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Animals can be caught in an “ecological trap” when they select for seemingly 
attractive habitats at the expense of their fitness. This maladaptive behaviour is 
often a consequence of human induced rapid changes in their natal environment, 
such as the development of linear infrastructure, where roads and railways create 
novel feeding conditions through traffic induced mortality of other species and 
powerline areas provide perching or nesting sites. In this study strong indication is 
demonstrated that linear infrastructure creates an ecological trap for the golden 
eagle (Aquila chrysaetos). This is illustrated using integrated step selection function 
for habitat selection and movement behaviour with ten years of data from 74 GPS-
tracked golden eagles in Sweden. Eagles show high mortality at road and railway 
sites, which increase habitat attractiveness by providing scavenging opportunities 
on casualties from wildlife traffic accidents, while powerlines provide perching 
sites. Eagles selected for these habitats all year round; immature eagles were more 
consistent in their selection of roads and railway sites in comparison to adults and 
show learning behaviour through an increased selection with age. I discuss 
implications of these findings for the conservation and population ecology of eagles 
and other scavengers.  

Keywords: HIREC, animal ecology, animal movement, animal behaviour, integrated step selection 
function, wildlife traffic accidents, maladaptive behaviour, fitness, habitat selection  
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In the Anthropocene, human pressure on nature is increasing and the need for 
improving conversation efforts becomes especially important. Animals rely on 
different cues for habitat selection, navigation, foraging, oviposition and mate 
choice with the aim to increase fitness (Darwin 1859). In a rapidly changing 
environment, many of these cues might be modified or new misleading cues 
develop that make animals select for a less suitable habitat even though habitats of 
higher quality are available. Evolutionarily, anthropogenic changes in the landscape 
are occurring fast at spatial and temporal scale (i.e. human-induced rapid 
environmental change, hereafter HIREC, Sih 2013). Hence, animals might not have 
the phenotypic plasticity to properly adapt and evaluate their decisions in the 
expense of their fitness. 

Chosen habitats which seem attractive but lead to maladaptive behaviour are called 
‘ecological traps’ (Gates and Gysel 1978, hereafter ET) and are often associated 
with HIRECs (Robertson et al. 2013). ETs have led to fitness costs in several animal 
groups such as reptiles (Hawlena et al. 2010), insects (Horváth et al. 2010), fish 
(Jeffres and Moyle 2012), birds (Remeš 2003) and mammals (Lamb et al. 2017). 
Sea turtle hatchlings for instance are driven by the reflected moonlight to move 
towards the ocean under natural circumstances, but might be caught in an ecological 
trap when attracted to the light polluted beach instead, thereby moving in the 
opposite direction, increasing risk and decreasing survival rate (Witherington 
1997).  

For an ET to exist, three criteria must be fulfilled: Comparing the trap habitat to 
surrounding source habitats (I) the trap habitat is preferred (severe trap) or animals 
are equally selecting both habitats (equal preference trap), (II) individual fitness is 
lower in the trap habitat, (III) animals actively move to the trap habitat (Hale et al. 
2015; Robertson and Hutto 2006). Hawlena et al. (2010) demonstrated an equal 
preference trap where individuals of the lizard Acanthodactylus beershebensis 
equally selected for natural and a human modified trap habitat in which they were 
more exposed to predators, resulting in increased mortality rate. Moreover, a 
population of blackcaps (Sylvia atricapilla) selected a human-modified landscape 

1. Introduction  
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with newly introduced plant species over their natural breeding habitat, resulting in 
a severe ET with lower breeding success (Remeš 2003).  

A HIREC with high potential of forming ETs worldwide is linear infrastructure 
such as roads, railways and powerlines (Harris and Scheck 1991; Seiler 2001). 
Effects of linear infrastructure have been demonstrated mostly on mammals and 
birds, affecting movement (Jackson 2000; James and Stuart-Smith 2000; 
Prokopenko et al. 2017; Scrafford et al. 2018; Whittington et al. 2005), stress levels 
(Krone et al. 2019; Wasser et al. 2011) and other behaviours (Gibson et al. 2018; 
Slabbekoorn and Peet 2003; Tigas et al. 2002). Birds might use powerlines and 
poles as perching or nesting sites, where particularly large birds such as raptors or 
corvids show high mortality due to electrocution worldwide (Haas 2005; Janss 
2000; Loss et al. 2014; Shobrak 2012; Tintó et al. 2010).  

Wildlife traffic collisions are a major cause of mortality in birds (García et al. 2017; 
Loss et al. 2014) and mammals worldwide (Bruinderink and Hazebroek 1996; 
Gundersen and Andreassen 1998; Popp et al. 2018; Seiler et al. 2004). Carcasses 
attract predators and scavengers to roads and railway sites (Lambertucci et al. 2009; 
Prosser et al. 2008; Santos and Carvalho 2011), consequently increasing mortality 
risk by being exposed to traffic. Hence, linear features have a high potential of 
creating ETs, yet there is little evidence (Kriska et al. 1998). 

Large scavenging birds such as eagles, corvids and vultures are especially 
vulnerable to ETs created by roads, railways and powerlines because they are long 
lived, have a strong ability to learn and move effectively over landscapes. 
Therefore, they have increased carrion detection and habitat accessibility compared 
to terrestrial predators.  

A large raptor of conversation concern which is potentially vulnerable to ETs is the 
golden eagle (Aquila chrysaetos). The golden eagle is a long-lived, soaring bird of 
prey distributed across the Holarctic (Watson 2010). The species is listed as near 
threatened in Sweden (ArtDatabanken 2015) and as species needing special habitat 
conservation measures (Annex 1) in the EU Birds Directive (European Union 
2009). Accordingly, golden eagles require protection measures. In Sweden adults 
establish home ranges in the north at ca. 60° - 66° latitude (Moss et al. 2014) while 
mostly immatures are migrating to the south of the country in late September to 
October and return north in late April to early May (Singh et al. 2017). The Swedish 
population uses old growth forests as breeding habitat and clear cuts and other open 
land with increased prey detectability for hunting (Singh et al. 2016), while also 
using scavenging opportunities (Watson 2010). As apex predators, golden eagles 
highly depend on  naturally fluctuating abundances of mountain hares (Lepus 
timidus) and different grouse species in the boreal forest (Moss et al. 2012; 
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Tjernberg 1981). Considering the strong dependency on prey abundance, it is 
conceivable that eagles regularly use scavenging opportunities at infrastructure 
especially when prey abundance is low.  

