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Abstract

Mapping of e�ective leaf area index (LAIe) over the Swedish boreal forest test site

Krycklan (64°N19°E) was performed using ground-based �eld estimates of LAIe and

remote sensing data sources. The LAIe data were collected 2017 and 2018 using

the LAI-2200 Plant Canopy Analyzer and its later version LAI-2200C Plant Canopy

Analyzer. The remote sensing data used were airborne laser scanning (ALS) data,

Interferometric Synthetic Aperture Radar (InSAR) data from TanDEM-X, and stereo

matched drone images. The stereo matched drone images only covered a small subset

of the Krycklan catchment, the ICOS grid area. Point cloud metrics were calculated

from the ALS data and the drone data such as height percentiles, intensity percentiles,

point cloud density and cover metrics. Three metrics from the TanDEM-X data were

evaluated as predictors; interferometric phase height, coherence and backscatter.

Estimations were done by �tting regression models of LAIe and the predicting remote

sensing data sources. The best ALS regression model for predicting LAIe used the

canopy density gap metric, giving an R
2
adj

=0.93 for catchment level estimations and

R
2
adj

=0.97 for the ICOS grid area. The TanDEM-X metric interferometric phase height

was the single best predictor of the three InSAR metrics, predicting LAIe with a

R
2
adj

=0.85 at catchment level and R
2
adj

=0.93 at the ICOS grid area. The drone data

model included the variables canopy cover gap and the 99th height percentile, which

resulted in a R
2
adj

value of 0.95. The models were used to generate wall-to-wall rasters

and evaluated with the leave-one-out cross validation method. It was concluded

that the ALS model was best suited to predict LAIe as it was able to handle varying

forestation, which both the other methods struggled with. When applied over mature

and homogeneous boreal forest all models performed with similar accuracy.
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1 Introduction

Diagnosing the environmental health is of high relevance in mapping climate change.

A factor that a�ects all life on this planet from the small scale to a tremendously large

scale is photosynthesis. Photosynthesis is a process that occurs inside the chloroplasts

of leaf tissue that uses carbon dioxide, water and sunlight to create carbohydrates

and oxygen. Approximately 40% of the plant’s dry mass consists of carbon that is

�xed in photosynthesis and this process enables life on Earth (Lambers, Chapin, and

Pons, 2008). The tree canopy is thus an important factor in the ecosystem processes

because it a�ects the energy, carbon and water budgets in an area (Sellers et al., 1997).

The canopy leaf area is the dominant controlling factor over primary production,

energy exchange, transpiration and other physiological ecosystem attributes (Asner,

Scurlock, and Hicke, 2003).

In research of ecological attributes and interactions the Leaf Area Index (LAI)

is often used as a measure of the canopy leaf area. LAI describes the density of

tree canopy foliage and can be de�ned as the total one-sided area of leaf tissue per

unit ground surface area (Watson, 1947). A model of LAI can be applied on studies

that concerns vegetation and ecology and for validation of research. LAI is thus

an important factor to consider in monitoring of global atmosphere and biosphere

interactions, and the remote sensing arena o�ers e�ective methods to do so (Turner

et al., 2003). By �nding relationships between remote sensing data metrics and �eld

estimates of LAI it is possible to predict corresponding properties over large areas

using the area method (Harrie, 2012). The most accurate LAI estimates are given by

destructive sampling data which are rarely performed due to high costs and imprac-

ticality (Chason, Baldocchi, and Huston, 1991). Common ground-based derivations

include the Tracing Radiation and Architecture of Canopies (TRAC) (Homolová et al.,

2007), hemispherical images (Manninen et al., 2009) and the LAI-2200C Plant Canopy

Analyzer (Eklundh, Harrie, and Kuusk, 2001). The TRAC instrument measures the

e�ect of the spatial distribution of foliage in LAI measurements (Chen, Rich, et al.,

1997). The LAI-2200C Plant Canopy Analyzer instrument and its precursors from

LI-COR Biosciences, is an optical instrument that measures LAI by assuming that

the radiation in the wavelength band 320-490 nm is absorbed by foliage. The mea-

surements made by this instrument are estimates commonly called e�ective leaf area

index (LAIe), or "plant area index" and di�ers from LAI because LAIe includes the

areas of branches and stems and assumes that the leaves and needles are randomly

distributed in the canopy space (LI-COR, 2013). In reality leaves and especially needles

are grouped within shoots. It is shown that instruments that assume a random spatial

distribution of leaves and needles often underestimates LAI in boreal forests. This

also holds for hemispherical images (Chen, Rich, et al., 1997). The reason is that LAIe

is related to gap fraction and when the biomass is clumped the canopy gap fraction

increases (Stenberg, 1996). Like most other ground-based indirect estimations of
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LAI the measurements made with LAI-2200C Plant Canopy Analyzer is based on

the application of Beer-Lambert law (LI-COR, 2012), an equation that explains the

attenuation of light based on the physical properties of the material passed through

(Saleh and Teich, 2019).

Previously, LAI has been predicted using LAIe measurements collected with the

Plant Canopy Analyzer from LI-COR and remote sensing data derived from both

passive sensors (Chen and Cihlar, 1996; Eklundh, Harrie, and Kuusk, 2001; Kovacs

et al., 2004; Manninen et al., 2009; Tillack et al., 2014) and active sensors (Ilangakoon,

Gorsevski, and Milas, 2015; Solberg, 2010; Solberg et al., 2009; Sumnall et al., 2016;

Tang et al., 2014). In the last decade especially airborne lidar remote sensing has

been used in the area, likely due to its ability to capture vegetation structure with

high resolution, its possibility to capture large areas and the increasing availability of

data. Many studies developed empirical relationships with statistical analysis, mostly

regression, between predictor variables derived from lidar metrics and ground-based

LAI estimations with promising results; R
2

= 0.85 (Tang et al., 2014), R
2

= 0.67-0.76

(Sumnall et al., 2016). Solberg et al. (2009) evaluated airborne laser scanning (ALS)

data in mapping of LAIe in a Norway spruce forest by �tting regression models

of LAIe against the calculated log-transformed inverse of the ALS penetration rate

metric. Two di�erent optical instruments were used for collecting ground-based LAIe

data, the LAI-2000 Plant Canopy Analyzer and hemispherical images (HI). LAIe based

on HI showed a weaker relationship with the ALS data compared to the LAI-2000

Plant Canopy Analyzer, which generated R
2

values above 0.9. This study became a

foundation in the forthcoming modeling. Solberg (2010) tested di�erent ALS canopy

penetration metrics for their ability in mapping gap fraction, leaf area index and

defoliation in a Scots pine forest. The study included the metrics penetration rate and

intensity calculated by either �rst echo or �rst and last echo. The conclusion was that

all four penetration metrics were highly related to �eld-measured gap fraction and

LAIe measured with the LAI-2000 Plant Canopy Analyzer. However, �rst and last

echoes metrics produced penetration rates closest to the gap fraction and were able

to penetrate smaller gaps in the tree crowns.

