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Natural peatlands provide a small but persistent long-term carbon (C) sink. However, within the 

last century their extent in Sweden has declined by about 1.5-2.0 million hectares due to drainage 

activities. When a peatland is drained, the groundwater level is lowered which leads to changes in 

peat properties, increased microbial activity and larger C and nitrogen (N) losses. The resulting 

changes in the ecosystem also influence fauna and flora communities and reduce biodiversity. The 

overall aim of this master’s thesis was to investigate how 100 years of drainage has affected the 

physical and chemical properties of peat in a drained peatland forest (Trollberget) in northern 

Sweden.  

Analyses of peat bulk density, ash content, C content, N content, C:N ratio, δ13C and δ15N data 

were conducted in relation to ditch distance (i.e. 5, 25 and 50 m) and across the peat profile (up to a 

depth of -55 cm). Similar data were further available for comparison from a nearby natural mire 

(Degerö mire).  

The results showed significant differences in bulk density, C content and δ13C between the 

different distances from ditch. Specifically, most of these parameters (except for δ13C) indicated a 

generally stronger drainage effect and decomposition in samples further away from the ditch which 

is in contrast to expectation. This was also confirmed by the ash and N content as well as C:N ratio 

and δ15N data though the patterns were not as clear and statistically not significant. The δ13C data, 

on the contrary, suggested highest drainage effect and decomposition closer to the ditch. 

 Across the vertical peat profile, significant differences were found for all of the studied variables 

at the drained peatland forest. It is interesting to note that the depth profiles of bulk density, ash and 

N content, C:N ratio and δ15N indicate that drainage and decomposition has been strongest in the 

upper ~10-30 cm layer.  

The comparison with the natural mire suggests that the drained site had significantly higher bulk 

density, due to lowering of the groundwater level and subsequent subsidence, compaction and 

decomposition of the peat. Similarly, higher C and N content and lower C:N ratio compared to the 

natural mire indicate that the peat is strongly decomposed at the drained site. In comparison to the 

natural mire, a significant difference could also be detected for the δ15N values with an enrichment 

of 15N occurring in the upper layer due to enhanced decomposition following drainage. Peat δ13C 

data on the other hand was rather similar between the drained and natural sites.  

Overall, this thesis results demonstrate manifold changes in peat physical and chemical 

properties following drainage of natural mires. While most of these could be associated with 

increased decomposition rates in the upper ~30 cm layer, additional impacts might occur in relation 

to hydrological variations on the site or in connection to the forest edge surrounding the site, which 

may further alter nutrient content and water supply at specific locations across the drained peatland 

site. In summary, it can be said that ditching of mires has significant effects on physical and chemical 

peat properties with important subsequent effects on peatland ecosystem functioning such as 

greenhouse gas emissions, hydrology and biodiversity. 

Keywords: Ash content, biodiversity, bulk density, carbon, climate, compaction, ditch, drainage, 

greenhouse gas emissions, nitrogen, peatland, restoration 

Abstract 



 

 

Naturliga torvområden utgör en liten men långvarig kol (C) sänka på jorden. Under förra seklet 

minskade torvområden i Sverige med cirka 1,5–2,0 miljoner hektar på grund av dränering. När 

torvmarker dräneras sänks grundvattennivån vilket leder till förändringar i torvegenskaper, så som 

ökad mikrobiell aktivitet och större förluster av C och kväve (N). Förändringar i ekosystemet leder 

till andra typer av fauna och flora samhällen och minskar den biologiska mångfalden. Det 

övergripande syftet med denna masteruppsats var att undersöka hur 100 års dränering har påverkat 

torvens fysiska och kemiska egenskaper i en dränerad torvskog (Trollberget) i norra Sverige. 

 Analyser av torvbulkdensitet, askinnehåll, C-innehåll, N-innehåll, C:N-kvot samt δ13C och δ15N 

data utfördes i relation till dikningsavståndet (dvs 5, 25 och 50 m) och torvprofilen (upp till -55 cm). 

Liknande data fanns för jämförelse från en närliggande naturlig Degerö-myr.  

Resultaten visade signifikanta skillnader i bulkdensitet, C-innehåll och δ13C mellan de olika 

avstånden från diket. Dessa parametrar (förutom δ13C) indikerade en generellt kraftigare 

dräneringseffekt och nedbrytningskapacitet i prover längre bort från diket, vilket var motsatsen till 

de förväntade resultaten om högre hastigheter av nedbrytning närmare diket där dräneringseffekten 

borde vara som störst, inte visade sig stämma. Detta bekräftades också av ask- och N-innehållet 

såväl som C:N-kvoten och δ15N data, även om mönstret i data inte var lika tydligt och statistiskt sett 

inte signifikant. δ13C data visade omvänt resultat med högre dräneringseffekt och nedbrytning 

närmast diket. 

 I den vertikala torvprofilen kunde signifikanta skillnader konstaterades för alla de studerade 

parametrarna i den dränerade torvskogen. Det intressanta att notera är att torvprofilerna för 

bulkdensitet, ask- och N-innehåll, C:N-kvoten och δ15N indikerade att dräneringseffekten och 

nedbrytningen var starkast i det övre ~10-30 cm-skiktet. 

 Jämförelsen med den naturliga myren antyder att det dränerade området hade betydligt högre 

densitet på grund av sänkning av grundvattennivån och efterföljande sänkning, kompaktering och 

nedbrytning av torven. På liknande sätt indikerar även högre C- och N-innehåll och en lägre C:N-

kvot att torven bryts ner kraftigare på den dränerade myren jämfört med den naturliga myren. I 

jämförelsen med den naturliga myren kan en signifikant skillnad också detekteras för δ15N värdena 

med en anrikning av 15N som uppträder i det övre skiktet på grund av den intensifierade 

nedbrytningen efter dränering. δ13C data hade och andra sidan väldigt lika värden mellan den 

dränerade och naturliga myren.  