In 2019 there were ~ 65.000 reported fatal wildlife traffic collisions for animals on 
roads and railways in Sweden with numbers increasing (National Wildlife Accident 
Council, Nationella Viltolycksradet, www.viltolycka.se). According to the National 
Swedish News (SVT) with source from the National Traffic Management Agency 
(www.trafikverket.se), 104 golden eagles and white-tailed sea eagles (Haliaeetus 
albicilla) died of rail collisions in 20181. Main causes of deaths in golden eagles 
recovered by the Swedish National Museum of Natural History, Stockholm, 
between 2003 - 2011 are attributed to collisions with trains (35,6 %), electrocution 
and powerline collisions (17,8 %) and starvation and other trauma (11,9 %), 
respectively, (Ecke et al. 2017). Other anthropogenic threats to eagles include 
windfarm development (Tjernberg 2010) and lead exposure by scavenging on 
leftovers of hunted game shot with lead ammunition. It has been shown that lead 
exposure alters flight behaviour in golden eagles, where the highest lead 
concentrations were found in individuals that died in traffic collisions (Ecke et al. 
2017). Consequently, bioavailability and uptake of contaminants might alter 
behaviour and increase the use of road and railway sites as scavenging 
opportunities.  

In this work, I study golden eagles on a populational level to investigate the 
hypothesis (i) that linear infrastructure creates an ET for eagles in Sweden. 
Therefore, I expect eagles to consistently select for and actively move to linear 
infrastructure since scavenging opportunities from wildlife traffic accidents 
increase attractiveness of road and railway habitats, while powerline areas increase 
attractiveness by providing perching sites, scavenging opportunities from 
electrocuted birds and increase visibility for eagles. Additionally, I investigate the 
national wildlife traffic accident database for the amount and spatial extent of 
scavenging opportunities for eagles as well as distribution of eagle mortalities. 

To investigate the ecological trap on a local and seasonal scale, I further hypothesize 
that (ii) eagles actively search and sit in these habitats. Furthermore, I hypothesize 
that (iii) immature eagles are closer to roads and railways than adults because they 
scavenge more, as inexperienced juveniles have lower hunting success compared 
to adults (Kitowski 2009; Nadjafzadeh et al. 2016). I also hypothesize that (iv) 
immature eagles learn to use road and railway sites as scavenging opportunities i.e. 
closeness to these infrastructure increases with age. 

                                                 
1 https://www.svt.se/nyheter/lokalt/gavleborg/over-hundra-ornar-dodades-av-tag-i-fjol 
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I tested these hypotheses by formulating an integrated step selection function (iSSF, 
Avgar et al. 2016) investigating habitat selection and movement behaviour of GPS 
tagged golden eagles. Step selection functions have emerged as a widely used and 
powerful tool to investigate animal movement (Fortin et al. 2005; Prokopenko et al. 
2017; Thurfjell et al. 2014), while integrated step selection functions allow to 
include movement parameters into habitat selection analysis (Avgar et al. 2016). 
Furthermore, I use national wildlife road and railway mortality statistics for eagles 
and other species (National Wildlife Accident Council, Nationella Viltolycksradet, 
www.viltolycka.se). 
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2.1. Study area and eagle data 
 

Data comprises of 74 GPS-tagged golden eagles (36 adults, 38 immatures) within 
a study period of 10 years (07.07.2010 to 06.05.2020). Individual tracking periods 
ranged from one month to six years with minimum 500 relocations to ensure 
confidence in the model estimates (Figure 10 Supplementary material). Overall 
range included most of Sweden (55 – 68°N, 12. – 23°E, figure 9 Supplementary 
material). In northern Sweden where home ranges are established, main land use is 
commercial forestry. The heterogeneous landscape is dominated by clear felled 
areas and even-aged, even-height forest containing Norway Spruce (Picea abies) 
and Scots Pine (Pinus Sylvestris) (Esseen et al. 1997). 

Adults were captured using remote controlled bownets (Bloom et al. 2007; Bloom 
et al. 2015; Jackman et al. 1994) and tagged with solar-powered, backpack mounted 
global positioning systems (GPS) in 2010-11 (75 g Microwave Telemetry Inc., 
USA and 140 g VectronicAerospace GmbH, Germany) and 2014 (70 g Cellular 
TrackingTechnologies, Inc., USA) with a maximum location error of ± 18 m.  Sexes 
in adults were genetically identified through blood samples following the protocol 
by Fridolfsson and Ellegren (1999). Immatures were tagged as nestlings 
approximately two weeks prior to fledgling. 
 

 
 
 

 

2. Methods 
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2.2. Habitat variables and traffic mortality 
 

Road, railway, powerline, elevation and habitat data (100 m cell size, RT90) were 
based on raster layers in a geographic information system (GIS) provided by the 
Swedish National Land Survey (Lantmäteriet).  

Monthly summaries of national wildlife traffic accidents at roads and railways for 
the years 2010-2019 were obtained from the National Wildlife Accident Council 
(Nationella Viltolycksradet). Species included were moose (Alces alces), red deer 
(Cervus elaphus), roe deer (Capreolus capreolus), fallow deer (Dama dama), wild 
boar (Sus scrofa), otter (Lutra lutra), eagle (golden eagle Aquila chrysaetos and 
white tailed sea eagle Haliaeetus albicilla), wolf (Canis lupus), brown bear (Ursus 
arctos) and lynx (Lynx lynx). Both white tailed and golden eagle are summarized as 
one species because of difficulties to correctly identify the two eagle species after 
collision. Six confirmed deaths of golden eagles that died in traffic accidents were 
obtained from GPS tagged individuals. 