Other remote sensing techniques have been tested in predicting LAI using ground-

based estimations. Manninen et al. (2009) estimated LAI in boreal forest by relating

�eld measured LAIe from hemispherical images and the LAI-2000 Plant Canopy Ana-

lyzer to aerial images taken during wintertime. The R
2

value of the linear regression

was 0.89. Chen and Cihlar (1996) used vegetation indices from Landsat TM images

together with measurements from the LAI-2000 Plant Canopy Analyzer and the TRAC

instrument to estimate LAI and LAIe in boreal coniferous forest. It was found that

spring Landsat images were better than summer images in determining overstory

LAI in boreal forests. It was also found that LAIe was better related to the simple

ratio (SR) and normalized di�erence vegetation index (NDVI) than LAI. The study

stated that LAIe is easier to measure and less variable than LAI, and because it is an

intrinsic attribute of plant canopies it was suggested to use LAIe as the most important

parameter for radiation interception considerations. Kovacs et al. (2004) estimated

LAIe in a mangrove forest with IKONOS images using the vegetation indices and

measurements from the LAI-2000 Plant Canopy Analyzer. The regression analyses

of the LAIe estimates and the vegetation indices NDVI and SR showed signi�cant

relationships of R
2

values slightly above 0.7. Eklundh, Harrie, and Kuusk (2001) com-

pared observed re�ectances from the Landsat ETM+ sensor with LAIe estimates from

the LAI-2000 Plant Canopy Analyzer to �nd statistical relationships. It was shown

that the visible wavelength bands were most sensitive to changes in LAIe. Tillack
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et al. (2014) investigated the seasonal relationship between �eld-measured LAIe from

the LAI-2200 Plant Canopy Analyzer and high resolution satellite-derived vegetation

indices. It was concluded that the relationship between LAIe and spectral vegetation

indices varies over the year. Ilangakoon, Gorsevski, and Milas (2015) estimated LAI

using terrestrial laser scanning data and measurements from the LAI-2200 Plant

Canopy Analyzer and found correlation values between 0.5 and 0.99 for di�erent

methods. Few studies have investigated how to predict LAI using a large quantity

of ground-based estimates of LAIe. Moreover, radar data and stereo matched aerial

images are rarely used in remote sensing modeling of LAIe.

The aim of this study was to compare raster predictions of LAIe developed from

three di�erent remote sensing techniques. The statistical models were developed

using ground-based LAIe measurements together with airborne laser scanning (ALS)

data, Interferometric Synthetic Aperture Radar (InSAR) data from TerraSAR-X add-on

for Digital Elevation Measurement (TanDEM-X) and point clouds from stereo matched

aerial images captured from a drone platform. The purpose of the analysis was to shed

light on weaknesses and strengths of the three di�erent remote sensing techniques in

predicting LAIe. "The global synthesis of plant canopy LAI", a compilation of over

1000 published estimates world wide presented by Asner, Scurlock, and Hicke (2003)

was used as a reference for typical LAI values in boreal forests. According to the

Global synthesis of plant canopy leaf area index the mean value of LAI in boreal

evergreen needleleaf forests was 3.5. This value was calculated from 94 observations

measured with destructive harvesting and direct determination of one-sided leaf

area, collection and weighting of leaf litterfall, allometry, indirect contact methods

and indirect non-contact methods. To the latter belongs LAI-2200C Plant Canopy

Analyzer and its precursors. The maximum LAI value in boreal forests, after removal

of statistical outliers according to the Global synthesis of plant canopy leaf area index

was 6.2.
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2 Material and methods

2.1 The study area

The study covers the area of Krycklan catchment, a research site located 50 km west

of Umeå in the vicinity of Vindeln (64◦14′N, 19◦46′E) in northern Sweden (Figure

2.1). The land ownership of the research site is spread over multiple estates belonging

to private land owners and forest companies. Forest covers 87% of the catchment

area and the rest consists of mires, rock outcrops and thin soils. The land use is

dominated by forestry, and approximately 25% of the catchment has been protected

since 1922. Arable land covers 2% of the land area. The dominant tree species are

Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) with smaller

quantities of birch (Betula pendula Roth.), aspen (Populus tremula L.) and contorta

pine (Pinus contorta). The area is hilly with an elevation varying between 136-373 m

above sea level. The forest is overall second growth with a clear-cut area covering a

total of 7% between the years 1999–2010 (Laudon et al., 2013).

Figure 2.1. The Krycklan catchment is located in northern Sweden (64°N

19 °E) in the municipality of Vindeln.
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Two grids of permanent �eld plots are spread across the catchment (Figure 2.2).

One large grid of �eld plots, containing 436 plots was inventoried 2014 and 2015. The

circular �eld plots with a radius of 10 m are distributed systematically in a square grid

with 350 m spacing between adjacent plots over the 6790 hectare area. For every plot,

coordinates, forest and vegetation variables are registered. An Integrated Carbon

Observation System (ICOS) tower used to track carbon and atmospheric �uxes is

located at the site, which is surrounded by a denser grid of �eld plots (Figures 2.2 and

2.3). The denser ICOS grid is located inside the large grid and was established during

the fall of 2016 complementing the large grid with 52 new plots resulting in a grid of

75 �eld plots with a 10 m radius and 175 m spacing. The inventory contributes with

additional survey data of vegetation and plot coordinates (Wallerman et al., 2018).

Figure 2.2. Krycklan catchment with the large �eld plot grid covering the

entire catchment and the ICOS grid, a dense grid around the ICOS tower.

Red stars = LAIe measured plots.

5



Figure 2.3. The ICOS grid with the ICOS tower in center (yellow star).