Överlag visade dessa resultat många förändringar i både fysiska och kemiska egenskaper hos 

torv som blivit dränerad. Flest resultat visade sig vara förknippade med ökade 

nedbrytningshastigheter i det övre ~30 cm-skiktet, vilket kan ha uppstått i förhållande till ytterligare 

påverkande faktorer så som hydrologiska variationer på platsen eller prover tagna i anslutning till 

skogskanten som omger platsen, vilket kan ge ytterligare förändringar i näringsinnehållet och 

vattentillgången på specifika platser på det dränerade torvområdet. Sammanfattningsvis kan man 

säga att dikning av våtmarker har betydande effekter på fysikaliska och kemiska torvegenskaper 

med viktiga efterföljande effekter på torvmarkens ekosystem så som växthusgaser, hydrologi och 

biodiversitet. 

 

 

Nyckelord: Ask innehåll, biodiversitet, bulkdensitet, dike, dränering, klimat, kol, kompaktering, 

kväve, restaurering, torvmark, växthuseffekter  
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Due to increasing concern regarding the anthropogenic emissions of greenhouse 

gases, peatlands have received increasing attention in recent years. The Swedish 

land area consists of 10 million hectares of peatlands and shallow peat areas, which 

corresponds to about one fourth of the total land area (Hånell 2009).  

Since the 19th century, approximately 1.5-2 million hectares of peatlands have 

been drained to increase forest production in Sweden (Hånell 2006). However, 

interest in ditching is not as great today as it once was and over the past 10 years 

attempts to restore ditched peatlands been made (Öberg 2018).  

One reason for restoring drained peatlands is the increasing knowledge of 

climate change and recent studies suggesting that drained peatlands may be acting 

as large greenhouse gas emission sources to the atmosphere (He et al. 2016; Roulet 

& Moore 1995). Another reason is to increase biodiversity in the landscape (Laine 

et al. 1995). Drainage also alters the physical and chemical peat properties 

significantly (Krüger et al. 2015). Since these peat properties affect peatland 

hydrology and biogeochemistry (e.g. greenhouse gas production), it is important to 

understand how they change following drainage. 

1.1. Definition of peatlands 

Peatlands can be defined as terrain that is covered with a naturally accumulated 

layer of peat. Usually, a minimum depth of peat is required for a site to be classified 

as peatland. In Sweden, this limit is 30 cm. In contrast, land without peat or with a 

peat layer <30 cm is called wetland or mineral soil (Hånell 2006). Definitions in 

other countries could for example use >40 cm depth of peat to define peatlands, or 

even up to >70 cm (Rudqvist 1999; Gorham 1991).  

1.2. Peat formation 

Peat consists of partially decomposed dead organic material. Under anaerobic 

conditions, peat is created from the remnants of mosses and vascular plants that 

would ordinarily be decomposed. In this case the decomposition of the dead organic 

material has been constrained by a lack of oxygen, which is caused by water 

saturation (Joosten & Clarke 2002).  

Introduction  
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1.3. History of previous use of peatlands until today   

In Sweden, drainage of peatlands has been going on for over 150 years and 

started in the 19th century primarily for the purpose of cultivation, e.g. grazing and 

haymaking (Holmen 1964; Hånell 2009). Forest ditching was first implemented 

relatively late in connection with the increasing forest industry that also was late to 

develop in Sweden (Holmen 1964). The first available forest statistics about 

ditching was between 1873-1890 (Holmen 1964). At the end of the 19th century 

forest ditching was occurring to a great extent in Sweden. It was most intense 

between 1920-1940 and became a way to decrease unemployment during the 1930s 

depression (Holmen 1964). A second peak occurred around the 1980s when interest 

in ditching was again as high as it was in the 1930s because of a new type of ditching 

on clear-cuts, i.e. remedial ditching (Hånell 2009). Until 1990 the state provided 

the industry subsidies for ditching before it expired and today the interest in ditching 

is as low as it has ever been, mainly due to the restriction from an environmental 

point of view (Hånell 2009). Since 1986, forest owners have been obliged to seek 

permission for traditional ditching, depending on the size of the object (Hånell 

2009).  

1.4. Peatland restoration today   

Peatland restoration plays a key part in the landscape in creating biodiversity and 

decreasing net release or even removing CO2 from the atmosphere (Laine et al. 

1995; Jungkunst et al. 2012). In order to ensure a successful restoration, it is 

important to understand the various impacts drainage has had on the peatland 

ecosystem, e.g. on the peat properties.  

From 2010 to 2018 approximately 3600 hectares of peatlands have been 

successfully restored in Sweden and a lot of these peatland restoration projects were 

financed through the European Union LIFE programme between 2010-2015. 

However, the time required for the restoration process is slow and the scale is too 

small to successfully reverse the negative development at a national level. During 

2018, approximately 623 hectares of drained peatlands were restored with funding 

from the state (Öberg 2018). 

The decision of which drained peatlands should be selected for restoration in 

Sweden is linked to the EU Council Directive (2013). The directive covers the 

Natura 2000 areas that are protected for conservation of natural habitats and wild 

fauna and flora to protect Europe’s biodiversity (The council of the European 

communities).  

 



11 

 

 

1.5. Drainage impacts on peatland ecosystem 

functioning and peat properties 

1.5.1. Ecosystem services 

Natural peatlands deliver many important ecosystem services such as climate 

regulation through carbon (C) sequestration and storage, water purification and 

regulation, biodiversity maintenance, habitat for wildlife etc. Peatlands have been 

drained for various purposes (e.g. afforestation), which has contributed to a 

reduction of natural peatlands and habitat loss in the landscape. In summary, it can 

be said that the negative effects of peatland drainage are (Hånell 2006; Henrikson 

2006):  

 

- Changed water input leading to changing temperature in the surface area 

- Increased greenhouse gas emissions 

- Nutrient leakage due to altered water flow (water levels, waterways) 

- Negative effect on water quality, i.e. pH and toxins (e.g. mercury) 

- Erosion and further transport of dissolved organic material which can later 

cause clogging of the water channels 

- Impaired natural cleaning ability 

 

1.5.2. Greenhouse gases 

Natural peatlands are important net sinks for CO2 but can be large sources for 

CH4 emissions to the atmosphere. Despite the fact that trees are a valuable source 

for uptake of atmospheric carbon dioxide (CO2), forests on peatland can also act as 

a source for greenhouse gases. Peatlands are most efficient net C sinks in the 

northern latitudes between 50 ̊ N to 70 ̊ N (Jungkunst et al. 2012). The CO2 

emissions to the atmosphere often increase following drainage because of the 

increased peat decomposition rates (Jungkunst et al. 2012; Minkkinen K. & Laine 

1998). Drained peatlands also release methane (CH4) and nitrous oxide (N2O) and 

the net exchanges of these gases depend on several factors such as climate zone, 

forest productivity, peat nutrient status, tree species and groundwater level (Hånell 

2006). 

