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Sammanfattning 
 

 

Effekten av köldstress på Arabidopsis thaliana, backtrav, undersöktes. Syftet var att 

utreda hur genuttrycket och konfigurationen av membranlipider påverkades hos 

fröplantor då de behandlades med låg temperatur. Enligt flera studier ändras 

kompositionen av fettsyror till att vara en större andel omättade hos flera viktiga 

cellmembranklasser vid långvarig kyla. Flera köldreglerade gener, kallade COR-

gener, valdes ut, för att undersöka deras förmodade förändring i genuttrycks-nivåer 

efter köldbehandling. Ungefär 1000 plantor av A. thaliana etablerades från frö i 

flytande näringsmedium i tio kolvar och växte under artificiellt ljus och 20 °C under 10 

dagar. Sedan behandlades hälften av fröplantorna genom att placera kolvarna på is i 

6 timmar. Prover från kontroll och behandling genomgick lipidextraktion, så väl som 

RNA-extraktion, syntes av komplementärt DNA och kvantitativ PCR för att mäta 

nivåerna av genuttryck. Resultaten är inte entydiga. Beträffande 

cellmembranlipiderna, kunde endast uppmätas en minskning av mättnadsgraden hos 

fettsyrorna på 6-10% % hos vissa membranlipidklasser. Rörande nivåerna av 

genuttryck hos de olika köldreglerade generna, varierar dessa från att vara 1,1 

gånger till 2,5 gånger större hos behandlade prover i jämförelse med kontrollprover.  
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Abstract  
 

 
 

The effect of cold stress in Arabidopsis thaliana, mouse cress, was examined. The 

object was to investigate how gene expression and membrane lipid configuration was 

affected in seedlings when being treated with low temperature. According to several 

studies, the fatty acid composition changes to being less saturated in several 

important cell membrane lipid classes during prolonged cold. Several cold regulated; 

so called COR-genes were chosen, to investigate their presumed change in gene 

expression levels after cold treatment. Roughly 1000 plants of A. thaliana were 

established from seeds in liquid nutrient medium in ten flasks and were grown under 

artificial light and 20 °C for 10 days. Then half of the seedlings were treated by 

putting the flasks on ice for 6 hours. Control and treatment samples went through 

lipid extraction and gas chromatography, as well as RNA extraction, complementary 

DNA synthesis and quantitative PCR. The results are ambiguous. Regarding cell 

membrane lipids, only a minor decrease from saturated to unsaturated fatty acids of 

around 6-10% could be measured for some membrane lipid classes. Concerning 

gene expression levels, the levels vary from being 1.1 to 2.5 times greater in treated 

samples, compared to control samples.  
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List of abbreviations 
 

 
PCR = polymerase chain reaction 

PC = phosphatidylcholine 

PA = phosphatidylethanolamine 

PG = phosphatidylglycerol 

MGDG = monogalactosyldiacylglycerol 

DGDG = digalactosyldiacylglycerol 
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HKG = housekeeping gene 

Cq = cycle quantification 
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1. Introduction 
 
 

Plants have different mechanisms to cope with the surrounding conditions. Through 

the millions of years that plants have existed, millions and millions more have gone 

extinct due to their inadequate ability in adapting to their surroundings. The plants 

that live today are in many cases experts of dealing with the habitat in which they 

grow. This can partially be explained by the never-ending evolution and “survival of 

the fittest” theory, plants that are successful will also have a big impact on the gene 

pool in a population.                

 

When being subject to external damage or conditions differing from their optima, 

plants experience stress, albeit to humans sometimes hardly noticeable in their 

morphology, which also affect their health. This stress can be biotic or abiotic. Biotic 

stress is defined as “a stress that is caused in plants due to damage instigated by 

other living organisms, including fungi, bacteria, viruses, parasites, weeds, insects, 

and other native or cultivated plants” (Newton et al., 2011). Abiotic stress means it is 

caused by some factor other than a living, such as deficiency of nutrients, toxic 

compounds, dehydration or flooding, lack of light or sunburn, wind, temperatures 

outside the “adequate zone”, and so on (Zaidi et al., 2014). Abiotic stress often leads 

to reduced growth, diminishing yields and in the more extreme cases impaired fertility 

or death.  