2.2 Field data

LAIe data were collected during the vegetation seasons of 2017 and 2018. In 2017,

25 plots were measured between September 2-7, then an additional set of 128 plots

were collected the next summer between June 21 and July 15 to complete the data

sample. Time di�erence in season between the surveys could a�ect the analysis due

to decreasing primary production between July and September (Begon, 2006). Since

all the 2017 year’s inventoried �eld plots are dominated by coniferous trees, leaf

shedding between the surveys will not be an important issue.

The selection of new sample plots aimed at capturing the variation of forest

in the area. Dominating tree species at the �eld plots inventoried 2014 and 2015

were assumed to be an important factor when deciding which plots to include in the

sample to obtain a model that would be able to predict LAIe for all the forest stands in

the catchment. The measurements inventoried 2017 were used together with forest

attribute data to �nd a suitable distribution of sample plots for further collection of

LAIe measurements in 2018. Several regressions models were generated, with the

Heureka system, a software developed within the program of Forest Sustainability

Analysis (Wikström et al., 2011), to evaluate the relationship between LAIe and various

forest attributes. The strongest correlation was found between branch biomass and

LAIe. Branch biomass refers to the dry biomass of living branches, including leaves

and needles (Marklund, 1987, 1988). In the data acquired for analysis, the variable was

presented as biomass in ton per hectare. Therefore, the aim was to select plots so that

the entire variation of branch biomass for every dominating tree species would be

covered in the �eld data (Figures 2.4 and 2.5). Every plot dominated by a tree species
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other than pine or spruce was included in the sample, but since pine and spruce are

the two absolutely dominating tree species in the area the whole variation of branch

biomass for the other species, such as aspen, was impossible to cover. Aspen was

present as the dominating tree species at only two plots in the entire catchment.

Figure 2.4. LAIe measurements plotted against branch biomass. Pine and

spruce dominated plots measured 2017 (�lled symbols) and 2018 (un�lled

symbols).

Figure 2.5. LAIe measurements plotted against branch biomass. Plots

dominated by birch (points), contorta pine (squares) and aspen (triangles)

measured 2018.
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The LAIe data were collected with the LAI-2200 Plant Canopy Analyzer instrument

from LI-COR Biosciences during the vegetation season of 2017 and with the upgraded

version LAI-2200C Plant Canopy Analyzer in the summer of 2018. Two sensors were

used during the data collection. One reference sensor mounted on a tripod and placed

in an open area above ground vegetation level took measurements with close time

intervals of 30 seconds. This ensured that the gross amount of radiation in the blue

spectrum (320-490 nm) was known. These measurements are further on referred to

as above-measurements, because they measure the radiation above the canopy level.

The other sensor was brought to the plots to take measurements under the canopy

level, below-measurements. Since the blue radiation was assumed to be absorbed

by foliage the ratio between below- and above-measurements represents the below

canopy transmittance, which is used to calculate LAIe. The optical sensor of the

instrument measures radiation with �ve concentric sensor rings centered at zenith

angles 68°, 53°, 38°, 23° and 7° (Figure 2.6), with the possibility to exclude rings in the

post-processing. The instruments were synchronized and calibrated according to the

accompanying instruction manual (LI-COR, 2012). Five measurements were taken at

each plot, one in the center and four in the ordinal directions (Figure 2.7).

Height (m)

7°

23°

38°53°68°

-50 -25

6

21

50250

Distance (m)

Figure 2.6. The LAI-2200C Plant Canopy Analyzer sensor range with �ve

sensor rings with di�erent zenith angles. Including the 5th ring, at 50 m

distance trees above 6 m height will a�ect the measured LAIe value.

•

•

•

•

•

7 m

10 m
N

Figure 2.7. Arrangement of measurement within plot.
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The �eld inventories were overall performed in the same way both years, with

some exceptions.

2017: Sunset was selected as the optimal sky condition for taking the measurements.

25 plots were measured.

2018: Most of the data collection was done during days with suitable weather con-

ditions with clear blue sky or even cloud cover. The uneven cloud conditions

some days were handled by keeping the reference sensor close to ensure that

both sensors faced the same sky. 128 plots were measured.

2017: Measurements were taken with the sensor always facing north and using a

180° lens cap to avoid shading from the person holding the instrument (for both

above and below sensors).

2018: Measurements were collected with the direct sunlight blocked out using a 90
◦

lens cap, which also blocks out shading from the person holding the instrument

(for both above and below sensors).

2017: A calibrated reference sensor for above-measurements was located facing

north in an open canopy area larger than 75 × 75 m
2

and programmed for auto

logging every minute at hip height, approximately 1 m above ground.

2018: A calibrated reference sensor for above-measurements was located in an open

canopy area larger than 75 × 75 m
2

and programmed for auto logging every 30

second above �eld vegetation level, around 1.5 m above ground. The 90
◦

lens

cap made it necessary to go back and change the position of the sensor every

hour as the sun incidence angle varied.

2.2.1 De�nitions

A number of LAI de�nitions commonly used can be identi�ed (Asner, Scurlock, and

Hicke, 2003; Zheng and Moskal, 2009):

1. Total LAI: total one-sided area of photosynthetic tissue per unit ground surface

area. Based on the outside area of leaves taking into account the leaf shape.

2. True LAI: one half of the total green leaf area per unit horizontal ground surface

area. This is a quantitative method.

3. Inclined projected LAI or silhouette LAI: projected area of leaves while account-

ing for leaf inclinations.

4. Horizontally projected LAI: area of the shadow that would be cast by each leaf

in the canopy with a light source placed perpendicular to it.

5. E�ective LAI: one half of the total area of light intercepted by leaves per unit

horizontal ground surface area. This de�nition assumes a random spatial

distribution of foliage.

Number two to �ve are all relatively common in publications concerning LAI. As

stated earlier, de�nition number �ve was used in this study.
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2.3 Remote sensing data

The ALS and the InSAR data in this study covered the Krycklan catchment wall-to-

wall, while the stereo matched drone images covered the ICOS grid area.

Time di�erences between collection of �eld data and the remote sensing data

might a�ect the models. The �eld data were collected one to three years after the

remote sensing data acquisitions, which means that vegetation growth has occurred

and possibly silvicultural treatments. Most forest stands at the Krycklan catchment

are dominated by mature coniferous trees and since vegetation growth in mature

forest is low the di�erence in canopy cover will be small. Any silvicultural treatments

performed between �eld data collection and remote sensing data acquisition will

appear in the data as outliers.

