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Abstract 

Plasmin (PL) is a native proteinase in milk, which combines a complex system consisting of 

its zymogen called plasminogen (PG), inhibitors and activators, which activity is known to 

make considerable changes in the dairy products, which represent in irregulating of casein 

hydrolysis and poor clotting properties, that may slow the cheese ripening process and 

consequently increase the processing expense. The objective of this study was to investigate if 

on-farm factors (i.e., seasons breed and milking system) significantly affect the PL and PG-

derived activity of raw milk. As well as, to investigate the relationship and/or possible 

correlations between PL and PG-derived activity and milk composition (i.e., pH, protein, 

somatic cell count and total bacteria count). Milk was collected from 18 different farms 

northern Sweden in November 2017, February and September 2018. PL and PG analyses were 

conducted on milk serum fraction in duplicates obtained by ultracentrifugation of skimmed 

milk samples. PL and PG-derived activities were analyzed by the spectrophotometric method 

using multi-mode microplate reader at 37°C. Urokinase (49.5 plough units) was used as PG 

activator to measure the total proteolytic activity of PL and PG. The production season had no 

effect (P > 0.05) on the average PL and PG-derived activities. The raw milk PL and PG-derived 

activities were significantly affected by breed. Jersey had higher (P < 0.05) PL (6,54 U/mL) 

and PG-derived (139,67 U/mL) activities compared to all other breeds. SRB had higher (P < 

0.05) PL activity (16.2%, 31% and 39.8%) comparing to MB, SLB/SRB and SLB, respectively. 

MB had higher (P < 0.05) PL activity (17.13%) than SLB. With regard to SRB, SLB/SRB and 

MB had higher (P < 0.05) PG-derived activity (13.5%, 31%, 13.1% and 12.4%, respectively) 

comparing to SLB. Farms with a conventional milking system (CMS) had higher (P < 0.05) 

PG-derived activity compared to farms containing automatic milking system (AMS). The mean 

PG derived activity showed to be higher in CMS (102.66 U/mL) compared to (91.84 U/mL) in 

AMS. Total protein content and somatic cell count (SCC) were correlated with PL and PG-

derived activities. Milk pH and total bacteria count (TBC) were not correlated with PL and PG 

activity.  

 

 

 

Keywords: Plasmin, plasminogen, season, breed, milking system, milk composition 
  



 

 

Table of Content 

List of figures  

Abbreviations 

1. Introduction          1 

1.1. Aim            2 

1.2. Hypothesis          2 

2. Literature Review          3  

2.1. Milk composition         3 

2.2. Proteolytic activity in milk        4 

2.3. Proteolytic enzymes         4  

2.3.1. Plasmin and plasminogen         4 

2.4. Plasmin system         5 

2.5. Consequences of plasmin in milk       6 

2.5.1. Negative effects         6 

2.5.2. Positive effects         7 

2.6. Plasmin and plasminogen-derived activity measurement in bovine milk   7 

2.7. Factors affecting plasmin and plasminogen-derived activities    8 

2.7.1. Stage of lactation         8 

2.7.2. Lactation number         8 

2.7.3. Cow breed         8 

2.7.4. Milking system         9 

2.7.5. Environmental factors – seasons       9 

2.8. Gross milk composition         10 

2.8.1. The pH of milk         10 

2.8.2. Somatic cell count         10 

2.8.3. Mastitis          11 

2.8.4. Bacterial proteases        11 

  



 

 

3. Materials and Methods         12 

3.1. Samples collection         12 

3.2. Sample preparation         12 

3.3. Sample preparation         12 

3.3.1. Plasmin puffer         12 

3.3.2. Substrate solution         12 

3.3.3. Urokinase solution         12 

3.4. Plasmin and plasminogen isolation       13 

3.5. Plasmin and plasminogen-derived activity measuring     13 

3.6. Milk composition data         14 

3.7. Statistical analysis          14 

4. Results           15 

4.1. Variation of plasmin and plasminogen-derived activity in raw milk with the seasons 15 

4.2. Effect of breed on plasmin and plasminogen in raw milk     19 

4.3. Effect of milking system on plasmin and plasminogen in raw milk   21 

4.4. Correlations between plasmin/plasminogen and milk composition   22 

5. Discussion          23 

5.1. Variation of plasmin and plasminogen-derived activity in raw milk with the seasons  23 

5.2. Effect of breed on plasmin and plasminogen in raw milk      24 

5.3. Effect of milking system on plasmin and plasminogen in raw milk    24 

5.4. Correlations between plasmin/plasminogen and milk composition    25 

5.4.1. Correlations between plasmin/plasminogen and milk pH    25 

5.4.2. Correlations between plasmin/plasminogen and protein content   25 

5.4.3. Correlations between plasmin/plasminogen and somatic cell counts   25 

5.4.4. Correlations between plasmin/plasminogen and total bacteria count   26 

6. Conclusions          27  

7. Acknowledgements         28  

8. References          29 

9. Appendix           36 

9.1. Appendix 1          36 

9.2. Appendix 2          45 

  



 

 

List of figures 

Figure 1. Plasmin system in bovine milk. 

Figure 2. Variations in mean PL and PG-derived activity in farm milk collected in November 2017, 

February 2018 and September 2018. Data points present mean values for 18 farms of 

triplicates for each farm. Different letters A, B indicate statistically significant differences 

among seasons at P < 0.05. 

Figure 3. Variations in PL activity in farms number 39 and 18 collected in November 2017, February 

2018 and September 2018. Different letters A, B indicate statistically significant differences 

among production seasons at P < 0.05. 

Figure 4. Variations in PG-derived activity in farms number 20 and 40 collected in November 2017, 

February 2018 and September 2018. Different letters A, B indicate statistically significant 

differences among production seasons at P < 0.05. 

Figure 5. Variations in PG-derived activity in farms number 30 and 32 collected in November 2017, 

February 2018 and September 2018. Different letters A, B, C indicate statistically significant 

differences among production seasons at P < 0.05. 

Figure 6. Variations in mean PL and PG-derived activity in silo milk collected in November 2017, 

February 2018 and September 2018. Data points present mean values for 3 silos of triplicates 

for each silo. Different letters A, B indicate statistically significant differences among 

production seasons at P < 0.05. 

Figure 7. Variations in mean PL activity as affected by different breeds. Different letters A, B, C indicate 

statistically significant differences among different breeds at P < 0.05. 

Figure 8. Variations in mean PG-derived activity as affected by different breeds. Different letters A, B, 

C indicate statistically significant differences among different breeds at P < 0.05. 

Figure 9. Variation of PL activity according to the milking system; AMS: Automatic milking system and 

CMS: Conventional milking system. Different letters A, B indicate statistically significant 

differences among milking systems at P < 0.05. 

Figure 10. Variation of PG-derived activity according to the milking system; AMS: Automatic milking 

system and CMS: Conventional milking system. Different letters A, B indicate statistically 

significant differences among milking systems at P < 0.05. 

  



 

 

List of tables 

 

Table 1. PL activity in farm milk as affected by breeds and grouping information using the Tukey Method 
and 95% confidence. Means that do not share a letter are significantly different. 

Table 2. PG-derived activity in farm milk as affected by breeds and grouping information using the 
Tukey Method and 95% confidence. Means that do not share a letter are significantly different.  

Table 3. Correlations between different milk compositions in raw farm milk from 18 farms; Cell Content: 
Pearson correlation: P-Value. 

Table 4. Correlations between different milk compositions in raw silo milk; Cell Content: Pearson 
correlation: P-Value. 

Table 5. Overview of environmental factors and mean enzyme activity. 

Table 6. Overview of milk samples and enzyme activity. 

Table 7. Overview of data raw farm milk components from Eurofins Steins Laboratorium AB, Sweden. 

Table 8. Overview of data raw silo milk components from Eurofins Steins Laboratorium AB, Sweden. 

Table 9. ANOVA test on PL activity versus season in farm milk. 

Table 10. Tukey’s test on PL activity versus season in farm milk. 

Table 11. ANOVA test on PG-derived activity versus season in farm milk. 

Table 12. Tukey’s test on PG-derived activity versus season in farm milk. 

Table 13. ANOVA test on PL activity versus season in silo milk. 

Table 14. Tukey’s test on PL activity versus season in silo milk. 

Table 15. ANOVA test on PG-derived activity versus season in silo milk. 

Table 16. Tukey’s test on PG-derived activity versus season in silo milk. 

Table 17. ANOVA test on PL activity versus season in FB-18 farm. 

Table 18. Tukey’s test on PL activity versus season in FB-18 farm. 

Table 19. ANOVA test on PL activity versus season in FB-39 farm. 

Table 20. Tukey’s test on PL activity versus season in FB-39 farm. 

Table 21. ANOVA test on PG-derived activity versus season in FC-20 farm. 

Table 22. Tukey’s test on PG-derived activity versus season in FC-20 farm. 

Table 23. ANOVA test on PG-derived activity versus season in FC-40 farm. 

Table 24. Tukey’s test on PG-derived activity versus season in FB-30 farm. 

Table 25. ANOVA test on PG-derived activity versus season in FB-30 farm. 



 

 

Table 26. Tukey’s test on PG-derived activity versus season in FB-30 farm. 

Table 27. ANOVA test on PG-derived activity versus season in FB-32 farm. 

Table 28. Tukey’s test on PG-derived activity versus season in FB-32 farm. 

Table 29. ANOVA test on PL activity versus breed in farm milk. 

Table 30. Tukey’s test on PL activity versus breed in farm milk. 

Table 31. ANOVA test on PG-derived activity versus breed in farm milk. 

Table 32. Tukey’s test on PG-derived activity versus breed in farm milk. 

Table 33. ANOVA test on PL activity versus milking system in farm milk. 

Table 34. Tukey’s test on PL activity versus milking system in farm milk. 

Table 35. ANOVA test on PG-derived activity versus milking system in farm milk. 

Table 36. Tukey’s test on PG-derived versus milking system in farm milk. 

Table 37. Overview of characterisation of 18 considered farms involved in the study  

  



 

 

 

Abbreviation 

α-LA α-lactalbumin 

AMS  Automatic milking system  

ANOVA  Analysis of variance  

αS1-CN αS1-caseins 

αS2-CN αS2-caseins 

β-LG β-lactoglobulin 

CMS  Conventional milking system  

EACA  ε-aminocaproic acid  

κ-CN κ-casein 

MEC Mammary epithelial cell 

NFDM Non-fat dry milk 

PA  Plasminogen activator  

PAI  Plasminogen activator inhibitor  

PG  Plasminogen  

PI  Plasmin inhibitor  

PL  Plasmin  

pNA  p-nitroanilide  

SCC Somatic cell count 

TBC Total bacteria count 

t-PA Tissue-type plasminogen activator 

u-PA Urokinase-type activator 

 

 

 



1 

 

1. Introduction 

Milk from several mammals’ species is used for dairy industry particularly cheesemaking but, 

issues could appear because milk differs in composition from species to species, and even from 

animal to animal. In addition, the manufacturer does not rely just on the gross composition, i.e. 

fat, protein, lactose and ash, but also at the nature of the individual components, such as fatty 

acids, caseins, albumins, globulins and other variables (Robinson and Wilbey, 1998). 

Milk contains a complex mixture of proteases, zymogens, protease activators and protease 

inhibitors. This array of proteolytic systems allows a small degree of proteolytic activity within 

the mammary gland. These components derive from mammary epithelial cell (MEC) 

expression, active or passive transport from blood or secretion by host immune cells (Dallas et 

al., 2015). 

Proteolysis induced by the native proteinase plasmin (PL; EC 3.4.21.7) is one of the most 

important contributors to the quality of microbiologically wholesome milk and its products. 

Plasmin is part of a complex system including its inactive form plasminogen, plasminogen 

activators, and inhibitors. The PL system components interact with each other and with other 

components of milk to promote or inhibit proteolysis in milk and milk products (Ismail & 

Nielsen, 2010). Driven by dairy industry concerns, plasmin-induced proteolysis has gained 

much interest from researchers because of its complexity and versatile effects on the quality of 

milk and dairy products (Ismail & Nielsen, 2010). 

Plasmin activity can be essential and desirable for flavour development and texture changes 

during ripening of cheese, thus enhancing the product quality. The loss of PL from the casein 

micelle may slow the cheese ripening process and consequently increase the processing 

expense. Conversely, uncontrolled proteolysis can have detrimental effects on the quality of 

pasteurized milk, UHT milk, and non-fat dry milk (NFDM), causing undesirable precipitation 

or gelation (Ismail & Nielsen, 2010). Many researchers have linked gelation and decreased the 

stability of stored pasteurized milk to PL activity (Newstead et al., 2006). Additionally, 

uncontrolled proteolysis can result in poor curd formation (Srinivasan and Lucey, 2002) and 

degradation in stored casein products intended to be used as functional ingredients (Nielsen, 

2002). 

Milk composition has a dynamic nature and is economically important to milk producers and 

processors and nutritionally values are important to consumers. Numerous factors have been 

identified that influence the level of plasmin (PL) and plasminogen (PG) in bovine milk such 

as stage and number of lactations, time of year, milking system, breed and animal health. 