1.5.3. Water quality 

The runoff of water from a drained peatland has often raised levels of dissolved 

organic material, which can later clog the water channel. Moreover, the pH and N 

leakage in the surrounding water ecosystem can affect species in the bottom fauna 

of streams (Hånell & Magnusson 2005).  
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1.5.4. Biological diversity 

The fauna and flora that are adapted to natural peatlands, will become affected 

when drainage effects make the peatland drier. First of all, tree growth will likely 

increase in the first few years following drainage. Ground vegetation composition 

will also change significantly. The ground vegetation (e.g. sedges and mosses) 

which benefit from the wet surface area and the oxygen-poor soil environment will 

likely disappear, and the numbers of shrubs that are adapted to drier ground layer 

conditions will increase (Laine et al. 1995). The effects will be greatest the first five 

to ten years after drainage and slightly decrease as new plants establish and shade 

the ground vegetation (Vasander 1987). The ground layer will gain other species as 

tree groups shade the original species, and the flora will change to more typical 

forest species. These changes lead to improved fertility of the soil and a new type 

of ecosystem is developed (Laine et al. 1995).  

Oligotrophic and mesotrophic peatlands are characterized by Sphagnum mosses 

but could also include vascular plants, which produce rhizomes and roots which 

could be converted to organic matter in the deeper layer (Paavilainen & Päivänen 

1995). After peatland drainage, the Sphagnum species are replaced by other mosses 

that are more likely to grow in drier soils (e.g. Hylocomium splendens, Pleurozium 

schreberi etc.) (Hånell 2009). 

The fauna of peatlands includes birds specially adapted to peatlands (e.g. the 

wading bird) but there could also be other birds that are dependent on wetlands for 

predation (e.g. owls and grouse) (Simonsson 1987). There are also different insects 

and water fauna that could be affected of different ground vegetation and changed 

water content (Hånell 2009). 

 

 

1.5.5. Peat physical properties 

The groundwater level on drained peatlands is usually ~0.5 m below the ground 

(Simonsson 1987). Water level drawdown following drainage causes first a 

physical collapse of plant structures and compaction of the peat matrix. After that, 

increased aerobic decomposition of organic matter as well as the increasing mass 

of the establishing tree stand will further increase peat subsidence and compaction 

(Laine et al. 2006). The result of this is an increase in peat bulk density which 

further affects the water retention ability and hydraulic conductivity of the peat 

material (Minkkinen & Laine 1998). In addition, lowered groundwater levels also 

reduce the fraction of accumulated organic material due to peat oxidation resulting 

in an accumulation of mineral matter (i.e. ash). The temperature dynamics of peat 

also change following drainage. Specifically, the surface peat becomes warmer, 

with rising temperature depending on less water content in the peat (Paavilainen & 

Päivänen 1995). 
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1.5.6. Peatland carbon 

Research shows that temperature conditions play a major role in C stock 

accumulation rates (Yu et al. 2010; Davidson & Janssens 2006). The loss of C is 

often dependent on the depth of the water table (Holden 2005). When the water 

table decreases, peat becomes more exposed to oxygen, which contributes to 

increasing CO2 emissions (Arnold 2006). A higher water table results in less 

oxygen and therefore a reduced peat decomposition and greater CH4 production 

(Huttunen et al. 2003).  

Stable C isotopes are good indicators of biogeochemical processes in the soil 

(Alewell et al. 2011). Specifically, there are two stable C isotopes called 13C and 

12C (Fry 2006). In natural peatlands with low decomposition rates, the ratio of 13C 

to 12C (i.e. δ13C value) is almost constant along a depth profile. Following drainage, 

however, an increase in 13C can be expected due to the preferential use of the lighter 

12C by the decomposers (Ågren et al. 1996; Alewell et al. 2011; Krüger et al. 

2015). Therefore, higher (i.e. more positive) δ13C values indicate an increased 

decomposition (Alewell et al. 2011; Fry 2006).  

1.5.7. Peatland nitrogen 

Unlike mineral soils, peatlands contain a lot of N but have a shortage of mineral 

nutrients, mainly phosphorus and potassium (Hånell & Magnusson 2005). After 

drainage, the emissions of N2O usually increase in nutrient-rich peatland sites, i.e. 

with C:N ratios <25 (Klemedtsson et al. 2005). A lower C:N ratio indicates higher 

degradation rate and enhanced N content in the peat material (SLU 2019). N2O 

production occurs primarily through nitrification and denitrification processes 

(Jungkunst et al. 2012). It is when N is denitrified to N2O instead of nitrogen gas 

(N2) that the emissions become an environmental issue since N2O is a strong 

greenhouse gas (Skogsstyrelsen & Magnusson 2015).  

Stable N isotopes can be used to trace the biogeochemical process in the soil. 

Specifically, N has two stable isotopes, i.e. 15N and 14N (Fry 2006). Differences in 

these isotopes in transects and vertical depth profiles can reveal shifts in the 

ecosystem and are valuable for the analysis of sources and sinks in the atmosphere 

and soil (Fry 2006). The variation of the isotopes is created due to a cumulative 

faster loss of 14N which contributes to an increase of 15N during decomposition in 

soils (Fry 2006), provided that the 14N is lost/translocated from the system. Higher 

(i.e. more positive) 15N to 14N ratios (i.e. δ15N values) are therefore indicative of 

increased decomposition rates. 
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1.6. Aim 

The purpose of this master’s thesis is to investigate how 100 years of drainage 

have affected peat properties in a drained peatland forest (Trollberget) in northern 

Sweden. The thesis focuses on investigating the following peat physical and 

chemical properties: bulk density, ash content, C content, N content, C:N ratio as 

well as δ13C and δ15N values. Similar readily available data from a nearby natural 

mire (Degerö Stormyr) are used as a reference for undrained conditions. The 

questions this study is intended to answer are: 

 

• How do the physical and chemical peat properties change with distance 

from the drainage ditch? 

