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The A.D. systems (anaerobic digestion), when used in biogas reactors, are an ad-

vanced ecological way to produce energy while treating waste. The majority of the 
microbial community of the reactor remains unknown to this day, due to the impos-
sibility to culture most of the  bacteria  individually. Metagenomics and transcriptom-
ics aim to discover those bacteria and understand the interactions within the commu-
nity. HTS (high throughput sequencing) technology opens new possibilities in terms 
of length of the reads sequenced and accuracy. Sequencing done by Oxford Nanopore 
machines can produce long reads while having a slightly worse accuracy than other 
machines, where Illumina sequencing machines have a higher accuracy to the detri-
ment of lengths. The two sequencing methods complement each other, and the hybrid 
assembly uses both long and short reads to create longer and more accurate contigs 
that can then be further analysed. 

 
Here is presented a metagenomics pipeline (MUFFIN) based on the hybrid assem-

bly of short and long reads followed by multiple differential binning methods and 
refinement to produce high-quality bins and their annotations. The pipeline is written 
by using Nextflow to achieve high reproducibility and fast and straightforward use 
of the pipeline. This pipeline also produces the taxonomic classification of the bins 
as well as a transcription, quantification and annotation of RNAseq data. The pipeline 
was tested using one biogas reactor as an example to assess the capacity of MUFFIN 
to process and output relevant files needed to analyse the microbial community and 
their function. A parsing script was developed to analyse and summarise the annota-
tions files. The script outputs a quantification file of the transcripts annotated, an 
HTML file summarising the pathways across the bins and transcripts, and an HTML 
file for each bin summarising the annotation. 

Keywords: Metagenomics, transcriptomics, pipeline, A.D systems, Biogas 
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To treat any kind of organic wastestreams, different methods are available where 
each of them has pros and cons (Eriksson, Strid, and Hansson 2015; Arafat, Jijakli, 
and Ahsan 2015). Amongst those, one stands out in terms of low environmental 
impact as it goes along with sustainable energy production: This method is called 
engineered anaerobic digestion (A.D.), that use bacteria and archaea to degrade dif-
ferent kinds of organic waste while producing, e.g. methane (biogas) in so-called 
biogas reactor (Wellinger, Murphy, and Baxter 2013; Atelge et al. 2018). 

The biogas plants are used to produce biomethane (methane from a biological 
source) and are implanted in various countries of the world as a sustainable alterna-
tive for energy production. These countries include Germany, Italy, Sweden, Fin-
land, France, Belgium (Torrijos 2016) but also China, India, Canada, and other 
countries (Raboni and Urbini 2014). The global use of A.D. systems, make the study 
of the microorganisms and their interactions in those worldwide systems a potential 
key to understanding the function of lesser known bacteria. Retrieving the genome 
and functions of those bacteria could lead to an increase of the production as well 
as some new critical discoveries. Biogas can be generated by using different organic 
resources such as agricultural waste, sewage sludge, manure, industrial food waste, 
organic household waste and crops. Methane can be either upgraded to biofuel or 
used to produce electricity or heat. 

The production of methane by microorganisms is called methanogenesis and is 
realised by methanogenic archaea in strictly anaerobic conditions. However, the 
whole anaerobic degradation process into methane and carbon dioxide is more com-
plex and requires the harmonised and combined activities of a vast number of dif-
ferent microorganisms. It involves multiple trophic levels, responsible for de-
polymerization, primary and secondary fermentation, acidogenesis, acetogenesis, 
and methanogenesis (Pelletier et al. 2008). The microbial community of the reactor 
should be complementary and depends strongly on syntrophic interaction in order 
to complete the entire degradation (Solli et al. 2014). Thus, knowing the composi-
tion of the microbial communities of the reactors helps to understand the metabolic 
mechanism and interactions and also helps in the optimisation of biogas production. 

1 Introduction 



10 
 

The analysis of a microbial community relies on the use of metagenomics anal-
yses as most of the microorganisms cannot be cultivated for individual analysis. The 
use of metagenomics already much helped in the discoveries of new bacteria, be-
longing even to new, undescribed phyla. 

For example, one of the new phyla discovered through metagenomics analysis 
is the “Candidatus Cloacimonetes” phylum, which has been deduced from the ge-
nome reconstruction of “Candidatus Cloacamonas acidaminovorans” (Pelletier et 
al. 2008).  Candidatus Cloacimonetes has been found at significant abundances in 
different biogas reactor samples; ranging from 10%  to 15% (Botello Suárez et al. 
2018; Lee et al. 2018; Solli et al. 2014; Pelletier et al. 2008). The use of meta-
genomics and high throughput sequencing are prerequisites as most of the unknown 
bacteria are unculturable as they can be profoundly complex to be cultured and 
might require the presence of other microorganisms (Steen et al. 2019). The phylum  
‘Candidatus Cloacimonetes” might be involved in the degradation of organic waste 
and also involved in the methanogenesis step: a hypothesis endorsed by the increase 
of population through time in biogas reactor (Solli et al. 2014). Investigating the 
potential role of such bacteria in this complex degradation can be crucial to the op-
timisation of the production of biogas. 

Summarised, metagenomics and transcriptomics analyses are critical elements 
in research when it comes to unculturable bacteria and their functions and interac-
tions within complex microbial consortia (Parks et al. 2017; Sunagawa et al. 2015). 
In that sense, reproducibility and convenient handling of such bioinformatics anal-
yses are of crucial importance for scientific research since it lightens the bioinfor-
matics workload put on the researcher. 

Metagenomics analysis is the sequencing of a microbiome without distinc-
tion/selection of a specific organism. Using tools specific for metagenomics, we can 
reconstruct and polish “potential” organisms each of those is then compared to 
known organisms to assess their existence, potential existence (through similarities) 
or if they are error due to the process of creation. The potential obtention of infor-
mation about uncultured and unknown bacteria as well as about the functional po-
tential of known bacteria, make metagenomics a suitable analysis method in this 
specific study.  
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2.1 Biogas reactor 
A biogas reactor is a fermentation chamber with a controlled environment used to 
produce biogas. This consists of the main chamber equipped with different sensors 
to control the environment, a heating system to maintain the optimal temperature, a 
gas exit to harvest the biogas produced and a matter entry to input the organic matter. 
Biogas reactors can range from household-scale (China) to large-scale as typically 
found in Europe. For research purposes, lab-scale reactors with a volume ranging 
from one to five L can be used to mimic large-scale processes in order to explore 
the relationship between microbial community, function and process performance.  
A variety of feedstocks can be used ranging from agricultural waste, industrial waste 
from food production, organic household waste, to sewage sludge. The gas can then 
be stored for external usage or used directly to produce electricity and heat or up-
graded to biofuel. 

2.2 The anaerobic food chain in biogas processes 
The methane production requires the collaboration of diverse trophic levels, includ-
ing de-polymerization, primary and secondary fermentation, acido-genesis, aceto-
genesis, and methanogenesis (Pelletier et al. 2008). 

The de-polymerization, also called hydrolysis, is involved in the reduction of 
complex and large organic compounds into smaller and simpler compounds (such 
as peptides, amino acids, fatty acid, sugars), which will be further digested in the 
following steps (Angelidaki et al. 2011). 

The acidogenesis is the transformation of amino acids and sugar into hydrogen 
and diverse organic acid , required by the acetogenesis to produce the next interme-
diate product. 

The acetogenesis is both the synthesis of acetate from the reduction of carbon 
dioxide or further oxidation of organic acids produced in the previous steps (Rags-
dale and Pierce 2008). 

2 Background 
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The methanogenesis is the last step in the production of methane from organic 
waste. It uses either acetate or hydrogen and carbon dioxide to produce methane and 
carbon dioxide. The two different pathways occur depending on the present Ar-
chaea, which produces methane. The first is the use of carbon dioxide with hydrogen 
to produce methane. It can be produced by different groups of Archaea but is under 
low ammonia conditions not the most productive. The second is the cleavage of 
acetate into carbon dioxide and methane. It is estimated that two-thirds of the me-
thane produced globally comes from this reaction; only a few genera are known to 
use this pathway (Liu and Whitman 2008). 
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Figure 1 - Schematic of the anaerobic degradation of organic matter into methane. Source 
https://www.researchgate.net/figure/Schematic-anaerobic-food-chain-for-the-conversion-of-com-
plex-organic-matter-to-methane-in_fig1_250924004 (Mesle, Dromart, and Oger 2013) 

 

https://www.researchgate.net/figure/Schematic-anaerobic-food-chain-for-the-conversion-of-complex-organic-matter-to-methane-in_fig1_250924004
https://www.researchgate.net/figure/Schematic-anaerobic-food-chain-for-the-conversion-of-complex-organic-matter-to-methane-in_fig1_250924004


14 
 

2.3 Cloacimonetes 
The “Candidatus Cloacimonetes” phylum is present in different anaerobic environ-
ment partly up to 10% to 15% of the environmental bacterial population according 
to some articles and has been found at partly high abundance in WWTP and biogas 
plants (Solli et al. 2014; Botello Suárez et al. 2018; Lee et al. 2018). It could repre-
sent a new bacterial division that is up to 10% of the bacterial community (Pelletier 
et al. 2008). The “Candidatus Cloacamonas acidaminovorans” genome recon-
structed in 2008 provided the first evidence of this potential new division. As this 
bacterium is not culturable and did not receive much interest in the past, there is 
little information about it. However, this phylum might be of great importance to 
the biogas processes. There are indications that they are involved in syntrophic in-
teractions and it was found to be present in many anaerobic degradation systems 
that revolve around the fermentation of amino acids (Pelletier et al. 2008). 

2.4 Sequencing approaches 
In this study, we sequenced metagenomes using three different methods. An Oxford 
Nanopore MinIon sequencing, Illumina DNA Miseq sequencing, and RNA se-
quencing using Illumina Miseq. 

2.4.1 Oxford Nanopore MinIon 
The MinIon sequencing is a long-read sequencing method that consists of the library 
preparation of the sample, followed by the direct sequencing of the sample. The 
sequencing is not synthesis based, but it sequences by passing through the DNA 
strands through pores where all bases are read in real-time by the pore mentioned. 