2.3.1 ALS data

ALS data over Krycklan were collected on 22 and 23 August 2015 by TerraTec Sweden

AB. Further speci�cations can be found in Table 2.1. As the data were collected in

August it is assumed that no leaf shedding had occured yet.

Table 2.1. ALS sensor and �ight speci�cations

Date of acquisition August 22-23, 2015

Platform FW (Fixed Wing)

Sensor Titan, serie number L349

Date of calibration 2015-08-01

Flying altitude (m) 987-1123

Flying speed (km/h) 135

Pulse repetition frequency (kHz) 300

Scan angle (°) 35

Mean pulse density (m
-2

) 20

Wavelength (nm) 1064

2.3.2 TanDEM-X data

TanDEM-X data were collected covering the catchment 18 October 2015. Images were

attained in strip-map mode with horizontal transmit and horizontal receive (HH)

polarization. The mean height of ambiguity (HOA) was 61 m and the scene center

incidence angle was 41°. The concept of TanDEM-X is two satellites orbiting the

Earth in a close formation cooperating in sending and receiving signals. Unlike when

a single operating satellite orbiting the same area observing changes in the landscape

over time, acquisitions from two satellites with slightly di�erent locations sending

and receiving signals at the same time, are preferred when analyzing forest canopy

structures (Persson, 2016).

2.3.3 Stereo matched drone images

Aerial photography was carried out in September 2016 in the area over the ICOS

grid. A drone, a four-rotor helicopter equipped with a Parrot SEQUOIA multispectral

camera was used. The area was mapped by ten adjacent �ying blocks, rectangles

measuring 160 × 800 m
2

oriented north-to-south with the ICOS tower in the center.

10



The �ying altitude was set to 170 m above the launching point, but over the tower the

�ying height was slightly exceeded. Each block was photographed using 6 to 7 parallel

north-to-south �ying paths, approximately 35 m apart. The sensor was set to use a

very high stereo overlap, 80% along and 80% across �ight lines for later production

of a dense point cloud from image matching. At the time of data acquisition the

deciduous tree species were in di�erent stages of color transformation, but had not

shedded leaves yet (Wallerman et al., 2018). Further speci�cations can be found in

Table 2.2.

Table 2.2. Drone sensor and �ight speci�cations

Date of acquisition September 14 & 19, 2016

Platform Unmanned Aerial Vehicle (UAV)

Sensor Sequoia (3.98 mm)

Coordinate system SWEREF99 TM (EPSG: 3006)

Ground resolution (cm/pixel) 13.9 cm/pixel

Focal lenght (mm) 3.98

Flying altitude (m) 170

Number of images 9504

Bands 3

Coverage area (km
-2

) 3.85

Points 8 210 470

Rotation angles Yaw, Pitch, Roll

RMS reprojection error 0.228206 (0.52638 pix)

Max reprojection error 3.65271 (26.1361 pix)

2.4 Data Processing

All data were handled in the SWEREF99TM coordinate system, the national geograph-

ical reference system. The analysis were made using RStudio, version 1.1.447 (RStudio

Team, 2015).

2.4.1 Field data processing

Studies have shown that optical instruments that measures radiation transmittance

(gap fraction) and uses inversion models which assumes random spatial distribution

of leaves tend to underestimate LAI in boreal forest due to the overlap or clumping of

needles on shoots. The LAI-2200C Plant Canopy Analyzer and its precursors belong

to this group of instruments and for that reason, the LAIe values measured in plots

dominated by coniferous trees were corrected with clumping index corresponding

to the dominating tree species at the plot, estimated with the TRAC instrument by

Homolová et al. (2007), Smolander, Stenberg, and Linder (1994) and Jensen et al.

(2008).

The assumption that the radiation is absorbed by foliage should sometimes be set

aside to correct for the radiation that is re�ected and transmitted by the foliage. This

so called scattering error is problematic especially when measurements are taken in

direct sun light. Corrections could also be made for data measured in obscured sun

adjusting for actual foliage scattering properties in the canopy instead of assuming

that re�ectance and transmittance are both zero. Since all of the measurements
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collected 2018 were taken during day time, scattering corrections were made for

this data by applying a model by Kobayashi et al. (2013) in the FV2200 program

(version 2.1.1, a software accompanying the instrument) according to the FV2200

manual (LI-COR, 2013). The scattering correction includes information about sky

conditions, size of sensor lens cap and sensor angles that depends on the sun angles.

Measurements collected 2017 were taken during sunset avoiding direct sunlight, thus

scatter corrections were not required for that data (Gil, 2018).

The raw data �les collected with LAI-2200C instrument were processed in the

FV2200 program and a LAIe value for each plot was calculated from the �ve LAIe

measurements. Further post-processing methods were used. Primarily, two alternative

ways of pairing the above- and below-measurements, interpolated and closest in time

LAIe. Closest in time means that the FV2200 software pairs above-values with below-

values that are measured with the least di�erence in time. The interpolation method

were calculated with interpolation of the measurements over time. Closest in time

values and interpolated values were post-processed in three additional ways, resulting

in a total of eight alternative types of LAIe.

In Table 2.3 the eight alternative methods for calculating LAIe and its standard

deviation is presented. LAIe means that the measurements were not processed in any

further way and as a default setting the software excluded measurement with high

transmittance above a certain threshold. The measurements inventoried 2017 were

included in this group, while the three other versions of LAIe were calculated without

2017 years data due to lack of raw data �les.

SMP5 means that all �ve measurements in each plot were included in the calcula-

tions ignoring the high transmittance threshold. 4 rings means that the 5th sensor

ring was excluded in the calculations, a setting proposed by Solberg et al. (2009) and

illustrated in Figure 2.6.

Of the 128 plots measured 2018, LAIe could not be calculated by the FV2000

program for nine plots. This was because of non-existing gap values that could be

a consequence of no forest vegetation resulting in a high transmittance. It could

also be a result of error in the data. The Plant Canopy Analyzer is a highly sensitive

instrument responding to small changes in the atmosphere above the sensors. It is

realistic to get calculated LAIe values even at a clear-cut area (though it’s a small

value) because of nature conservation trees at the site and the wide sensor angle.