• How do the physical and chemical peat properties change with depth along 

the peat profile? 

• What are the differences in physical and chemical peat properties between 

a drained peatland vs. a natural peatland? 
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2.1. Site description 

Peat samples were collected from a nutrient-poor drained peatland forest, 

Trollberget (64.15943N, 19.92439E), located 45 km northwest of Umeå in the 

county of Västerbotten, northern Sweden (Figure 1). In its natural state, the site was 

described as being mostly a flark-and-string mire (flarkmyr), i.e. a wet mire with 

areas of open water. The ditches on the mire were dug sometime before 1924, i.e. 

approximately 100 years ago. In 1939, the site was marked as a forested mire 

(skogsklädd myr) (Nordstedt, 2019). Today, the drainage ditches on the site no 

longer function properly and the mean groundwater level is around -25 cm. Peat 

depth extends to about 3 m. The vegetation of the site is characterized by a 

moderately sparse cover of Scots pine but also some small deciduous trees (e.g. 

dwarf birch) (Länsstyrelsen Västerbotten 2019a).  

Figure 1. Locations of the Trollberget drained peatland forest and the natural Degerö mire 

northwest of Umeå, Sweden (ESRI 2016). 

 

Already available data are used for comparison from the nearby (<15 km 

distance) natural peatland Degerö Stormyr – a minerogenic oligotrophic mire (i.e. 

2. Material and Methods 
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a nutrient-poor fen) (Figure 1). The Degerö mire (64.17641N, 19.57644E) belongs 

to Vindelns research forests, called Kulbäcksliden Experimental Forest 

(Länsstyrelsen Västerbotten 2019b). This is an undisturbed mire with no 

management and it has a similar characterized biotope as the investigated peatland 

at Trollberget. The peat depth on the site is mainly ranging between 3 and 4 m, 

however, depths of up to 8 m have been measured. The mean groundwater level is 

around -15 cm. The site is dominated by lawn and carpet plant communities (e.g. 

tussock cottongrass, tufted bulrush, bog cranberry, bog-rosemary and Sphagnum 

spp.) (Nilsson et al. 2008).  

The climate of the region is characterized by an annual mean temperature and 

precipitation of 4 °C and 700 mm, respectively (SMHI 2018). 

 

2.2. Field measurements 

Trollberget. A total of 36 peat cores were collected with a stainless-steel 

rectangular soil corer (custom-made; inner dimensions 8×8.4 cm). The peat cores 

were taken from the top 55 cm of the peat profile along 6 transects established 

perpendicular to the main drainage ditch with 3 measurement locations (5, 25 and 

50 m from the ditch) on both sides of the ditch (Appendix Figure 1). The collected 

peat cores were sliced into 5 cm sections in the field (resulting in a total of ~400 

samples) and stored in a cooler at 4 °C until further processing in the lab. 

 

2.3. Laboratory work and calculations 

Bulk density. The collected peat samples were dried in a drying cabinet at 60 °C 

until constant weight (5-7 days), cooled down in a desiccator (Nalgene) and 

weighed on a digital scale (Thermo Fisher Scientific) to determine their dry weight. 

Bulk density (g/cm3) for each sample was calculated based on the dry weight and 

total volume. 

 

Bulk density (BD) was determined following Formula (1): 

 

BD = (Mi -Me)/Vi                                      (1) 

where 

Mi is the mass in g of the dish plus the sample; 

Me is the mass in g of the empty dish; 

Vi is the volume of the total peat sample (the inner dimension of the corer). 
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The result was calculated to two decimal places. 

 

Ash content. Subsamples of 2-5 g were dried at 105 °C to a constant weight, 

cooled down in a custom-made desiccator box and weighed on a four decimal scale 

(Mettler AG204) to determine the dry weight of each sample before combustion. 

The samples were then placed in a muffle furnace (Nabertherm) and heated at 550 

°C for 6 h. Following this, the samples were again cooled down in a desiccator and 

weighed to determine the dry weight of the sample after heating at 550 °C.  

 

Ash content was calculated from loss on ignition data following Formula (2): 

 

Ash = 100 – [((m2 –m1)-(m3-m1))/(m2-m1) ×100]                      (2)  

where  

m1 is the mass in g of the empty dish; 

m2 is the mass in g of the dish plus the sample portion; 

m3 is the mass in g of the dish plus ash. 

 

The result was calculated to two decimal places and the mean value was rounded 

to the nearest 0.01%. 

 

Chemical analysis (C, N, δ13C and δ15N) of peat. The required preparation work 

for the chemical analyses consisted of grinding, drying and weighing of smaller 

subsamples of the collected peat material. The samples were ground using a tube 

mill (IKA Tube Mill control) and disposable grinding chambers (IKA MT 40.100). 

Thicker tree roots were removed prior to grinding. The grinded samples were dried 

at 70 °C until constant weight (~16 hours), cooled down in a desiccator and weighed 

into small tin cups on a four decimal scale (Mettler Toledo). The samples were 

analysed for C and N contents (%) as well as δ13C and δ15N values (‰) on an 

Elemental Analyzer/Isotope Ratio Mass Spectrometry system (Thermo Fisher 

Scientific) by the Stable Isotope Laboratory and Biogeochemical Analyses 

Laboratory at the department of Forest Ecology and Management, SLU, Umeå. 

 

2.4. Reference data from a natural mire 

Degerö. The readily available data from the Degerö mire included information 

on peat bulk density, C and N contents as well as δ13C and δ15N values. The peat 

cores were collected in August 2015 from the top 36 cm of the profile from 8 

different locations around the eddy covariance flux tower on the mire. The samples 

were originally analysed in 2 cm sections but for the purpose of this thesis 10 cm 
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averages were also calculated in order to facilitate statistical comparisons with the 

drained Trollberget site. 