This method allows the sequencing of longer reads since there is no limitation 
due to a synthesis of the read. After the sequencing comes the basecalling execution 
that converts the signal received from the sequencing machine to nucleotides, this 
method eliminates the PCR bias as there is no PCR amplification. The use of long 
reads also circumvents issues in the reconstruction of genomes since the reads are 
longer and issues like repeats, gaps or contamination have less probability of influ-
encing the assembly of the reads. However, this sequencing method also has disad-
vantages, such as a lower precision on the base level. While it is easier to assemble 
and map long sequences of DNA together, the lack of precision on the base level 
makes the MinIon a lower argument when it comes for instance, to single nucleotide 
variants (SNVs). 
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2.4.2 Illumina Sequencing 
The Illumina sequencing is a short-reads sequencing method that consists of the 
library preparation (including shearing, PCR, adding adapters). Then in the sequenc-
ing machine, clusters of strands are created, followed by the synthesis of the strand 
clusters start. To each nucleotide-binding event, fluorescent light is emitted, and the 
reading of this sequential colour emission creates the reads. This method has many 
restrictions in terms of reads size as well as speed. However, it is more accurate on 
the base level than the long read NGS, which enables analysis of SNVs on a better 
and more accurate level. 

2.4.3 RNA sequencing  
RNA represents the active functions of the cell, where the DNA represents all the 
information of the organism (all structure and function the organism contains). 
There are mainly three essential types of RNA involved in the creation of the pro-
teins that serves the activity of the cell. The mRNA that encodes the sequence of 
amino acids translated in proteins, the rRNA when combined with ribosomal pro-
teins, forms the ribosomes which translate the mRNA into proteins and the tRNA 
that transport amino acids to the ribosome during the translation (Bastide and David 
2018). 

The more traditional RNA sequencing consists of the sampling of genetic mate-
rial followed by isolation of the total RNA and removal of any residual DNA by 
DNase digestion. According to the RNA targeted (mRNA, rRNA), the use of spe-
cific beads can be executed. This allows keeping only the targeted RNA, for in-
stance, the mRNA. The RNA is then reverse transcripted to obtain cDNA(Sessitsch 
et al. 2002) that will be sheared, amplified and then sequenced in a short-read se-
quencing machine. 

The use of long-read sequencing machine can significantly reduce the library 
preparation, as it does not require any PCR amplification. When the sequencing of 
RNA is done in a Nanopore sequencing machine, the use of cDNA is not mandatory, 
and the use of native RNA is possible. 

2.4.4 Metagenomics  
Metagenomics in a broad term, includes two different methods to analyse the pop-
ulation of a microbiome. One is the whole metagenomics shotgun sequencing, and 
the other is the 16s rRNA gene amplicon sequencing (Ghosh, Mehta, and Khan 
2019). 
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Whole metagenomics shotgun sequencing consists of the sequencing of all DNA 
information of a microbiome sample without any isolation or culture of a specific 
organism. 

The 16s rRNA gene sequencing is not a metagenomics method since the purpose 
is not to retrieve genomes of organisms in the microbiome. Nevertheless, it aims to 
identify organisms present in a microbiome by relying on the taxonomic information 
obtained from partial sequences of the 16s rRNA genes. The 16s method is based 
on the sequencing of amplicons retrieved by PCR of the 16s rRNA gene of all the 
organisms present in the sample. The procedure includes DNA extraction followed 
by a 16s rRNA gene amplification (Nurul et al. 2019) and sequencing (long or short 
reads). 

2.5 Hybrid Assembly 
A hybrid assembly is an assembly approach that uses both long and short reads. The 
assembly of long-reads alone is useful to avoid repeats and gaps in the reconstruc-
tion of the genomes, but it also has flaws like the higher error rate on a base level, 
ranging from 15% to 40% (Ma et al. 2019). The short reads assembly does not pos-
sess such an error rate and thus is useful for a base level analysis. In the case of the 
short reads assembly, the flaws are the gaps and repeats. 

The hybrid assembly is tentative to combine the advantages of both sequencing 
methods to produce assemblies/genomes of a higher quality while trying to avoid 
their respective disadvantages. 

2.6 Reproducibility  
The reproducibility and ease to analyse are critical to scientific research. Automated 
pipelines are developed to lighten the charge of informatic work put on the searcher.  
Various pipelines already exist to automate the research (e.g., the nf-core collection 
of pipelines (Ewels et al. 2019)). They are based on workflow management systems 
such as nextflow or snakemake, and those management systems allow to create from 
scratch a pipeline but also make through the use of software containers that have 
everything ready for the use of the pipeline. Another advantage is the possibility to 
parallelise the work to speed up the process but also to use the workflow on high 
performance computing clusters and clouds. Making those pipelines highly porta-
ble, adaptable, powerful and easy to use. 
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2.7 Nextflow 
Nextflow (Tommaso et al. 2017) is a workflow management system allowing high 
reproducibility through the use of software containers (such as docker or singular-
ity). It is also oriented to the portable optimisation, and the pipeline is separated 
from the configuration of the system at use. Nextflow is developed to work on most 
HPC and server executors (SGE, SLURM,…) and also on cloud computing (Google 
Life Science, Amazon AWS). Nextflow is an efficient workflow management sys-
tem with simplified utilisation both as developers and users. Indeed, it uses a global 
DSL regarding the construction of the pipeline while at the same time allowing the 
use of various programming languages (Python, Perl, R, Ruby) and scripting lan-
guage (Bash script). It also provides tools to abstract and manages file naming in 
global variables to reduce the ambiguity (Leipzig 2017).  

Part of the development of Nextflow is to create a new syntax that aims to sim-
plify the conception and use of pipelines by changing the creation of a unique pro-
cess for each task to the invocation of the said process from modules in a specific 
order. A module is simply a function or task saved in a different file that can be 
called in the main script. The creation of “modules” that can be used multiple times 
and use in different pipelines without the need to rewrite everything is the key to 
simplification. 
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This work aimed at the creation of a metagenomics and transcriptomics pipeline for 
microbial analysis. Moreover, it will be tested on the analysis of an anaerobic diges-
tion system. The pipeline shall be able to be run by anyone that has access to a 
computer with basic Linux knowledge and biological data of interest. 

It shall produce helpful and informative result files for the microbial analysis of 
an environmental sample or specific bacteria of interest. To achieve this, different 
objectives were decided: 

- Find or create an ergonomic, automated, and reproducible analysing pipeline 
that would be able to combine the information of both the Illumina and MinIon 
sequencing. 

- Obtain Metagenome-assembled genomes (MAGs) of good quality from this 
pipeline, as well as useful taxonomic classifications and functional annotations. 

-  Through the use of RNAseq, data obtain good quality and complementary 
transcriptomes. 

-  Access quickly results browsing summary files from the different objectives 
mentioned above. 

 

3 Aim 
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4.1 Sample used 
Out of all the samples prepared by Christian Brandt and Bettina Müller, only one 
DNA sample (Nanopore and Illumina) and one RNA sample (Illumina) from the 
same reactor was used in the Pipeline and will have the result display in “Results”. 
The samples are from a biogas reactor present in Uppsala. The following chapters 
(4.2 to 4.4) describe the extraction, library preparation and sequencing of different 
samples processed at the same time. In total for the DNA (nanopore and Illumina), 
20 samples from 20 different biogas reactor (10 Swedish and 10 Germans) where 
sequenced. For the RNA, six samples from five different reactors where sequenced. 

4.2 Nanopore DNA extraction, library preparation, and 
sequencing 

DNA extraction, library preparation, and sequencing were done by Christian Brandt 
(postdoc at SLU) for Nanopore sequencing.  

This protocol for DNA extraction and Nanopore sequencing can be found in the 
submitted manuscript of Christian Brandt article 10.21203/rs.2.17734/v1 (Abun-
dance Tracking by Long-Read Nanopore Sequencing of Complex Microbial Com-
munities in Samples from 20 Different Biogas/Wastewater Plants).  

All samples were sequenced using a MinION Sequencer for 72 hours or until no 
sequencing activity was observed, using either an R.4.9.1 or R.4.9 flow cell (FLO-
MIN106) for each sample. The MinKNOW software was used with active channel 
selection enabled and basecalling deactivated. A ‘flow cell-refuel’ step after approx. 
18-20 hours of runtime by adding 75 µL of a 1:1 water-SQB-Buffer mixture to the 
flow cell via the SpotON port. SQB-Buffer is part of the Oxford-Nanopore SQK-
LSK109 Kit. 

4.2.1 Basecalling 
Basecalling was performed using the GPU accelerated guppy basecaller with the 
high accuracy model and adapter trimming (available at https://nanoporetech.com). 

4 Material and method: 

https://nanoporetech.com/
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4.3 Illumina DNA extraction, library preparation, and 
sequencing 

Illumina sequencing was performed using the same DNA material (purified by 
Christian Brand) as it was used for nanopore sequencing. 

4.4 mRNA extraction, library preparation, and Illumina 
sequencing 

mRNA preparation was done by Bettina Muller (associate Professor at SLU) as de-
scribed in (Manzoor et al. 2016). 200 mg fresh digester sludge has been used as 
starting material. 

Library preparation and sequencing were performed by Scilifelab using the 
TruSeq stranded mRNA library preparation kit (Illumina Inc.). In total, six mRNA 
pools were sequenced on one Miseq lane. After the cluster generation, the sequenc-
ing was done and was a 75 cycles paired-end sequencing in one run. 

4.5 Bioinformatic Workflow: 
Having a functional and reproducible workflow to analyse the sample is essential as 
the complexity of the metagenomics tools and the interconnections between them is 
not always straightforward. Various workflows are already available such as 
MetaWRAP(Uritskiy, DiRuggiero, and Taylor 2018), Anvi’o (Eren et al. 2015), 
SAMSA2 (Westreich et al. 2018), Humann (Abubucker et al. 2012) or MG-RAST 
(Meyer et al. 2008) but none of them uses a hybrid approach. Creating a pipeline 
was the solution. 

4.5.1 Making the pipeline 
The pipeline should have a hybrid approach of the assembly of the reads, should be 
versatile (run on different Unix systems and configuration), easy to use, parallelised 
and should not require multiple additional installations. 

To address the versatility and the parallelisation, the use of nextflow (Tommaso 
et al. 2017) as the workflow manager system appeared to be the best choice. It pro-
vides an abstraction layer making the pipeline an unspecific script with the config-
uration related to the platform used independently. 