 

2.3. Statistical analysis 
 

Data modification, spatial and statistical analysis were performed in R (R version 
3.6.1, R Core Team 2019) and part of spatial data modification in QGIS (QGIS 
version 3.42, QGIS Development Team 2009).  

 

2.3.1. Step selection function 

I applied an integrated step selection function (Hereafter iSSF, Avgar et al. 2016), 
using the package amt for R (Signer and Fieberg 2019) to investigate golden eagle 
habitat selection and behaviour around linear infrastructure. Locations were treated 
as linear step between two consecutive relocations (Fortin et al. 2005; Thurfjell et 
al. 2014). Step selection functions test for habitat selection by conducting a 
conditional logistic regression comparing available to used habitat, while iSSFs 
allow to include movement parameters into habitat selection analysis (Avgar et al. 
2016), which reduce inferential bias (Forester et al. 2009). Step lengths (m) were 
assumed to follow a gamma distribution. Eagle locations were resampled to an 
interval of 1 h ± 10 min to achieve a regular time interval and a set of random steps 
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(n = 10) was created for each true step following the same distribution. A total 
amount of 437 217 true and random locations was analysed with 224 796 locations 
from immature eagles.  

 

2.3.2. Selection of trap habitat 

Habitat covariates extracted at step end were simplified in five categorical variables 
(‘water’, ‘open land’, ‘forest’, ‘road + railway’ and ‘clear cut’). I chose to use open 
land as the intercept in the model testing habitat selection (Model 1, table 1) as 
eagles regularly use and select forests and clear cuts and avoid water (Singh et al. 
2016). The landcover ‘open land’ included open wetlands, arable land and other 
non-exploited open lands that are not clear cuts. For amount of locations for true 
and random steps falling in the different habitats see figure 12 - 13 in 
Supplementary material. Covariates for roads, railways and powerlines were 
extracted as continuous variable (Distance to the nearest feature in m) at the end of 
the step and tested in separate models due to correlation between the respective 
types of infrastructure.  
 
Spring was defined between March and May, summer between June and August, 
autumn between September and November and winter between December and 
February. Summer was used as the intercept in the models testing selection 
consistency (Models 2 - 4, table 1; see figure 11 in Supplementary material for 
number of locations per season).  
 
 

2.3.3. Behaviour in trap habitat 

Number of eagle years were defined individually, where the first year was defined 
as the next 365 days after tagging. Height positions obtained from GPS locations 
were extracted and afterwards subtracted from elevation data to obtain the height 
above ground. Positions below 30 m above ground were assumed as ’sitting’ and 
above 30 m as ’flying’ based on maximal boreal forest height (Larsen 2013).  

The cosine of the von Mises distributed turning angles reaches from -1 to 1 and can 
be used to describe movement direction, where positive values represent moving 
forwards from the previous location and negative values represent moving 
backwards (Benhamou 2006). I defined behaviour as ‘searching’ as cosine of the 
turning angle below zero and step length below 1000 m as eagles are soaring 
(backwards movement) taking smaller steps when performing searching behaviour, 
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while travel movements are forwards with larger steps. Only flying positions were 
included in the models testing behaviour (182 044 flying locations, models 5 - 7, 
table 1) to minimize false positive results and movements other than ‘searching’ 
were treated as ‘travel’ to ensure model simplicity. The log of the step length was 
included in the models that tested behaviour and type of position (Models 5 - 10, 
table 1) as a modifier of the shape parameter of the underlying gamma distribution. 
As step length distribution differs between different behavioural modes, the log of 
the step length can be used to improve model efficiency (Avgar et al. 2016). 

An overview about performed iSSF models is stated in table 1 with random or true 
step id (‘case’) as response variable. Positive model coefficients of categorical 
explanatory variables indicate selection, while for continuous explanatory 
variables, selection is indicated by a negative coefficient. The explanatory variables 
used in different models are as follows: 

 

Explanatory variables 
 

Continuous 
 

PowerD distance to nearest powerline (m)    

RailwayD distance to nearest railway (m)    

RoadD distance to nearest road (m)    

Log (sl) log of step length 

No.year number of individual eagle years of immature 
eagles 
 

Categorical  

Age adult, immature  

Behaviour travel, searching 

Habitat open land, clear cut, forest, road+railway, water 

Position flying, sitting 

Season spring, summer, autumn, winter 
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Model Formula Intercept 

1 Case ~ Habitat open land 

2 Case ~ RoadD + RoadD:Season summer 

3 Case ~ RailwayD + RailwayD:Season summer 

4 Case ~ PowerD + PowerD:Season summer 

5 Case ~ RoadD + log (sl) + RoadD:Behaviour travel 

6 Case ~ RailwayD + log (sl) + RailwayD:Behaviour travel 

7 Case ~ PowerD + log (sl) + PowerD:Behaviour travel 

8 Case ~ RoadD + log (sl) + RoadD:Position flying 

9 Case ~ RailwayD + log (sl) + RailwayD:Position flying 

10 Case ~ PowerD + log (sl) + PowerD:Position flying 

11 Case ~ RoadD + RoadD:Age adult 

12 Case ~ RailwayD + RailwayD:Age adult 

13 Case ~ RoadD + RoadD:no.year - 

14 Case ~ RailwayD + RailwayD:no.year - 

Table 1. overview of different models testing the movement behaviour at linear infrastructure of 
golden eagles in Sweden, ‘Case’ indicates the response variable (true or random step id). For 
overview of explanatory variables see methods 2.3.3. Number of individuals in model 1 – 12: n = 74 
(all eagles), model 13 – 14: n = 38 (immature eagles). 
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Figure 1. Estimates of iSSF model  1 (coefficient ± SE, table 2) showing habitat selection for golden 
eagles in Sweden relative to open land. Positive values indicate selection and negative values avoidance. 