 

When experiencing new conditions, a major factor in the plants success in surviving 

and thriving, stands their phenotypic plasticity. This, according to Taiz and Zeiger 

(2010), amounts to the plants ability to change its morphology or physiology in non-

permanent ways when being subjected to changes in the environment. Plants need 

to be more adaptable to environmental fluctuation than most animals, because it is 

impossible for them to strictly “run away from danger”. Many studies have through the 

use of genome sequencing, mutational analysis and/or genetic modification showed 

that there are complex genetic changes occurring when plants are exposed to 

various treatments (Hajela et al., 1990; Purdy et al., 2011) These changes can 

happen in many ways, of which some are very complex and not yet fully understood.  
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The perhaps most important example of changes in plants in response to fluctuating 

environment is gene expression, which can be controlled by epigenetic, 

transcriptional, post-transcriptional, and post-translational mechanisms (Joshi et al., 

2018). In plants, this is one of the fastest ways to adapt to abiotic stress, since 

changes can take place in the matter of hours and frequently even minutes. 

According to Blackstock (1989) “gene expression is a multistep process that involves 

transcription, mRNA maturation and splicing, translation and degradation of mRNAs 

and proteins”.  

 

In plants, the change in gene expression can be measured using several different 

methods, there included the real time quantitative PCR method (Heid et al., 1996) 

and basically gives an inclination of how the plant responds. Genes that are normally 

related to stress should have low expression in the transcription of a thriving plant. 

On the other hand, genes that are important for normal growth and cell function 

should be expressed at a stable level. Measuring expression of certain genes that 

are interesting serves a unique possibility to gain new knowledge of biological 

processes during altering conditions (Ganeshan et al., 2008; Farooqi et al., 2018).  

 

Cell membrane lipids have also been found to play an important role in plants´ 

abilities of adapting to abiotic stress, for example regarding temperature (cold) stress 

(Rudolphi-Skórska and Sieprawska, 2015; Iwaya-Inoue et al., 2018). The meaning of 

this process is not completely understood, but it seems that membrane lipids show a 

higher unsaturation when being treated with freezing or low temperature. Studies 

have suggested that thanks to the higher unsaturation of fatty acids, membrane lipids 

become less tightly packed and more “fluid” which in theory makes them more cold 

resistant (Upchurch, 2008; Barrero-Sicilia et al., 2017; Longo et al., 2018). This could 

in turn have implications of ice crystals not being able to penetrate or damage the 

membrane as easily (Steponkus, 1984) and/or because antifreeze proteins are prone 

to have a higher abundance in the membrane (Iba, 2002). 
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1.1 Background 
 
 

This study will take a closer look on some selected COR-genes (cold regulated 

genes). According to Shi et al., (2017) there were over 3000 COR-genes with 

changed expression levels in A. thaliana during treatment for 12 hours at 4 °C. The 

same study also found the gene expression levels to be the highest after 8-12 hours, 

although significant change could be measured already after 4 hours.  

 

Some genes that are related to cold tolerance were chosen to be investigated in the 

experiment. These include the gene called AT5G354601; which codes for an enzyme 

called Glycerophosphocholine Acyltransferase (GPCAT) which has the function of 

adding acyl groups to Glycero-3-phosphocholine (GPC) (Lager et al., 2015; Głąb et 

al., 2016).                                    

AT2G313602; which encodes a protein called acyl-CoA desaturase-like2 which takes 

part in the synthesis of sphingolipids, the 24:1n-9 and 26:1n-9 components of seed 

lipids, and the membrane phospholipids phosphatidylserine (PS), and 

phosphatidylethanolamine (PE) (Smith et al., 2013).                           

AT1G010103; called NAC domain containing protein 1, which has the function as a 

transcriptional activator that is activated upon stress by proteolytic cleavage through 

regulated intramembrane proteolysis (“Arabidopsis eFP Browser,” n.d.; “NAC001 - 

NAC domain-containing protein 1 - Arabidopsis thaliana (Mouse-ear cress) - NAC001 

gene & protein,” n.d.).                              