The use of Docker for the software containers makes the pipeline reproducible 
and not sensitive to the machine or software versions. Docker loads the required 
container, executes the software, output the result and closes itself, with no version 
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control or compatibility issues. In addition to Docker, we use conda as an environ-
ment manager. It creates a dedicated environment for the software to run, installs it, 
runs and done. 
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4.5.2 The pipeline (MUFFIN) 
The pipeline called MUFFIN consists of three different steps that can be run to-
gether or independently; the steps are “assemble,” “classify” and “annotate.” For 
the paper about MUFFIN, see Appendix n°3. 

 
 

Figure 2- The chart of the MUFFIN pipeline. 
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4.5.3 Assemble 
Assemble is the first step; it requires the Illumina and nanopore reads as input.  

The first substep is the quality control, for the Illumina data by fastp (Chen et al. 
2018), and for the nanopore, the default is a discard of the shortest reads (under 
2000bp) and the use of Filtlong (https://github.com/rrwick/Filtlong ) as an option. 

The second substep is the assembly of the reads. Two different assembly meth-
ods are available. The one used in the example is the metagenomic and hybrid ap-
proach of SPAdes (Bankevich et al. 2012; Nurk et al. 2017). The other method avail-
able is the long read assembly using Flye (Kolmogorov et al. 2019) metagenomics 
approach. Flye is followed by a polishing of the contigs with, Racon (Vaser et al. 
2017) , medaka (https://github.com/nanoporetech/medaka) and Pilon (Walker et al. 
2014). 

The third substep is the binning of the contigs obtained. Three different binning 
methods followed by a refining of the bins compose the substep. The binning meth-
ods are CONCOCT (Alneberg et al. 2014), a binning method based on nucleotide 
composition – kmer frequencies and coverage data, MaxBin2 (Wu et al. 2014) using 
depth-of-coverage, nucleotide composition, and marker genes and MetaBAT2 
(Kang et al. 2015) an adaptive binning algorithm. CONCOCT and MetaBAT2 can 
if provided, accept additional reads set to improve the binning through the use of 
differential binning. The result of those three binning is then inputted in the refining 
step of the MetaWRAP pipeline (Uritskiy, DiRuggiero, and Taylor 2018). 

Once those bins obtain, an optional re-assembly substep remains. This substep 
consists of the mapping of the reads against the bins using SAMtools (Li et al. 2009) 
Minimap2 (Li 2018) and BWA (Li and Durbin 2009). Followed by the retrieval of 
the reads maps to each bin with seqtk (https://github.com/lh3/seqtk). Those re-
trieved reads (Illumina and Nanopore) are then re-assembled using the Unicycler 
hybrid approach (Wick et al. 2017). 

4.5.4 Classify 
The classify step, requires either the bins or reassembled bins from the assemble 
step or bins submitted by the user. 

The first substep is the quality assessment of the bins done by CheckM (Parks et 
al. 2015) using the CheckM database. 

The second substep is the taxonomic classification of the bins by sourmash 
(Brown and Irber 2016) using the GT-DataBase (Parks et al. 2018). 

The result of both is then put in a comma-separated file. 

https://github.com/rrwick/Filtlong
https://github.com/nanoporetech/medaka
https://github.com/lh3/seqtk
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4.5.5 Annotate 
The last step requires the bins or reassembled bins from the assemble step or sub-
mitted bins. It also can accept in addition to the bins, RNAseq data. 

The annotation of the bins is done by eggNOG (Huerta-Cepas et al. 2017) using 
the eggNOG database version 5 (Huerta-Cepas et al. 2019). EggNOG is a powerful 
tool providing in the output KEGG (pathway, ko, module, reaction), Gene Ontology 
terms, EC numbers, COG, and other information. 

The RNAseq data is quality controlled using fastp (Chen et al. 2018) followed 
by a de novo transcriptome assembly using Trinity (Haas et al. 2013) and Salmon 
(Patro et al. 2017) the transcripts are then annotated by eggNOG (Huerta-Cepas et 
al. 2017) using the eggNOG database version 5 (Huerta-Cepas et al. 2019). 

The final substep is the execution of a parser for the annotation files that will 
create HTML files regrouping in an easily readable way the pathways present in the 
bins as well as the genes using the KEGG ID outputted in the annotation file with 
the KEGG PATHWAY database (see Figure n°3). 

 

Table 1- Software used in MUFFIN 

Task Software Version References 

QC illumina fastp 0.20.0 (Chen et al. 2018) 

QC ont Filtlong 0.2.0  https://github.com/rrwick/Filtlong 

metagenomic com-
position of ont sourmash 2.0.0a10 (Brown and Irber 2016) 

Hybrid assembly metaSPAdes 3.13.1 (Nurk et al. 2017) 
 Unicycler 0.4.8 (Wick et al. 2017) 

Long read assembly MetaFlye 2.6 (Kolmogorov et al. 2019) 

polishing Racon 1.4.7 (Vaser et al. 2017) 

 medaka 0.11.0 https://github.com/na-
noporetech/medaka 

 Pilon 1.23 (Walker et al. 2014) 

mapping minimap2 2.17 (Li 2018) 

 BWA 0.7.17 (Li and Durbin 2009) 
 SAMtools 1.9 (Li et al. 2009) 

retrieve reads 
mapped to contig seqtk 1.3 https://github.com/lh3/seqtk 

Binning MetaBAT2 2.14 (Kang et al. 2015) 

 MaxBin2 2.2.4 (Wu et al. 2014) 

https://github.com/OpenGene/fastp
https://github.com/rrwick/Filtlong
https://github.com/rrwick/Filtlong
https://sourmash.readthedocs.io/en/latest/
http://cab.spbu.ru/software/spades/
https://github.com/rrwick/Unicycler
https://github.com/fenderglass/Flye
https://github.com/lbcb-sci/racon
https://github.com/nanoporetech/medaka
https://github.com/broadinstitute/pilon/wiki
https://github.com/lh3/minimap2
http://bio-bwa.sourceforge.net/
http://www.htslib.org/
https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
https://bitbucket.org/berkeleylab/metabat/src/master/
https://sourceforge.net/projects/maxbin2/
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Task Software Version References 

 CONCOCT 1.0.0 (Alneberg et al. 2014) 

 MetaWRAP  1.2.1 (Uritskiy, DiRuggiero, and Taylor 
2018) 

QC binning CheckM 1.0.18 (Parks et al. 2015) 

Taxonomic Classifi-
cation 

sourmash using the 
GT-DataBase 

Sour-
mash:2.0.0a10 
GTDB is ver-
sion R89 

(Brown and Irber 2016) (Parks et al. 
2018) 

Annotations (bin and 
RNA) eggNOG 

eggNOG db 
v5.0 
eggNOG 
mapper v2.0.1 

(Huerta-Cepas et al. 2017) (Huerta-
Cepas et al. 2019) 

De novo transcript 
and quantification Trinity 2.8.5 (Haas et al. 2013) 

 Salmon 0.15.0 (Patro et al. 2017) 

https://github.com/BinPro/CONCOCT
https://github.com/bxlab/metaWRAP
https://ecogenomics.github.io/CheckM/
https://sourmash.readthedocs.io/en/latest/
https://gtdb.ecogenomic.org/
https://github.com/eggnogdb/eggnog-mapper/wiki/eggNOG-mapper-v2
https://github.com/trinityrnaseq/trinityrnaseq/wiki
https://github.com/COMBINE-lab/salmon
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4.5.6 The databases 
The CheckM database is a collection of precalculated data used by CheckM to as-
sign taxonomy and check the completeness and contamination of a bin. It is com-
posed of markers genes grouped into lineage-specific collocated markers sets. Those 
markers sets are the critical element of CheckM to assess the completeness and con-
tamination of a bin(Parks et al. 2015). CheckM database is limited to known markers 

Figure 3 - Example of the parser output 
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from known lineages and should be used as an indicator of the quality of the bins. 
If the work is on oriented lesser-known or unknown bacteria, CheckM results might 
not reflect the actual quality of the bin but only a grade of similarities between the 
bin and a potentially close lineage. 
 

GT database (GTDB) or genome taxonomy database is a standardised microbial 
taxonomy database based on phylogeny. This database constructs its phylogeny us-
ing genomes from RefSeq (O’Leary et al. 2016) and GenBank (Clark et al. 2016) 
but increasingly also using draft genomes of metagenomics and single-cell uncul-
tured organisms trying to improve the genomic representation of the microbial 
world(source: https://gtdb.ecogenomic.org/about ). 

 
eggNOG 5.0 database is a database of ortholog relationships, functional annota-

tion, and gene evolutionary histories(Huerta-Cepas et al. 2019). Used by the egg-
NOG annotation tool (eggNOG mapper V2)(Huerta-Cepas et al. 2017), it forms 
both for the eggNOG service. EggNOG is a system for automated construction and 
annotation of orthologous groups of genes, using phylogenetic resolution, automat-
ically updated, and contains a hierarchy of orthologous groups to balance phyloge-
netic coverage and resolution(Jensen et al. 2008). 

 
The KEGG PATHWAY database “is a database resource for understanding 

high-level functions and utilities of the biological system, such as the cell, the or-
ganism and the ecosystem, from molecular-level information, especially large-scale 
molecular datasets generated by genome sequencing and other high-throughput ex-
perimental technologies.” (source: https://www.kegg.jp/ ). It contains the different 
pathways as well as modules of those pathways, reaction, enzyme, gene, genomes. 
 

https://gtdb.ecogenomic.org/about
https://www.kegg.jp/


28 
 

The samples analysed are labelled “02-SW” biogas sample for the DNA and 
“BM03” sample for the RNA. 02-SW is a thermophilic (52°C) biogas reactor using 
slaughter and food waste. 

5.1 Quality Control 

5.1.1 Nanopore 

The quality of the nanopore sequencing was good with over 3.6 million reads pro-
duced, 20 gigabases called, and 81.4% of reads passing the QC filter. The mean read 
length is 5.786bp, an N50 of 8.604, and the mean read quality (QV) is 10.3. 
The quality report was produced by Nanoplot (De Coster et al. 2018). 

 
Figure 4 - The quality control output of nanopore sequencing after guppy basecalling. 

5 Results 
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The quality control of the pipeline was a strict removal of reads under 2000bp 
length. 

5.1.2 Illumina 
The quality of the raw Illumina reads was for R1 and R2, 18 946 658 reads with 
46%GC, and a 151bp read length, the mean quality per read was 36 (Phred score). 