 

2.5. Statistical analysis 

The effects of the two factors ‘distance from ditch’ and ‘peat depth’ on the 

response variables (BD, ash content, C content, N content, C:N ratio, δ13C and δ15N) 

were statistically evaluated at the Trollberget site. The factor ‘distance from ditch’ 

included 3 groups (5, 25 and 50 m) and the factor ‘peat depth’ included 11 groups 

(-5, -10, …, -55 cm). Outlier values in the data occurring possibly due to 

disturbance during sampling or processing were defined as > mean ± 3SD and 

removed prior to analysis. In total, 3.5% of the ash content data and <1% of data 

for each of the remaining variables were identified as outlier. Initially, the data for 

each of the response variables were tested for normal distribution using the Ryan-

joiner test (similar to Shapiro-Wilk test). Based on these test results, none of the 

data were normally distributed, even after applying a log-transformation. Therefore, 

the parametric 2-way analysis of variance (ANOVA) to explore the effects of both 

factors at the same time could not be applied. Instead, the non-parametric test 

Kruskal-Wallis test for multiple groups combined with a Bonferroni post-hoc 

multiple comparison was used to explore the effect of one factor at a time. In an 

additional Kruskal-Wallis test, the available peat properties data (BD, C content, N 

content, δ13C and δ15N) from the natural Degerö mire was included as a fourth 

‘group’ to test for its difference with the three ditch distances at the drained 

Trollberget peatland for 0-30 cm depth (for which data from Degerö was available). 

Effects were statistically significant if P<0.05. P is the statistical probability value, 

for a given model, indicating evidence to reject the null hypothesis with less than 5 

% probability that the null hypothesis is correct. All statistical analyses were carried 

out using the Minitab software (Minitab 2019). 
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3.1. Bulk density 

BD values ranged from 0.05 to 0.13 g/cm3 and generally increased with distance 

from the ditch and with peat depth at the Trollberget drained peatland site (Figure 

2). The statistical analysis suggested that BD was significantly higher at 50 m 

compared to 5 and 25 m distances from the ditch (Table 1). Across the peat profile, 

BD was significantly lower at I) -5 cm compared to all other depths and II) -10 cm 

compared to -15 and -20 cm depths (Table 2). BD was significantly higher at the 

Trollberget drained peatland at all 3 ditch distances compared to the natural Degerö 

mire (Figure 2, Table 1). 

Figure 2. Bulk density (g/cm3) across the peat profile at the Trollberget drained peatland (5, 25 and 

50 m distances from the ditch) and at the natural Degerö mire. 
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Table 1. Ditch distance effects on peat properties, averaged over the sampling depths, including 

bulk density (BD), ash content, carbon (C) content, nitrogen (N) content, C:N ratio, δ13C signature 

and δ 15N signature from both Trollberget peatland and Degerö mire. Values with different letters 

are significantly different. 

Distances 

BD 

(g/cm3) 

Ash  

(%) 

C  

(%) 

N  

(%) 

C:N 

ratio 

δ13C 

(‰) 

δ15N 

(‰) 

5 0.1a 3.0 a 51.9 a 1.2 a 45.8 a 

-

26.4 a 

-0.9 

a 

25 0.1 a 4.2 a 51.9 a 1.3 a 45.6 a 

-

26.7 a 

-0.9 

a 

50 0.1 b 3.8 a 52.7 b 1.3 a 47.5 a 

-

27.0 b 

-

0.7 a 

Degerö 0.0 c - 47.9 c 0.8 c 66.5 c 

-

27.3 c 

-1.8 

c 

 

Table 2. Peat depth effects on peat properties including bulk density (BD), ash content, carbon (C) 

content, nitrogen (N) content, C:N ratio, δ13C signature and δ 15N signature at the Trollberget 

peatland. Values with different letters are significantly different. 

Depth 

BD 

(g/cm3) 

Ash  

(%) 

C  

(%) 

N  

(%) 

C:N  

ratio 

δ13C  

(‰) 

δ15N  

(‰) 

-5 0.0 a 2.2 a 51.0 a 1.1 a 47.0 a -28.5 a -0.7 ac 

-10 0.0 b 5.9 a 50.3 a 1.5 b 38.0 bc 

-

27.4 ab 0.3 b 

-15 0.0 c 5.1 a 50.9 a 1.5 b 38.0 c 

-26.8 

bc 0.2 b 

-20 0.1 c 4.0 ab 51.8 ab 1.5b 

45.5 bc

d -26.5 c -0.3 ab 

-25 0.1 bc 3.5 ab 52.3 ab 1.4 ab 

49.9 ac

d -26.4 c -0.8 bc 

-30 0.1 bc 3.3 b 52.8 ab 1.3 ab 

50.4 ac

d -26.3 c -1.1 ac 

-35 0.1 bc 4.4 b 52.5 ab 1.2 ab 

49.9 ab

d -26.2 c -1.3 c 

-40 0.1 bc 2.8 b 52.5 ab 1.2 ab 50.4 ad -26.3 c -1.2 c 

-45 0.1 bc 2.2 b 53.2 b 1.2 ab 50.0 ad -26.4 c -1.3 c 

-50 0.1 bc 2.1 b 53.2 b 1.2 ab 50.0 ad -26.5 c -1.5 c 

-55 0.1 bc 4.3 b 53.5 b 1.2 ab 43.8 a -26.5 c -1.4 c 

 

3.2. Ash content 

In general, ash content varied between 1.73 and 7.20% with somewhat lower 

values at the 5 m distance from ditch compared to the 25 and 50 m distances (Figure 

3). However, none of these differences were statistically significant (Table 1). In 

the peat depth profiles, ash content was significantly higher at I) -10 cm vs. -30 to 
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-55 cm depths and II) -15 cm vs. -30 to -55 cm depths (Table 2). Similar data from 

the Degerö mire was missing and not available for comparison. 

Figure 3. Ash content (%) across the peat profile at the Trollberget drained peatland at 5, 25 and 

50 m distances from the main drainage ditch.  
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Figure 4. Carbon (C) content (%) across the peat profile at the Trollberget drained peatland (5, 25 

and 50 m distances from the ditch) and at the natural Degerö mire. 
 

N content varied between 0.95% and 1.65% at the Trollberget peatland with 

slightly higher values observed for distances further away from the ditch (Figure 

5). However, none of the differences were statistically significant (Table 1). N 

content showed a generally decreasing trend with peat depth with the exception of 

the uppermost peat layer where the values were higher. Across the peat profile, N 

content was significantly higher at -10 to -20 cm depths compared to the -5 cm 

depth (Table 2). N content was significantly higher at the Trollberget drained 

peatland for all 3 ditch distances compared to the natural Degerö mire (Figure 5, 

Table 1).  