Understanding the function of the PL system components, their interactions with other milk 

composition and on-farm factors is crucial for efficient control of PL activity. Additionally, 

determining the factors that enhance or inhibit PL activity and the factors that influence the 

shift of PL from the casein to the whey fraction can lead to better control of the PL system 

(Ismail & Nielsen, 2010). Currently, the dairy industry is trying to find the best conditions for 

the processing of the products to enhance quality.  
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1.1. Aim 

The aim of this study was to investigate if on-farm factors (i.e., seasons, breed and milking 

system) have an influence on the PL and PG-derived activity of raw milk from 18 different 

farms in northern Sweden, as well as to investigate the relationship and/or possible correlations 

between PL and PG-derived activity and milk composition (i.e., pH, protein, somatic cell count 

and total bacteria count). 

1.2. Hypothesis 

• The raw milk plasmin and plasminogen-derived activities are affected by the seasons, breed 

and milking system.  

• The raw milk plasmin and plasminogen activities are correlated to the raw milk composition 

(i.e., pH, protein, somatic cell count and total bacteria count).  
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2. Literature Review 

2.1. Milk composition 

Milk is defined as the secretion of the mammary glands of mammals, its primary natural 

function is new born offspring nutrition. Milk of some farm animals, especially cows, 

buffaloes, goats and sheep, is also used for human consumption, either as such or in the form 

of a wide range of dairy products (Walstra et al., 2005). 

Milk and dairy products are important components of most diets of different cultures and 

peoples. Raw milk composition determines the nutritional value and the technological 

properties of milk and dairy products (Heck et al., 2009). Specifically, milk protein. An 

investigation of Swedish dairy milk composition in the 1970s and in 1996 showed a substantial 

decrease in the casein content of Swedish raw milk during this period. The clarification behind 

the decrease in casein content in Swedish dairy milk could be the increased milk yield, as well 

as factors including plasmin activity, breeding, feeding and payment systems may be involved, 

leading to attention to increase milk yield more than the content of protein and fat (Lindmark-

Månsson et al., 2003). Such a decrease in casein content would also be unfavourable for the 

dairy industry. Cheese yield, for example, increases with casein concentration, and cheese 

properties like milk coagulation time and curd firmness depend on the casein composition 

(Wedholm et al., 2006). Therefore, milk composition has great concern for the dairy industry. 

Furthermore, milk composition and milk proteins could vary with stage and number of 

lactations, feeding, management strategies, season, health status of the cow and genetic factors 

(Bobe et al., 1999). 

Milk protein accounts for approximately 3.2-3.8%. It consists of about 20% whey proteins with 

major components α-lactalbumin (α-LA), β-lactoglobulin (β-LG) and 80% caseins, divided 

into major subclasses α- (αS1- and αS2-), β-, and κ-casein (-CN), which are arranged in 

micelles (Swaisgood, 1982). Furthermore, minor constituents such as proteolyzed fragments, 

bovine serum albumin, free amino acids, and immunoglobulins add to the total protein 

concentration of milk (Maas et al., 1997; Elgar et al., 2000). The reported composition of 

respective major proteins in milk partly depends on the applied measuring method. In mid-

infrared spectroscopy α-LA accounts for 3% of milk protein, β-LG for 9%, and the caseins for 

31, 10, 37, and 10% (αS1-, αS2-, β-, and κ-CN, respectively) (De Marchi et al., 2009), whereas 

in polyacrylamide gel electrophoresis, α-LA and β-LG relate to 5 and 15% of milk protein and 

α-, β-, and κ-CN for 40, 29, and 11% (Ng-Kwai-Hang and Kroeker, 1984). 

Caseins, α-LA, and β-LG are synthesized in the epithelial cells of the mammary gland from 

primary blood constituents, which serve as precursors. The yield and composition of major 

bovine milk proteins determine the value of the product, depending on how the milk will be 

used (Gellrich et al., 2014). For cheese making a higher casein content, particularly higher κ-

CN, correlates to increased curd yield, stronger curd firmness, and less casein loss in whey 

(Hallen et al., 2010).  
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2.2. Proteolytic activity in milk 

Proteases are enzymes that degrade proteins. Raw milk may have proteolytic activity from 

endogenous and indigenous origin which could be caused by unpleasant flavours and odours 

in milk and dairy products (Fox, 1981). Several bacteria present in raw milk can produce 

proteases that are considered as an external factor (Fox, 1981). Among them, those from 

psychrotrophic microorganisms, which produce enzymes under refrigeration, cause the most 

serious problems (Cousin, 1982). Bacillus subtilis is a psychrotrophic microorganism 

(Kohlmann et al., 1991) and secretes a thermo-resistant protease (Poffé & Mertens, 1988) 

which may cause proteolysis in pasteurized or sterilized milk (Law et al., 1977). Decreased 

thermal stability is a technological result of the presence of bacterial proteases in milk. On the 

other hand, these enzymes degrade caseins which imply losses in the yield of cheese and an 

increase of the nitrogen content of the whey (Gebre- Egziabher et al, 1980). 

Bovine milk includes abundant complex and interconnected proteolytic systems, including 

zymogens, active proteases, protease inhibitors and protease activators which has a 

considerable proteolytic activity of milk and dairy products protein, including plasmin 

(Korycha-Dahl et al., 1983), elastase (Kelly et al., 2006), cathepsin D (Fox, 1981), cathepsin 

B (D’Alessandro et al., 2011), kallikrein (Heegaard et al., 1994b) and several carboxy- and 

aminopeptidases (D’Alessandro et al., 2011). The balance of these system components controls 

the overall proteolytic activity of milk (Dallas et al., 2015). 

These proteolytic enzymes are secreted in their inactive form (as zymogens) and must be 

cleaved at a specific peptidic bond by a protease activator to become the active enzyme. In 

addition, bovine milk supplies many protease activators (PA); for instance, tissue-type 

plasminogen activator (t-PA) and urokinase-type activator (u-PA) as plasmin activators 

(Wickramasinghe et al., 2012). Milk contains a variety of antiprotease, e.g. α1-antitrypsin in 

order to counterbalance the effect of the protease activators (Dallas et al., 2013). 

2.3. Proteolytic enzymes  

2.3.1. Plasmin and plasminogen  

The PL and PG found in bovine milk are basically analogous to those found in bovine blood, 

through their heat and pH stabilities, pH optimum, specificity for casein hydrolysis, inhibition 

patterns (Reimerdes, 1983), and as indicated by their amino acid sequence (Benfeldt et al., 

1995). 

Plasmin (EC 3.4.21.7) is a serine proteinase and referred to as milk alkaline proteinase from 

bovine plasma (Chen et al., 2003). In addition, PL is a heat stable enzyme and pH dependable 

(Sharma et al., 2014). Plasmin that occurs in milk together with its inactive zymogen, 

plasminogen, is the most significant protease in total proteolytic activity (Fox, 1981). It mainly 

acts on the milk caseins and degrade β, α S-1 and α S-2 caseins to γ-casein, proteose peptones 

and λ–casein, respectively (Bastian and Brown, 1996). The optimal pH range for PL activity is 

7.5-8.0 and optimum temperature for PL activity is 37 °C (Fox, 1981). 
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Plasmin, mostly in its zymogen form, PG, enters milk from the blood via the mammary cell 

wall lining, and associates mainly with the casein fraction of the milk (Ismail & Nielsen, 2010). 

In fresh milk, PG is the predominant form, where its concentration is 2 to 30 times that of PL 

(0.8-2.8 μg/mL PG compared with 0.1-0.7 μg/mL PL; Ozen et al., 2003). Therefore, any 

potential activation of PG could contribute significantly to PL activity in milk. The conversion 

of PG into PL by PA can occur while the milk is in the mammary lumen, before milking and 

during milk storage (Alichanidis et al., 1986). 

Numerous factors have been identified that influence the level of PL and PG in bovine milk, 

with higher PL activity being attributed to PG activation (Bastian et al., 1991b). Recent 

research has focused on factors such as processing conditions (i.e., thermal processing and 

cheese-making conditions), storage conditions, and bacterial proteases. The interaction 

between the PL system components can be very complex due to the interference of other milk 

components, (such as whey proteins) under various conditions (pH, heat and storage) (Ismail 

& Nielsen, 2010). PL and PG can vary significantly with the stage of lactation, lactation 

number (Bastian et al., 1991b), and mastitis (Politis et al., 1989a). The levels of PL and PG in 

milk are higher at the end of lactation, in older cows, and in mastitic milk (Ismail & Nielsen, 

2010). Plasmin hydrolyzes αs1-, αs2-, and β-caseins, but has little or no activity on the whey 

proteins β-LG and α-LA (Caessens et al., 1999). 

2.4. Plasmin system 

Plasmin is part of a complex protease-protease inhibitor system in milk commonly referred to 

as the PL system (Ismail & Nielsen, 2010). Plasmin exists in milk primarily in its zymogen 

form, plasminogen (PG), which can be converted into active PL by plasminogen activators 

(PA) (Grufferty and Fox, 1988a). The conversion of PG to PL is mediated by at least 2 types 

of PA, tissue-type (t-PA) and urokinase-type (u-PA) (Bastian and Brown, 1996). The PL 

system also includes plasminogen activator inhibitors (PAI) and plasmin inhibitors (PI), whose 

effects on PA and PL, respectively, are greatly dependent on the processing conditions (Precetti 

et al., 1997). The PL system components (Figure 1) interact together and with other 

components of milk, such as whey and casein proteins, and promote or inhibit proteolysis 

depending on the processing and storage conditions of milk (Ismail & Nielsen, 2010). 

 

 

 

 

 

 

  

 

Figure 1. Plasmin system in bovine milk (Ismail & Nielsen, 2010). 
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Tissue-type PA and u-PA, which are also serine proteinases, are present in bovine mammary 

tissue (Heegaard et al., 1994a) and milk (Lu and Nielsen, 1993). Urokinase-type PA is 

associated with somatic cells, and t-PA is associated mainly with casein (White et al., 1995). 

Urokinase-type PA and t-PA activate PG to PL by cleaving the Arg557-Ile558 bond in PG 

while the milk is in the mammary lumen before milking and during milk storage (Alichanidis 

et al., 1986). 

The conversion of PG to PL can be slowed by the action of plasminogen activator inhibitors 

(PAI). Similarly, the proteolysis of casein induced by PL can be slowed by the action of plasmin 

inhibitors (PI). Plasmin inhibitor and PAI are present mainly in milk serum (whey), and their 

activity is affected by pH fluctuation and heat treatment (Ismail & Nielsen, 2010). Richardson 

(1983a) suggested that PAI is inactivated by mild thermal treatments. An increase in activity 

of PL and a subsequent decrease in the concentration of PG were observed in pasteurized milk 

compared with raw milk after incubation at 37 °C for up to 80 h (Richardson, 1983a). However, 

the decrease in PG concentration was greater than the increase of PL activity, suggesting that 

PAI might have been inactivated by pasteurization while some PI remained active. 

PL, PG, and PA associates with the casein micelle by lysine-binding and, to a lesser extent, 

electrostatic forces (Baer et al., 1994). The presence of PL in the whey fraction is the result of 

its dissociation from the casein micelle. There are several possible factors that influence PL 

dissociation from casein micelles such as milk storage temperature, pH, ionic strength, 

hydrolysis of casein by PL, and action of microbial proteases (Ismail & Nielsen, 2010). 

2.5. Consequences of plasmin in milk 

Cheeses, ultraheat treatment (UHT), casein and whey protein products and non-fat dried milk 

(NFDM) are the major dairy products which could be influenced by PL activity. Therefore, the 

importance of PL activity, including both negative and positive aspects of bovine milk and 

various other dairy products, indicate the requirement to investigate the different factors 

leading to the activation of PG and hence the PL activity. 

Negative effects 

Regulation of casein hydrolysis is critical for the manufacture of dairy products. The lower 

quality dairy products caused by high activity of proteolytic enzymes resulting in casein 

degradation in fluid products or before forming of casein coagulation in products derived from 

milk gels (Bastian and Brown, 1996). Poor clotting properties (longer clotting times and 

reduced curd firmness) are often observed with late lactation milk (Grufferty & Fox, 1988b). 

Such milk often contains higher concentrations of proteose peptones (Phelan et al., 1982), γ-

caseins and other casein breakdown products than mid-lactation milk (Okigbo et al., 1985). 

This has led to theories that increased plasmin activity is responsible for the poor clotting 

properties of late lactation milk (O’Keeffe et al., 1982). 

  



7 

 

2.5.1. Positive effects 

Hydrolysis of casein after the gel has formed, e.g., cheese, can have a positive influence on 

product quality (Bastian and Brown, 1996). In relation to the hydrolysis extent and type of 

cheese.  PL activity has been shown to improve the flavour and gross quality on some cheeses, 

for instance, Swiss and Cheddar cheese (Bastian et al. 1997). In Swiss cheese, rennet has little 

or no contribution to proteolysis due to chymosin and most other coagulant enzymes are 

inactive at the high cooking temperature used during manufacturing (Bastian et al. 1997). This 

leaves the bacterial proteinase-peptidase system in combination with PL to hydrolyse casein in 

the cheese (Garnot and Molle, 1987). Stoeckel et al (2016) reported that indigenous milk 

plasmin is highly heat-stable and are able to resist UHT heating processes. 