 
Figure 5 - The per sequence quality of the Illumina R1 read before any quality improvement with 
fastp. 

 
The changes after fastp are the discard of the reads under 20 Phred score quality 

and the removal of an overrepresented sequence, a G nucleotide repetition present 
over 21 000 times. 

The quality results were computed by FastQC (Andrews et al. 2012).  
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5.1.3 RNA 
The quality of the raw Illumina reads was for R1 and R2, 4973956 reads with 
48%GC, and a 76bp read length, the mean quality per read was 37 (Phred score). 

 
Figure 6 - The per sequence quality of the RNAseq R1 read before any quality improvement with 
fastp. 

The changes after fastp are the discard of the reads under 19 Phred score quality 
and a slight diminution of the overrepresented sequences. 

The quality results were computed by FastQC(Andrews et al. 2012). 

5.2 Assembly 
The assembly longest read is 266.071bp long, and there are 4.149 contigs longer 
than 10.000bp (26 306 contigs longer than 1000bp). 
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5.3 Binning 
Two significant elements are used to assess the quality by CheckM: 1) The com-
pleteness. This is the % of gene markers sets of an organism in the CheckM database 
present in the bin. 2) The contamination. This is the % of gene markers sets of for-
eign organisms from the one attributed by CheckM in the bin. 

The binning substep produced a total of 35 bins with completeness estimated by 
CheckM of 71.16% at lowest (bin 20) and 99.60% at highest (bin 16) and with con-
tamination of 6.78% at the highest (bin 18) and lowest 0% contamination. The mean 
percentage of completeness is 90.99%, and for the contamination, it is 1.38%. 

MaxBin2 produced 51 bins; MetaBAT2 produced 60 bins, and CONCOCT pro-
duced 138 bins. The binning and binning refinement only keeps the contigs they 
deem appropriate to the bins. MUFFIN can take the unbinned data and retrieve the 
reads from the sample that are not part of the bins. This can be very convenient as 
in the analysis of metagenomics, the genomic data of some organisms with a low 
population can be “hidden” in the analysis by organisms that represent a high pro-
portion of the communities. MUFFIN allows the preservation of the unbinned data 
to rerun the analysis once the data of the highly present organism has been analysed. 
The second run of MUFFIN would then be more specific to lowly abundant organ-
isms.  

5.4 CheckM vs Sourmash (GTDB) classification 
CheckM database is limited compared to the GTDB, but the comparison of the 2 
showed that sourmash classify on a more specific level while also showing some 
disagreement between CheckM hit and sourmash (using the GTDB). GTDB also 
distinguishes the Firmicutes phylum in different phylum (e.g., Firmicutes_A, Fir-
micutes_b, Firmicutes_G). The complete table including CheckM quality control 
and Sourmash with the complete taxonomic resolution can be found in Appendix 
n°1 
 

Table 2- Bins with their respective lineage from CheckM and sourmash (GTDB). Sourmash was lim-
ited to the class level, see Appendix n°1 for the complete taxonomic resolution. 

Bin ID CheckM Marker 
lineage 

Sourmash Sta-
tus 

Sourmash phylum Sourmash Class 

bin.01 c__Clostridia found p__Firmicutes_B 
c__Syntropho-
monadia 

bin.02 k__Bacteria found p__Firmicutes c__Bacilli 

bin.03 p__Firmicutes found p__Firmicutes_G c__UBA4882 

bin.04 k__Bacteria found p__Thermotogota c__Thermotogae 
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bin.05 o__Clostridiales found p__Firmicutes_A c__Clostridia 

bin.06 p__Firmicutes found p__Firmicutes_B 
c__Syntropho-
monadia 

bin.07 c__Clostridia found p__Firmicutes_A c__Clostridia 

bin.08 o__Clostridiales nomatch   

bin.09 p__Firmicutes found p__Firmicutes_G c__SHA-98 

bin.10 
p__Euryarchae-
ota found p__Halobacterota 

c__Methanomi-
crobia 

bin.11 p__Firmicutes found p__Firmicutes_G c__Limnochordia 

bin.12 k__Bacteria found p__Thermotogota c__Thermotogae 

bin.13 k__Bacteria disagree p__Bacteroidota c__Bacteroidia 

bin.14 o__Clostridiales found p__Firmicutes_A c__Clostridia 

bin.15 p__Firmicutes found p__DTU030 c__DTU030 

bin.16 
p__Euryarchae-
ota found 

p__Thermoplasma-
tota 

c__Thermoplas-
mata 

bin.17 p__Firmicutes nomatch   

bin.18 k__Bacteria found 
p__Caldatribacteri-
ota 

c__Caldatribac-
teriia 

bin.19 
p__Bacteroide-
tes found p__Bacteroidota c__Bacteroidia 

bin.20 k__Bacteria nomatch   

bin.21 p__Firmicutes found p__Firmicutes_G c__Limnochordia 

bin.22 p__Firmicutes nomatch   

bin.23 k__Bacteria found 
p__Caldatribacteri-
ota 

c__Caldatribac-
teriia 

bin.24 k__Bacteria found p__Firmicutes c__Bacilli 

bin.25 p__Firmicutes found p__Firmicutes_G c__SHA-98 

bin.26 p__Firmicutes disagree p__Firmicutes_G  

bin.27 p__Firmicutes found p__Firmicutes_E c__DTU015 

bin.28 p__Firmicutes nomatch   

bin.29 p__Firmicutes found p__Firmicutes_A 
c__Thermove-
nabulia 

bin.30 p__Firmicutes found p__Firmicutes_G c__Limnochordia 

bin.31 p__Firmicutes nomatch   

bin.32 p__Firmicutes found p__Firmicutes_F 
c__Halanaero-
biia 

bin.33 p__Firmicutes found p__Firmicutes_D 
c__Dethiobacte-
ria 

bin.34 p__Firmicutes found p__Firmicutes_G c__DTU065 

bin.35 k__Bacteria nomatch   
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5.5 RNA de novo Transcripts 
The de novo transcript file produced by Trinity contained 48 283 transcripts and 43 
426 “genes” with 44.26%GC. Based on all transcript contigs, the contig N50 is 899, 
the average contig length was 615.85, and the total assembled bases were 29 735 
097 bases. Based on only the longest isoform per “gene,” the N50 is 640, the average 
contig length is 529.44, and the total of assembled bases is 22 991 484 bases. 

Those results are from the TrinityStats.pl scripts of Trinity (Haas et al. 2013). 
The quantification of all the transcripts is normalised using the TPM methods and 
done by Salmon (Patro et al. 2017). We can deduce, from the total of assembled 
bases, that of the four million reads with a length of 75bp, most of them were used 
in the transcript assembly. 

5.6 EggNOG annotation parsed. 
The annotation of the RNAseq was done on all the transcripts produced, and there 
was no threshold of minimum quantification required. The annotation of the bins 
and RNAseq data by eggNOG gives as an output both ID of the KEGG pathway 
and ID of the KEGG orthology in the result files the said orthology ID (ko number) 
are called “genes” to simplify the explanations, each ko number represent one or 
multiple genes that are registered as different entries for different organisms. In the 
intent of making them more transparent and more straightforward for the HTML, 
the use of the ko number was chosen over the use of the gene name or entry of an 
arbitrary organism.  

In the annotation of the bins, a total of 249 different pathways were found. In the 
annotation of the RNAseq data, 305 pathways were found. This difference of path-
ways found could be due to the use of only a majority of the initial genomic data as 
during the binning, some portion of the data was not associated with one of the 35 
bins. There is also a difference in sequence depth. The depleted RNA was sequenced 
with more depth than the DNA. 

Moreover, a part of the data was also not annotated. This could be due to a lack 
of information for those DNA sequences in the database or the fact that those se-
quences are incomplete as well as in regards to the annotation, a non-utility of those 
sequences. Only further research about those sequences could answer this. Se-
quences that did not contain annotation information about pathway while still being 
annotated for another database (GO term, BiGG Reaction, BRITE, CAZy). 

The number of pathways being substantial, only a few will be shown here as an 
example(chapters 5.6.1 to 5.6.3). The chosen pathways are methane metabo-
lism(ko00680), carbon metabolism(ko01200) that contains Acetogen module 
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(M00618), and glycolysis (ko00010). Those three pathways are involved in anaer-
obic degradation process to produce methane. 

The point 5.6.1 to 5.6.3 are a rough representation of the presence of  “gene” in 
the pathways. Unfortunately, the system put in place to give visual representation is 
limited to a total of 119 highlighted “genes” at a time in the pathway. This means 
that in the case of a number of genes superior to 119, the list must be reduced to 119 
or lower to create the figure, and you can repeat the creation of the figure as much 
as needed with other subsets of the list. Here only 1 figure is shown so if the gene 
is highlighted it show the presence but if it is not highlighted, the creation of the 
other figure is required to assess graphically the absence of the said “gene.” 

5.6.1 The glycolysis  
The glycolysis pathway is an example of a pathway highlighted by the parser.  
In the sample tested, the glycolysis pathway contains a total of 136 “genes” in the 
RNAseq data. We can see from figure n°7 that the RNAseq data express most of the 
pathway genes. The number of “genes” present in both the bins and the RNAseq 
(denominated as “expressed”) as well as the number of “genes” present in only in 
the bins but not in the RNAseq data (denominated as “non-expressed”) are in the 
APPENDIX n° 2. In the APPENDIX n°2 is also present the figure of the “expressed 
genes” and the figure of the “non-expressed genes.” 
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Figure 7- The glycolysis pathway with 119 out of 136 “genes” highlighted in purple 

5.6.2 The methane metabolism 
The methane metabolism pathway is an example of a pathway highlighted by the 
parser. In the sample tested, the methane metabolism contains a total of 206 “genes” 
in the RNAseq data. We can see from figure n°8 that a majority of the gene present 
in the bins are present in the RNAseq data (green). The number of “genes” present 
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in both the bins and the RNAseq data (denominated as “expressed”) as well as the 
number of “genes” present in only in the bins but not in the RNAseq data (denomi-
nated as “non-expressed”) are in the APPENDIX n°2. In the APPENDIX n°2 is also 
present the figure of the RNA “genes” and the figure of the bins “genes” without 
distinction by the presence of it in RNAseq data.  
 

 
Figure 8- The methane metabolism pathway with the “expressed genes” highlighted in green and the 
“non-expressed genes” highlighted in orange. 