Figure 5. Nitrogen (N) content (%) across the peat profile at the Trollberget drained peatland (5, 

25 and 50 m distances from the ditch) and at the natural Degerö mire. 

 

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

46 48 50 52 54 56

D
ep

th
 (

cm
)

C content (%)

5 m

25 m

50 m

Degerö

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 0.5 1 1.5 2

D
ep

th
 (

cm
)

N content (%)

5 m

25 m

50 m

Degerö



23 

 

 

The C:N ratio at the Trollberget peatland ranged from 35.5 to 58.8 and in general 

increased with peat depth (Figure 6). No clear pattern was observed for the 

distances from the ditch and the statistical analysis showed no significant 

differences (Figure 6, Table 1). Across the peat profile, C:N ratio was significantly 

I) higher at -5 cm vs. -10 to -20 cm depths, II) lower at -10 cm vs. -40 to -55 cm 

depths, III) lower at -15 cm vs. -35 to -55 cm depths and IV) lower at -20 cm vs. -

55 cm depth (Table 2). The C:N ratio was significantly lower at the Trollberget 

drained peatland for all three ditch distances, as compared to the natural Degerö 

mire (Figure 6, Table 1). The C:N ratios at the drained and undrained sites 

converged at ratios between 40 to 45 at around -30 to -35 cm depth. 

 

Figure 6. The C:N ratio across the peat profile at the Trollberget drained peatland (5, 25 and 50 m 

distances from the ditch) and at the natural Degerö mire. 
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Figure 7. δ13C (‰) across the peat profile at the Trollberget drained peatland (5, 25 and 50 m 

distances from the ditch) and at the natural Degerö mire.  

 

The δ15N values were somewhat higher at the 50 m from the ditch, however, no 

significant differences were observed in the relationships between δ15N and 

distance from ditch (Figure 8, Table 1). Across the peat profile, δ15N values first 

increased from -0.5‰ or more negative to about 0.5‰ at the -10 cm depth and then 

decreased to about -1.5‰ in the deeper layers (Figure 8). The statistical analysis 

showed that δ15N was significantly I) lower at -5 cm vs. -10 to -15 cm depths, II) 

higher at -10 cm vs. -30 to -55 cm depths, ) higher at -15 cm vs. -35 to -55 cm 

depths and IV) higher at -20 cm vs. -40 to -55 cm depths (Table 2). Down to about 

-25 cm depth, the δ15N values were significantly higher at the Trollberget drained 

peatland for all three ditch distances, as compared to the natural Degerö mire 

(Figure 8, Table 1).  

 
Figure 8. δ15N (‰) across the peat profile at the Trollberget drained peatland (5, 25 and 50 m 

distances from the ditch) and at the natural Degerö mire. 
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4.1. Bulk density 

The significantly lower BD at 5 m compared to 25 and 50 m away from the ditch 

could be interpreted as a generally larger drainage effect and enhanced 

decomposition rates further away from the ditch which in turn has resulted in more 

compacted peat material. This is in contrast to the expectation of higher BD 

occurring closer to the ditch where the drainage is supposed to be larger. One 

possible explanation for this unexpected result could be additional effects from 

hydrological variations on the site due to differences in e.g. the terrain sloping or 

the topography of the underlying mineral soil. Such factors could create differences 

in physical and chemical peat properties that could mask the drainage effects which 

otherwise might occur in relation to ditch distance. Another explanation could be 

that the areas closer to the surrounding forest edge (i.e. further away from the ditch) 

are generally better drained due to a higher water loss via tree transpiration leading 

to higher decomposition rates compared to those located closer to the ditch. In 

support of our findings, Minkkinen & Laine (1998) also showed a positive 

relationship between the tree stand volume and BD.  

BD peat profile analysis suggested that the highest drainage effect occurred 

down to a depth of approximately -30 cm at the drained Trollberget peatland. 

Similarly, Minkkinen & Laine (1998) who did research on drained peatland forests 

in Finland found that BD increased along the peat profile following water level 

drawdown until ~30 cm depth due to enhanced decomposition. Furthermore, 

Krüger et al. (2015) did research on biogeochemical parameters as indicators for 

peat degradation in drained peatlands in Germany and the results of their study 

showed increasing BD in the ~10-60 cm depth. The higher BD in the upper layers 

was interpreted as the result of enhanced oxidation and decomposition of organic 

matter (Krüger et al. 2015). The results from Trollberget are, thus, overall similar 

to these studies, showing an initially increasing BD to a certain depth following 

which BD decreases again in the deeper layers. The differences in depths where 

maximum BD occurred in Trollberget and the abovementioned studies could reflect 

4. Discussion 
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both different effects of water level drawdown or e.g. contrasting site histories, 

differences in the time since drainage was conducted, vegetation composition, mean 

groundwater level. 

The comparison between the drained Trollberget peatland and the natural 

Degerö mire showed that BD at Trollberget was significantly higher demonstrating 

clearly the effect of drainage. It is further noteworthy that the effect was most 

pronounced in the depth interval of -15 to -30 cm. This result was expected since 

the altered hydrology following drainage commonly results in a physical collapse 

of the peat matrix, higher decomposition rates and thus an increase in BD as also 

previously shown by other studies (Minkkinen & Laine 1998; Krüger et al. 2015; 

Wells & Williams 1996).   

 

 

4.2. Ash content 

The results of ash content showed no significant difference between the different 

ditch distances. Nevertheless, the data indicate that ash content was somewhat 

higher at the 25 and 50 m locations compared to the 5 m distance from ditch. This 

suggests that higher decomposition rates occurred further away from the ditch 

reducing the fraction of remaining organic material due to peat oxidation and 

resulting in an accumulation of mineral material (i.e. ash). These results are similar 

to the results of BD and might therefore be attributed to the same underlying 

reasons, i.e. additional effects from variations in hydrology and/or from the nearby 

forest edge, which may mask the distance-to-ditch effects. In agreement with our 

findings, Leifeld et al. (2011) who investigated peatlands with contrasting 

hydrological conditions found that ash content was generally higher in heavily 

disturbed (i.e. drained) peatlands.  