2.6. Plasmin and plasminogen-derived activity measurement in bovine 

milk 

Several methods have been described in the literature for the detection of proteolytic activity 

in milk and dairy products. For quantitative determination of proteolytic enzymes, PL activity 

is often measured using a specific synthetic substrate because of their well-defined structure 

and purity, and PL activity is referred to the release of chromogenic (Rollema et al., 1983) or 

fluorogenic (Richardson and Pearce, 1981) products per unit time. The sensitivity and 

specificity of these substrates are controlled by the primary structure of the peptide part 

(Rollema et al., 1983). To investigate PG, it is activated to PL by PA and then derived PL 

activity is measured. These activity assays have many restrictions such as whey proteins 

interference (Hayes et al., 2002) and competitive inhibition by caseins (Bastian et al., 1991a). 

Therefore, multiple steps of sample preparation should be taken to remove casein and whey 

protein interferences before measurement (Wang et al., 2006). 

Recently a fluorogenic synthetic peptide was reported to be suitable for the assay of plasmin 

and plasminogen in milk and milk products (Richardson and Pearce, 1981). The chromogenic 

substrate H-D-valy1-L-leucyl- L-lysyl-4-nitroanilide (S2251), absorbing light at 450 nm, being 

released from the substrate due to PL action (Rollema et al., 1983), has been used for the 

detection of the alkaline milk proteinase associated with isolated casein fractions (Snoeren and 

van Riel, 1979). Conversely, these chromogenic and fluorogenic measurements have some 

defects. For instance, although the described methods include a few sample preparations, the 

impact of other proteinases such as bacterial protease cannot be avoided in measurements 

(Bastian and Brown, 1996). 
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2.7. Factors affecting plasmin and plasminogen-derived activities 

2.7.1. Stage of lactation 

Plasmin activity and plasminogen (measured after activation) increase at the end of lactation 

even after adjusting for reduced milk production (Bastian et al., 1991b). There are more γ-

casein and less β- and αS1-caseins in late than in mid-lactation milk (Barry & Donnelly, 1981). 

Richardson (1983b) suggested that increased plasmin activity occurs because more plasmin 

enters the mammary gland rather than increased plasminogen activation (because of increased 

levels of plasminogen activators). Politis et al. (1989a) reported plasminogen to plasmin ratios 

of 6.55 during early lactation and 3.29 at the end of lactation, indicating that there is increased 

activation of plasminogen to plasmin during late lactation. Bastian et al. (1991b) found that 

plasmin and plasminogen (total enzyme) increased during the first 6 months of lactation and 

then remained constant to the end of the lactation period (10 months), but plasmin as a percent 

of total enzyme was constant during lactation except for the last 3 months when it increased 

dramatically. This suggests that the flow of enzyme from the blood into milk increases in early 

lactation and remains constant at the end of lactation, but greater activation of plasminogen 

occurs toward the end of lactation (Bastian and Brown, 1996). 

2.7.2. Lactation number 

Milk from older cows has higher plasmin activity though plasminogen levels are constant 

(Bastian et al., 1991b). Plasmin activity increases in milk from older cows, even after 

statistically adjusting for somatic cell count (SCC), season, stage of lactation and milk yield 

(Bastian and Brown, 1996).  Therefore, it has been concluded that the PL activity is quite 

affected by the lactation number compared to the other factors such as breed, stage of lactation 

and season (Bastian et al., 1991a). Plasmin activity in milk remains constant throughout the 

lactation of first lactation cows, but it increases dramatically in milk collected from older cows 

during lactation (Bastian et al., 1991b). This increase in PL and PG-derived activity in older 

cows could be explained by increased leakage of these enzymes from blood serum to milk, as 

well as, losing the integrity of tight junctions between mammary epithelial cells (Stelwagen et 

al., 1997). 

2.7.3. Cow breed 

Higher plasmin activity has been observed in milk from Holstein-Friesian cows (0.27-0.53 mg 

L-1) compared to Jersey cows (0.154-0.37 mg L-1) (Richardson, 1983b). A similar trend was 

observed in Swedish Friesian and Jersey cattle (Schaar, 1985).  The different casein contents 

of milk may cause milk from different breeds to exhibit varying PL activity (Bastian et al., 

1991a). On the other hand, Schaar (1985) concluded that the negative correlation between 

plasmin activity and casein content is probably caused by competition between casein and the 

synthetic substrate used to measure plasmin activity. Bastian et al. (1991a) found that casein 

interferes with plasmin assays that utilize synthetic substrates. From this, it seems that there 



9 

 

are no differences due to breed. The interference can be modelled as competitive inhibition and 

can be avoided by reducing the casein substrate ratio. Bastian et al. (1991a) found no significant 

differences between individual cow milk samples collected from a herd of Jerseys (19 cows) 

compared to a herd of Holsteins (19 cows) after adjusting the casein substrate ratio to avoid 

interference by casein. 

2.7.4. Milking system 

The automatic milking system (AMS) have an opportunity to fulfil several improvements, 

through relieving the farmer from the labour-intensive routine of the conventional milking 

system (CMS) parlour and allowing a voluntary increase in milking frequency (MF) of the 

cow, which has been associated with an increase of 2 to 8% of milk production for multiparous 

cows (Svennersten-Sjaunja and Pettersson, 2008). In addition, AMS is shown to produce milk 

with good quality and safety and therefore, have gained popularity in dairy farming (De 

Koning, 2010). AMS implies variability in MF, generally affected by several factors related to 

the cow (parity, days in milk (DIM) and health status) and management (Spolders et al., 2004). 

Like a cascade, different MF within AMS, also characterized by irregular milking intervals, 

may affect milk production (Speroni et al., 2006), milk quality (Abeni et al., 2005b), and some 

metabolic aspects (Abeni et al., 2005a). 

Cows in AMS milk more frequently compared with cows in CMS (Hovinen and Pyörälä 2011). 

Abeni et al. (2008) evaluated the effect of CMS and AMS on PL and PG derived activities that 

the PG and total (PL+PG) activities were lower in AMS as compared to CMS. MF acts through 

the effect of milking interval on the time available for PG to be converted to PL, resulting in 

decreased PG: PL ratio changing from to thrice-daily to twice-daily milking (Sorensen et al., 

2001). MF influencing the PL and PG-derived activities in milk from Holstein Frisian cows. 

Further, the PL and PG derived activities were significantly higher in cows having reduced 

milking frequency (Kelly et al. 1998). 

2.7.5. Environmental factors - seasons 

Reliance on pasture and seasonal calving has produced irregularities in the milk supply in terms 

of both quantity and composition and is accompanied by seasonal variations in the 

manufacturing properties of the dairy product. Therefore, environmental changes in 

temperature and day length may also impact on milk composition and the PL and PG-derived 

activity (Gina et al., 2002).  

There was a strong influence of time of year on activities and yields of plasminogen and total 

enzyme, with activities highest in spring followed by summer (Gina et al., 2002). An opposite 

finding was observed by Bastian et al. (1991b) that activities were greatest during autumn and 

winter, but these authors did not include cow management details and it is difficult to 

rationalize these contrasting findings. Level of feeding can, however, have an influence on 

proteolytic activity (Nicholas, 1998), and the quantity and quality of feed in the pasture-based 

systems varies considerably, especially between seasons (McCall & Smith, 1998). Leiber et al 

(2006) found that there were clear effects on the plasmin system in relation to forage maturity. 

PL activity increased and PG derived activity decreased with increasing sward maturity.  
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2.8. Gross milk composition 

2.8.1. The pH of milk 

Plasmin is most active at pH 7.5 to 8.0 and at 37°C (Fox, 1981), but is stable and active over a 

broad pH range as indicated in part by its activity in various cheeses (Bastian and Brown, 

1996). Lowering the pH of milk, such as in the case of cheese and yoghurt production, will 

cause the precipitation of casein proteins, thus forming a curd. Low pH causes dissociation of 

the casein micelle and with it the dissociation of PL and PG from the micelles into the whey 

fraction of milk (Ismail & Nielsen, 2010). Politis et al. (1989b) found a significant and positive 

correlation between PL activity and pH. There was also a significant correlation after 

adjustment for SCC, which indicates an independent relationship between PL and pH in bovine 

milk. It has been shown in the study conducted by Bastian et al. (1991b) that neither pH, protein 

nor fat content influences PL or PG activity. In this study, the correlation coefficient between 

pH and PL activity was r = 0.22, that suggest that there is little (linear) correlation between PL 

or PG and pH in bovine milk. 

2.8.2. Somatic cell count 

Somatic cells (SC) consist of leukocytes such as lymphocytes, polymorphonuclear neutrophils 

and macrophages. Milk SCC is used to assess inflammation, the health status of the mammary 

gland, and milk quality (Larsen et al., 2010). The normal SCC of bovine milk is 7.5×104 

cells/mL with macrophages contributing mostly to the SCC (by 61%) (Boutinaud and Jammes, 

2002). SCC in milk may be influenced by mammary infection, stage and/or the number of 

lactation (Dulin et al.,1983), animal species, milk production level and management practices 

(Rupp et al., 2000). SC secrete endogenous enzymes like PAs that have a direct affecting on 

the PL activity of milk (Li et al., 2014). Politis et al. (1989a) reported that as SCC in milk 

increased from less than 250,000 to more than 1,000,000 the concentration of plasmin and 

plasminogen increased from 0.18 to 0.37 mg L-1 and from 0.85 to 1.48 mg L-1, respectively. 
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2.8.3. Mastitis 

Mastitis is one of a major disease in dairy cattle that could be a real reason for significant 

economic losses in result to decrease milk production, increase veterinary costs, and discarded 

milk (Windig et al., 2005). It involves inflammation of the mammary gland because of the 

invasion and multiplication of pathogenic microorganisms such as Escherichia coli and 

Staphylococcus aureus (Bradley, 2002), resulting in induction of the innate immune defence 

system in the mammary gland. Somatic cells such as polymorphonuclear leucocytes (PMN) 

and macrophages are the major cellular immune components that respond to infection by 

secreting various substances, for example, cytokines disrupt the tight junctions between the 

secretory epithelial cells, which results in increased levels of the PL and PG-derived activity in 

the infected glands (Larsen et al., 2010). Furthermore, some bacteria secrete activators of 

protease zymogens (Larson et al., 2006). Higher plasmin activity in mastitic milk may be 

attributed to plasminogen activators (Grufferty & Fox, 1988c) or proteolytic enzymes (Barry 

& Donnelly, 1981) that occur in somatic cells. Thus, proteolysis of casein increases in bovine 

milk during elevated SCC and mastitis (Andrews, 1983). 

2.8.4. Bacterial proteases 

Bacterial proteases affect the PL system, which in turn will affect the quality of dairy products. 

For instance, psychotropic microorganisms producing metalloproteinases during refrigerated 

storage that have proteolysis activity in milk (Cousin, 1982). Dairy industries heading to 

minimize the milk frequency collection; thus, the refrigerated storage of milk has been 

lengthened, allowing the psychotropic bacteria to dominate the microflora (Ismail & Nielsen, 

2010). The heat-stable proteases produced by the psychrotrophic bacteria can destabilize the 

casein micelles by hydrolyzing κ-CN (Cromie, 1992), resulting in reduced cheese quality, 

production of small peptides that contribute to bitter flavour, UHT gelation, and fouling of heat 

exchangers (Champagne et al., 1994). 

Decreased PL activity was observed in fresh raw milk after 4 d of storage at 4°C, with the 

psychrotrophic bacterial count reaching 106 to 107 cfu/mL (Guinot-Thomas et al., 1995). A 

reduced PL activity in the casein fraction and an increased activity in the whey fraction were 

observed with the growth of psychrotrophic microorganisms and the presence of proteases they 

produced (Fajardo-Lira et al., 2000). Frohbieter et al., (2005) concluded that some bacterial 

proteases can enhance the activity of PA, or act as a PA, to increase plasmin activity. 
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3. Materials and Methods 

3.1. Samples collection 

Raw milk samples of farm milk and silo milk were collected from 18 different dairy farms with 

different environmental and management factors in northern Sweden, (i.e., cow management 

system, milking system, breed and number of cows). Milk was sampled on a seasonally basis 

in three different occasions: Nov 2017, Feb 2018 and Sep 2018. All analyses of milk samples 

were conducted at the dairy products laboratory, Department of Food Science, BioCenter at 

the Swedish University of Agricultural Sciences SLU, Uppsala. 

3.2. Sample preparation 

The collected milk samples were defatted by centrifugation (Himac CT15RE, Hitachi Koki 

Co., Ltd.) at 10 000 g at 4°C for 10 minutes. A cotton stick was used to remove the fat layer 

from the surface. The defatted milk samples were transferred to 2 mL Eppendorf safe lock 

tubes (Eppendorf, Germany) and stored at -20 °C for further analyses. 