 

5.6.3 The carbon metabolism 
The carbon metabolism pathway is an example of a pathway highlighted by the par-
ser. In the sample tested, the carbon metabolism contains a total of 383 “genes” in 
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the RNAseq data. We can see from figure n°9 that most of the pathway is expressed 
by the RNAseq data while being present in the bins MAGs. The number of “genes” 
present in both the bins and the RNAseq data (denominated as “expressed”) as well 
as the number of “genes” present only in the bins but not in the RNAseq data (de-
nominated as “non-expressed”) are in the APPENDIX n°2. In the APPENDIX n° 2 
is also present the figure of the “non-expressed genes” and the figure of the RNA 
“genes.” 

 
Figure 9- The carbon metabolism pathway with the “expressed genes” highlighted in green. 
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6.1 Using Hybrid assembly 
The long-read assembly has the advantages of avoiding the repeats and the gaps that 
can be produced in the assembly of the short reads. While short-read assembly is 
more accurate on the base level but has a higher risk of misassemblies through gaps 
and repeats. 

6.2 Using three binning methods and a binning refiner  
The different binning algorithms all have errors and weaknesses. That is why the 
use of binning refinement such as in MetaWRAP (Uritskiy, DiRuggiero, and Taylor 
2018), DAS_Tool (Sieber et al. 2018), and Binning refiner (Song and Thomas 2017) 
is developed. The bin refinement uses the bins obtained from different methods to 
analyse and characterise their accuracy and then use the best elements of each 
method to output the best bins. This is showed by an improvement of the complete-
ness and a diminution of the contamination assessed by CheckM. 

6.3 Use GTDB with sourmash for classification 
Two factors motivated the use of sourmash with the genome taxonomy database 
(GTDB). Sourmash is proven to be an efficient classification software using Min-
Hash sketches of genomic data. The main advantages of this software are the high 
processing speed of sourmash as it is based on hashes produced from public data-
bases and not the said databases. This also helps in the size of the database and the 
accessibility; a laptop can run sourmash on a database with no issue whatsoever and 
in an acceptable time (Breitwieser, Lu, and Salzberg 2019). 

The GTDB was converted to a sourmash database with sourmash. The use of the 
GTDB is essential in the classification of MAGs from biogas reactor as GTDB in-
clude good quality draft genomes from such samples besides the RefSeq and Gen-
bank databases. 

6 Discussion 



39 
 

6.4 Why use eggNOG to annotate 
The eggNOG-Mapper is a tool that revolves around the adaptation of the annotation 
requirement (speed, accuracy). It can use both a HMMs database with HMMer3 
(Eddy 2011) to map the query sequence then creates orthologous groups, or it can 
use a protein database with diamond to obtain the seed eggNOG orthologs that are 
then analysed the same way  (Buchfink, Xie, and Huson 2015). 

The use of the diamond method combined with the eggNOG 5.0 database leads 
to a fast and accurate annotation. Where Blast and InterProScan show a slightly 
worse result for a higher computational time (Huerta-Cepas et al. 2017). 

6.5 Gene expression 
The gene expression of the RNAseq data has a limited reach. Indeed, the output of 
the quantification only gives a TPM normalized quantification of the transcripts in 
the sample. Thus, the quantification can solely be useful for the understanding of 
expression level in the sample at a specific time. Due to the RNA sequencing of the 
microbial community in the sample and not independent organisms, only interpre-
tation on the sample level can be made. 

6.6 Graphical display 
One of the significant issues with the actual display of the pathway with “genes” 
presence is the limitation of 119 “genes” entry at a time for the graphical display. It 
was chosen to redirect the pathway directly to the online KEGG DB as the number 
of figures to download and store to display with an offline mode would be too ex-
cessive. 

The graphical display of the pathway is an additional feature that is helpful for 
the visualisation and comprehension of the “genes” involvement in the pathways 
activities. Nevertheless, when it is impossible to access, the use of manual search or 
reduction of the list of genes to display can offer more limited information. 

6.7 MUFFIN limitations 
Creating an automated pipeline also leads to some limitations. The use of the three 
steps of the pipeline can increase the computational charge when the aim is on a 
smaller number of bins or a particular organism. That is why each step can also be 
run individually, making a stop after the first and second steps to allow the manual 
narrowing of the data to analyse. For example, a sample gives 42 bins. You can 
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decide either to use all of them in the next steps, or reduce the number of bins, or 
decide after the CheckM quality check and the taxonomic classification to keep only 
the bins over XX% of completeness and from the YY lineage. 

Another limitation is the lack of liberty for the user to tweak each software, and 
this was a choice made to have an ergonomic and straightforward pipeline. People 
who will want to configure everything manually will tend to run each software in-
dividually with the desired parameter. 
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This project results in the creation of a metagenomics analysis pipeline supported 
by de novo transcriptomics (MUFFIN). That is reproducible, automated, and simple 
of utilisation. This pipeline can use hybrid assembly methods to increase the com-
pleteness but also the base level quality of the MAGs produced. It also produces 
taxonomic classification and bin qualities, bin and transcript annotation, transcript 
expression on the number of reads for each transcript (TPM normalised), and finally 
simple HTML summary files to show the pathway present in the bins and the in-
volvement of the said bin in the pathways.  

The data used to test this pipeline showed that the assembly and the binning steps 
produced a fair number of bins (35 bins) with overall good quality, over 70% com-
pleteness and less than 2% contamination for all bins. The taxonomic classification 
showed similar hits as in other studies while also opening to new potential discov-
eries. The annotation is also a source of various information that can be utilized for 
further and more in-depth researches on the microbial population and interaction. 

Further research on bins 6, 21 and 23 could be of great interest as the result of 
the pipeline show a good level of completeness with low contamination (APPEN-
DIX n°1). The classification indicates them as “Thermacetogeniaceae,” “unclassi-
fied clostridium,” and “Caldatribacteriaceae,” respectively (Appendix n°1), and the 
annotation shows their substantial involvement in the methane and carbon metabo-
lism pathways (APPENDIX n°2). 

MUFFIN could benefit in the future of different improvements such as a file that 
summarises all the taxonomic classification effectuate by MetaWRAP, CheckM, 
eggNOG, and Sourmash; creating a list of all the found ko IDs (from KEGG DB) 
that are not involved in a pathway according to the eggNOG annotation.  

It could also benefit of the addition some more statistics and information in the 
HTML such as the total of ko IDs found versus the ko IDs found with a KEGG 
pathway; the percentage of ko present in the pathway versus what is found in the 
RNA, bins, individual bin; a distribution of the pathways (e.g., the most abundant 
pathways in the bins). 

To place the classified bin in a graphical phylogenetic tree, create the option to 
output the graphical pathway with the complete set of genes. 

7 Conclusion and further perspectives 
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Another improvement would be to create an advance user and wizard user con-
figuration file that would allow the user to tweak all the different parameters of all 
the software as desired.  

MUFFIN could also benefit from the addition of new analysis software such as 
differential expression analysis, short reads assembly methods. Another improve-
ment of the MUFFIN pipeline would be to diversify the sources for the reads input. 
The use of Pacific Biosciences sequenced reads for example. 
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Appendix 1; Table 1 - CheckM quality check 

Bin Id genomes markers 
marker 
sets 0 1 2 3 4 5+ 

Complete-
ness 

Contamina-
tion Strain heterogeneity 

bin.01 35 420 196 16 394 10 0 0 0 94.19 2.16 0.00 

bin.02 3167 126 75 1 124 1 0 0 0 98.67 1.33 0.00 

bin.03 930 213 118 4 207 2 0 0 0 97.25 1.13 0.00 

bin.04 5443 103 58 9 94 0 0 0 0 90.86 0.00 0.00 

bin.05 304 250 143 60 189 1 0 0 0 81.77 0.70 0.00 

bin.06 100 295 158 11 283 1 0 0 0 96.13 0.16 100.00 

bin.07 387 223 124 28 195 0 0 0 0 81.25 0.00 0.00 

bin.08 304 250 143 3 247 0 0 0 0 97.90 0.00 0.00 

bin.09 1324 176 102 10 165 1 0 0 0 91.18 0.49 0.00 

bin.10 90 234 153 32 202 0 0 0 0 86.60 0.00 0.00 

bin.11 930 213 118 6 203 4 0 0 0 95.73 1.98 0.00 

bin.12 5443 103 58 1 97 5 0 0 0 98.28 3.97 40.00 

bin.13 433 273 183 8 264 1 0 0 0 96.72 0.27 100.00 

bin.14 172 263 149 47 212 4 0 0 0 77.14 2.35 0.00 

bin.15 930 213 118 6 206 1 0 0 0 97.46 0.42 0.00 

bin.16 148 187 124 1 186 0 0 0 0 99.60 0.00 0.00 

bin.17 1324 176 102 13 156 7 0 0 0 89.51 5.43 0.00 

bin.18 5443 105 59 1 98 6 0 0 0 98.31 6.78 66.67 

bin.19 350 316 210 15 299 2 0 0 0 93.57 0.71 0.00 

bin.20 174 149 89 35 113 1 0 0 0 71.16 0.56 0.00 

bin.21 1324 176 102 20 155 1 0 0 0 83.82 0.98 0.00 

bin.22 930 213 118 12 201 0 0 0 0 90.47 0.00 0.00 

bin.23 5443 105 59 18 86 1 0 0 0 74.58 1.69 0.00 

bin.24 3167 126 75 37 87 2 0 0 0 72.32 0.78 50.00 

bin.25 1324 176 102 6 166 4 0 0 0 94.61 3.43 0.00 

bin.26 1324 176 102 5 168 3 0 0 0 95.10 1.96 0.00 

bin.27 1324 175 101 12 163 0 0 0 0 89.60 0.00 0.00 

bin.28 930 213 118 14 198 1 0 0 0 88.77 0.85 0.00 

bin.29 1318 179 104 5 166 8 0 0 0 95.67 3.93 0.00 

bin.30 1318 179 104 8 168 3 0 0 0 92.31 1.92 0.00 

bin.31 1324 176 102 3 171 2 0 0 0 98.01 1.47 0.00 

bin.32 930 207 114 2 202 3 0 0 0 98.25 0.95 33.33 

bin.33 930 213 118 11 201 1 0 0 0 91.74 0.85 0.00 

bin.34 1324 176 102 10 163 3 0 0 0 91.67 1.05 0.00 

bin.35 5443 105 59 4 101 0 0 0 0 94.76 0.00 0.00 

 