3.1. Selection of trap habitat 
 
Eagles selected for roads and railways, clear cuts and forest and avoided water 
relative to open land (coefroad+railway = 0.13 ± 0.06, coefclearcut = 0.99 ± 0.02, coefforest 

= 0.67 ± 0.02, coefwater = - 2.24 ± 0.07, table 2, figure 1).  

 

 

 

 

 

 
 
 
 
 
 
 
 

 
 

                               
 

3. Results 
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Figure 2. Habitat selection (coefficient ± SE) per year 2010 – 2020 in golden eagles in Sweden relative 
to open land, n2010 = 10, n2011 = 27, n2012 = 24, n2013 = 15, n2014 = 39, n2015 = 41, n2016 = 30, n2017 = 20, 
n2018 = 16, n2019 = 14, n2020 = 10. Positive values indicate selection and negative values avoidance. For 
more information on coefficients see table 14 Supplementary material. 

 

Eagles were close to roads, railways and powerlines throughout autumn, winter and 
spring compared to summer (roadautumn: coef =  - 0.38 ± 0.05, roadspring: coef = - 
0.38 ± 0.04, roadwinter: coef = - 0.42 ± 0.11, railwayautumn: coef = - 0.28 ± 0.03, 
railwayspring: coef = - 0.29 ± 0.03, railwaywinter: coef = - 1.162 ± 0.13, 
powerlineautumn: coef = - 0.36 ± 0.05, powerlinespring: coef = - 0.25 ± 0.03, 
powerlinewinter: coef = - 0.53 ± 0.12, table 3). Habitat selection for each year 2010 – 
2020 using categorical variables is illustrated in figure 2. 

 

 

 

 

 

 

 

 

Model Parameter coef se (coef) Z p-value 

1 Road+Railway 0.13    0.06  2.04       < 0.05 

1 Water -2.24   0.07 -33.82   < 0.001 

1 Forest 0.67   0.02   34.65  < 0.001 

1 Clear cut 0.99    0.02   46.85 < 0.001 

Table 2. iSSF model 1 testing habitat selection in golden eagles in Sweden. Model explanation see 
table 1. 



24 
 
 

Table 3. iSSF models 2 - 4 testing closeness to respective infrastructure in relation to seasons in 
golden eagles in Sweden. For model explanation see table 1. 

 

 

 

 

 

 

 
 
 
 
 
 

Model Parameter coef se (coef) Z p-value 

2 RoadD -0.58 0.02 -34.17 < 0.001 

2 RoadD:Autumn -0.38 0.05 -8.13 < 0.001 

2 RoadD:Spring -0.38 0.04 -10.76 < 0.001 

2 RoadD:Winter -0.42 0.11 -3.82 < 0.001 

3 RailwayD -0.39 0.01 -31.35 < 0.001 

3 RailwayD:Autumn -0.28 0.03 -8.60 < 0.001 

3 RailwayD:Spring -0.29  0.03 -11.35 < 0.001 

3 RailwayD:Winter -1.16 0.13 -8.73 < 0.001 

4 PowerD -0.53 0.02 -32.31  < 0.001 

4 PowerD:Autumn -0.36 0.05  -8.13  < 0.001 

4 PowerD:Spring -0.25 0.03 -7.88 < 0.001 

4 PowerD:Winter -0.53 0.12 -4.56 < 0.001 
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Figure 3. Eagle traffic mortalities in Sweden. Red dots indicate location of death for eagles from 
national wildlife traffic accident database 2010 – 2016 (Golden eagle and white-tailed sea eagle, 
Nationella Viltolycksradet). Purple dots indicate location of death of five recovered GPS tagged 
golden eagles. The sixth confirmed death is not shown in the figure due to missing location data. X 
axis: Easting, Y-axis: Northing. 

There is a consistent spatial trend that eagle traffic accidents are observed 
throughout Sweden (See figure 15 in Supplementary material for more 
information). This is also ascertained from the study eagles, where six individuals 
were killed by traffic (Figure 3).  
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Figure 4. Mean wildlife traffic accidents in Sweden per month. SD was not included in the figure due 
to high variation in mean number of accidents between species. Number of included species per year 
= 10, for more details  see methods 2.2 and figure 14 in Supplementary material. Data obtained from 
National Wildlife Accident Council (Nationella Viltolycksradet). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The temporal seasonal trend of wildlife accident reveals an increasing number of 
accidents since 2010 (See figure 14 Supplementary material) and annually towards 
winter, with two general peaks. One peak occurs in May and June and the other 
occurs during September to December. Overall, the trend provides a mean estimate 
of number of accidents per month as an index of attractiveness of roads and 
railways.  

3.2. Behaviour in trap habitat 
 

Close to roads and railways golden eagles performed more search than travel 
behaviour, while at powerline areas there was no indication for search movements 
(road: coef = - 0.50 ± 0.08 railway: coef = - 0.25 ± 0.06, powerline: coef = - 0.05 ± 
0.04, table 4). 

Additionally, eagles were sitting more frequently instead of flying close to linear 
infrastructure (road: coef = - 1.13 ± 0.05, railway: coef = - 0.84 ± 0.04, powerline: 
coef = - 0.95 ± 0.05, table 5).  
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Table 4. iSSF models 5 - 7 testing searching behaviour in relation to closeness to linear 
infrastructure in golden eagles in Sweden.  For model explanation see table 1. 

 

 
Table 5. iSSF models 8 – 10 testing sitting positions in relation to closeness to linear infrastructure 
in golden eagles in Sweden.  For model explanation see table 1. 