The ash content results at Trollberget further suggest highest accumulated 

amounts of mineral material in the upper -25 cm of the peat profile. Likewise, 

Krüger et al. (2015) reported higher ash contents in the uppermost peat layers of 

the drained and managed peatland sites. Together with higher BD observed in the 

upper horizons at all three ditch distances at the Trollberget site, these data support 

the notion of a higher drainage effect and enhanced decomposition rates occurring 

in the upper -25 cm layer (Krüger et al. 2015).  

Unfortunately, no ash content data were available from the natural Degerö mire 

for comparison with the drained Trollberget peatland. However, it was reported by 

Krüger et al. (2015) that ash content in the deeper undisturbed layers of a near-

natural peatland scattered around 2.5% which means that below a depth of about -

25 cm, ash content in our study falls within the same range. Moreover, Leifeld et 
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al. (2011) who compared peatlands with various drainage states showed that ash 

contents were lowest in the undrained natural bog. 

 

 

4.3. Carbon and nitrogen content and C:N ratio 

In general, C content in peat was higher in locations further away from the ditch. 

A significant difference was, however, only found between the 25 vs. 50 m 

distances and this was primarily the result of higher C contents at lower depths (i.e. 

below -25 cm) at the 50 m distance. Thus, a clear effect of distance from the ditch 

on the C content could not be observed in this study. The generally higher C content 

further from the ditch may, however, be interpreted as a greater drainage influence 

(Krüger et al. 2015). The data further suggests that the amount of C generally 

increased with depth across the peat profile. This is in line with Minkkinen (1999) 

and Tfaily et al. (2014) who also showed increasing C content with depth in the 

peat profile. This occurs because as C compounds are consumed in peat, there is no 

inert mineral material to increase in relative concentration and thus as a result the 

relative C content in the remaining material increases (Minkkinen 1999; Tfaily et 

al. 2014).  

The N content was overall slightly higher away (i.e. 25 and 50 m) from the ditch, 

as compared to close to the ditch (5 m). However, these differences were not 

significant and thus, a clear ditch distance effect was not evident in this study. 

Higher values of N can indicate increased mineralization rates (Damman 1988) and 

thus, more decomposed peat could explain the elevated N contents further away 

from the ditch observed in our study. This result is also in line with the BD, ash and 

C content data which all suggest higher decomposition rates, and higher degree of 

humification, with increasing distance from the ditch. The data further suggest 

highest N contents in the upper ~10-30 cm layer and relatively constant values 

thereafter. This is supported by findings from Laiho et al. (1999) who showed 

increased N content in the topmost peat layers after forestry drainage. These higher 

N contents could be explained by microbial N immobilization (Wells & Williams 

1996). On the other hand, uptake by vegetation and an increase of N mineralization 

may have contributed to a decrease in N content in the deeper peat layers (Wells & 

Williams 1996).  

The vertical C:N ratio profiles at Trollberget were practically identical at the 

different ditch distances. The observed values for C:N had no significant pattern 

relative to distance from ditch which suggests that the drainage impact was not 

strong enough to cause a change. According to Borgmark and Schoning (2006), 

site-specific conditions can play a major role, e.g. different water content depending 

on slopes of the terrain. Significant differences in C:N ratio occurred across the peat 
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profiles with lower values of 35 in the upper ~10-30 cm layer and relatively 

constant values of about 50 deeper down. These results are in line with the findings 

by Borgmark and Schoning (2006) who report low C:N ratios and high N 

concentrations in response to peat decomposition. In our study, the lowest C:N ratio 

is just above 35 but mainly around 50 which is indicative of decomposition under 

aerobic conditions (Kuhry & Vitt 1996).  

The observed values for C and N contents and the C:N ratio at the drained 

Trollberget peatland differed considerably from those at the natural Degerö mire. 

For instance, while C content increased with depth throughout the upper layers at 

both sites, the values remained in general significantly lower at the natural mire. 

This could be a result of differences in plant composition at the two sites since the 

C content may vary across plant species (Jones et al. 2010; Broder et al. 2012; 

Krüger et al. 2015). At Degerö, a higher contribution of Sphagnum mosses to the 

surface peat would explain the lower C content. However, the higher C contents at 

Trollberget also clearly demonstrate the effect of drainage (Tfaily et al. 2014). 

Furthermore, the N content increased steadily with depth at the natural mire, 

whereas a maximum at around -10 to -20 cm depth and a subsequent decrease was 

observed at the drained peatland. The observed patterns at the drained site indicate 

an accelerated decomposition of the peat in the upper layers due to drainage as 

previously suggested also in other studies (Krüger et al. 2015; Kuhry & Vitt 1996). 

The combined changes in C and N contents also caused contrasting patterns for 

the C:N ratio at the drained and natural peatland sites. Specifically, the C:N ratio 

was reduced by more than half in the upper 20 cm layer at the drained Trollberget 

peatland. However, increasing and decreasing C:N ratios within the upper layer at 

the drained Trollberget and natural Degerö sites, respectively, lead to similar C:N 

ratios below a depth of -30 cm and downward. Thus, although the natural Degerö 

mire cannot be considered as a true reference for pre-drainage conditions, this 

comparison provides a strong indication for drainage impacts on the peat chemistry 

within the upper 30 cm layer. These results are supported by a previous study 

comparing drained and undrained peatlands, which also attributed lower C:N ratios 

in the drained site to higher microbial activity and decomposition in the upper layers 

(Krüger et al. 2015). In further agreement with our results, Krüger et al. (2015) 

showed that the C:N ratio increased with depth under drained conditions while in a 

natural mire also the surface C:N ratios were high due to low microbial activity.  

 

 

4.4. δ13C and δ15N 

The result of the stable C isotope analysis suggested that significantly higher (i.e. 

more positive) δ13C values occurred at the 5 and 25 m distances compared to the 50 
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m distance from the ditch. The higher values closer to the ditch could be interpreted 

as increased decomposition rates (Krüger et al. 2015). Since the enrichment of 13C 

is dependent on the preferential loss of 12C, higher δ13C values generally indicate 

increased decomposition (Fry 2006). This observed pattern in δ13C is in contrast to 

the results of BD and ash, C and N contents which all indicated higher 

decomposition rates occurring at the distances further away from the ditch. It is 

important to note, however, the differences in δ13C between distances were 

primarily driven by contrasting values in the lower depths (i.e. below -20 cm) where 

decomposition rates are generally lower.  