3.3. Material preparation 

3.3.1. Plasmin buffer  

The buffer components were calculated according to given equation m (g) = M (mol) x C (M) 

x V (L). Plasmin buffer was prepared as described by Saint-Denis et al. (2001), consisting of 

3.41 g ε-aminocaproic acid (EACA) 20 mM (Sigma-Aldrich, catalog nr. A2504, Mw 131.17, 

China), 10.85 g Trizma buffer 53 mM (Trizma hydrochloride, Sigma-Aldrich, catalog nr. 

T5941, Mw 157.6, USA) and 8.9 g NaCl 117 mM (Sodium Choloride, Sigma-Aldrich, catalog 

nr. S7653, Mw 58,44) prepared in 2 litters of distilled water. pH was adjusted to 7.4 using 7 M 

sodium hydroxide NaOH (Sigma-Aldrich, USA) by using a pH meter (PHM210, Standard pH 

meter, MeterLab®, Germany). The buffer was stored at room temperature (20 °C). 

3.3.2. Substrate solution 

A vial of 25 mg of freeze-dried Chromogenic substrate (BIOPHEN CS 41 (03), HYPHEN 

BioMed, Neuvillec-sur-Oise, France) was diluted with 10 ml of distilled water to a 

concentration of 2.5 mg/ml-1. The substrate solution was aliquoted and stored at 8 °C. 

3.3.3. Urokinase solution 

A vial of 10 000 IU of freeze-dried Urokinase from human kidney cells was diluted with 600 

μL of distilled water to a concentration of 16 666 IU urokinase/ml-1. The enzyme solution was 

aliquoted and stored at -20 °C. 



13 

 

3.4. Plasmin and plasminogen isolation 

PL and PG isolation were performed according to the method described by Korycha-Dahl et 

al. (1983). The milk samples were dissolved at room temperature and vortexed for 30 seconds 

(Vortex Genie2, Bergman Labora AB, Sweden).  A volume of 320 μL of skimmed milk was 

mixed with 4680 μL of plasmin buffer in 15 mL Falcon tubes (Sartedt, Germany). Falcon tubes 

were vortexed for 30 seconds and incubated at room temperature for 2 hours to dissociate the 

PL and PG from casein micelle. Korycha-Dahl et al. (1983) described that the EACA, which 

is a lysine derivative, will dissociate PL and PG from casein by binding to the lysine binding 

sites of PL and PG. The NaCl of the plasmin buffer will also contribute to the dissociation of 

PL and PG from casein (Saint-Denis et al., 2001). The incubated solution containing skimmed 

milk and plasmin buffer were then centrifugated by ultracentrifugation machine (OptimaTM 

MAX-XP, Beckman Coulter, Inc., Bromma, Sweden) using RP55T angle rotor, at 4 0C for 1 

h at 100 000×g. Then, milk serum fractions were transferred to 2 mL Eppendorf safe lock tubes 

(Eppendorf, Germany) and stored at -20 °C. 

3.5. Plasmin and plasminogen-derived activity measuring 

PL and PG-derived activities of milk were measured using a spectrophotometric method 

according to Korycha-Dahl et al. (1983). A 96-well multi-mode microplate reader (FLUOstar 

Omega, BMG Labtech, Ortenberg, Germany) was used to determine p-nitroanilide (pNA) that 

produced from chromogenic substrate. 

PL activity was measured in a solution containing 150 μL milk serum and 40 μL chromogenic 

substrate. The mixture was pipetted on a 96-well plate. All samples were analysed in duplicates. 

The same reaction mix of the chromogenic substrate and milk serum was used for determining 

the total proteolytic activity of PL and PG. An addition of 4.5 μL of urokinase (49.5 Plough U) 

was pipetted to duplicate wells. 200 μL of plasmin buffer was pipetted into each of three wells 

as blank for both assays. 

The level of PG-derived activity is then calculated by the difference between total activity and 

PL activity, as the isolate contained both PL and PG. PL and PG-derived activity were 

measured spectrophotometrically (FLU-Ostar Omega, BMG LABTECH). Absorbance was 

measured for 2 hours (41 cycles, 3 min/cycle), at 405 nm, at 37°C. Data were analysed by using 

MARS Data Analysis Software (BMG LABTECH). 

The PL activity and total activities were measured as change in absorbance during a specific 

period using the linear part of the absorbance curves against time. Both PL and PG derived 

activities were measured in the same unit i.e. the amount of PL or urokinase activated PG that 

causes a 0.001 change of absorbance at 405 nm during 1 minute at pH 7.4 and 37 °C under the 

experimental conditions. 
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3.6. Milk composition data 

Data over raw milk components were obtained from Eurofins Steins Laboratorium AB, 

Sweden. Milk components included in the investigation were: pH, protein (%), SCC (cells/ml) 

and TBC (cells/ml). SCC was analysed with flow cytometry and fluorescence techniques using 

Fossomtic equipment from Foss. Total protein content was measured with Fourier Transform 

Infrared (FTIR) analysis, using CombiFoss 6000 equipment from Foss. Control system of 

received values was based on known reference values, both national and international obtained. 

3.7. Statistical analysis 

Statistical analyses were performed using Minitab® 18 (Minitab, Inc., USA) to identify the 

effect of breed, milking systems and seasons on PL and PG-derived activity. A one-way 

Analysis of variance (ANOVA) was carried out to test treatment effect. The level of 

significance was declared at 0.05, meaning a p-value of < 0.05 was considered significant. 

Pearson’s correlation was used to measure the strength of a linear correlation using the same 

software. PL and PG-derived activity were tested for correlation with pH, protein, SCC and 

TBC. Graphical illustrations were made using Microsoft Excel and SigmaPlot (Systat 

Software, San Jose, CA). 
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4. Results 

4.1. Variation of plasmin and plasminogen-derived activity in raw milk 

with the seasons 

The variation in mean PL and PG-derived activities in raw milk for all farms among different 

production season are shown in Figure 2. PL activity in farms milk (n=18) was on average 

(4.27 U/ml), (3.99 U/ml) and (4.11 U/ml) over autumn, winter and summer respectively. There 

was a trend of decreasing PL activity from November.  PG-derived activity in farms milk 

(n=17) was on average (97.66 U/ml), (95.03 U/ml) and (101.45 U/ml) over autumn, winter and 

summer respectively. Statistically, the production season had no effect (P > 0.05) on the 

average PL and PG-derived activities by using the one-way ANOVA-test. Autumn, winter and 

summer were grouped together and did not differ significantly from each other when 

conducting Tukey’s method on PL and PG-derived activity. 

Figure 2. Variations in mean PL and PG-derived activity in farm milk collected in November 2017, February 

2018 and September 2018. Data points present mean values for 18 farms of triplicates for each farm. 

Different letters A, B indicate statistically significant differences among seasons at P < 0.05. 

 

The production season had an effect (P < 0.05) on the average PL or PG-derived activities for 

some farms when compared the effect of the three production seasons factor on each farm 

participating in this study separately by using the one-way ANOVA-test. In the individual 

statistical test within 18 farms involved in this study, some farms showed significant 

differences in PL and PG-derived activities during the three seasons concerned. The variation 

in mean PL activity in raw milk in farms number 18 and 39 at different production seasons is 

shown in Figure 3. Farm number 18 that contains a conventional milking system and Holstein 

cow breed showed higher (P < 0.05) PL activities. When conducting Tukey’s method on PL 

3

3.5

4

4.5

5

5.5

6

80

85

90

95

100

105

110

NOV FEB SEP

P
l a

ct
iv

it
y 

(U
/m

l)

P
G

-d
er

iv
ed

 a
ct

iv
it

y 
(U

/m
l)

Production season

PL and PG-derived activity in raw milk

PG PL

A 

A 
A 

A 

A 

A 



16 

 

activity of the farm number 18, two groups are formed, with summer (3.76 U/mL) and autumn 

(3.69 U/mL) are being the seasons differing significantly from winter (2,95 U/mL). While farm 

number 39 that contains conventional milking system and a mixed breed of Swedish 

Red/Holstein had higher (P < 0.05) PL activities in autumn (4.22 U/mL) than in winter (3.38 

U/mL) and summer (3.34 U/mL). 

Figure 3. Variations in PL activity in farms number 39 and 18 collected in November 2017, February 2018 and 

September 2018. Different letters A, B indicate statistically significant differences among production 

seasons at P < 0.05. 

 

The variation in mean PG-derived activity in raw milk in in farms number 20, 40, 30 and 23 

among different production season is shown in Figure 4 and 5. Farm number 20 that had an 

automatic milking system and mixed breed of Swedish Red/Holstein showed higher (P < 0.05) 

PG-derived activities in summer (111,08 U/mL) than in autumn (86,03 U/mL) and winter 

(88,57 U/mL). Similar results for farm number 40 that had a conventional milking system and 

Mountain breed showed higher (P < 0.05) PG-derived activities in summer (128,05 U/mL) than 

in autumn (82,75 U/mL) and winter (88,57 U/mL). 

Farm number 30, with a conventional milking system and Swedish Red cattle had higher (P < 

0.05) PG-derived activities in winter (98,78 U/mL) than in autumn (93,28 U/mL) and summer 

(78,67 U/mL). Farm number 32, with an automatic milking system and mixed breed of Swedish 

Red/Holstein, had also higher (P < 0.05) PG-derived activities in autumn (93,74 U/mL) and in 

summer (86,25 U/mL) than winter (76,11 U/mL). 
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Figure 4. Variations in PG-derived activity in farms number 20 and 40 collected in November 2017, February 

2018 and September 2018. Different letters A, B indicate statistically significant differences among 

production seasons at P < 0.05. 
 

Figure 5. Variations in PG-derived activity in farms number 30 and 32 collected in November 2017, February 

2018 and September 2018. Different letters A, B, C indicate statistically significant differences among 

production seasons at P < 0.05. 
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The variation in mean PL and PG-derived activities in raw milk for all silos among different 

production season are shown in Figure 6. PL activity in silos milk (n=3) was on average (4.32 

U/ml), (5.10 U/ml) and (5.48 U/ml) over autumn, winter and summer respectively. PG-derived 

activity in silos milk (n=3) was on average (90.83 U/ml), (97.12 U/ml) and (97.26 U/ml) over 

autumn, winter and summer respectively. Statistically, the production season had no effect (P 

> 0.05) on the average PL and PG-derived activities by using the one-way ANOVA-test. 

Autumn, winter and summer were grouped together and did not differ significantly from each 

other when conducting Tukey’s method on PL and PG-derived activity. 

 

Figure 6. Variations in mean PL and PG-derived activity in silo milk collected in November 2017, February 2018 

and September 2018. Data points present mean values for 3 silos of triplicates for each silo. Different 

letters A, B indicate statistically significant differences among production seasons at P < 0.05. 
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4.2. Effect of breed on plasmin and plasminogen in raw milk 

The variation in mean PL activity of raw milk as affected by different breeds is shown in Figure 

7. The grouping information when conducting Tukey’s method on PL activity is shown in 

Table 1. Farms with a Jersey breed showed higher (P < 0.05) PL activity (6,54 U/ml) compared 

to all other breeds in other considered farms. It was observed that farms containing Swedish 

Red cattle (SRB) had higher (P < 0.05) PL activity (16.2%, 31% and 39.8%) comparing to the 

farms having a Mountain Breed, a mixture of breeds SLB/SRB and SLB, respectively. 

Mountain Breed farms had higher (P < 0.05) PL activity (17.13%) than farms having Holstein 

(SLB). 

 

Figure 7. Variations in mean PL activity as affected by different breeds. Different letters A, B, C indicate 

statistically significant differences among different breeds at P < 0.05. 
 

Table 1. PL activity in farm milk as affected by breeds and grouping information using the Tukey Method and 

95% confidence. Means that do not share a letter are significantly different. 
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The variation in mean PG-derived activity in raw milk as affected by different breeds is shown 

in Figure 8. The grouping information when conducting Tukey’s method on PG-derived 

activity is shown in Table 2. Farms with a Jersey breed had higher (P < 0.05) PG-derived 

activity (139,67 U/mL) compared to all other breeds under study. It was observed that farms 

containing Swedish Red cattle (SRB), a mixture of breeds (SLB/SRB) and Mountain Breed 

had higher (P < 0.05) PG-derived activity (13.5%, 31%, 13.1% and 12.4%, respectively) 

comparing to the farms having Holstein (SLB). 

 

Figure 8. Variations in mean PG-derived activity as affected by different breeds. Different letters A, B, C indicate 

statistically significant differences among different breeds at P < 0.05. 
 

Table 2. PG-derived activity in farm milk as affected by breeds and grouping information using the Tukey Method 

and 95% confidence. Means that do not share a letter are significantly different.  