AT5G117404, known as Arabinogalactan protein 15, which has been suggested to 

have a function in cell to cell signaling, possibly by carrying mRNA across the cell 

membrane (Guan and Nothnagel, 2004).                            

AT3G512405; which encodes a protein called flavanone 3-hydroxylase (F3H) that 

regulates biosynthesis of certain flavonoids (“AT3G51240(F3H),” n.d., p. 51240).                          

AT3G187806, called actin-2 which is constitutively expressed in vegetative tissue and 

is involved in tip growth of root hairs (Volkov et al., 2003; “AT3G18780(ACT2),” n.d., 

p. 18780). The last gene is a so-called housekeeping gene (HKG)  
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The membrane lipids that are being investigated are phosphatidylcholine (PC), 

phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) which all make up a 

high proportion in the cell membrane, together with monogalactosyldiacylglycerol 

(MGDG) and digalactosyldiacylglycerol (DGDG) which are mostly found in the 

thylakoid membranes in chloroplasts (Steponkus, 1984; Barrero-Sicilia et al., 2017). 

This far, only cell membrane lipids have been found to play a role in cold acclimation 

in plants, and therefore it is expected that there will be no difference in fatty acid 

composition regarding the lipid classes MGDG and DGDG.  

 

1.2 Task and object 
 

 

 
The main need for this project is the knowledge that it can provide in terms of better 

understanding for which mechanisms plants use to survive an ever-changing 

environment and further offer guidance towards subjects of interest for future studies 

to investigate.     

 

The task of this project was to examine the gene expression levels and cell 

membrane lipid configuration in Arabidopsis thaliana of the ecotype Columbia-0 after 

cold stress treatment. 

 

In order to try to confirm the hypothesis that changes occur in gene expression levels 

and lipid membrane configuration after cold stress, I used methods to measure the 

gene expression levels of some COR-genes, together with the composition of earlier 

mentioned membrane lipid classes. 

 

The object of this paper is to present the results gained from this experiment and 

discussing their significance and future application.  

 

 

 

 



12 

 

 

 

2. Method 
 

2.1 Establishment of seeds in liquid medium 

  
The top of 10 flasks is covered with two layers of aluminum foil and autoclaved. One 

bottle is filled with about 800 ml of distilled water and 2.165 grams of MS nutrient 

solution is added. pH is set to 5.7. The bottle is filled up to 900 ml, which is 

distributed evenly between two bottles which are then autoclaved. A solution of 40 g 

sucrose and 200 ml distilled water is mixed in a bottle, this solution then goes through 

a pressurized sterilization filtration. 100 ml of the sucrose solution is added to the 

now autoclaved nutrient solution. 

On sterile lab bench: 

50 mg seeds of Arabidopsis thaliana of ecotype Columbia-0 is treated with 70% 

EtOH and shaken for 1 min by hand. EtOH is then removed by pipetting. The seeds 

are then transferred to a solution of 500 µl sterile water, 500 µl sodium hypochlorite 

and 5 µl Tween-20 and are shaken for 5 min by hand. This solution is then pipetted 

away, and the seeds are rinsed in sterile water. The seeds are transferred to a 

Falcon tube, thereafter two drops of 40% glycerol are added, and water up to 2 ml.  

The liquid medium is distributed between the ten flasks. 200 µl of the seed solution is 

transferred to every flask. The flasks are then put in a climate room at 20°C and 

artificial light for 10 days, standing on a shaker. 

 

2.2 Treatment and harvest of seedlings 
 

 
Five of the ten flasks are subjected to cold treatment for 6 hours. The flasks are 

placed on ice, which is changed roughly once every two hours, to keep the 

temperature down to 0 °C. The other five flasks are acting control and are not 

subjected to any treatment.   

After 6 hours the seedlings (roots, stems and leaves) are taken out of the flasks (the 

flasks stand on ice until the seedlings are harvested) and washed thoroughly and 

quickly in milli-Q-water. The seedlings have formed a kind of “lump” that is cut apart 

in two pieces - of which one part is used for lipid extraction and one part is used for 
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RNA-extraction later on - dried with paper and placed in two different Falcon tubes 

which are then directly submerged in liquid nitrogen. This is then repeated for all the 

treated samples and the control samples. All the RNA samples are then frozen at -

80°C. The lipid samples are freeze-dried for two days. 