Model Parameter coef se (coef) Z p-value 

5 RoadD -0.27   0.01 -23.38   < 0.001 

5 Log (sl) 0.11  0.00   30.29   < 0.001 

5 RoadD:Searching -0.50  0.08 -6.43 < 0.001 

6 RailwayD -0.43   0.01 -32.80   < 0.001 

6 Log (sl) 0.09   0.00   24.96   < 0.001 

6 RailwayD:Searching -0.25   0.06   -4.07 < 0.001 

7 PowerD -0.14   0.01 -13.29    < 0.001 

7 Log (sl) 0.11   0.00   30.53    < 0.001 

7 PowerD:Searching -0.05  0.04   1.22    0.22 

Model Parameter coef se (coef) Z p-value 

8 RoadD -0.89    0.04 -24.96    < 0.001 

8 Log (sl) 0.03    0.00  14.08    < 0.001 

8 RoadD:Sitting -1.13 0.05 -23.16    < 0.001 

9 RailwayD -0.98    0.04 -36.51   < 0.001 

9 Log (sl) 0.02   0.00  8.06 < 0.001 

9 RailwayD:Sitting -0.84    0.04 -20.93   < 0.001 

10 PowerD -0.48  0.04 -13.41    < 0.001 

10 Log (sl) 0.03   0.00   13.71    < 0.001 

10 PowerD:Sitting -0.95   0.05 -19.57    < 0.001 
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Figure 5 shows the location of death of four GPS tagged golden eagles and 
illustrates eagle positions around linear infrastructure. In most figures, based on 
flying and sitting locations, it can be seen that eagles tend to visit linear features 
quite frequently and sit along these.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Infrastructure  

   Road 

   Railway 

   Powerline 

 

Location of death 

Figure 5. Movement of four GPS tagged eagles (one individual per plot) in Sweden at individual temporal and spatial scale 
around linear infrastructure (roads = grey, railways = pink, powerlines = orange). Blue dots indicate sitting and green dots 
indicate flying locations. Location of death is illustrated as red dot for each individual. X axis: Easting, Y-axis: Northing. 
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3.3. Selection of trap habitats by immatures 
 
Immature eagles were closer to roads and railways than adults (road: coef = - 0.41 
± 0.03, railway: coef = - 0.42 ± 0.02, table 6). Examples of movement close to linear 
infrastructure of two immature eagles are illustrated in figure 6 showing consistent 
reocurring movements along the infrastructure across years. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Table 6. iSSF models 11 – 12 testing differences in closeness to roads and railways between adults 
and  immature golden eagles in Sweden. For model explanation see table 1. 

 

Model Parameter coef se (coef) Z p-value 

11 RoadD -0.53 0.02 -29.88 < 0.001 

11 RoadD:Age I -0.41 0.03 -15.15 < 0.001 

12 RailwayD -0.29 0.01 -22.00 < 0.001 

12 RailwayD:Age I -0.42 0.02 -21.68 < 0.001 

Infrastructure  

   Road 

   Railway 

   Powerline 

 

Figure 6. GPS Locations of Immature 2 amd 3 (green) and smoothed density of positions indicating revisited areas at 
Infrastructure in an area in Sweden (high density= light blue, roads = grey, railways = pink, powerlines = orange). Data 
includes locations in the shown areas within a period of 5 years for immature 2 and 6 years for immature 3. X axis: Easting, 
Y-axis: Northing. 
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Figure 7 shows an example of the range of trap habitat encountered at a landscape 
scale including type of positions of one immature. It is clear how eagles encounter 
linear features multiple times across their annual movements and face the risk of 
collisions.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Infrastructure  

   Road 

   Railway 

   Powerline 

 

Figure 7. GPS locations of one year of immature 4 throughout Sweden with sitting and flying positions showing probability 
of trap encounter at landscape scale, roads = grey, railways = pink, powerlines = orange. X-axis: Easting, Y-axis: Northing. 
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Figure 8. Habitat selection (coefficients ± SE) per individual eagle years (age) in immature eagles in 
Sweden relative to open land. nyear 1 = 38, nyear 2 = 15, nyear 3 = 10, nyear 4 = 9, nyear 5 = 8. Year 6 was 
excluded due to low sample size. Positive values indicate selection and negative values avoidance. 
For more information on coefficients see table 15 Supplementary material. 

3.4. Learning in immatures 
 
As immature eagles got older, they moved closer to roads and railways (road: coef 
= - 0.05 ± 0.02, railway: coef = - 0.16 ± 0.01, table 7). General selection for these 
areas by immatures is illustrated in figure 8 using categorical habitat variables. 
 

 
 
 
 
 

 
 
 
 
 
 
 

2. 

 
 

 
 

 
 
 
 
 
 
Table 7. iSSF models 13 – 14 testing the effect of age i.e. number of individual eagle years in 
immature golden eagles in Sweden in relation to closeness to roads and railways. For model 
explanation see table 1. 

Model Parameter coef se (coef) Z p-value 

13 RoadDI -0.85 0.04 -20.57 < 0.001 

13 RoadDI:no.year -0.05 0.02 -3.12       < 0.01 

14 RailwayDI -0.44 0.03 -14.44  < 0.001 

14 RailwayDI:no.year -0.16 0.01 -12.17 < 0.001 
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In this study through an extensive and unique multi-annual dataset, I am able to 
demonstrate strong indication that linear infrastructure creates an ecological trap 
(ET) for golden eagles across space and time. Among the conditions that need to be 
fulfilled to demonstrate an ecological trap, I demonstrated that eagles consistently 
selected, searched and sat frequently closer to roads and railways, called ‘trap 
habitats’ here, across seasons, years and throughout their range in Sweden. The 
condition about the negative demographic consequences at the population level, 
could be inferred through the death of six of the study eagles and published studies 
(e.g. Ecke et al. 2017). The national wildlife accident database includes the 
observed instances of dead eagles ascertaining the demographic costs of foraging 
in these habitats.  