0

20

40

60

80

100

120

140

160

SLB SRB MB Jeresy SRB/SLB

P
G

-d
er

iv
ed

 a
ct

iv
it

y(
U

/m
l)

Breed

Mean PG-derived activity in farm milk

Breed N  Mean Grouping 

Jersey  9  139,67           A       

SRB 14  101,00    B  

SLB/SRB 53  100,51    B    

MB 18  99,70    B C 

SLB 55  87,29       C 

A 

B B B, C 

B 



21 

 

4.3. Effect of milking system on plasmin and plasminogen in raw milk 

The variations in mean PL activity in raw milk with regard to the milking system are shown in 

Figure 9. The milking system had no effect (P > 0.05) on the average of PL activity of the 

considered farms. The mean PL activity presented to be closed in CMS and AMS (4.13 and 

4.10 U/ml) respectively. 

 

 

 

 

 

 

Figure 9. Variation of PL activity according to the milking system; AMS: Automatic 

milking system and CMS: Conventional milking system. Different letters A, 

B indicate statistically significant differences among milking systems at P < 

0.05. 

The variations in mean PG-derived activities in raw milk for each of the milking systems are 

shown in Figure 10. There was a significant difference observed in mean PG-derived activities 

in raw milk between the milking systems. Farms with a CMS had higher (P < 0.05) PG-derived 

activity compared to farms having AMS (102.66 and 91.84 U/ml, respectively). 

 

 

 

 

 

 

 

 

 

Figure 10. Variation of PG-derived activity according to the milking system; AMS: 

Automatic milking system and CMS: Conventional milking system. Different 

letters A, B indicate statistically significant differences among milking 

systems at P < 0.05. 
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4.4. Correlations between plasmin/plasminogen and milk composition 

Correlations between the analysed variables in raw milk samples from 18 farms are shown in 

Table 3. From these results, the p-values for the correlation between PL and PG-derived 

activity and between total protein and somatic cell count (SCC) are both less than the 

significance level of 0.05, which indicates that the correlation coefficients are significant. The 

p-value between PL and PG-derived activity and between milk pH and total bacteria count 

(TBC) are 0.144 and 0.574, respectively. Since the p-value is greater than the significance level 

at 0.05, there is inconclusive evidence about the significance of the association between the 

variables. 

Table 3. Correlations between different milk compositions in raw farm milk from 18 farms; Cell Content: 

Pearson correlation: P-Value 

 

*   Correlation is significant at the 0.05 level (2-tailed)  

Correlations between the analysed variables in raw silo milk samples are shown in Table 4. 

From these results, the p-values for the correlation between PL and PG-derived activity and 

between milk pH, total protein, somatic cell count (SCC), total bacteria count (TBC), 

Psychrobacter and Thermobacteria are greater than the significance level at 0.05, indicating 

that there is inconclusive evidence about the significance of the association between the 

variables. 

Table 4. Correlations between different milk compositions in raw silo milk; Cell Content: Pearson correlation: 

P-Value 

 
*   Correlation is significant at the 0.05 level (2-tailed)  

 

  

 pH Protein% Somatic cell 

count (SCC) 
Total bacteria count (TBC) 

PL -0,222 

 0,144 

0,663 

0,000* 

0,464 

0,001* 

0,081 

0,574 

PG 0,022 

0,888 

0,666 

0,000* 

0,396 

0,004* 

-0,062 

 0,665 

 pH Protein (%)  SCC (Units) TBC (Units) Psychrobacter 

(Units) 
Thermobacteria 

(Units) 

PL -0,483 

 0,187 

0,536 

0,137 

-0,020 

 0,969 

0,506 

0,164 

-0,294 

 0,443 

0,566 

0,112 

PG 0,344 

0,364 

0,324 

0,395 

-0,155 

 0,770 

0,084 

0,829 

-0,130 

 0,739 

0,352 

0,353 
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5. Discussion 

5.1. Seasonal variation of plasmin and plasminogen-derived activity in 

raw milk  

In the current study, the production season had no effect on PL and PG-derived activities for 

all considered farms. In Sweden, calving patterns are nonseasonal, resulting in bulk milk from 

cows at various stages of lactation all year round (Jordbruksverket, 2012). This would reduce 

seasonal variation in raw milk composition, although not eliminate it (Auldist et al., 1998). 

Seasonal variation was not significantly different on PL and PG-derived activities. In 

agreement, with the current study, Politis et al., (1989b) reported that there is no evidence for 

an independent relationship between PL activity and production season after statistical 

adjustments for milk yield, SCC, lactation stage and lactation number. In addition, and like in 

the present study, Karlsson et al. (2017) concluded that the seasonal effect on the proteolytic 

activities of raw milk was not significantly different.  

In a New Zealand study, Nicholas et al. (2002) investigated the effect of stage of lactation and 

season on PL and PG-derived activity. They found no effects of stage of lactation or season on 

PL activity; however, both PG-derived and total PL/PG-derived activities were affected. his 

might be due to the significant effect of reduced milk yield with advancing lactation, leading 

to higher PG and total PL/PG-derived activities, or a high increase in the entry rate of total 

enzyme into mammary gland from the blood. Moreover, different feeding levels in the pasture-

based systems between seasons with regard to quality and quantity may have an impact on 

proteolytic activity (Nicholas, 1998).   

However, some farms in the present study showed a significant difference in PL and PG-

derived activities during the three seasons after testing them statistically and individually. The 

purpose behind it was to deepen the study of the production season as an independent effect on 

proteolytic activity. Hence, removal of some heterogeneous factors (i.e., breed, stage of 

lactation and milking system) and unknown variables (i.e., feeding levels and management 

strategies) among the farms that may affect the PL and PG-derived activities. In agreement 

with findings collected from farm number 18, Nicholas et al. (2002) reported that the highest 

PL activity was in summer and the lowest in winter. With regard to PG, the highest PG-derived 

activity was in spring and the lowest was in winter, this is somewhat consistent with results 

collected from farms number 20 and 40. Nicholas et al. (2002) reported that the PL and PG-

derived activities are related to the quality and quantity of feeding and housing conditions that 

could be affected by the seasons. Furthermore, the effect of the production season could be 

influenced by some heterogeneous factors such as breed and milking system, since most of the 

representative breed type and milking systems varied between the farms under present study. 

Therefore, it is not possible to draw a clear connection to the individual effect of production 

season on PL and PG-derived activities rather than the holistic effect of all main parameters. 

Politis et al., (1989b) concluded that the seasonal variation did not have a significant effect 

because of the large variation within groups. Other factors such as, cow management and feed 

and level of feeding can also play a role and make difficult to explain the results.  



24 

 

Regarding silo milk, Tjernberg (2016) concluded that it's complicated to determine factors 

influencing PL and PG-derived activity, due to the diversity of farms which are the origin of 

this milk mixture, with each farm using different milking systems, milking frequencies, and 

keeping cows of different ages and breeds. 

5.2. Effect of breed on plasmin and plasminogen in raw milk 

The results of the current study showed that PL and PG-derived activities were significantly 

affected by breed. Nevertheless, the PL and PG results of this study are in contrast with 

Richardson (1983b) reported that higher PL activity has been observed in milk from Holstein-

Friesian cows (0.27-0.53 mg L-1) compared to Jersey cows (0.154-0.37 mg L-1). Schaar (1985) 

found a similar finding in Swedish Friesian and Jersey cattle. On the other hand, Fantuz et al. 

(2001) reported that there was no effect by Holstein and Jersey cows on either PL or PG derived 

activities. Bastian et al., (1991a) concluded that the different casein contents of milk may cause 

milk from different breeds to exhibit varying PL activity. In the present study, there are no 

obvious reasons for the results to be contradictory. Since it was not probable inferencing the 

same breed effect on PL and PG-derived activity. Supposedly, caused by the interferences with 

other unknown variables which were not included in this study design (i.e. stage of lactation, 

parity, age). The implementation of this study was within a larger project, currently lead by 

Monika Johansson, SLU. 

5.3. Effect of milking system on plasmin and plasminogen in raw milk 

In this research, PL activity of raw milk was not significantly affected by the milking system. 

Conversely, the current study reports significant differences in PG-derived activities as affected 

by the milking system. Abeni et al. (2008) evaluated the effect between CMS and AMS on PL 

and PG-derived activities and observed that PG and total (PL+PG) activities were lower in 

AMS as compared to CMS. This is somewhat consistent with the results referred to in this 

study. In addition, Johansson et al. (2017) reported that PL and the total enzyme activities 

(PL+PG) were lower in AMS as compared to CMS. This is contrary to the outcomes obtained 

in the present study. 

The variations in PL and PG-derived activities as affected by the type of milking system could 

be explained by the differences in milking frequencies (MFs). Sorensen et al. (2001) concluded 

that MF lengthens the interval between milking, allowing additional time or PG to be converted 

to PL. Furthermore, the increase in milking frequencies in AMS leads to maintain the integrity 

of epithelial tight junctions resulting in resistance to the leakage of proteolytic enzymes from 

blood to milk. 
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5.4. Correlations between plasmin/plasminogen and milk composition 

5.4.1. Correlations between plasmin/plasminogen and milk pH 

Correlations between milk pH raw milk samples collected from milk farms and silos and 

between PL and PG-derived activity were not observed in the current study. This is in 

agreement with Bastian et al. (1991b), milk pH did not influence PL or PG activity. In contrast, 

Politis et al. (1989b) observed a significant and positive correlation between PL activity and 

milk pH as PL activity increased as milk pH increased. No correlation between proteolytic 

activity and pH could be definite in the present study. 

5.4.2. Correlations between plasmin/plasminogen and protein content 

Many of the literature pointed to the importance of the interaction between PL and PG which 

associates with the casein micelle with the other milk components such as milk protein (i.e. 

casein and whey protein). In raw farm milk samples, there was significant correlation in the 

present study between total protein content and both PL and PG-derived activities. This is in 

the line with de Vries et al. (2016) reported a decrease of αs-1 and β -casein fractions with 

increasing of PL activity. Furthermore, Johansson et al. (2017) reported a negative correlation 

between total proteolytic activity and β-casein fraction. Ismail and Neilsen, (2010) reported 

that whey protein may have affected the PL system by changing the plasmin kinetics that 

induced caseins hydrolysis. The kinetics is associated with the properties of PL and PGA, 

involving the efficiency and rapidity of their activity during the chemical reaction. Thus, the 

hydrolysis of caseins is reduced by the decreased PL activity or conversion of PG to PL. 

However, Bastian et al. (1999a) concluded that milk protein content didn't affect PL and PG-

derived activities.  

Regarding silo milk samples, there was no correlation in the current study between total protein 

content and both PL and PG-derived activity. Obviously, it's convoluted to draw a conclusion 

about the relationship between protein content in silo milk and total PL/PG-derived activities. 

This is caused by the diversity of sources of this milk with regard to the different environmental 

factors in each farm (i.e. stage of lactation, breed, milking system and age). 

5.4.3. Correlations between plasmin/plasminogen and somatic cell count 

In raw farm milk samples, there was a positive and significant correlation in the present study 

between somatic cell count (SCC) and total PL and PG-derived activities. Many authors have 

reported a positive correlation between SCC and proteolytic activities. Politis et al. (1989a) 

reported that SCC in milk increased from less than 250,000 to more than 1,000,000 the 

concentration of PL and PG increased from 0.18 to 0.37 mg L-1 and from 0.85 to 1.48 mg L-1, 

respectively. According to Li et al. (2014), somatic cells secrete endogenous enzymes like PAs 

that have a direct effect on the PL activity of milk by stimulating the conversion of PG to PL. 

Chavan et al. (2011) revealed that increased levels of PAs caused by mastitis to show a higher 

PL activity. It might be a comparable cause for increased PL activity of milk containing higher 
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SCC. Also, Johansson et al. (2017) revealed a positive correlation between SCC and total 

proteolysis, which includes also the effects of plasmin. 

Concerning silo milk samples, there was no correlation in the current study between somatic 

cell count (SCC) and both PL and PG-derived activity. Obviously, it's convoluted to draw a 

conclusion about the relationship between SSC in silo milk and total PL/PG-derived activities. 

Jayarathna (2017) concluded that could be due to many inhomogeneous and unknown 

variabilities (i.e. stage of lactation, breed, milking system and feeding levels) among the farms 

that may affect SSC, PL and PG derived activities. 

5.4.4. Correlations between plasmin/plasminogen and total bacteria count 

In raw farm milk samples, Correlations between total bacteria count (TBC), and PL and PG-

derived activity were not observed in the current study. With regard to the raw silo milk 

samples, total bacteria count, Thermobacteria and Psychrobacter were not correlated with PL 

and PG-derived activities. In contrast, several studies have suggested a link between milk 

bacteria and PL system as a result of bacterial proteases affecting the PL system. Fajardo-Lira 

and Nielsen (1998) concluded that proteolysis of milk proteins can be attributed to both native 

proteases and proteases produced by psychrotrophic bacteria during storage of fresh raw milk. 

Plasmin activity has been reported to decrease with microbial growth and storage time 

(Frohbieter et al., 2005). Guinot-Thomas et al., (1995) observed a decreased in PL activity in 

fresh raw milk after 4 d of storage at 4°C when the count of psychrotrophic bacteria was 

increased. The plasmin decrease was attributed to psychrotrophic bacterial protease activity 

and plasmin autolysis. Frohbieter et al. (2005) concluded that some bacterial proteases can 

enhance the activity of PA, or act as a PA, to increase plasmin activity. In the current study, 

there are no apparent causes for the outcomes to be contradictory. However, the interferences 

with other physical factors and unknown variables which were not included in this study design 

might be the probable explanation. 
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6. Conclusion 

This study identified environmental factors that affect plasmin and plasminogen activity in 

bovine raw milk. Preliminary results on PL and PG analysis from laboratory tests on raw milk 

samples indicated that the production season had no effect on PL and PG-derived activities. 