For the nine plots the forest attribute data from the surveys 2014 and 2015 indicates

that trees should be present at the sites, and with these considerations in mind the

plots were excluded from the analysis. Of the 25 plots measured 2017, two plots

were missing �eld attribute data for their respective GPS position and both were

therefore excluded in the analysis. This means that a total of 142 plots were used in

the modeling of LAIe.

In deciding which LAIe version to use, a small standard deviation was desired.

Low variation in the dependent variable was assumed to give the most robust model,

hence the interpolated LAIe was chosen for further analysis and modeling.
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Table 2.3. The di�erent LAIe were calculated and the standard deviation for

these. Number of �eld plots included are presented in parenthesis (excluding

the nine No data plots)

LAIe SMP5 4 rings SMP5 + 4 rings

Sample size (142) (119) (119) (119)
Closest in time 1.54 1.84 1.96 1.95

Interpolated 1.52 1.80 1.94 1.91

2.4.2 ALS data processing

A normalized point cloud was processed using Lastools (Isenburg, 2014). Metrics

were extracted from a circle around the plot center. Since the LAI-2200 sensor and

the ALS did not capture the same canopy volume (LAI-2200 measures an upwards

facing cone whilst the ALS measurements rather corresponds to a downwards facing

cone), the circle size to extract metrics from was not obvious. Solberg et al. (2009)

tested di�erent circle sizes, static and proportional to tree height and came to the

conclusion that 0.75 times the tree height was the best option. To con�rm this the

same procedure was carried out with the ALS data and the same conclusion was made.

Hence, the same radius was used as in Solberg et al. (2009). Mean tree height was

estimated by calculating the height percentile p99 in a circle around each plot center

with 10 m radius. Metrics such as height percentiles (p05, p10,... p99) and intensity

percentiles (int10, int25,... int100), canopy density, canopy cover and the inverse ’gap’

of the last two were calculated from the p99-radius sized plots. The canopy cover gap

metric was calculated as:

P =
Rg

Rt

(2.1)

where Rg is the number of �rst returns on the ground (under the height cuto� at 1.5

m) and Rt is the total number of �rst returns, below and above the cuto�. Higher

values of P implies less canopy cover. The canopy density gap metric was calculated

as:

D =
RgA

RtA

(2.2)

where RgA is the number of all returns on the ground (under the height cuto� at 1.5

m) and RtA is the total number of all returns, below and above the cuto�. Higher

values of D implies less canopy density.

The calculated density gap metric had very few values close to zero compared to

the cover gap metric (Figure 2.8). This could indicate that the density metric would

be more detailed in it’s description of green foliage.
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(a) ALS density gap (b) ALS cover gap

Figure 2.8. Histograms of raster values calculated from di�erent ALS met-

rics.
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2.4.3 TanDEM-X data processing

The data were delivered in the format of co-registered single-look slant range complex

images. The single-look complex data from each TanDEM-X satellite were multilooked

with a factor of 5 × 5 looks. The single-look complex resolution was 2.5 m in slant

range and 3.3 m in azimuth with a pixel size of 1.36 m and 1.84 m, respectively.

From the TanDEM-X data image pairs the metrics interferometric phase height

(ϕ), and coherence (γ) were calculated with the help of an interferogram, a complex

image describing the complex coherence γ̃ as:

γ̃ =
E[s1s

∗
2]√

E[|s1|2]E[|s∗2|2]
(2.3)

where s1 and s2 are the two complex images, one from each satellite, E is the expecta-

tion value and * is the complex conjugate, which means taking the phase with opposite

sign in order to get the phase di�erence between the two images. Interferometric

phase height is calculated as the argument of the complex coherence, arg(γ̃), and

coherence is the magnitude of the complex coherence, |γ̃|. One more metric, the

backscatter coe�cient (σ◦) was calculated from the image pair by subtracting the

calibration gain provided in the metadata from the multilooked intensity images and

then a radiometric normalization was applied. One backscatter image was computed

as the arithmetic mean of the two normalized backscatter images.

The processed interferometric phase height, coherence and backscatter rasters

were resampled onto an ALS DTM grid with 10 × 10 m
2

pixels. The geocoding was

done using a lookup table, generated from cross-correlation between a multilooked in-

tensity image from one of the satellites and a simulated SAR intensity image produced

from the ALS DTM (Persson et al., 2017).

For each of the three TanDEM-X metric rasters (interferometric phase height ϕ,

interferometric coherence γ and backscatter σ◦) pixel data were extracted around

the �eld plot centers. In order to receive stable data two di�erent ways of extracting

values from the rasters were tested. First the bilinear method was used to extract

interpolated values from the four nearest raster cells. Then the data were extracted

with a circular bu�er of 30 m, calculating a mean value of all the pixel cells with the

cell center on the border of or within the bu�er distance. The data generated with

the 30 m bu�er yielded slightly better result when modeling LAIe, likely a result of

�ltering local extreme pixel values and a better �t to the LAI-2200 sensor optics.

2.4.4 Drone data processing

The drone data processing followed a procedure similar to the ALS data processing,

but delimited to the area covering the ICOS grid. The same metrics were calculated.

To investigate the properties of the point cloud and its possibility to capture variations

in the tree canopy, di�erent radius and height cuto� values were evaluated when

calculating the metrics used for the regression modeling.

When calculating the density metric using the drone image point cloud the results

are the same as the canopy cover metric. The reason for this is that the point cloud

cannot penetrate the canopy to measure density and therefore only the canopy cover

metric was evaluated for the drone model.
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2.5 Statistical modeling

Solberg et al. (2009) found a strong relationship between LAIe and ALS penetration

rate. Futhermore, they showed that ALS-based LAIe modeling were advantageously

done with a non-intercept logarithmic model. Using the Beer-Lambert law they

established the following model:

LAIe = β · ln(P -1) + ε (2.4)

where β is a slope parameter to be estimated, P is the canopy cover gap metric and

ε is the error. In the study two di�erent versions of the penetration rate metric

were calculated. The �rst version was based on the �rst ALS return and the second

version was based on the �rst and the last ALS return. Despite similar R
2

(0.93

and 0.92, respectively) the second version proved to be somewhat more sensitive to

variations in near-vertical gap fraction, hence they assumed this penetration rate

was more appropriate. With this knowledge in mind, the metrics canopy cover gap

and density gap were transformed as per Equation 2.4. For the remaining metrics no

transformation of the data were necessary as they all appeared, and was assumed, to

have a linear relationship to LAIe.