Appendix 1 - CheckM and sourmash (GTDB) 
results 
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Appendix 1; Table 2 - CheckM Lineage 

Bin Id Marker lineage UID 

bin.01 c__Clostridia (UID1085) 

bin.02 k__Bacteria (UID2328) 

bin.03 p__Firmicutes (UID241) 

bin.04 k__Bacteria (UID209) 

bin.05 o__Clostridiales (UID1120) 

bin.06 p__Firmicutes (UID1022) 

bin.07 c__Clostridia (UID1118) 

bin.08 o__Clostridiales (UID1120) 

bin.09 p__Firmicutes (UID239) 

bin.10 p__Euryarchaeota (UID54) 

bin.11 p__Firmicutes (UID241) 

bin.12 k__Bacteria (UID209) 

bin.13 k__Bacteria (UID2570) 

bin.14 o__Clostridiales (UID1212) 

bin.15 p__Firmicutes (UID241) 

bin.16 p__Euryarchaeota (UID3) 

bin.17 p__Firmicutes (UID239) 

bin.18 k__Bacteria (UID209) 

bin.19 p__Bacteroidetes (UID2605) 

bin.20 k__Bacteria (UID2329) 

bin.21 p__Firmicutes (UID239) 

bin.22 p__Firmicutes (UID241) 

bin.23 k__Bacteria (UID209) 

bin.24 k__Bacteria (UID2328) 

bin.25 p__Firmicutes (UID239) 

bin.26 p__Firmicutes (UID239) 

bin.27 p__Firmicutes (UID239) 

bin.28 p__Firmicutes (UID241) 

bin.29 p__Firmicutes (UID240) 

bin.30 p__Firmicutes (UID240) 

bin.31 p__Firmicutes (UID239) 

bin.32 p__Firmicutes (UID241) 

bin.33 p__Firmicutes (UID241) 

bin.34 p__Firmicutes (UID239) 

bin.35 k__Bacteria (UID209) 
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Appendix 1; Table 3 - Sourmash taxonomic lineage (superkingdom to order) 

Bin Id status superkingdom phylum class order 

bin.01 found d__Bacteria p__Firmicutes_B c__Syntrophomonadia o__Syntrophomonadales 

bin.02 found d__Bacteria p__Firmicutes c__Bacilli o__ML615J-28 

bin.03 found d__Bacteria p__Firmicutes_G c__UBA4882 o__UBA10575 

bin.04 found d__Bacteria p__Thermotogota c__Thermotogae o__Petrotogales 

bin.05 found d__Bacteria p__Firmicutes_A c__Clostridia o__Acetivibrionales 

bin.06 found d__Bacteria p__Firmicutes_B c__Syntrophomonadia o__Thermacetogeniales 

bin.07 found d__Bacteria p__Firmicutes_A c__Clostridia o__4C28d-15 

bin.08 nomatch     

bin.09 found d__Bacteria p__Firmicutes_G c__SHA-98 o__UBA4971 

bin.10 found d__Archaea p__Halobacterota c__Methanomicrobia o__Methanomicrobiales 

bin.11 found d__Bacteria p__Firmicutes_G c__Limnochordia o__DTU010 

bin.12 found d__Bacteria p__Thermotogota c__Thermotogae o__Petrotogales 

bin.13 disagree d__Bacteria p__Bacteroidota c__Bacteroidia o__Bacteroidales 

bin.14 found d__Bacteria p__Firmicutes_A c__Clostridia o__Acetivibrionales 

bin.15 found d__Bacteria p__DTU030 c__DTU030 o__DTU030 

bin.16 found d__Archaea p__Thermoplasmatota c__Thermoplasmata o__Methanomassiliicoccales 

bin.17 nomatch     

bin.18 found d__Bacteria p__Caldatribacteriota c__Caldatribacteriia o__Caldatribacteriales 

bin.19 found d__Bacteria p__Bacteroidota c__Bacteroidia o__Bacteroidales 

bin.20 nomatch     

bin.21 found d__Bacteria p__Firmicutes_G c__Limnochordia o__DTU080 

bin.22 nomatch     

bin.23 found d__Bacteria p__Caldatribacteriota c__Caldatribacteriia o__Caldatribacteriales 

bin.24 found d__Bacteria p__Firmicutes c__Bacilli o__ML615J-28 

bin.25 found d__Bacteria p__Firmicutes_G c__SHA-98 o__DTUO25 

bin.26 disagree d__Bacteria p__Firmicutes_G   

bin.27 found d__Bacteria p__Firmicutes_E c__DTU015 o__D8A-2 

bin.28 nomatch     

bin.29 found d__Bacteria p__Firmicutes_A c__Thermovenabulia o__Thermovenabulales 

bin.30 found d__Bacteria p__Firmicutes_G c__Limnochordia o__DTU010 

bin.31 nomatch     

bin.32 found d__Bacteria p__Firmicutes_F c__Halanaerobiia o__Halanaerobiales 

bin.33 found d__Bacteria p__Firmicutes_D c__Dethiobacteria o__DTU022 

bin.34 found d__Bacteria p__Firmicutes_G c__DTU065 o__DTU065 

bin.35 nomatch     
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Appendix 1; Table 4 - Sourmash taxonomic classification (family to species) 

Bin Id status family genus species 

bin.01 found f__Syntrophomonadaceae g__DTU018 s__DTU018 sp003444615 

bin.02 found f__CAG-698 g__UBA3946 s__UBA3946 sp002385755 

bin.03 found f__UBA3943 g__UBA3943 s__UBA3943 sp002385625 

bin.04 found f__Petrotogaceae g__Defluviitoga s__Defluviitoga tunisiensis 

bin.05 found f__Acetivibrionaceae g__DTU013 s__DTU013 sp002385815 

bin.06 found f__Thermacetogeniaceae g__DTU068 s__DTU068 sp001513545 

bin.07 found f__DTU072 g__DTU072 s__DTU072 sp001512685 

bin.08 nomatch    
bin.09 found f__UBA4971 g__UBA2557 s__UBA2557 sp900019985 

bin.10 found f__Methanocullaceae g__Methanoculleus 
s__Methanoculleus thermohy-
drogenotrophicum 

bin.11 found f__DTU010 g__DTU010 s__DTU010 sp002391385 

bin.12 found f__Petrotogaceae g__Defluviitoga s__Defluviitoga tunisiensis 

bin.13 disagree f__Dysgonomonadaceae g__UBA4179  

bin.14 found f__Acetivibrionaceae g__Herbivorax s__Herbivorax saccincola 

bin.15 found f__DTU030 g__DTU030 s__DTU030 sp001513125 

bin.16 found f__Methanomassiliicoccaceae g__DTU008 s__DTU008 sp001512965 

bin.17 nomatch    
bin.18 found f__Caldatribacteriaceae g__UBA3950 s__UBA3950 sp002385475 

bin.19 found f__DTU049 g__DTU049 s__DTU049 sp001512885 

bin.20 nomatch    
bin.21 found f__DTU080 g__DTU080 s__DTU080 sp001513395 

bin.22 nomatch    
bin.23 found f__Caldatribacteriaceae g__UBA3950 s__UBA3950 sp002385475 

bin.24 found f__CAG-698 g__DTU056 s__DTU056 sp001512985 

bin.25 found f__DTU025 g__DTU025 s__DTU025 sp001513145 

bin.26 disagree    
bin.27 found f__D2 g__DTU015 s__DTU015 sp001513185 

bin.28 nomatch    
bin.29 found f__Tepidanaerobacteraceae g__DTU063 s__DTU063 sp001512695 

bin.30 found f__DTU012 g__DTU012 s__DTU012 sp900019385 

bin.31 nomatch    
bin.32 found f__DTU029 g__DTU029 s__DTU029 sp001512435 

bin.33 found f__DTU022 g__DTU022 s__DTU022 sp001512835 

bin.34 found f__DTU065 g__DTU065 s__DTU065 sp001512545 

bin.35 nomatch    
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A. The glycolysis  

Appendix 2; Table 1 - the gene “expression.” of the glycolysis pathway in the bins 

Bin ID “Expressed 
genes.” 

“Non-expressed 
genes.” 

Sourmash family 

bin.1 7 0 f__Syntrophomonadaceae 

bin.2 6 0 f__CAG-698 

bin.3 5 0 f__UBA3943 

bin.4 9 0 f__Petrotogaceae 

bin.5 21 0 f__Acetivibrionaceae 

bin.6 11 0 f__Thermacetogeniaceae 

bin.7 2 0 f__DTU072 

bin.8 1 0  

bin.9 7 0 f__UBA4971 

bin.10 10 0 f__Methanocullaceae 

bin.11 9 0 f__DTU010 

bin.12 7 0 f__Petrotogaceae 

bin.13 5 0 f__Dysgonomonadaceae 

bin.14 11 0 f__Acetivibrionaceae 

bin.15 2 0 f__DTU030 

bin.16 0 0 f__Methanomassiliicoccaceae 

bin.17 1 0  

bin.18 16 1 f__Caldatribacteriaceae 

bin.19 5 0 f__DTU049 

bin.20 1 0  

bin.21 4 0 f__DTU080 

bin.22 3 0  

bin.23 16 4 f__Caldatribacteriaceae 

bin.24 3 0 f__CAG-698 

bin.25 1 0 f__DTU025 

bin.26 2 0  

bin.27 0 0 f__D2 

bin.28 11 0  

bin.29 1 0 f__Tepidanaerobacteraceae 

bin.30 7 0 f__DTU012 

bin.31 8 2  

bin.32 11 0 f__DTU029 

bin.33 1 0 f__DTU022 

bin.34 4 0 f__DTU065 

bin.35 2 0  

Appendix 2 – Parser results 
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Appendix 2; Figure 1- The glycolysis pathway with the “expressed genes” highlighted in green. 
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Appendix 2; Figure 2 - The glycolysis pathway with the “non-expressed genes” highlighted in orange. 
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B. Methane metabolism 

Appendix 2; Table 2 - the gene “expression.” of the methane metabolism pathway in the bins 

Bin ID “Expressed 
genes.” 

“Non-expressed 
genes.” 