The raw milk PL and PG-derived activities were significantly affected by the breed. Jersey 

breed had higher PL and PG-derived activities compared to all other breeds. Swedish Red cattle 

(SRB) had higher PL activity than Mountain Breed, a mixture of breeds SLB/SRB and Holstein 

SLB. Mountain Breed had higher PL activity than Holstein (SLB). While Swedish Red cattle 

(SRB), a mixture of breeds (SLB/SRB) and Mountain Breed had higher PG-derived activity 

than Holstein (SLB). The milking system did not significantly affect the PL activity, however, 

there was a significant difference in PG-derived activities affected by the milking system. 

Farms with a CMS had higher PG-derived activity compared to farms containing AMS. The 

correlation between PL and PG-derived activity and between total protein and somatic cell 

count (SCC) are significant in farm raw milk. Although many factors affecting the initial PL 

and PG-derived PL activity in milk are identified more research in this area is needed. Some 

other environmental factors such as the stage of lactation and cow age need to be included and 

investigated further, with specific emphasis on the total proteolytic activity. Therefore, 

investing this knowledge can be crucial and has the potential to improve the quality of dairy 

products and contribute to lower production costs.  
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9. Appendix  

Appendix 1: Raw data 

Table 5. Overview of environmental factors and mean enzyme activity 

Milk sample Milk type 
Collection 

time 

Milking 

system 
Mean breed 

Plasmin 

(U/ml) 

Plasminogen 

(U/ml) 

FA1-12 Farm Nov-18 CMS SLB 4.16 83.14 

FA1-16 Farm Nov-18 AMS SLB 3.13 76.98 

FA1-38 Farm Nov-18 AMS SRB/SLB 3.74 94.74 

FB1-18 Farm Nov-18 CMS SLB 3.69 99.31 

FB1-27 Farm Nov-18 CMS SRB/SLB 4.54 101.96 

FB1-28 Farm Nov-18 CMS Jersey 7.44 158.22 

FB1-29 Farm Nov-18 CMS 
Mountain 

Breed 
3.67 92.41 

FB1-30 Farm Nov-18 CMS SRB    3.56 95.78 

FB1-32 Farm Nov-18 AMS SRB/SLB 4.33 93.74 

FB1-35 Farm Nov-18 AMS SRB 5.98 107.69 

FB1-36 Farm Nov-18 CMS SRB/SLB 4.30 102.00 

FB1-39 Farm Nov-18 CMS SRB/SLB 4.22 112.22 

FC1-06 Farm Nov-18 AMS SLB 4.52 93.59 

FC1-17 Farm Nov-18 AMS SLB 3.65 97.50 

FC1-20 Farm Nov-18 AMS SRB/SLB 3.94 86.03 

FC1-33 Farm Nov-18 CMS SLB 3.30 85.07 

FC1-40 Farm Nov-18 CMS 
Mountain 

Breed 
4.62 82.75 

FA2-12 Farm Feb-19 CMS SLB 3.84 82.08 

FA2-16 Farm Feb-19 AMS SLB 3.76 73.91 

FA2-34 Farm Feb-19 AMS SLB 4.17 79.50 

FA2-38 Farm Feb-19 AMS SRB/SLB 3.57 106.58 

FB2-18 Farm Feb-19 CMS SLB 2.95 90.86 

FB2-27 Farm Feb-19 CMS SRB/SLB 4.52 93.70 

FB2-28 Farm Feb-19 CMS Jersey 5.69 118.86 

FB2-29 Farm Feb-19 CMS 
Mountain 

Breed 
3.95 99.31 

FB2-30 Farm Feb-19 CMS SRB    3.44 99.33 

FB2-32 Farm Feb-19 AMS SRB/SLB 3.37 76.11 

FB2-35 Farm Feb-19 AMS SRB 6.60 108.95 

FB2-36 Farm Feb-19 CMS SRB/SLB 3.25 119.64 
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FB2-39 Farm Feb-19 CMS SRB/SLB 3.38 110.40 

FC2-06 Farm Feb-19 AMS SLB 4.10 68.86 

FC2-20 Farm Feb-19 AMS SRB/SLB 3.95 88.57 

FC2-33 Farm Feb-19 CMS SLB 2.86 98.33 

FC2-40 Farm Feb-19 CMS 
Mountain 

Breed 
4.11 88.48 

FA3-12 Farm Sep-19 CMS SLB 3.77 70.57 

FA3-16 Farm Sep-19 AMS SLB 2.96 87.70 

FA3-34 Farm Sep-19 AMS SLB 3.82 99.36 

FA3-38 Farm Sep-19 AMS SRB/SLB 4.04 92.89 

FB3-18 Farm Sep-19 CMS SLB 3.76 103.13 

FB3-27 Farm Sep-19 CMS SRB/SLB 4.00 101.48 

FB3-28 Farm Sep-19 CMS Jersey 6.48 141.93 

FB3-29 Farm Sep-19 CMS 
Mountain 
Breed 

4.44 107.19 

FB3-30 Farm Sep-19 CMS SRB    2.33 78.67 

FB3-32 Farm Sep-19 AMS SRB/SLB 2.90 86.25 

FB3-35 Farm Sep-19 AMS SRB 6.04 100.44 

FB3-36 Farm Sep-19 CMS SRB/SLB 4.86 124.77 

FB3-39 Farm Sep-19 CMS SRB/SLB 3.34 107.55 

FC3-06 Farm Sep-19 AMS SLB 3.00 84.37 

FC3-17 Farm Sep-19 AMS SLB 4.81 101.52 

FC3-20 Farm Sep-19 AMS SRB/SLB 4.03 111.08 

FC3-33 Farm Sep-19 CMS SLB 3.26 84.03 

FC3-40 Farm Sep-19 CMS 
Mountain 

Breed 
4.84 128.05 

DA1-T Silo Nov-18     3.70 94.01 

DB1-T Silo Nov-18     4.33 80.30 

DC1-T Silo Nov-18     4.93 98.18 

DA2-T Silo Feb-19     4.31 90.06 

DB2-T Silo Feb-19     5.72 105.51 

DC2-T Silo Feb-19     5.28 95.80 

DA3-T Silo Sep-19     5.15 89.70 

DB3-T Silo Sep-19     6.72 105.65 

DC3-T Silo Sep-19     4.56 96.44 
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Table 6. Overview of milk samples and enzyme activity 

Milk 

sample 

Milk 

type 

Analyzed 

date 

Plasmin 

(U/ml) 
St Dev 

Plasminogen 

(U/ml) 
St Dev 

Factor PL st. 

dev/ PL aver 

Factor PG 

st. dev/ PG 

aver 

FA1-12a Farm 27/02/2019 4.33 0.16 83.44 1.41 0.04 0.02 

FA1-12b Farm 27/02/2019 3.44 0.16 74.89 2.83 0.05 0.04 

FA1-12c Farm 20/02/2019 4.69 0.00 91.09 1.57 0.00 0.02 

FA1-16a Farm 20/02/2019 2.84 0.17 87.05 3.13 0.06 0.04 

FA1-16b Farm 27/02/2019 3.33 0.17 75.22 0.33 0.05 0.00 

FA1-16c Farm 27/02/2019 3.22 0.16 68.67 0.31 0.05 0.00 

FA1-38a Farm 21/02/2019 2.22 0.39 86.44 0.08 0.18 0.00 

FA1-38b Farm 05/03/2019 4.44 0.00 97.56 0.00 0.00 0.00 

FA1-38c Farm 07/02/2019 4.56 0.47 100.22 2.20 0.10 0.02 

FB1-18a Farm 27/02/2019 3.67 0.47 111.33 1.57 0.13 0.01 

FB1-18b Farm 18/02/2019 3.70 0.00 87.30 0.79 0.00 0.01 

FB1-27b Farm 28/02/2019 4.89 0.00 102.33 1.10 0.00 0.01 

FB1-27c Farm 28/02/2019 4.20 0.70 101.58 2.90 0.17 0.03 

FB1-28a Farm 09/04/2019 7.67 0.16 182.56 1.10 0.02 0.01 

FB1-28b Farm 01/03/2019 7.33 0.31 128.89 1.26 0.04 0.01 

FB1-28c Farm 02/04/2019 7.33 0.31 163.22 2.36 0.04 0.01 

FB1-29a Farm 07/02/2019 5.22 0.16 105.67 2.67 0.03 0.03 

FB1-29b Farm 05/02/2019 2.44 0.31 99.11 1.89 0.13 0.02 

FB1-29c Farm 01/03/2019 3.33 0.17 72.44 7.68 0.05 0.11 

FB1-30b Farm 27/02/2019 3.11 0.00 93.33 2.20 0.00 0.02 

FB1-30c Farm 01/03/2019 4.00 0.00 98.22 2.20 0.00 0.02 

FB1-32a Farm 07/02/2019 4.78 0.79 95.89 3.93 0.16 0.04 

FB1-32b Farm 05/02/2019 4.00 0.31 93.11 0.94 0.08 0.01 

FB1-32c Farm 01/03/2019 4.22 0.63 92.22 1.89 0.15 0.02 

FB1-35a Farm 07/02/2019 6.22 0.00 104.33 1.41 0.00 0.01 

FB1-35b Farm 09/04/2019 4.94 0.00 110.95 0.79 0.00 0.01 

FB1-35c Farm 28/02/2019 6.78 0.47 107.78 0.94 0.07 0.01 

FB1-36a Farm 27/02/2019 6.44 0.63 120.22 1.89 0.10 0.02 

FB1-36b Farm 19/02/2019 2.67 0.00 93.22 0.47 0.00 0.01 

FB1-36c Farm 06/03/2019 3.78 0.00 92.56 1.10 0.00 0.01 

FB1-39a Farm 01/03/2019 3.89 0.47 109.78 2.51 0.12 0.02 

FB1-39b Farm 28/02/2019 4.00 0.31 91.67 2.36 0.08 0.03 

FB1-39c Farm 01/03/2019 4.78 0.16 135.22 2.04 0.03 0.02 

FC1-06a Farm 26/02/2019 3.58 0.17 90.53 0.93 0.05 0.01 
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FC1-06b Farm 26/02/2019 3.44 0.16 86.89 0.00 0.05 0.00 

FC1-06c Farm 07/02/2019 6.53 0.59 103.36 0.82 0.09 0.01 

FC1-17a Farm 02/04/2019 3.95 0.35 129.94 0.82 0.09 0.01 

FC1-17b Farm 27/02/2019 3.11 0.00 83.67 2.36 0.00 0.03 

FC1-17c Farm 07/02/2019 3.89 0.16 78.89 2.20 0.04 0.03 

FC1-20a Farm 26/02/2019 3.47 0.59 88.19 2.00 0.17 0.02 

FC1-20b Farm 27/02/2019 3.33 0.00 73.22 1.10 0.00 0.02 

FC1-20c Farm 07/02/2019 5.00 0.79 96.67 2.20 0.16 0.02 

FC1-33a Farm 26/02/2019 3.33 0.17 92.44 0.45 0.05 0.00 

FC1-33b Farm 26/02/2019 2.00 0.00 77.67 1.41 0.00 0.02 

FC1-33c Farm 07/02/2019 4.56 0.16 85.11 1.89 0.03 0.02 

FC1-40a Farm 26/02/2019 3.67 0.47 71.00 0.16 0.13 0.00 

FC1-40b Farm 26/02/2019 5.00 0.47 83.44 3.61 0.09 0.04 

FC1-40c Farm 07/02/2019 5.19 0.70 93.81 0.72 0.13 0.01 

FA2-12a Farm 28/02/2019 2.78 0.16 65.67 0.16 0.06 0.00 

FA2-12b Farm 07/03/2019 5.56 0.00 98.11 1.41 0.00 0.01 

FA2-12c Farm 20/02/2019 3.19 0.59 82.47 1.06 0.18 0.01 

FA2-16a Farm 07/03/2019 4.22 0.00 69.78 0.63 0.00 0.01 

FA2-16b Farm 28/02/2019 4.17 0.39 78.06 0.24 0.09 0.00 

FA2-16c Farm 20/02/2019 2.89 0.31 73.89 0.16 0.11 0.00 

FA2-34a Farm 07/03/2019 3.78 0.00 78.89 1.26 0.00 0.02 

FA2-34b Farm 07/03/2019 4.56 0.16 80.11 2.04 0.03 0.03 

FA2-38a Farm 28/02/2019 3.44 0.16 107.44 0.16 0.05 0.00 

FA2-38b Farm 01/03/2019 4.57 0.52 101.54 2.78 0.11 0.03 

FA2-38c Farm 28/02/2019 2.70 0.22 110.75 2.45 0.08 0.02 

FB2-18a Farm 11/03/2019 3.00 0.16 90.00 1.26 0.05 0.01 

FB2-18b Farm 11/03/2019 2.89 0.00 92.44 0.94 0.00 0.01 

FB2-18c Farm 11/03/2019 2.96 0.35 90.15 0.35 0.12 0.00 

FB2-27a Farm 11/03/2019 4.44 0.00 69.78 1.26 0.00 0.02 

FB2-27b Farm 11/03/2019 4.56 0.16 100.11 0.47 0.03 0.00 

FB2-27c Farm 11/03/2019 4.56 0.16 111.22 3.30 0.03 0.03 

FB2-28a Farm 28/02/2019 5.44 0.16 110.11 2.67 0.03 0.02 

FB2-28b Farm 08/03/2019 5.67 0.16 128.22 3.46 0.03 0.03 

FB2-28c Farm 08/03/2019 5.97 0.20 118.25 2.71 0.03 0.02 

FB2-29a Farm 08/03/2019 5.00 0.16 105.78 1.26 0.03 0.01 

FB2-29b Farm 08/03/2019 3.19 0.20 92.25 3.42 0.06 0.04 

FB2-29c Farm 08/03/2019 3.67 0.16 99.89 2.04 0.04 0.02 



40 

 