The metrics calculated from the point clouds (ALS and drone data) and extracted

from the TanDEM-X rasters for each �eld plot were modeled with linear regression.

Several regression models were generated to evaluate various combinations of the

calculated metrics. The models generated were based on the generic non-intercept

model with one or two predictors:

LAIe = β1 ·X1 + β2 · ln(X2) + ε (2.5)

where βi are slope parameters to be estimated, X i are the calculated metrics and ε is

the error. The Student’s t-test was used for evaluating the signi�cance level of each

model’s parameter estimate βi. The signi�cance of the models parameter estimates

were evaluated using analysis of variance (Table 2.4).

Due to the relatively sparse amount of sample data (142 plots in total, 71 in the

ICOS grid area) the models were evaluated with the leave-one-out cross validation

method. This means that one single observation were used as validation data while

all other observations worked as training data. The procedure was repeated until all

observation had been left out, one at a time (Wong, 2015). The resulting cross-validated

root mean square error (RMSEcv), the cross-validated mean absolute error (Biascv)

and the adjusted coe�cient of determination (R
2
adj

) of the models were presented as

accuracy indicators of the models.

As the drone data only covers the ICOS grid area, these �eld plots were used

to make additional models for ALS and TanDEM-X as well. This makes the later

comparisons of the di�erent methods easier. The comparisons made in this way were

comprised of the RMSEcv, the Biascv and the R
2
adj

.

The development of LAIe rasters with 10 × 10 m
2

pixels were done by applying

the prediction models to rasters of the calculated metrics. To avoid calculating the

logarithm of zero a constant was added to the models. For the ALS and drone data

model a constant of 0.1 was chosen empirically and added in the transformation.
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Table 2.4. Analyses of variance for the models describing the relationships

between remote sensing data and LAIe. DF = degrees of freedom, SS = sum

of squares, MS = mean square, F = Fisher’s test and Pr>F = the probability

of having a larger F-value by coincidence

Source Parameter DF SS MS F Pr>F

ALS D 1 1649.39 1649.39 2007.3 < 0.001

ε 141 115.86 0.86

TanDEM-X ϕ 1 1500.91 1500.91 800.6 < 0.001

ε 141 264.34 1.87

Drone data P 1 920.21 920.21 1366.08 < 0.001

p99 1 7.97 7.97 11.83 < 0.001

ε 70 47.15 0.67
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3 Results

Five models were created from the di�erent remote sensing data sources, one from

drone data and two from both ALS and TanDEM-X. Statistics over the rasters devel-

oped from the models are listed in Table 3.1 and the results from the leave-one-out

cross validation are presented in Table 3.2.

3.1 ALS

Many metrics showed a signi�cant relationship for estimating LAIe. Of all the models

tested and evaluated the density gap metric was the best predictor of LAIe, closely

followed by the cover gap metric. All of the height (p05, p10,... p99) and intensity

metrics (int10, int25,... int100) performed worse than both cover gap and density

gap. Therefore, the density gap metric was chosen for further investigation. The best

performing model was the �tted non-intercept log-transformed model:

LAIe = −4.42 · ln(D + 0.1) (3.1)

where D is the density gap. The predictions, showed in Figure 3.1, showed a tendency

of higher variance for lower values of density gap (higher values of the x-axis). It is

also possible to distinguish a slight curvature, which results in underestimation of

LAI at low density gap levels and overestimation at high density gap levels. It should

be noted that a similar curvature was also present for the model using the cover gap

metric. There are several outliers that a�ects the degree of explanation of the model.

The ALS derived LAIe model predicted a rather homogeneous distribution of LAIe

values around four in the central parts of the catchment corresponding to the ICOS

grid area (Figure 3.2). The mean value of the catchment was predicted slightly lower,

which is reasonable due to all the non-forest areas. According to the distribution of

raster pixel values in the catchment, most pixels were predicted to values around three

(Figure 3.3). Hot spot areas with LAIe values above 7 were spread in the catchment,

most commonly in the central and eastern parts. The raster statistics are presented in

Table 3.1. Both for catchment and ICOS grid area the model showed good predictions

of LAIe with an adjusted coe�cient of determination of R
2
adj

= 0.93 and R
2
adj

= 0.97,

respectively (Table 3.2).
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Figure 3.1. LAIe plotted against the �tted non-intercept ALS model (3.1).

Table 3.1. Statistics for the LAIe raster predictions developed from ALS,

TanDEM-X and drone data. Area 1 = catchment, Area 2 = ICOS grid area

Data Source Area Minimum Maximum Mean Standard deviation

ALS 1 -0,42 10.18 2.57 1.78

TanDEM-X 1 -1.76 11.82 2.12 1.57

ALS 2 -0,42 10.18 3.29 1.39

TanDEM-X 2 -1.03 10.69 3.28 1.49

Drone data 2 -0.12 8.57 3.28 1.40
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Figure 3.2. A map of LAIe over Krycklan catchment derived from the ALS

model: LAIe = −4.42 · ln(D + 0.1), with spatial resolution 10 × 10 m
2

.

Figure 3.3. The distribution of pixel values in the LAIe raster created from

ALS data.
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3.2 TanDEM-X

Values extracted from the phase height raster with 30 m bu�er around the �eld plot

center proved to be the most stable method giving the highest correlation to LAIe.

The best model for predicting LAIe was:

LAIe = 0.37 · ϕ (3.2)

where ϕ is the interferometric phase height. The model showed a high variance

with a tendency to higher variance for the underestimated LAIe compared to the

overestimated LAIe (Figure 3.4). Negative predictions can be derived from negative

values in the input phase raster from which phase data were extracted. When creating

the LAIe raster (Figure 3.5) negative pixel values were set to zero.

Figure 3.4. LAIe plotted against the �tted TanDEM-X model (3.2).