 

2.3 Lipid extraction  
 

 
Lipids are extracted from the freeze-dried samples according to the protocol “Lipid 

och fettsyrasammansättning i olika växtvävnader”; doing the following steps. The 

fresh weight is measured for all samples and then transferred to individual glass-

homogenizers. 1 ml of 0.15 M HAc and 3.75 ml of MeOH:CHCl3 (2:1) is added. The 

samples are homogenized. The liquid is poured over into a glass tube with a lid and 

the glass-homogenizer is washed with 1.25 ml CHCl3 which is then poured into the 

glass tube. 1.25 ml of H20 is added and then the glass tube is vortexed shortly and 

centrifugated at 2000 rpm for 2 minutes. Unfortunately, the samples weren’t marked 

during the centrifugation, and therefore it was impossible to calculate the value of 

lipids per dry weight in individual samples (although it was possible to differentiate 

treated samples from control samples because of the orientation of which they were 

put in). The lowest liquid phase (CHCl3-phase) of the tube is then transferred to a 

new glass tube and put in the freezer at -20°C overnight. 

Lipid extraction is completed following the same protocol. 1 ml of each sample is 

transferred to an evaporation glass tube with a hollow lid and put on hot sand where 

the liquid phase evaporates. The lipids at the bottom are then redissolved in 25 µl 

CHCl3. A TLC (Thin Layer Chromatography) silica gel plate is loaded with the diluted 

lipids, together with two lipid standards. The plate is placed in a glass tank with polar 

medium CHCl3:MeOH:HAc:H2O (90:15:10:3 ml ratio) during 90 min. The plate dried 

for 5 minutes and was then sprayed with primulin. The lipid classes on the plate are 

visualized using UV-light, marked out and some are then scraped off and placed into 

a glass tube with screw cap and covered with methanol. The silica is dried on hot 

sand, then 2 ml 2% H2SO4 in MeOH is added and incubated at 90°C for 30 min. The 

samples are then cooled off to room temperature and an internal standard of 17:0 

methyl ester is added to every tube, together with heptane and milli-Q-water. The 

tubes are then briefly vortexed and centrifuged for 2 min at 2000 rpm. The upper 
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phase is then transferred to an evaporation tube and put on hot sand. When the 

liquid has evaporated, 150 µl of heptane is added. The lipid samples are stored in the 

freezer at -20°C overnight. The samples are transferred to GC-vials and then run on 

Gas chromatography overnight. 

 

2.4 Homogenization and RNA-extraction from samples 
 

 
The RNA samples are taken out of the freezer and homogenized in a milling machine 

for 30 sec; the steel container has been chilled in liquid nitrogen beforehand. The 

powder is transferred to a cooled Eppendorf tube and instantly submerged in liquid 

nitrogen. Only three of the controls respectively treatments are chosen; control 1, 2 

and 3 (called K1, K2 and K3), together with treatment 2, 3 and 5 (called B2, B3, and 

B5). RNA is extracted from the samples following the protocol “PureLink™ Plant RNA 

Reagent” (“PureLink Plant RNA Reagent,” n.d.). Five small spoons of frozen, ground 

tissue is used from each sample. After extraction, the samples are analyzed on an 

Xpose spectrophotometer. RNA extracts are loaded onto an e-gel to confirm their 

quality. Genomic DNA is degraded from the samples by following the protocol 

“DNase, RNase-free, Thermo Scientific” (“User Guide: DNase I, RNase-free, 1U/uL,” 

n.d.).  

Primers are resuspended to a concentration of 100 µM using milli-Q-water and then 

diluted to a concentration of 10 µM in Eppendorf tubes (using 20 µl 100 µM primer 

solution and 180 µl milli-Q-water). The RNA extracts are stored in the freezer. 

 

2.5 Complementary DNA synthesis and quantitative PCR 
 

 
Following the protocol of “Thermo Scientific Maxima First Strand cDNA Synthesis kit 

for RT-qPCR” (“User Guide: Maxima First Strand cDNA Synthesis Kit RT-qPCR w 

dsDNase, K1672,” n.d.) RNA is converted to complementary DNA (cDNA). 