FB2-30b Farm 07/03/2019 3.44 0.16 99.33 0.94 0.05 0.01 

FB2-32a Farm 11/03/2019 4.44 0.00 76.56 2.04 0.00 0.03 

FB2-32b Farm 11/03/2019 3.33 0.17 81.22 0.61 0.05 0.01 

FB2-32c Farm 11/03/2019 2.33 0.16 70.56 0.47 0.07 0.01 

FB2-35a Farm 11/03/2019 7.44 0.47 113.33 3.46 0.06 0.03 

FB2-35b Farm 11/03/2019 6.56 0.16 115.00 2.67 0.02 0.02 

FB2-35c Farm 11/03/2019 5.80 0.52 98.53 4.66 0.09 0.05 

FB2-36a Farm 11/03/2019 4.33 0.16 105.67 0.16 0.04 0.00 

FB2-36b Farm 04/04/2019 2.33 0.16 150.44 3.14 0.07 0.02 

FB2-36c Farm 11/03/2019 3.09 0.17 102.80 0.65 0.06 0.01 

FB2-39a Farm 08/03/2019 3.44 0.47 94.89 1.26 0.14 0.01 

FB2-39b Farm 08/03/2019 3.22 0.16 105.78 1.57 0.05 0.01 

FB2-39c Farm 02/04/2019 3.47 0.20 130.53 0.82 0.06 0.01 

FC2-06a Farm 06/03/2019 2.96 0.00 52.37 1.26 0.00 0.02 

FC2-06b Farm 06/03/2019 5.44 1.10 87.11 1.57 0.20 0.02 

FC2-06b Farm 06/03/2019 3.89 0.16 67.11 2.83 0.04 0.04 

FC2-20a Farm 04/04/2019 4.32 0.17 95.01 1.12 0.04 0.01 

FC2-20b Farm 06/03/2019 2.22 0.00 78.33 0.47 0.00 0.01 

FC2-20c Farm 06/03/2019 5.31 0.17 92.36 3.75 0.03 0.04 

FC2-33a Farm 04/04/2019 3.21 0.35 135.23 4.12 0.11 0.03 

FC2-33b Farm 06/03/2019 2.47 0.35 62.75 0.82 0.14 0.01 

FC2-33c Farm 06/03/2019 2.89 0.00 97.00 0.47 0.00 0.00 

FC2-40a Farm 07/03/2019 3.89 0.16 87.00 1.73 0.04 0.02 

FC2-40b Farm 07/03/2019 4.56 0.16 82.44 0.00 0.03 0.00 

FC2-40c Farm 07/03/2019 3.89 0.16 96.00 3.46 0.04 0.04 

FA3-12a Farm 12/03/2019 3.67 0.16 67.33 2.51 0.04 0.04 

FA3-12b Farm 12/03/2019 3.56 0.31 68.44 2.20 0.09 0.03 

FA3-12c Farm 12/03/2019 4.07 0.17 75.93 6.77 0.04 0.09 

FA3-16a Farm 02/04/2019 3.56 0.00 90.67 4.09 0.00 0.05 

FA3-16b Farm 09/04/2019 2.89 0.31 95.22 2.04 0.11 0.02 

FA3-16c Farm 19/02/2019 2.44 0.00 77.22 1.10 0.00 0.01 

FA3-34a Farm 12/03/2019 2.89 0.31 97.22 2.67 0.11 0.03 

FA3-34b Farm 28/02/2019 5.00 0.16 106.11 0.47 0.03 0.00 

FA3-34c Farm 12/03/2019 3.58 0.17 94.75 1.87 0.05 0.02 

FA3-38a Farm 12/03/2019 4.22 0.31 80.89 2.51 0.07 0.03 

FA3-38b Farm 04/04/2019 4.44 0.00 125.89 3.30 0.00 0.03 

FA3-38c Farm 09/04/2019 3.44 0.16 71.89 0.79 0.05 0.01 
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FB3-18a Farm 04/04/2019 3.83 0.17 122.62 1.12 0.05 0.01 

FB3-18b Farm 04/04/2019 3.44 0.47 86.33 0.16 0.14 0.00 

FB3-18c Farm 04/04/2019 4.00 0.00 100.44 0.31 0.00 0.00 

FB3-27a Farm 27/02/2019 3.44 0.47 97.00 1.73 0.14 0.02 

FB3-27b Farm 27/02/2019 4.57 0.17 105.54 1.27 0.04 0.01 

FB3-27c Farm 27/02/2019 4.00 0.00 101.89 1.10 0.00 0.01 

FB3-28a Farm 04/04/2019 8.33 0.47 165.11 0.31 0.06 0.00 

FB3-28b Farm 20/02/2019 5.00 0.16 133.11 1.26 0.03 0.01 

FB3-28c Farm 21/02/2019 6.11 0.16 127.56 1.26 0.03 0.01 

FB3-29a Farm 21/02/2019 4.33 0.29 107.00 2.01 0.06 0.02 

FB3-29b Farm 04/04/2019 5.56 0.17 116.22 1.12 0.03 0.01 

FB3-29c Farm 27/02/2019 3.44 0.16 98.33 1.10 0.05 0.01 

FB3-30a Farm 27/02/2019 2.33 0.16 78.67 1.57 0.07 0.02 

FB3-32a Farm 21/02/2019 2.89 0.00 82.44 1.89 0.00 0.02 

FB3-32b Farm 20/02/2019 2.59 0.17 88.85 0.61 0.07 0.01 

FB3-32c Farm 27/02/2019 3.22 0.16 87.44 1.10 0.05 0.01 

FB3-35a Farm 27/02/2019 5.33 0.31 110.22 2.20 0.06 0.02 

FB3-35b Farm 08/03/2019 5.56 0.00 94.44 0.00 0.00 0.00 

FB3-35c Farm 08/03/2019 7.22 0.79 96.67 2.20 0.11 0.02 

FB3-36a Farm 21/02/2019 4.56 0.16 106.89 1.57 0.03 0.01 

FB3-36b Farm 20/02/2019 4.22 0.31 110.22 3.14 0.07 0.03 

FB3-36c Farm 27/02/2019 5.80 0.17 157.20 3.13 0.03 0.02 

FB3-39a Farm 21/02/2019 3.44 0.16 118.33 1.73 0.05 0.01 

FB3-39b Farm 04/04/2019 3.58 0.17 102.98 0.65 0.05 0.01 

FB3-39c Farm 27/02/2019 3.00 0.47 101.33 2.51 0.16 0.02 

FC3-06a Farm 02/04/2019 2.22 0.00 77.22 0.47 0.00 0.01 

FC3-06b Farm 04/04/2019 3.44 0.47 99.56 1.89 0.14 0.02 

FC3-06c Farm 19/02/2019 3.33 0.00 76.33 1.41 0.00 0.02 

FC3-17a Farm 11/03/2019 3.22 0.16 80.00 2.51 0.05 0.03 

FC3-17b Farm 04/04/2019 4.44 0.39 108.22 0.55 0.09 0.01 

FC3-17c Farm 04/04/2019 6.78 0.16 116.33 0.16 0.02 0.00 

FC3-20a Farm 04/04/2019 3.21 0.00 105.35 1.10 0.00 0.01 

FC3-20b Farm 04/04/2019 4.89 0.63 106.78 0.79 0.13 0.01 

FC3-20c Farm 04/04/2019 4.00 0.63 121.11 5.34 0.16 0.04 

FC3-33a Farm 11/03/2019 2.56 0.47 83.67 0.79 0.18 0.01 

FC3-33b Farm 11/03/2019 4.13 0.45 70.54 3.32 0.11 0.05 

FC3-33c Farm 11/03/2019 3.11 0.00 97.89 2.04 0.00 0.02 
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FC3-40a Farm 04/04/2019 4.31 0.59 110.36 0.98 0.14 0.01 

FC3-40b Farm 04/04/2019 4.56 0.16 131.00 5.81 0.03 0.04 

FC3-40c Farm 04/04/2019 5.67 1.10 142.78 0.47 0.19 0.00 

DA1-Ta Silo 05/03/2019 4.32 0.17 98.68 0.30 0.04 0.00 

DA1-Tb Silo 05/03/2019 2.44 0.00 72.44 1.57 0.00 0.02 

DA1-Tc Silo 04/04/2019 4.32 0.17 110.90 1.59 0.04 0.01 

DB1-Ta Silo 05/03/2019 3.56 0.31 76.33 1.73 0.09 0.02 

DB1-Tb Silo 05/03/2019 4.55 0.14 84.68 0.30 0.03 0.00 

DB1-Tc Silo 05/03/2019 4.89 0.00 79.89 0.16 0.00 0.00 

DC1-Ta Silo 05/03/2019 4.89 0.00 102.00 4.40 0.00 0.04 

DC1-Tb Silo 05/03/2019 5.45 0.00 101.32 0.79 0.00 0.01 

DC1-Tc Silo 05/03/2019 4.44 0.00 91.22 2.99 0.00 0.03 

DA2-Ta Silo 07/03/2019 4.58 0.19 103.20 2.95 0.04 0.03 

DA2-Tb Silo 07/02/2019 5.06 0.17 93.72 0.33 0.03 0.00 

DA2-Tc Silo 07/03/2019 3.29 0.24 73.27 2.12 0.07 0.03 

DB2-Ta Silo 07/02/2019 6.00 0.31 109.22 1.10 0.05 0.01 

DB2-Tb Silo 07/02/2019 5.93 0.00 109.52 6.13 0.00 0.06 

DB2-Tc Silo 07/02/2019 5.22 0.47 97.78 1.89 0.09 0.02 

DC2-Ta Silo 07/02/2019 6.00 0.31 106.00 4.40 0.05 0.04 

DC2-Tb Silo 07/02/2019 4.94 0.35 90.06 1.07 0.07 0.01 

DC2-Tc Silo 07/02/2019 4.89 0.00 91.33 0.00 0.00 0.00 

DA3-Ta Silo 04/04/2019 5.56 0.31 98.67 2.51 0.06 0.03 

DA3-Tb Silo 04/04/2019 4.89 0.63 86.11 1.73 0.13 0.02 

DA3-Tc Silo 04/04/2019 5.00 0.16 84.33 0.16 0.03 0.00 

DB3-Ta Silo 04/04/2019 6.00 0.00 106.56 0.16 0.00 0.00 

DB3-Tb Silo 04/04/2019 6.89 0.00 109.78 1.26 0.00 0.01 

DB3-Tc Silo 04/04/2019 7.28 0.52 100.60 0.05 0.07 0.00 

DC3-Ta Silo 12/03/2019 3.33 0.31 98.44 0.63 0.09 0.01 

DC3-Tb Silo 12/03/2019 4.69 0.00 95.09 1.26 0.00 0.01 

DC3-Tc Silo 09/04/2019 5.67 0.16 95.78 0.00 0.03 0.00 
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Table 7. Overview of data raw farm milk components from Eurofins Steins Laboratorium AB, Sweden 