The model estimated higher LAIe values in central parts of the Krycklan catchment

with overall lower values in peripheral areas. The minimum pixel value of the

TanDEM-X-based LAIe raster was -1.76, the maximum pixel value was 11,82, the

mean pixel value was 2.12 and the standard deviation was 1.57. This is a very large

spread and include many unreasonable values of LAIe. The occurrences of pixel values

predicted to LAIe values between zero and four are equally common in the raster,

with a very small quantity of pixels predicted to LAIe values higher than eight (Figure

3.6). The raster estimations indicate hot spot areas in the central and eastern part

of the catchment (Figure 3.5). These hot spots areas coincide with the ones shown

in the ALS raster (Figure 3.2). For the catchment and the ICOS grid area the model

predicted LAI with an adjusted coe�cient of determination of R
2
adj

= 0.85 and R
2
adj

=

0.93, respectively (Table 3.2).

21



Figure 3.5. A map of LAIe over Krycklan catchment derived from the

TanDEM-X model: LAIe = 0.37 · ϕ, with spatial resolution 10 × 10 m
2

.

Figure 3.6. The distribution of pixel values in the LAIe raster created from

TanDEM-X data.
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3.3 Drone data

When calculating the point cloud metrics a radius of 15 m around the �eld plot center

and 1.5 m height cuto� gave the best result. The two most important explanatory

variables in estimating LAIe with the drone data covering the ICOS grid area were

the metrics canopy cover gap and the 99th height percentile, in the model:

LAIe = −1.30 · ln(P + 0.1) + 0.069 · p99 (3.3)

where P is the canopy cover gap metric and p99 is the 99th height percentile calculated

from the drone data. The data points with values close to zero in the metric cover gap,

representing forest with dense tree canopy, were stacked near each other to the right

in the plot (Figure 3.7). This phenomenon can be derived from the characteristics of

photogrammetry point clouds, which demands a rather large gap in the forest to be

able to penetrate the tree canopy.

Figure 3.7. LAIe plotted against the �tted drone data model (3.3).

The raster over the ICOS grid area (Figure 3.8) shows that the majority of the

forest was predicted to LAIe values around four, which is also evident in the pixel

value distribution presented in Figure 3.9. A few smaller areas were predicted to pixel

values between �ve and eight along the edges of the ICOS grid area.

The minimum pixel value of the drone data-based LAIe raster was -0.12, the

maximum pixel value was 8.57, the mean pixel value was 3.28 and the standard

deviation was 1.40. Statistics for a cut-out of the ICOS grid area from the ALS and

TanDEM-X derived raster are presented in Table 3.1. The adjusted coe�cient of

determination for the drone data model was R
2
adj

= 0.95 (Table 3.2).
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Figure 3.8. A map of LAIe over ICOS grid area derived from the drone data

model: LAIe = −1.30 · ln(P +0.1)+0.069 · p99, with spatial resolution

10 × 10 m
2

.

Figure 3.9. The distribution of pixel values in the LAIe raster created from

drone data.
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Table 3.2. Estimation of LAIe from ALS, TanDEM-X and drone data. Area 1

= catchment, Area 2 = ICOS grid area

Data Source Area R
2
adj

RMSEcv Biascv

ALS 1 0.93 0.91 0.66

TanDEM-X 1 0.85 1.37 0.99

ALS 2 0.97 0.64 0.49

TanDEM-X 2 0.93 1.00 0.79

Drone data 2 0.95 0.83 0.65
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4 Discussion

The purpose of this study was to examine the possibility to map LAIe with three

di�erent remote sensing techniques separately; ALS, TanDEM-X and drone-acquired

photogrammetry data. The three data sources were all capable of predicting LAIe

with di�erent quali�cations and limitations. A limitation concerning all of the models

is that they were predicting LAIe, which di�ers from LAI and that will a�ect the

application of the model. In cases when LAI is needed it would be necessary to

introduce corrections.

The Plant Canopy Analyzer instrument is highly sensitive to exposure and solar

illumination condition and the recommendation is to execute data collection under

uniform sky; clear blue or even cloud cover, preferably before sunrise or after sunset.

The weather conditions were a crucial factor for the collection 2017, resulting in few

good days to measure and a small �eld data set. In the summer of 2018 the priority

was rather to collect more data under conditions as good as possible due to time

constraints. There was a trade o� between quality and quantity. Of all the data

points in this study 85% were collected during the summer of 2018. When plotting

the predicting variables against LAIe there was a tendency to increased variance

depending on collecting day. This tendency was most evident when plotting LAIe

against the TanDEM-X phase variable, the model with the largest variance. It was

data from particularly three days that seemed to cause more variance than other days

and that was July 3, 5 and 9, 2018. These days were noted as "Sun and cloud" while

most of the other inventory days 2018 were noted as "Clear blue sky" or "Even cloud

cover". This observation agrees with the sky test information in the Fv2200 manual

(LI-COR, 2013). Variance can be seen in the data from 2017 as well, but then limited

to a few data points. This con�rms the importance of weather and sky conditions

during collection of optical LAIe data from the Plant Canopy Analyzer instrument

and that a more careful selection of days in the �eld based on the sky conditions

would have generated less variance in �eld data.

The data from 2017 were collected in September whereas the data from 2018

were collected in late June to mid-July. Since the primary production changes over

the vegetation season it is possible that the data collected 2017 in average would

underestimate LAIe in comparison to the 2018 years data. This is because the lower

gross primary production in the late vegetation season absorbs less blue radiation

than earlier during the season. The Plant Canopy Analyzer, which measures LAIe with

the information about the absorbed blue radiation will therefore get lower readings.

The ratio between above and below measurements might not be a�ected by this since

the incoming radiation also declines later during the season.

The ALS model shows a high correlation to LAIe at catchment level (R
2
adj

= 0.93).

This can be explained by the ALS ability to penetrate the canopy, which enabled more

precise estimations of the canopy density. The TanDEM-X model estimated LAIe
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over the catchment level with lower correlation (R
2
adj

= 0.85) compared to the ALS

model. The raster statistics (Table 3.1) shows a higher standard deviation in the ALS

model compared to the TandDEM-X model. The higher standard deviation in the

ALS derived LAIe raster can be explained by the many pixel values at zero, while the

TanDEM-X derived LAIe raster has a much more even spread (Figures 3.3 and 3.6).

The TanDEM-X model had a larger minimum and maximum value spread, which

could indicate a more unstable model. Most of the catchment area was predicted

with TanDEM-X to LAIe values below four, but in isolated areas the LAIe value was

predicted extremely high, up to around twelve. Values this high is de�nitely not

reasonable and should be considered a detriment to the model. The mean value of

LAIe was lower for the TanDEM-X model. This in combination with the increased

variance for the underestimated values indicates that the model has problem with

scarcely forested areas where it underestimates the LAIe. It would be interesting to

further investigate how to improve estimations made on areas with sparse forestation.