Quantitative PCR was done following the protocol of “Maxima SYBR Green/ROX 

qPCR Master Mix (2X)” (“User Guide: Maxima SYBR Green/ROX qPCR Master Mix, 

k0221,” n.d.). For each primer pair; 3 wells of cDNA, 3 wells of background (-RT) 

from sample control 3 (K3) and two wells of water was included. The plates run on 



15 

 

 

 

Gene Primer Primer sequence (5′–3′) Primer efficiency (%)

Glycerophosphocholine acyltransferase (AT5G35460) Gene 1- forward TTGTTTCCTACTTGGTGCAAGACC 95.0

Gene 1- reverse TGGCATAGTAGCAAAAGTCCAGA

Acyl-CoA -like desaturase 2 (AT2G31360) Gene 2- forward CATCAACGGTGGAGGAGAAC 99.5

Gene 2- reverse GGAGCCAAGAGAGCAAGAGA

NAC-domain containing protein (AT1G01010) Gene 3- forward TCAGCGAGGTCAACATCTGT 99.9

Gene 3- reverse TTACCACGAAAGCCCTCACT

Arabinogalactan-15 (AT5G11740) Gene 4- forward ACCCCTCACCACATTTCATGA 99.9

Gene 4- reverse GACGCTGAGATCGCACTAGA

Flavanone 3-hydroxylase (AT3G51240) Gene 5- forward GGAGCAATATCAGCCGTCGA 96.5

Gene 5- reverse GGAAGCCTTAGAGATCGCCA

Actin-2 (AT3G18780) Gene 6- forward TCTTAACCCAAAGGCCAACA 97.0

Gene 6- reverse CAGAATCCAGCACAATACCG

PCR for 97 minutes (40 cycles). The best primers were chosen, based on the lowest 

Cycle quantification values and showing single melt curves.  

 

To check that the chosen primers are amplifying in a linear fashion over different 

complementary DNA concentrations, different concentrations of cDNA (1:1, 1:10, 

1:100) together with milli-Q-water were loaded onto a plate and went through PCR.  

 

Table 1. Information about primer pairs; primer sequence and primer efficiency calculated from plate values.  
 

All chosen samples were then loaded onto plates (3 replicate wells of cDNA, 3 wells 

of background-RT, and 2 wells of milli-Q-water for each primer pair and individual 

sample) and went through quantitative real time PCR. 

 

The results were assessed using software Thermo Fisher Connect.  
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3. Results 
 

3.1 Membrane lipids 
 
 

 

Chart 1. The average content (in % of total lipids) of different fatty acids for all controls and treatments in the 

membrane lipid class phosphatidylcholine (PC). Ctrl. stands for control samples. Treat. stands for treated 

samples. The bars show individual standard deviation values from the average.  Only fatty acids that make up 2% 

or more of the total in any sample are accounted for.  

 

The results show an 8.9% decrease of the 16:0 fatty acid content of lipid class PC, 

between control and treatment. This might seem quite large, but the variation 

between different samples of both control and treated samples is almost as high, 

therefore the difference is not significant. No fatty acid with 16 carbon atoms - other 

than 16:0 - made up 2% or more in any sample. A minor decrease is also visible in 

the 18:0 fatty acid content, 14.4%. This is probably the most certain change of fatty 

acid content, since the difference between individual samples are pretty much zero, 

as visible from the standard deviation bars.  A slight increase is visible in the fatty 

acid 18:2 and 18:3, 6.1% and 6.9% respectively. This increase is on the same 

confidence level as the decrease of the 16:0 fatty acid.  
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Chart 2. The average content (in % of total lipids) of different fatty acids for all controls and treatments in the lipid 

class phospatidylethanolamine (PE). Ctrl. stands for control samples. Treat. stands for treated samples. The bars 

show individual standard deviation values from the average.  Only fatty acids that make up 2% or more of the total 

in any sample are accounted for. 

 

The results for the lipid class PE show a decrease in 16:0 fatty acid content of 9.6%. 

