO) 2.59 1.02 0.011 1.1 0.19 

Treatment*logm3 (k) logm3 0.95 0.56 0.091   

  Treatment (ECO)*logm3 -0.87 0.61 0.150     

Richness '13 Treatment (ECO) 2.36 0.71 0.001 1.6 0.15 

Treatment*dwdiv (k) dwdiv 1.15 0.72 0.109   

  Treatment (ECO)*dwdiv -1.25 0.78 0.108     

Richness '13 Treatment (ECO) 1.24 0.31 <0.001 1.1 0.19 

Treatment+logm3 (k) logm3 0.20 0.21 0.352   
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Richness '13 Treatment (ECO) 1.37 0.27 <0.001 2.0 0.13 

Treatment+dwdiv (k) dwdiv 0.06 0.27 0.833   

              

Richness '13 Treatment (ECO) 1.38 0.27 <0.001 0.0 0.34 

Treatment (k)       

              

Abundance '13 Treatment (ECO) 2.21 0.88 0.012 0.9 0.3933 

Treatment*logm3 (l) logm3 1.12 0.50 0.023   

  Treatment(ECO)*logm3 -0.56 0.52 0.282     

Abundance '13 Treatment (ECO) 2.72 0.61 <0.001 11.3 0.0021 

Treatment*dwdiv (l) dwdiv 1.49 0.61 0.015   

  Treatment (ECO)*dwdiv -1.24 0.65 0.055     

Abundance '13 Treatment (ECO) 1.32 0.26 <0.001 0.0 0.6030 

Treatment+logm3 (l) logm3 0.61 0.15 <0.001   

              

Abundance '13 Treatment (ECO) 1.70 0.23 <0.001 12.7 0.0011 

Treatment+dwdiv (l) dwdiv 0.36 0.19 0.065   

              

Abundance '13 Treatment (ECO) 1.79 0.23 <0.001 14.0 <0.001 

Treatment (l) 
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