Immature eagles selected these habitats due to their attractiveness and possibly due 
to a lack of hunting experience and showed an increased selection of these habitats 
over time. This demonstrates and fulfils another condition for an ET, that to have 
population level persistent effects, animals should move from source into the trap 
habitats.  Settling in the habitat where an animal was born (i.e. natal) habitat is an 
important life history decision in animals (Davis and Stamps 2004). It has been 
shown that when animals may select natal-like habitats, it can reduce their fitness 
(Fletcher et al. 2015; Piper et al. 2013). Hence, natal environments can have long-
term and populational level effects, especially when HIRECs (human induced rapid 
environmental change, Sih 2013) reduce the quality and quantity of available 
settlement and breeding habitat. Here, through increased selection of road and 
railway sites as the young eagles mature, I demonstrate strong indication that ETs 
influence the selection of natal habitats, which most likely results in negative 
consequences for eagles through high mortality risk in the trap habitat. 

Lamb et al. (2017) in a study on grizzly bears showed, how bears face an ET 
produced by human-caused mortality in an area of high human density and rich 
food resources for bears. This trap caused population declines of approximately 8% 
per year in the trap habitat. There are no yearly numbers on population decline of 
golden eagles in Sweden available, but there are published estimates of the most 

4. Discussion 
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known causes of death (Ecke et al. 2017) and reported cases of dead eagles that 
died in traffic collisions recovered by the police (See figure 3, figure 15 
Supplementary material). I referred to these numbers and published studies here but 
also show through six instances of death of the study individuals. Furthermore, it is 
most often difficult to distinguish between adults and immatures in the collision 
databases to ascertain any age differences in dead eagles, unless an autopsy is 
conducted. The Swedish Veterinary Agency often is responsible for conducting 
such autopsies and sends out post-mortem reports. In these reports, ‘trauma’ 
signifying physical injuries is one of the most commonly reported cause of death 
for Swedish eagles (unpublished data). At the population level, which is where the 
ET response is measured, I believe that my results are convincing as the mortality 
of eagles through traffic collisions is observed throughout Sweden (Figure 3). 

Due to a lack of natural predators, apex consumers lack capacity to perceive novel 
sources of risk, especially HIREC-induced (Ripple et al. 2014), which highly 
increases vulnerability to ETs. Golden eagles fit in this category and likely are not 
able to perceive the risks from oncoming traffic at high speeds. The results of this 
study show the failure in HIREC- associated risk assessment by apex predators. 
Other reasons for eagles to collide with traffic might be that after feeding on carrion, 
eagle body weight is too heavy to allow them to gain enough height, and also lead 
poisoning is likely to alter flight behaviour and increase traffic-induced mortality 
risk (Ecke et al. 2017). It remains to be tested how the contaminants in eagles affect 
their behaviour by altering their sensory perception, and the relationship with linear 
infrastructure.  

I report the national wildlife traffic accident statistics which show the level of traffic 
caused mortality at spatial and temporal scales as a measure of attractiveness of 
habitat to eagles. Habitat attractiveness can be modelled in other ways based on the 
distribution density and frequency of accidents observed and potential food 
availability from carcasses. However, how much new information that would 
provide on mechanisms for eagles selecting these linear habitats is questionable, 
unless one is interested in fine scale patterns and the proportion of scavenge in the 
eagle diet. Otherwise, it is also important to note that eagles are known to rely on 
cyclic prey species like mountain hare (Lepus timidus), grouse species and small 
mammals (Watson 2010), which is likely to affect their scavenging frequency. 

Furthermore, numbers on wildlife traffic accidents are likely to be much higher than 
the listed cases as many incidents remain unreported (Seiler et al. 2004). 
Nevertheless, the wildlife traffic accidents occur all year around in high numbers 
across Sweden, adding to the high predictability of this large food subsidy and 
resulting foraging opportunities (See figure 4, figure 14 Supplementary material). 
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The mechanisms underlying the selection of linear infrastructure are, that such 
features of the landscape provide open habitats and cues for foraging opportunities, 
which encourages eagles to conduct search in these habitats, as is seen through the 
eagle movement data and extensive observation of search behaviour throughout. 
Moreover, sitting to feed on the carcasses is another behaviour also observed in the 
movement data.  

Additionally, eagles selected and were sitting more frequently at powerline areas, 
but in contrast to roads and railways, eagles did not show indication of searching 
behaviour. This suggests that powerline areas were selected for providing attractive 
perching sites to hunt and look for scavenging opportunities from remains of other 
electrocuted birds. Thus, eagles face higher electrocution risk as shown in other 
studies (Janss 2000; Kruger et al. 2004; Slater and Smith 2010). Golden eagle 
mortalities due to electrocution have been shown to be very high in the United 
States (Ansell and Smith 1980; Harness and Wilson 2001) and numbers in Sweden 
are mostly unknown (Ecke et al. 2017). 

Eisaguirre et al. (2019, under review) found that roads and railways can alter the 
movement patterns of golden eagles in Alaska. Areas near roads and railways were 
selected during spring and fall migration and slower movements were performed 
indicating searching behaviour. It was also suggested that eagles spend more time 
close to roads and railways compared to other habitat during spring and that 
infrastructure is also likely to attract eagles to scavenge. Although selection 
consistency over time, measures of traffic accidents i.e. habitat attractiveness and 
mortality has not been tested, these results support the results of my study. 
Moreover, golden eagles in Sweden might not only use linear infrastructure to 
scavenge, as immature eagles are migrating it is likely that these habitats also 
contribute as orientation points during migration periods. Hence, linear 
infrastructure serving multiple purposes could even increase mortality risk through 
traffic collisions for migrating individuals and therefore increase the severity of the 
ET. 

Morelli et al. (2014) reviewed several of the effects of linear infrastructure on birds 
as positive. Besides providing scavenge, perching and nesting sites, they can 
prolong diurnal activity through streetlights and provide warm surface. This might 
have a positive effect in a short term, but increased mortality risk through traffic 
collisions and electrocution, as well as severe anthropogenic interference in the 
natural environment leading to possible behavioural changes should not be 
underestimated, especially when HIRECs act as an ET on a populational level. 