Sourmash family 

bin.1 2 1 f__Syntrophomonadaceae 

bin.2 4 0 f__CAG-698 

bin.3 2 1 f__UBA3943 

bin.4 4 0 f__Petrotogaceae 

bin.5 6 0 f__Acetivibrionaceae 

bin.6 20 0 f__Thermacetogeniaceae 

bin.7 4 2 f__DTU072 

bin.8 8 4  

bin.9 3 0 f__UBA4971 

bin.10 9 0 f__Methanocullaceae 

bin.11 5 0 f__DTU010 

bin.12 4 0 f__Petrotogaceae 

bin.13 4 1 f__Dysgonomonadaceae 

bin.14 4 0 f__Acetivibrionaceae 

bin.15 3 1 f__DTU030 

bin.16 4 0 f__Methanomassiliicoccaceae 

bin.17 0 0  

bin.18 12 0 f__Caldatribacteriaceae 

bin.19 7 0 f__DTU049 

bin.20 2 0  

bin.21 15 3 f__DTU080 

bin.22 6 1  

bin.23 14 0 f__Caldatribacteriaceae 

bin.24 2 0 f__CAG-698 

bin.25 0 0 f__DTU025 

bin.26 0 0  

bin.27 0 0 f__D2 

bin.28 9 0  

bin.29 7 1 f__Tepidanaerobacteraceae 

bin.30 0 0 f__DTU012 

bin.31 9 3  

bin.32 2 0 f__DTU029 

bin.33 9 0 f__DTU022 

bin.34 1 0 f__DTU065 

bin.35 5 0  
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Appendix 2; Figure 3 - The methane metabolism pathway with the RNAseq “genes highlighted in 
purple. 
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Appendix 2; Figure 4 - The methane metabolism pathway with all the genes present in the bins high-
lighted in red. No distinction between “expressed” and “non-expressed.” 
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C. Carbon Metabolism 

Appendix 2; Table 3 - the gene “expression.” of the carbon metabolism pathway in the bins 

Bin ID “Expressed 
genes.” 

“Non-expressed 
genes.” 

Sourmash family 

bin.1 23 2 f__Syntrophomonadaceae 

bin.2 10 0 f__CAG-698 

bin.3 5 1 f__UBA3943 

bin.4 16 0 f__Petrotogaceae 

bin.5 29 0 f__Acetivibrionaceae 

bin.6 33 0 f__Thermacetogeniaceae 

bin.7 9 3 f__DTU072 

bin.8 18 4  

bin.9 11 0 f__UBA4971 

bin.10 10 0 f__Methanocullaceae 

bin.11 15 0 f__DTU010 

bin.12 18 0 f__Petrotogaceae 

bin.13 14 1 f__Dysgonomonadaceae 

bin.14 5 0 f__Acetivibrionaceae 

bin.15 17 0 f__DTU030 

bin.16 3 0 f__Methanomassiliicoccaceae 

bin.17 4 0  

bin.18 30 1 f__Caldatribacteriaceae 

bin.19 20 0 f__DTU049 

bin.20 1 0  

bin.21 24 3 f__DTU080 

bin.22 8 1  

bin.23 26 2 f__Caldatribacteriaceae 

bin.24 6 0 f__CAG-698 

bin.25 6 0 f__DTU025 

bin.26 4 0  

bin.27 2 0 f__D2 

bin.28 32 0  

bin.29 12 1 f__Tepidanaerobacteraceae 

bin.30 6 0 f__DTU012 

bin.31 20 2  

bin.32 11 0 f__DTU029 

bin.33 17 0 f__DTU022 

bin.34 7 0 f__DTU065 

bin.35 17 0  
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Appendix 2; Figure 5 - The carbon metabolism pathway with the “non-expressed genes” highlighted 
in orange. 
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Appendix 2; Figure 6 - The carbon metabolism pathway with the RNAseq “genes” highlighted in 
purple. 
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Appendix 3 – MUFFIN manuscript 
The manuscript for the publication of MUFFIN is available here https://www.bio-
rxiv.org/content/10.1101/2020.02.08.939843v1, and in the following pages. 

https://www.biorxiv.org/content/10.1101/2020.02.08.939843v1
https://www.biorxiv.org/content/10.1101/2020.02.08.939843v1
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 14 

Abstract 15 

Metagenomics has redefined many areas of microbiology. However, metagenome-16 

assembled genomes (MAGs) are often fragmented, primarily when sequencing was 17 

performed with short reads. Recent long-read sequencing technologies promise to improve 18 

genome reconstruction. However, the integration of two different sequencing modalities 19 

makes downstream analyses complex. We, therefore, developed MUFFIN, a complete 20 

metagenomic workflow that uses short and long reads to produce high-quality bins and their 21 

annotations. The workflow is written by using Nextflow, a workflow orchestration software, to 22 

achieve high reproducibility and fast and straightforward use. This workflow also produces 23 

the taxonomic classification and KEGG pathways of the bins and can be further used by 24 

providing RNA-Seq data (optionally) for quantification and annotation. We tested the 25 

workflow using twenty biogas reactor samples and assessed the capacity of MUFFIN to 26 

process and output relevant files needed to analyze the microbial community and their 27 

function. MUFFIN produces functional pathway predictions and if provided de novo transcript 28 

annotations across the metagenomic sample and for each bin. 29 
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Author Summary  30 

RVD did the development and design of MUFFIN and wrote the first draft; BM and EBR did 31 

the critical reading and correction of the manuscript; MH did the critical reading of the 32 

manuscript and the general adjustments for the metagenomic workflow; AV did the critical 33 

reading of the manuscript and adjustments for the taxonomic classifications. CB supervised 34 

the project, did the workflow design, helped with the implementation, and revised the 35 

manuscript. 36 

Introduction 37 

Metagenomics is widely used to analyze the composition, structure, and dynamics of 38 

microbial communities, as it provides deep insights into uncultivatable organisms and their 39 

relationship to each other 1–5. In this context, whole metagenome sequencing is mainly 40 

performed using short-read sequencing technologies, predominantly provided by Illumina. 41 

Not surprisingly, the vast majority of tools and workflows for the analysis of metagenomic 42 

samples are designed around short reads. However, long-read sequencing technologies 43 

such as provided by PacBio or Oxford Nanopore Technologies (ONT) retrieve genomes from 44 

metagenomic datasets with higher completeness and less contamination 6. The long-read 45 

information bridges gaps in a short-read-only assembly that often occur due to intra- and 46 

interspecies repeats 6. Complete viral genomes can be already identified from environmental 47 

samples without any assembly step via nanopore-based sequencing 7. Combined with a 48 

reduction in cost per gigabase 8 and an increase in data output, the technologies for 49 

sequencing long reads quickly became suitable for metagenomic analysis 9–12.  In particular, 50 

with the MinION, ONT offers mobile and cost-effective sequencing device for long reads that 51 

paves the way for the real-time analysis of metagenomic samples. Currently, the combination 52 

of both worlds (long reads and high-precision short reads) allows the reconstruction of more 53 

complete and more accurate metagenome-assembled genomes (MAGs) 6. 54 

One of the main challenges and bottlenecks of current metagenome sequencing studies is 55 

the orchestration of various computational tools into stable and reproducible workflows to 56 
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analyze the data. A recent study from 2019 involving 24,490 bioinformatics software 57 

resources showed that 26 % of all these resources are not currently online accessible 13. 58 

Among 99 randomly selected tools, 49 % were deemed ‘difficult to install,’ and 28 % 59 

ultimately failed the installation procedure. For a large-scale metagenomics study, various 60 

tools are needed to analyze the data comprehensively.  Thus, already during the installation 61 

procedure, various issues arise related to missing system libraries, conflicting dependencies 62 

and environments or operating system incompatibilities. Even more complicating, 63 

metagenomic workflows are computing intense and need to be compatible with high-64 

performance compute clusters (HPCs), and thus different workload managers such as 65 

SLURM or LSF. We combined the workflow manager Nextflow14 with virtualization software 66 

(so-called ‘containers’) to generate reproducible results in various working environments and 67 

allow full parallelization of the workload on a higher degree.  68 

Several workflows for metagenomic analyses have been published, including 69 

MetaWRAP(v1.2.1)15, Anvi’o16, SAMSA217,  Humann18, or MG-Rast19. Unlike those, MUFFIN 70 

allows for a hybrid metagenomic approach combining the strengths of short and long reads. 71 

It ensures reproducibility through the use of a workflow manager and reliance on either install 72 

recipes (Conda 20) or containers (Docker21).  73 

Design and implementation 74 

MUFFIN integrates state-of-the-art bioinformatic tools via Conda recipes or Docker 75 

containers for the processing of metagenomic sequences in a Nextflow workflow 76 

environment (Figure 1). MUFFIN executes three steps subsequently or separately if 77 

intermediate results, such as MAGs, are available. As a result, a more flexible workflow 78 

execution is possible.  The three steps represent common metagenomic analysis tasks and 79 

are summarized in Figure 1:  80 

1. Assemble: Hybrid assembly and binning  81 

2. Classify: Bin quality control and taxonomic assessment 82 

.CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2020.02.08.939843doi: bioRxiv preprint first posted online Feb. 8, 2020; 

http://dx.doi.org/10.1101/2020.02.08.939843
http://creativecommons.org/licenses/by-nc/4.0/


3. Annotate: Bin annotation and KEGG pathway summary 83 

The workflow takes paired-end Illumina reads (short reads) and nanopore-based reads (long 84 

reads) as input for the assembly and binning and allows for additional user-provided read 85 

sets for differential coverage binning. Differential coverage binning facilitates genome bins 86 

with higher completeness than other currently used methods 22. Step 2 will be executed 87 

automatically after the assembly and binning procedure or can be executed independently by 88 

providing MUFFIN a directory containing MAGs in FASTA format. In step 3, paired-end RNA-89 

Seq data can be optionally supplemented to improve the annotation of bins.  90 

On completion, MUFFIN provides various outputs such as the MAGs, KEGG pathways, and 91 

bin quality/annotations. Additionally, all mandatory databases are automatically downloaded 92 

and stored in the working directory or can be alternatively provided via an input flag. 93 

.CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2020.02.08.939843doi: bioRxiv preprint first posted online Feb. 8, 2020; 

http://dx.doi.org/10.1101/2020.02.08.939843
http://creativecommons.org/licenses/by-nc/4.0/


 94 

Figure 1: Simplified overview of the MUFFIN workflow. All three steps (Assemble, Classify, Annotate) from top to 95 

bottom are shown. The RNA-Seq data for Step 3 (Annotate) is optional.  96 

Step 1 - Assemble: Hybrid assembly and binning 97 

The first step (Assembly and binning), uses metagenomic nanopore-based long reads and 98 