This is in parity with the result gained from the lipid class PG. The change is almost 

invisible between control and treated samples regarding the 18:0 and 18:1 fatty 

acids, as it is concerning the 18:2 and 18:3 fatty acids, with quite high standard 

deviations. 
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.  

Chart 3. The average content (in % of total lipids) of different fatty acids for all controls and treatments in the lipid 

class phosphatidylglycerol (PG). Ctrl. stands for control samples. Treat. stands for treated samples. The bars 

show individual standard deviation values from the average.  Only fatty acids that make up 2% or more of the total 

in any sample are accounted for. 

 

The results for the lipid class PG show a decrease of fatty acid 16:0 at 8.0%, but with 

very high standard deviation. This is also the case when looking at all values gained 

from the lipid class PG, the variation between samples is high and possible changes 

between control and treated samples cannot be fortified in any way.  
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Chart 4. The average content (in % of total lipids) of different fatty acids for all controls and treatments in the lipid 

class monogalactosyldiacylglycerol (MGDG). Ctrl. stands for control samples. Treat. stands for treated samples. 

The bars show individual standard deviation values from the average.  Only fatty acids that make up 2% or more 

of the total in any sample are accounted for. 

 

The results gained from lipid class MGDG show an increase in the content of fatty 

acid 16:0, 16:2 and 18:2. The changes are small and have a low standard deviation 

for these fatty acids, which seem to fortify the hypothesis that the lipid class MGDG 

does not have any implication on cold acclimation. The only values that are not 

expected are the ones gained for fatty acid 18:3, where an increase of 4.1% is 

visible, while showing a low standard deviation.  
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Chart 5. The average (in % of total lipids) of different fatty acids for all controls and treatments in the lipid class 

digalactosoldiacylglycerol (DGDG). Ctrl. stands for control samples. Treat. stands for treated samples. The bars 

show individual standard deviation values from the average.  Only fatty acids that make up 2% or more of the total 

in any sample are accounted for. 

 

The results gained for lipid class DGDG are in parity of the ones gained for the lipid 

class MGDG. This also seems to cohere with the theory that the lipids of the 

thylakoid membrane do not have much to do with cold acclimation in plants.  
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3.2 Gene expression levels 
 

 

 

 

Chart 6. The ratio of gene expression levels between treatment and control samples for all the genes 

investigated. The error bars show individual standard deviation values. Gene expression levels and ratios were 

calculated using the Pfaffl method (“How To Perform The Pfaffl Method For qPCR,” n.d.). Cq-levels were set to 40 

(maximum cycles) in wells where the threshold value was not reached during PCR. 

 

The values gained from gene expression levels show an increase of transcription in 

every gene of interest between treatment and control, with varying ratios from 1.10 

for gene F3H to 2.46 for gene NAC1. The ratios are quite low for all genes, and do 

not strictly point to the conclusion that the plants have actually experienced cold 

stress, since gene expression levels can be different between different plants in the 

same conditions. The genes exhibit quite high standard deviation values, which 

directly excludes the genes A-CoA-d.l.2, AGP-15 and F3H because the gene 

expression levels then reach the same ratio of the treated samples as for the control 

samples. The genes GPCAT and NAC1 still show an increase when regarding 

standard deviation error values.   
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4. Discussion 
 
 

The results do not show any statistically significant change in the configuration of 

membrane lipids, for any lipid class. This was expected for the two lipid classes that 

are not present in the cell membrane, but instead the thylakoid membrane, MGDG 

and DGDG. These have not been shown to play a part in cold acclimation in earlier 

studies made either. There is a slight difference in the configuration of fatty acids in 

the lipid classes PG, PE and PC, but not adequate to draw any conclusions from it. 