As suggested by Hale et al. (2015) ETs are most severe when they cover a large 
proportion of the habitat which is given in this study as the probability to encounter 
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linear infrastructure i.e. the trap habitat for eagles is very high throughout the whole 
landscape as well as consistent trough time (Figure 7).  

It is therefore likely that other scavengers and opportunistic predators in the boreal 
landscape are also affected by the trap habitat. Ravens and red foxes for instance 
have been observed to also scavenge on road kills (Schwartz et al. 2018) and the 
national wildlife traffic accident database documents frequent collisions in other 
apex predators such as bears, wolves and wolverine.  

Conclusively, there is need to eliminate this ET to improve conservation for eagles 
and other scavengers. The easiest way to remove the trap would be to lower 
attractiveness. Fenced areas around roads result in decreased wildlife traffic 
accidents, yet exclusive fencing can increase habitat fragmentation for terrestrial 
and other non-target species (Seiler 2001). I suggest that faster road and railway 
site clearing would be the most effective and cost-efficient method to decrease 
attractiveness of the trap habitat. More studies are needed to estimate the response 
time of eagles in relation to an accident or the spotting of a carcass. These would 
aid the managers in identifying the optimal time needed to remove the carcass 
before it is spotted and discovered by scavengers. General public needs to be 
educated about circumstances in case of a wildlife accident on the response required 
to handle carcasses with the help of police and other agencies and authorities 
involved with traffic.  

In this study I demonstrated strong indication that linear infrastructure creates an 
ET for golden eagles at a populational and landscape scale. It is likely that other 
HIRECs like windfarm development and uptake of offal from hunting with lead 
ammunition causing poisoning of eagles, could exacerbate the effects of the trap, 
thereby further threatening the eagle population. Examples of such effects have 
been shown in a population of cape vultures (Gryps coprotheres) in Africa, which 
suffered high numbers in mortality induced by electrocution, poaching and 
poisoning independently, resulting in population decline (Mundy 1983). Future 
studies should therefore incorporate multiple traps and other threats simultaneously 
to understand holistically, the impact of anthropogenic changes and hence improve 
conservation. 
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Figure 9. Locations of 74 GPS tagged golden eagles in Sweden 2010-2020. Different 
colors indicate different individuals. 
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Figure 11. Number of true GPS tagged golden eagle locations falling in different seasons (fall, 
spring, summer, winter). 

Figure 10. Individual tracking periods of 36 adult golden eagles (A, red) and 38 immatures (I, 
blue). Each line indicates one individual. 
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Figure 12. Number of true golden eagle locations falling in different habitats (Open land, 
road+railway, water, forest, clear cut).  

Figure 13. Number of random golden eagle locations falling in different habitats (Open land, 
road+railway, water, forest, clear cut). 
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Figure 12. Number of wildlife traffic accidents in Sweden 2010 – 2019. Number of accidents 
(n): n2010 =47 475, n2011 = 40 951, n2012 = 46 928, n2013 = 46 944, n2014 = 47 167, n2015 = 48 190, 
n2016 = 58 579, n2017 = 61 282, n2018 = 63 750, n2019 = 64 931. Number of included species per 
year = 10, for more details see methods 2.2. Data obtained from National Wildlife Accident 
Council (Nationella Viltolycksradet). 

Figure 13. Number of reported eagle traffic collisions in Sweden 2010 – 2019. Number of 
accidents (n): n2010 = 11, n2011 = 7, n2012 = 13, n2013 = 11, n2014 = 10, n2015 = 8, n2016 = 27, n2017 
= 31, n2018 = 38, n2019 = 33. Data includes the species golden eagle (Aquila chrysaetos) and 
white-tailed sea eagle (Haliaeetus albicilla). Data obtained from National Wildlife Accident 
Council (Nationella Viltolycksradet). 
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Table 8.  full iSSF model 1 testing habitat selection in golden eagles in Sweden. Model explanation 
see table 1. 

 

 

Table 9. full iSSF models 2 - 4 testing closeness to infrastructure in relation to seasons in golden 
eagles in Sweden. For model explanation see table 1. 

 

  

Model Parameter coef exp(coef) se (coef) Z p-value 

1 Railway+Road 0.13    1.13  0.06   2.04    < 0.05 

1 Water -2.24   0.11   0.07 -33.82    < 0.001 

1 Forest 0.68    1.95  0.02   34.65   < 0.001 

1 Clear cut 0.99    2.69  0.02  46.85    < 0.001 

Model Parameter coef exp(coef) se (coef) Z p-value 

2 RoadD -0.58 0.56 0.02 -34.17 < 0.001 

2 RoadD:Autumn -0.38 0.69 0.05 -8.13 < 0.001 

2 RoadD:Spring -0.38 0.68 0.04 -10.76 < 0.001 

2 RoadD:Winter -0.42 0.66 0.11 -3.82 < 0.001 

3 RailwayD -0.39 0.67 0.01 -31.35 < 0.001 

3 RailwayD:Autumn -0.28 0.76 0.03 -8.60 < 0.001 

3 RailwayD:Spring -0.29 0.75 0.03 -11.35 < 0.001 

3 RailwayD:Winter -1.16 0.31 0.13 -8.73 < 0.001 

4 PowerD -0.53 0.59 0.02 -32.31 < 0.001 

4 PowerD:Autumn -0.36 0.70 0.05 -8.13 < 0.001 

4 PowerD:Spring -0.25 0.78 0.03 -7.88 < 0.001 

4 PowerD:Winter -0.53 0.59 0.12 -4.56 < 0.001 



47 
 
 

Table 10. full iSSF models 5 - 7 testing searching behaviour in relation to closeness to linear 
infrastructure in golden eagles in Sweden.  For model explanation see table 1. 

 
 
 

Table 11. full iSSF models 8 – 10 testing sitting positions in relation to closeness linear 
infrastructure in golden eagles in Sweden.  For model explanation see table 1. 