Significantly lower δ13C values across the depth profile were found in the upper 

~20 cm layer. Below this depth, the variations in δ13C were relatively small, which 

could be attributed to low decomposition. For instance, Krüger et al. (2015) showed 

a vertical decrease of δ13C along the depth profile when studying peat degradation 

on a drained peatland characterized by high aerobic decomposition in the upper 

horizon. An increase of 4-5‰ with depth in δ13C has previously been reported for 

well-drained peatlands (Krüger et al. 2015; Nadelhoffer & Fry 1988). Therefore, 

the increase of ~2‰ observed at the Trollberget peatland is below the range 

reported by these previous studies but fell into the range of other studies (Broder et 

al. 2012; Rice & Giles 1996). 

In comparison with the natural Degerö mire, the δ13C was significantly higher at 

the 5 m distance at the drained Trollberget peatland. Alewell et al. (2011) did 

research on climate effects on stable isotopes in natural mires in northern Sweden. 

They found that δ13C was almost constant with depth on natural mires, due to the 

lack of oxygen in water-saturated soils. They further reported higher values (i.e. 

less negative) of δ13C in the depth between 4 and 25 cm, which is similar to the 

values in this study. Alewell et al. (2011) also showed an increase of δ13C values 

with increasing depth due to the changes in the hydrology and decomposition rates, 

which overall agrees well with the results from the Trollberget and Degerö sites.  

The δ15N values were not significantly different at the three distances from the 

ditch. This indicates that the drainage impact on δ15N was not strong enough to 

create a pronounced spatial pattern. The δ15N values are strongly dependent on the 

14N consumed during decomposition (Fry 2006). Fry (2006) provided that the 

mineralized N is removed through plant uptake or leakage. The variation in δ15N is, 

however, also driven by other factors such as vegetation composition, N deposition 

and root N uptake (Jones et al. 2010; Fry 2006, Krüger et al. 2015). Thus, the effects 

from one or more of these processes could have interfered with the fractionation 

originating from enhanced decomposition following drainage.  

The δ15N values decreased significantly with increasing depth. Higher values of 

δ15N in the upper layer that decrease further down (below -15 cm) in the profile, 

can be interpreted as a result of increased aerobic decomposition (Krüger et al. 

2015). According to Broder et al. (2012) the largest changes of δ15N occurred in the 
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upper layers between 5-10 cm depth while no significant variation was found 

deeper in the profile. According to Asada et al. (2005) the δ15N enrichment in the 

upper layer occurred because of the presence of Sphagnum mosses as well as 

atmospheric N deposition. Thus, relatively constant values from -30 cm and 

downwards at Trollberget were probably due to the reduced impacts from the 

vegetation and the atmospheric N input (which probably is the only N sources for 

the peatland) (Broder et al. 2012; Jones et al. 2010). 

In comparison with Degerö data the results were the opposite, i.e. suggesting 

increasing δ15N with deeper depth at the natural mire. According to Krüger et al. 

(2015) the inversion of the δ15N at natural mires is located at 20-40 cm depth and 

can vary between -11 to +2‰. However, no such inversion of δ15N was present at 

Degerö and instead an inversion of δ15N could been seen in the upper layer of the 

drained Trollberget peatland.  
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Differences in peat properties with distance from the drainage ditch: 

Peat bulk density and C content data suggested a higher drainage effect and 

decomposition rates further away from the ditch at the Trollberget drained 

peatland forest. Similarly, the ash and N contents, C:N ratio and δ15N data 

indicated slightly stronger decomposition in the locations furthest from the ditch 

though these patterns were not statistically significant. In contrast, however, 

peat δ13C suggested higher drainage effect and decomposition occurring closer 

to the ditch. Overall, it can be concluded that drainage effects on peat properties 

did not vary as expected in relation to distance from the ditch, possibly due to 

other interfering effects from terrain sloping and/or the nearby forest edge, 

which might alter the peatland hydrology, drainage effects and decomposition 

rates across the peatland area.  

 

Differences in peat properties across the peat profile: 

Bulk density, ash and N contents and δ15N data at Trollberget increased with 

depth in the upper layers and decreased again in the deeper layers suggesting 

strongest drainage effects and decomposition in the ~10-30 cm peat layers. This is 

further supported by the observed lower C:N ratios in these respective depths. C 

content showed a generally increasing pattern with depth which may be interpreted 

as reflecting the decomposition of peat. Similarly, increasing δ13C values along the 

peat profile also indicated enhanced decomposition deeper in the profile. 

Altogether, the data demonstrate the effect of the lowered groundwater level. 

Specifically, a strong drainage effect and active decomposition is visible in the 

upper layers of the peat profile and a reduced level of degradation in the deeper 

parts.  

 

Differences in peat properties between a drained peatland and a natural peatland: 

Peat bulk density was higher at the drained Trollberget peatland in comparison 

with the natural Degerö mire. This is in line with the general expectation, since 

drainage is known to induce subsidence, compaction and decomposition of the peat 

material. The C and N contents were higher at the drained peatland while the C:N 

ratio was lower compared to the natural mire which can also be interpreted as higher 

microbial activity and decomposition rates following drainage. Similarly, higher 

5. Conclusions 
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peat δ15N values at the drained Trollberget site indicate enhanced decomposition 

compared to natural conditions. In contrast to expectation, peat δ13C was similar 

between the two sites with significantly higher values observed only at the 

Trollberget 5 m ditch distance. Overall, it can be concluded that most the 

investigated peat properties differed between the drained and natural peatland sites 

highlighting the sensitivity of peatland biogeochemistry to human management 

activities. 

 

 

Further research is needed to assess the long-term effects on ash content for 

different distances from the ditch and C losses for different depth profiles. 

Additional investigation of ground vegetation diversity on drained peatlands and 

the connection between vegetation and the physical and chemical properties in the 

peat, and their impact of greenhouse gas emissions, would also merit further 

investigation in the future.  
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Figure 1. Peat sampling locations at the drained Trollberget peatland. 
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