Milk sample Milk type pH Protein % SCC TBC 

FA1-12 Farm 6.71 3.61 151.67 5.50 

FA1-16 Farm 6.71 3.55 171.00 6.50 

FA1-38 Farm 6.74 3.58 128.00 5.50 

FB1-18 Farm 6.68 3.67 114.50 3.50 

FB1-27 Farm 6.69 3.65 224.00 4.00 

FB1-28 Farm 6.75 4.64 299.33 5.00 

FB1-29 Farm 6.74 3.54 66.00 8.00 

FB1-30 Farm 6.70 3.49 110.33 4.00 

FB1-32 Farm 6.72 3.52 136.33 4.50 

FB1-35 Farm 6.71 3.71 189.33 8.00 

FB1-36 Farm 6.70 3.57 220.67 11.00 

FB1-39 Farm 6.69 3.79 175.00 6.00 

FC1-06 Farm 6.65 3.64 200.00 13.50 

FC1-17 Farm 6.67 3.39 113.67 9.00 

FC1-20 Farm 6.64 3.59 209.00 14.50 

FC1-33 Farm 6.65 3.55 75.67 4.00 

FC1-40 Farm 6.73 3.65 275.00 5.00 

FA2-12 Farm 6.71 3.61 151.67 5.50 

FA2-16 Farm 6.71 3.55 171.00 6.50 

FA2-34 Farm 6.74 3.58 128.00 5.50 

FA2-38 Farm 6.68 3.67 114.50 3.50 

FB2-18 Farm 6.69 3.65 224.00 4.00 

FB2-27 Farm 6.75 4.64 299.33 5.00 

FB2-28 Farm 6.74 3.54 66.00 8.00 

FB2-29 Farm 6.70 3.49 110.33 4.00 

FB2-30 Farm 6.72 3.52 136.33 4.50 

FB2-32 Farm 6.71 3.71 189.33 8.00 

FB2-35 Farm 6.70 3.57 220.67 11.00 

FB2-36 Farm 6.69 3.79 175.00 6.00 

FB2-39 Farm 6.65 3.64 200.00 13.50 

FC2-06 Farm 6.67 3.39 113.67 9.00 

FC2-20 Farm 6.64 3.59 209.00 14.50 

FC2-33 Farm 6.65 3.55 75.67 4.00 

FC2-40 Farm 6.73 3.65 275.00 5.00 

FA3-12 Farm 6.63 3.49 168.00 8.00 
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FA3-16 Farm 6.62 3.54 146.00 10.00 

FA3-34 Farm 6.66 3.46 226.67 16.00 

FA3-38 Farm 6.68 3.48 239.33 15.00 

FB3-18 Farm 6.64 3.60 203.33 4.00 

FB3-27 Farm 6.63 3.72 131.67 4.00 

FB3-28 Farm 6.68 4.59 317.00 6.00 

FB3-29 Farm 6.71 3.65 107.67 8.50 

FB3-30 Farm 6.64 3.39 95.00 4.00 

FB3-32 Farm 6.67 3.54 210.67 6.50 

FB3-35 Farm 4.48 3.86 267.67 12.50 

FB3-36 Farm 6.68 3.72 406.00 34.00 

FB3-39 Farm 6.63 3.76 93.67 3.00 

FC3-06 Farm 6.64 3.63 232.67 25.00 

FC3-17 Farm 6.67 3.38 206.00 63.50 

FC3-20 Farm 6.69 3.63 348.67 16.50 

FC3-33 Farm 6.62 3.45 91.00 4.50 

FC3-40 Farm 6.70 3.36 327.67 4.50 

 

Table 8. Overview of data raw silo milk components from Eurofins Steins Laboratorium AB, Sweden 

Milk 

sample 

Milk 

type 
pH Protein % SCC TBC Psychro  Thermo 

DA1-T Silo 6.72 3.61 153.67 9.33 1350.00 233.33 

DB1-T Silo 6.72 3.76 174.00 29.00 1000.00 2100.00 

DC1-T Silo 6.68 3.61 164.67 19.67 2250.00 750.00 

DA2-T Silo 6.65 3.54 249.00 25.00 1500.00 200.00 

DB2-T Silo 6.67 3.66 184.00 10.00 150.00 3300.00 

DC2-T Silo 6.65 3.55 172.00 43.00 450.50 8000.00 

DA3-T Silo 6.65 3.93   13.33 1600.00 250.00 

DB3-T Silo 6.67 4.48   45.67 1300.00 4500.00 

DC3-T Silo 6.67 4.26   19.67 2500.00 1400.00 
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Appendix 2: Statistical data 

Table 9. ANOVA test on PL activity versus season in farm milk. 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Season 2 1,921 0,9603 0,60 0,550 

Error 146 233,267 1,5977 
  

Total 148 235,187 
   

 

Table 10. Tukey’s test on PL activity versus season in farm milk. 

Grouping Information Using the Tukey Method and 95% Confidence 

Season N Mean StDev 95% CI Grouping 

Nov (1) 49 4,269 1,341 (3,912; 4,626) A 

Sep (3) 52 4,105 1,259 (3,758; 4,451) A 

Feb (2) 48 3,990 1,186 (3,629; 4,350) A 

 

Table 11. ANOVA test on PG-derived activity versus season in farm milk. 

Analysis of Variance 

 

Source DF Adj SS Adj MS F-Value P-Value 

Season 2 953,7 476,9 1,06 0,348 

Error 137 61468,4 448,7       

Total 139 62422,1          

 

Table 12. Tukey’s test on PG-derived activity versus season in farm milk. 

Grouping Information Using the Tukey Method and 95% Confidence 

Season N Mean StDev 95% CI Grouping 

Sep (3) 52 101,45 21,49 (95,64; 107,26) A 

Nov (1) 49 97,66 21,61 (91,68; 103,65) A 

Feb (2) 39 95,03 20,20 (88,32; 101,74) A 

 

 

Table 13. ANOVA test on PL activity versus season in silo milk. 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Season 2 6,304 3,1521 3,23 0,057 

Error 24 23,415 0,9756       

Total 26 29,720          
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Table 14. Tukey’s test on PL activity versus season in silo milk. 

Grouping Information Using the Tukey Method and 95% Confidence 

Season N Mean StDev 95% CI Grouping 

Sep (3) 9 5,479 1,192 (4,799; 6,158) A 

Feb (2) 9 5,100 0,863 (4,421; 5,780) A 

Nov (1) 9 4,318 0,873 (3,639; 4,998) A 

 

Table 15. ANOVA test on PG-derived activity versus season in silo milk. 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Season 2 420,6 210,3 1,58 0,227 

Error 24 3202,4 133,4       

Total 26 3623,0          

 

Table 16. Tukey’s test on PG-derived activity versus season in silo milk. 

Grouping Information Using the Tukey Method and 95% Confidence 

Season N Mean StDev 95% CI Grouping 

Sep (3) 9 100,33 9,47 (89,18; 105,07) A 

Feb (2) 9 97,12 11.62 (82,88; 98,78) A 

Nov (1) 9 90,83 13,25 (92,38; 108,28) A 

 

Table 17. ANOVA test on PL activity versus season in FB-18 farm. 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Season 2 1,1405 0,57024 16,90 0,006 

Error 5 0,1687 0,03375       

Total 7 1,3092          

 

Table 18. Tukey’s test on PL activity versus season in FB-18 farm. 

Grouping Information Using the Tukey Method and 95% Confidence 

Season N Mean StDev 95% CI Grouping 

FB3-18 3 3,757 0,284 (3,485; 4,030) A 

FB1-18 2 3,6852 0,0262 (3,3513; 4,0191) A 

FB2-18 3 2,9506 0,0566 (2,6780; 3,2233) B  
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Table 19. ANOVA test on PL activity versus season in FB-39 farm. 

Analysis of Variance 

 

Source DF Adj SS Adj MS F-Value P-Value 

Season 2 1,4870 0,7435 6,46 0,032 

Error 6 0,6909 0,1152       

Total 8 2,1779          

 

Table 20. Tukey’s test on PL activity versus season in FB-39 farm. 

Grouping Information Using the Tukey Method and 95% Confidence 

Season N Mean StDev 95% CI Grouping 

FB1-39 3 4,222 0,484 (3,743; 4,702) A 

FB2-39 3 3,3796 0,1370 (2,9002; 3,8590) B 

FB3-39 3 3,342 0,303 (2,862; 3,821) B  

 

Table 21. ANOVA test on PG-derived activity versus season in FC-20 farm. 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Season 2 1140,7 570,34 5,76 0,040 

Error 6 594,5 99,09       

Total 8 1735,2          

 

 

Table 22. Tukey’s test on PG-derived activity versus season in FC-20 farm. 

Grouping Information Using the Tukey Method and 95% Confidence 

Season N Mean StDev 95% CI Grouping 

FC3-20 3 111,08 8,72 (97,02; 125,14) A 

FC2-20 3 88,57 8,96 (74,51; 102,63) B 

FC1-20 3 86,03 11,87 (71,97; 100,09) B  

 

Table 23. ANOVA test on PG-derived activity versus season in FC-40 farm. 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Season 2 3649,7 1824,8 12,24 0,008 

Error 6 894,7 149,1       

Total 8 4544,3          

 

 

Table 24. Tukey’s test on PG-derived activity versus season in FB-30 farm. 

Grouping Information Using the Tukey Method and 95% Confidence 

Season N Mean StDev 95% CI Grouping 

FC3-40 3 128,05 16,41 (110,80; 145,30) A 

FC2-40 3 88,48 6,90 (71,23; 105,73) B 

FC1-40 3 82,75 11,42 (65,50; 100,00) B  
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Table 25. ANOVA test on PG-derived activity versus season in FB-30 farm. 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Season 2 271,377 135,688 435,28 0,002 

Error 2 0,623 0,312       

Total 4 272,000          

 

Table 26. Tukey’s test on PG-derived activity versus season in FB-30 farm. 

Grouping Information Using the Tukey Method and 95% Confidence 

Season N Mean StDev 95% CI Grouping 

FB2-30 2 98,778 0,786 (97,079; 100,476) A 

FB1-30 2 93,2778 0,0786 (91,5791; 94,9764) B 

FB3-30 1 78,67 * (76,26; 81,07) C 

 

Table 27. ANOVA test on PG-derived activity versus season in FB-32 farm. 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Season 2 469,70 234,85 16,16 0,004 

Error 6 87,18 14,53       

Total 8 556,88          

 

Table 28. Tukey’s test on PG-derived activity versus season in FB-32 farm. 

Grouping Information Using the Tukey Method and 95% Confidence 

Season N Mean StDev 95% CI Grouping 

FB1-32 3 93,74 1,91 (88,36; 99,13) A 

FB3-32 3 86,25 3,37 (80,86; 91,63) A 

FB2-32 3 76,11 5,35 (70,73; 81,50) B 

 

Table 29. ANOVA test on PL activity versus breed in farm milk. 

Analysis of Variance  

Source DF Adj SS Adj MS F-Value P-Value 

Breed 4 81,57 20,394 19,12 0,000 

Error 144 153,61 1,067       

Total 148 235,19          
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Table 30. Tukey’s test on PL activity versus breed in farm milk. 

Grouping Information Using the Tukey Method and 95% Confidence 

Breed N Mean StDev 95% CI Grouping 

Jersey  9 6,540 1,150 (5,860; 7,221) A       

SRB 14 5,101 0,896 (3,791; 4,754) B     

MB 18 4,273 0,945 (3,373; 3,923) B C  

SLB/SRB 53 3,893 0,906 (3,612; 4,173)    C  

SLB 55 3,648 1,720 (4,555; 5,646)    C  

 

 

Table 31. ANOVA test on PG-derived activity versus breed in farm milk. 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Breed 4 22454 5613,4 18,62 0,000 

Error 144 43408 301,4       

Total 148 65862          

 
  

Table 32. Tukey’s test on PG-derived activity versus breed in farm milk. 

Grouping Information Using the Tukey Method and 95% Confidence 

Breed N Mean StDev 95% CI Grouping 

Jersey  9 139,67 24,52 (128,23; 151,11) A       

SRB 14 101,00 9,94 (91,83; 110,17) B   

SLB/SRB 53 100,51 18,06 (95,80; 105,23) B     

MB 18 99,70 18,38 (91,61; 107,79) B C  

SLB 55 87,29 16,45 (82,66; 91,91)    C  

 

Table 33. ANOVA test on PL activity versus milking system in farm milk. 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Milking system 1 0,019 0,01925 0,01 0,913 

Error 147 235,168 1,59978       

Total 148 235,187          

 

  

Table 34. Tukey’s test on PL activity versus milking system in farm milk. 

Grouping Information Using the Tukey Method and 95% Confidence 

Milking system N Mean StDev 95% CI Grouping 

CMS 84 4,132 1,282 (3,799; 4,419) A 

AMS 65 4,109 1,252 (3,859; 4,404) A 
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Table 35. ANOVA test on PG-derived activity versus milking system in farm milk. 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Milking system 1 4294 4293,7 10,25 0,002 

Error 147 61568 418,8       

Total 148 65862          

 

 

Table 36. Tukey’s test on PG-derived versus milking system in farm milk. 

Grouping Information Using the Tukey Method and 95% Confidence 

Milking system N Mean StDev 95% CI Grouping 

CMS 84 102,66 23,53 (98,25; 107,08) A    

AMS 65 91,84 15,63 (86,82; 96,86)    B 

 

 

Table 37. Overview of characterisation of 18 considered farms involved in the study  

Farm Numbers 

Cow 

management 

system  

Milking system Main breed  Number of cows (approx.)  

33 loose CMS SLB 120 

17 loose AMS SLB 71 

20 loose AMS SRB/SLB 126 

6 loose AMS SLB 64 

40 loose CMS Mountain Breed 52 

38 loose AMS SRB/SLB 74 

16 loose AMS SLB 120 

34 loose AMS SLB 79 

12 loose CMS SLB 185 

29 tied CMS Mountain Breed 20 

30 tied CMS SRB    32 

28 tied CMS Jersey 58 

39 tied CMS SRB/SLB 29 

18 loose CMS SLB 60 

32 loose AMS SRB/SLB 62 

35 loose AMS SRB 63 

36 tied CMS SRB/SLB 80 

 