Model Parameter coef exp(coef) se (coef) Z p-value 

5 RoadD -0.27   0.77 0.01 -23.38   < 0.001 

5 Log (sl) 0.11  1.11 0.00   30.29   < 0.001 

5 RoadD:Searching -0.50  0.61 0.08 -6.43 < 0.001 

6 RailwayD -0.43   0.65 0.01 -32.80   < 0.001 

6 Log (sl) 0.09   1.09 0.00   24.96   < 0.001 

6 RailwayD:Searching -0.25   0.78 0.06   -4.07 < 0.001 

7 PowerD -0.14   0.87 0.01 -13.29    < 0.001 

7 Log (sl) 0.11   1.11 0.00   30.53    < 0.001 

7 PowerD:Searching -0.05  0.95 0.04   1.22    0.22 

Model Parameter coef  se (coef) Z p-value 

8 RoadD -0.89    0.41 0.04 -24.96    < 0.001 

8 Log (sl) 0.03    1.03 0.00  14.08    < 0.001 

8 RoadD:Sitting -1.13 0.32 0.05 -23.16    < 0.001 

9 RailwayD -0.98    0.37 0.04 -36.51   < 0.001 

9 Log (sl) 0.02   1.02 0.00  8.06 < 0.001 

9 RailwayD:Sitting -0.84    0.43 0.04 -20.93   < 0.001 

10 PowerD -0.48  0.62 0.04 -13.41    < 0.001 

10 Log (sl) 0.03   1.03 0.00   13.71    < 0.001 

10 PowerD:Sitting -0.95   0.39 0.05 -19.57    < 0.001 
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Table 12. full iSSF models 11 – 12 testing differences in closeness to road and railways between 
adult and immature golden eagles in Sweden. For model explanation see table 1. 

 

 

 

Table 13. full iSSF models 13 – 14 testing the effect of age i.e. number of individual eagle years in 
immature golden eagles in Sweden in relation to closeness to roads and railways. For model 
explanation see table 1. 

 

 

 

 

 

 

 

 

 

 

 

Model Parameter coef exp(coef) se (coef) Z p-value 

11 RoadD -0.53 0.59 0.02 -29.88 < 0.001 

11 RoadD:Age I -0.41 0.66 0.03 -15.15 < 0.001 

12 RailwayD -0.29 0.75 0.01 -22.00 < 0.001 

12 RailwayD:Age I -0.42 0.66 0.02 -21.68 < 0.001 

Model Parameter coef exp(coef) se (coef) Z p-value 

13 RoadDI -0.85 0.42 0.04 -20.57 < 0.001 

13 RoadDI:no.year -0.05 0.95 0.02 -3.12       < 0.01 

14 RailwayDI -0.44 0.64 0.03 -14.44  < 0.001 

14 RailwayDI:no.year -0.16 0.86 0.01 -12.17 < 0.001 
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Table 14. Habitat selection coefficients for golden eagles in Sweden per year. Open land was used 
as the intercept. 

Year Coefficient S.E. Habitat 
2010 0.73 0.65 RoadRailway 
2010 -1.45 0.65 Water 
2010 2.60 0.29 Forest 
2010 2.34 0.30 Clearcut 
2011 -0.14 0.21 RoadRailway 
2011 -2.20 0.19 Water 
2011 0.02 0.06 Forest 
2011 0.29 0.07 Clearcut 
2012 -0.14 0.23 RoadRailway 
2012 -1.85 0.17 Water 
2012 0.62 0.06 Forest 
2012 0.75 0.07 Clearcut 
2013 0.55 0.26 RoadRailway 
2013 -1.32 0.23 Water 
2013 1.29 0.10 Forest 
2013 1.94 0.11 Clearcut 
2014 0.38 0.21 RoadRailway 
2014 -1.77 0.21 Water 
2014 0.92 0.07 Forest 
2014 0.93 0.08 Clearcut 
2015 0.38 0.18 RoadRailway 
2015 -2.56 0.24 Water 
2015 0.64 0.05 Forest 
2015 0.99 0.06 Clearcut 
2016 -0.27 0.15 RoadRailway 
2016 -3.45 0.23 Water 
2016 -0.05 0.04 Forest 
2016 0.37 0.05 Clearcut 
2017 0.24 0.18 RoadRailway 
2017 -2.05 0.19 Water 
2017 0.86 0.06 Forest 
2017 1.32 0.06 Clearcut 
2018 0.32 0.20 RoadRailway 
2018 -2.30 0.25 Water 
2018 1.09 0.07 Forest 
2019 1.38 0.07 Clearcut 
2019 0.63 0.17 RoadRailway 
2019 -1.91 0.20 Water 
2019 1.12 0.07 Forest 
2019 1.55 0.07 Clearcut 
2020 0.35 0.39 RoadRailway 
2020 -1.17 0.30 Water 
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Table 15. Habitat selection coefficients for immature eagles for each individual number of eagle 
year (no.year). Open land was used as the intercept. 
no. 
year Coefficient S.E. Habitat 

1 -0.1 0.16 RoadRailway 
1 -2.5 0.16 Water 
1 0.7 0.04 Forest 
1 0.9 0.05 Clearcut 
2 0.4 0.24 RoadRailway 
2 -1.5 0.19 Water 
2 1.0 0.06 Forest 
2 1.6 0.07 Clearcut 
3 0.6 0.23 RoadRailway 
3 -2.1 0.28 Water 
3 1.3 0.08 Forest 
3 1.5 0.09 Clearcut 
4 0.9 0.25 RoadRailway 
4 -1.4 0.26 Water 
4 1.2 0.10 Forest 
4 1.7 0.11 Clearcut 
5 1.3 0.24 RoadRailway 
5 -0.9 0.24 Water 
5 1.8 0.11 Forest 
5 2.0 0.12 Clearcut 

 

 

2020 1.54 0.14 Forest 
2020 1.39 0.15 Clearcut 
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