Illumina paired-end short reads to obtain high-quality and highly complete bins. The short-99 

read quality control is operated using fastp (v0.20.0) 23. Optionally, Filtlong (v0.2.0) 24 can be 100 
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used to discard long reads below a length of 1000 bp 24. The hybrid assembly can be 101 

performed according to two principles, which differ substantially in the read set to begin with. 102 

The default approach starts from a short-read assembly where contigs are bridged via the 103 

long reads using metaSPAdes (v3.13.1) 25–27. Alternatively, MUFFIN can be executed starting 104 

from a long-read-only assembly using metaFlye (v2.6) 28,29  followed by polishing the 105 

assembly with the long reads using Racon (v1.4.7) 30 and medaka (v0.11.0) 31 and finalizing 106 

the error correction by incorporating the short reads using multiple rounds of Pilon (v1.23) 32.  107 

Binning is the most crucial step during metagenomic analysis. Therefore, MUFFIN combines 108 

three different binning software tools, respectively CONCOCT (v1.0.0) 33, MaxBin2 (v2.2.4) 109 

34, and MetaBAT2 (v2.14) 35 and refine these bins via MetaWRAP (v1.2.1)15. The user can 110 

provide additional read data sets (short or long reads) to perform automatically differential 111 

coverage binning to assign contigs to their bins better. 112 

Moreover, an additional reassembly of bins has shown the capacity to increase the 113 

completeness and N50 while decreasing the contamination of the bins15. Therefore, MUFFIN 114 

allows for an optional reassembly to improve the continuity of the MAGs further. This re-115 

assembly is performed by retrieving the reads belonging to one bin and doing an assembly 116 

with Unicycler (v0.4.8) 36. 117 

To support a transparent and reproducible metagenomics workflow, all reads that cannot be 118 

mapped back to the existing high-quality bins (after the refinement) are available as an 119 

output for further analysis. These reads could be further analyzed by other tools or, e.g., 120 

used as a new input to run MUFFIN while providing other read sets for the differential 121 

coverage binning to extract additional high-quality bins.  122 

Step 2 - Classify: Bin quality control and taxonomic assessment  123 

In the second step (Bin quality control and taxonomic assessment), the quality of the 124 

bins is evaluated with CheckM (v1.0.18) 37  followed by assigning a taxonomic classification 125 

to the bins using sourmash (v2.0.0a10) 38  and the Genome Taxonomy Database  (GTDB 126 
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release r89) 39. The GTDB was chosen as it contains many unculturable bacteria and 127 

archaea – this allows for monophyletic species assignments, which other databases do not 128 

assure 40,41. GTDB substantially improved overall downstream results 40. The user can also 129 

analyze other bin sets in this step regardless of their origin by providing a directory with 130 

multiple FASTA files (bins).  131 

Step 3 - Annotate: Bin annotation and KEGG pathway summary 132 

The last step of MUFFIN (Bin annotation and output summary) comprises the annotation 133 

of the bins using eggNOG-mapper (v2.0.1) 42 and the eggNOG database (v5) 43. If RNA-Seq 134 

data of the metagenome sample is provided (Illumina, paired-end), quality control using fastp 135 

(v0.20.0) 23  and a de novo transcript assembly using Trinity (v2.8.5) 44 followed by a quasi-136 

mapping transcript quantification using Salmon (v0.15.0) 45 are performed. Lastly, the 137 

transcripts are annotated using eggNOG-mapper (v2.0.1) 42 again, followed by a parser to 138 

output the activity of the pathway graphically in relation to the sample level. The expression 139 

of low and high abundant genes present in the bins is shown. If only bin sets are provided 140 

without any RNA-Seq data, the pathways of all the bins are created based on gene presence 141 

alone. The KEGG pathway results are summarized in detail as interactive HTML files 142 

(example snippet: Error! Not a valid bookmark self-reference.). 143 

Like step 2, this step can be directly performed with a bin set created via another workflow.  144 
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 145 

Figure 2: Example snippets of the sub-workflow results of step 3 (Annotate).   146 

Running MUFFIN and version control 147 

MUFFIN requires only two dependencies, which allows an easy and user-friendly workflow 148 

execution. One of them is the workflow management system Nextflow 14 and the other can 149 

be either Conda 20 as a package manager or Docker 21 to use containerized tools. A detailed 150 

Installation process is available on https://github.com/RVanDamme/MUFFIN.  Each MUFFIN 151 

release specifies the Nextflow version it was tested on, to avoid any version conflicts 152 

between MUFFIN and Nextflow at any time. A Nextflow-specific version can always be 153 

directly downloaded as an executable file from https://github.com/nextflow-154 

io/nextflow/releases, which can then be paired with a compatible MUFFIN version via the -r 155 

flag. 156 
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Results 157 

We chose Nextflow for the development of our metagenomic workflow because of its direct 158 

cloud computing support (Amazon AWS, Google Life Science, Kubernetes), various ready-159 

to-use batch schedulers (SGE, SLURM, LSF), state-of-the-art container support (Docker, 160 

Singularity) and accessibility of a widely used software package manager (Conda). 161 

Moreover, Nextflow 14  provides a practical and straightforward intermediary file handling with 162 

process-specific work directories and the possibility to resume failed executions where the 163 

work ceased. Additionally, the workflow code itself is separated from the ‘profile’ code (which 164 

contains Docker, Conda, or cluster related code), which allows for a convenient and fast 165 

workflow adaptation to different computing clusters without touching or changing the actual 166 

workflow code.  167 

The entire MUFFIN workflow was executed on 20 samples from the Bioproject PRJEB34573 168 

(available at ENA or NCBI) using the Cloud Life Sciences API (google cloud) with docker 169 

containers. This metagenomic bioreactor study provides paired-end Illumina and nanopore-170 

based data for each sample 41. We used five different Illumina read sets of the same project 171 

for differential coverage binning, and the workflow runtime was less than two days for all 172 

samples. MUFFIN was able to retrieve 1122 MAGs with genome completeness of at least 70 173 

% and contamination of less than 10 % (Figure 3). In total, MUFFIN retrieved 654 MAGs with 174 

genome completeness of over 90 %, of which 456 have less than 2% contamination out of 175 

the 20 datasets. For comparison, a recent study was using 134 publicly available datasets 176 

from different biogas reactors and retrieved 1,635 metagenome-assembled genomes with 177 

genome completeness of over 50% 46.  178 

Exemplarily, we investigated the impact of additional re-assembly of each bin for five 179 

samples (Figure 3). The N50 was increased by an average of 6-7 fold across all samples. 180 

Twenty-six bins of the five samples had an N50 ranging between 1 to 3 Mbases.  Some bins 181 

benefit more of this step as the re-assembly performance depends on the number of reads 182 

available for each bin.  183 
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 184 

 185 

Figure 3: A: Quality overview of 1122 meta-assembled genomes (MAGs) by plotting size to completeness and 186 

coloring based on contamination level.  B: N50 comparison between each bin of five selected samples from the 187 

Bioproject PRJEB34573 before and after individual bin reassembly. 188 

Discussion 189 

The analysis of metagenomic sequencing data evolved as an emerging and promising 190 

research field to retrieve, characterize, and analyze organisms that are difficult to cultivate. 191 

There are numerous tools available for individual metagenomics analysis tasks, but they are 192 

mainly developed independently and are often difficult to install and run. The MUFFIN 193 

workflow gathers the different steps of a metagenomics analysis in an easy-to-install, highly 194 

reproducible, and scalable workflow using Nextflow which makes them easily accessible to 195 

researchers. 196 
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 197 

MUFFIN utilizes the advantages of two sequencing technologies, whereas short reads can 198 

provide a better representation of low abundant species due to their higher coverage. This 199 

aspect is further utilized via the final re-Assembly step after binning, which is an optional step 200 

due to the additional computational burden which solely aims to improve genome continuity.  201 

Another critical aspect is the full support of differential binning, for both long and short reads, 202 

via a single input option. The additional coverage information from other read sets of similar 203 

habitats allows for the generation of more concise bins with higher completeness and less 204 

contamination because more coverage information is available for each binning tool to 205 

decide which bin each contig belongs.  206 

With supplied RNA-Seq data, MUFFIN is capable of enhancing the pathway results present 207 

in the metagenomic sample by incorporating this data as well as the general expression level 208 

of the genes. Such information is essential to further analyze a metagenomic data sets in-209 

depth, for example, to define the origin of a sample or to improve environmental parameters 210 

for production reactors such as biogas reactors. Knowing whether an organism expresses a 211 

gene is a crucial element in deciding whether a more detailed analysis of that organism in the 212 

biotope where the sample was taken is necessary or not. 213 

Availability and future directions 214 

MUFFIN is an ongoing workflow project that gets further improved and adjusted. The 215 

modular workflow setup of MUFFIN using Nextflow allows for fast adjustments as soon as 216 

future developments in hybrid metagenomics arise, including the pre-configuration for other 217 

workload managers. MUFFIN can directly benefit from the addition of new bioinformatics 218 

software such as for differential expression analysis and short-read assembly that can be 219 

easily plugged into the modular system of the workflow. Another improvement is the creation 220 

of an advanced user and wizard user configuration file, allowing experienced users to tweak 221 

all the different parameters of all the different software as desired. 222 
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MUFFIN will further benefit from different improvements, in particular by graphically 223 

comparing the generated MAGs via a phylogenetic tree. Furthermore, a convenient approach 224 

to include negative controls is under development to allow the reliable analysis of super-low 225 

abundant organisms in metagenomic samples. 226 

MUFFIN is publicly available at https://github.com/RVanDamme/MUFFIN under the GNU 227 

general public license v3.0. Detailed information about the program versions used and 228 

additional information can be found in the GitHub repository. All tools used by MUFFIN are 229 

listed in the supplementary table S1. The Docker images used in MUFFIN are prebuilt and 230 

publicly available at https://hub.docker.com/u/nanozoo, and the GTDB formatted for 231 

sourmash(v2.0.0a10)38 usage is publicly available at https://osf.io/wxf9z /  and was created 232 

by C. Titus Brown (associate professor at UC DAVIS, http://ivory.idyll.org/blog/2019-233 

sourmash-lca-db-gtdb.html). 234 
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