The change for these lipid classes between saturated and unsaturated fatty acids 

was in the range of 2-3%. These minor changes in results can be explained by many 

factors. Perhaps the single most deciding factor is the treatment itself. The flasks with 

seedlings were put on ice for six hours; perhaps the seedlings did not experience 

quite the ice-cold treatment but instead only a slight change in temperature from the 

start, because of the spatial barrier that the liquid medium provided. Another big 

factor is probably the time under which the treatment proceeded. From information 

taken from other studies, 4 hours would be well enough to measure significant 

change in the configuration of certain membrane lipid classes in both roots and 

leaves. This would be true for a single plant that is put in a room where the air is 

+4°C or lower, thus this treatment was different. Here, the seedlings were in a kind of 

lump, possibly protecting each other, and the air was probably not chilled to 0°C, 

since the cold source came from underneath. Another factor of interest could be the 

age of the seedlings, in several earlier studies plant were at least 2 weeks old and 

grown individually. In this experiment, the seedlings were only 10 days old and 

perhaps differed in some developmental aspect. Another possible source of error 

might be the choosing of the whole seedling to examine. This differs from earlier 

studies referenced here, where only “above ground” parts have been examined. The 

roots might have a different way of dealing with cold stress, which seems reasonable 

regarding the fact that they are never really exposed to very low or high temperature 

the way stems and leaves and all other above ground parts are. The roots therefore 

might influence the gained results, especially regarding fatty acid composition. 

 

Regarding the results of the gene expression levels of the COR-genes investigated, 

not many conclusions can be drawn. The ratio between treatment and control ranges 



23 

 

 

 

from 1.10 to 2.46. The only gene which was not earlier clearly related to higher gene 

expression levels during cold treatment was A-CoA-d.l.2. This gene showed a ratio of 

1.28, which is not very high. The sources of error regarding the very different results 

that was showed in regard to expected levels - are many. One of the factors that 

most likely did not have any negative influence on the results is the primer pair 

efficiency, which were within recommended range, varying from 95-99%. Another 

factor that most likely did not affect the results is the RNA extraction process, which 

in the Xpose spectrophotometer showed the RNA quantity to vary from 1432.5 to 

1796.2 ng/µl; and with very little contamination from DNA. This is well enough to use 

in complementary DNA synthesis and should not have any influence on the 

unexpected results. The biggest factor that most likely does have a big importance in 

giving these results is the cDNA synthesis. The wells for samples K2, B2 and B5 in 

general had nonexistent or very high Cq-values. The Cq-values for K1, K3 and B3 

are also high in general. This is an inclination that the cDNA synthesis was not 

successful enough to give the amounts needed for primers to amplify the genes of 

interest to reach the threshold value during the time of PCR. The cDNA synthesis 

also affects the results more so than other factors, because it gives very differing 

results of the house keeping gene expression levels, which in turn are used to 

calculate the expression levels of all genes of interest. Another factor of uncertainty is 

the freeze/thaw cycles of cDNA. The samples were stored for several days at -20°C, 

which in itself should not be a problem, with good stability for up to one week. The 

influencing factor could be the freeze, thaw cycle that happened every time a new 

plate needed to be loaded with cDNA. In the extension of the experiment, the cDNA 

had gone through several of these cycles, which could in turn influence the integrity 

of the cDNA.  

The genes (except for GPCAT and A-CoA-d.l.2) are not known to be directly related 

to the change in membrane lipid configuration, and therefore the low ratios of gene 

expression levels in the rest of the genes should only be partly explained by the 

same error sources as for the membrane lipid results. In general, gene expression 

changes much quicker than the configuration of membrane lipids and is therefore 

more likely to change, even if the treatment was not as effective as it ought to be. 

Another factor pointing to the treatment not being the major cause for error regarding 

gene expression levels, are the results of Cq-values gained from samples K1, K3 and 
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B3. These samples present significant change in expression levels for several genes, 

but when calculating the average of all samples, the results are not conclusive.   

 

5. Conclusions 
 

 

It is very difficult to draw any conclusions from the results, being that they are not 

very clear. Regarding the membrane lipid configuration, slight change is visible and 

could be theorized to be different from treatment to control, but not much so when 

coming to draw the conclusion that it has actually changed. The gene expression 

level ratios between treatment and control are very small, not big enough to be 

certain of any actual change of gene expression.  

 

In future studies certain safety nets should be employed, with a larger number of 

control and treatment samples. The sources of errors in this specific study are hard to 

pinpoint, and therefore the method and results showed should be regarded with 

certain amounts of skepticism.  
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