The ALS model showed several outliers, which would a�ect the degree of expla-

nation of the model. An investigation into these �eld plots could be good in order to

possibly exclude any outliers.

Solberg et al. (2009) suggested a logarithmic ALS-based LAIe model with a pene-

tration rate metric similar to P. The calculated density gap metric show overall similar

values as cover gap. However, for small values of cover gap, the density is a lot higher.

The di�erence between these metrics are that the canopy density gap includes all

ALS returns, while the canopy cover gap includes only �rst returns. It would not

be unreasonable to assume that a metric measuring the density of the tree canopy

as opposed to a metric measuring the proportion of the canopy related to the total

area, would make for a better estimator of photosynthesizing biomass. The hot spot

areas predicted with ALS to LAIe around seven seemed to coincide with the forest

inventory plots dominated by Contorta pine. Contorta pine has a larger proportion

of green biomass compared to for example Scots pine. This would further emphasize

the importance of the density metric as a Contorta pine stand compared to a Scots

pine stand could possibly have similar cover gap metrics, but very di�erent density

gap metrics. Further investigations of this would be of interest.

During the LAIe raster calculations the models had to be able to handle zero

values in the input rasters. In order to avoid calculating the logarithm of zero, a

constant value was added to the ALS and the drone data model. It was assumed that

adding this constant would have little e�ect on the model’s accuracy. For cover and

density gap values larger than 0.9 the model returns negative LAIe values which is

not acceptable. Setting the negative values to zero in the resulting raster was assumed

to be reasonable, because values above 0.9 excluding the constant factor would have

ended up close to zero.

The models developed and cross validated with the ICOS area �eld plots all showed

better predictions compared to their catchment level counterpart. This would indicate

that it is easier to predict LAIe in a mature and homogeneous forest compared to

a forest with a more varying degree of forestation. The ALS model performed the

best in terms of adjusted coe�cient of determination, the cross-validated root mean

square error and the cross-validated mean absolute error, followed by the drone data

model and last the TanDEM-X (Table 3.2).

The drone data model included the ICOS area, which was covered by forest with

less variation in stand mean age and tree volume compared to the whole catchment.

A property of photogrammetry point clouds is its similarity to a blanket resting on

top of the tree crowns. In a dense forest it cannot easily �nd the space between
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the tree tops and struggles to detect the ground. This di�erentiates it from the

ALS point cloud, which penetrates the canopy better. The spatial distribution of

photogrammetry data points are dependent on the image overlap and are a lot more

uneven and sparse than ALS point cloud data. A penetration rate variable calculated

from a photogrammetric point cloud data will be more rough than the ALS generated

variable. Even so, the one single metric that could explain LAIe the best was the

canopy cover gap variable. By including the p99 metric to the logarithmic model, it

enabled the model to predict higher values, which is crucial. The cover gap model

without an additional metric would have di�culties predicting LAIe values higher

than four. To calculate a photogrammetric point cloud with the ability to penetrate

the canopy better would have demanded more images with a more extensive image

overlap. That kind of data set would require a lot of data capacity for processing and

the points might still not penetrate the tree crown.

The possibility to use a drone to acquire data for LAIe estimations opens up for

new estimations whenever desired and it is more accessible than ALS and TanDEM-X

data. It would be of interest for further drone data modeling of LAIe to include spatial

considerations in the modeling, such as looking at how local maximum could help

predict gaps in the canopy. This was partly achieved by including the 99th height

percentile into the model.

When comparing the methods for estimating LAIe based on the ICOS grid area

one thing stand out. All the models share similar mean values and standard deviations.

This would indicate that for mature and homogenous forests all models predict mean

LAIe quite well. The main di�erence of the models are their ability to predict LAIe in

forests where silvicultural treatments have been made. This is shown in the TanDEM-

X’s ability to predict the mean of the ICOS grid area well, but having di�culties doing

the same for the entire catchment. How the drone data model handles varying forest

is di�cult to tell by just looking at the ICOS grid area and it would therefore be very

interesting to further expand on the drone data to include the entire catchment. As

for the performance of the drone data model on the catchment level, the best guess

would be that it performs with higher accuracy than TanDEM-X, but with lower

accuracy than ALS in a similar fashion as it did over the ICOS grid area.

The mean LAIe measurements of the ICOS grid area around 3.3 in this study agrees

with previous measurements made in boreal forest presented in the Global synthesis

of plant canopy leaf area index. This value might give a more representative picture

of the forest state than the catchment mean value around 2.5, since the catchment to

a greater extent includes pixel values from agricultural areas, mires, roads, clear cut

areas and the lake.
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5 Conclusions

The three models developed showed how di�erent remote sensing data sources with

completely di�erent characteristics can be used together with ground-based �eld data

of LAIe to create models to predict LAIe.

The best estimations of LAIe were predicted by the ALS model, which could

explain 93% of the variance at catchment level (R
2
adj

= 0.93) and 97% (R
2
adj

= 0.97) at

the ICOS grid area. The second best estimation, at the ICOS grid area, was made by

using the drone data model, which could explain 95% of the variance (R
2
adj

= 0.95).

The TanDEM-X model (R
2
adj

= 0.85 at catchment level and R
2
adj

= 0.93 at the ICOS

grid area) showed a higher variance compared to both other models. The model had

problem with underestimating LAIe in non-homogeneous forest. This resulted in a

much lower mean value at catchment level.

The canopy density metric showed a closer relationship to LAIe compared to the

canopy cover metric. The canopy density metric can only be calculated using the ALS

point cloud, which favors the ALS model over the drone model. As the drone model

was developed and applied solely over the ICOS grid area, a homogeneous area with

mature coniferous forest, it would be of interest to develop a drone model based on

�eld data and images over a larger area with a more varying degree of forestation.

All methods predicted LAIe in line with the values presented in the Global syn-

thesis of plant canopy leaf area index for boreal forests. The models were able to

predict the mean value of the ICOS grid area well. In applications where the mean

of a homogeneous forest is to be predicted, it would seem that all models predict

similarly and are therefore interchangeable. For these kinds of applications the most

accessible and cost e�ective remote sensing method can be used.
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