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Climate change projections have consistently shown that globally, surface temper-

atures are expected to continue to rise with most observed warming trends being 

seasonal, the largest increases occurring in winter and spring (Jones et al., 2005). 

Europe is heading towards a future with much milder winters, hotter summers with 

less precipitation and an increase in the frequency and intensity of extreme weather 

events (Kelemen et al., 2009; IPCC, 2014). Flood risk is also predicted to increase 

due to snowmelt floods shifting from spring to winter as a result of a reduced snow 

season and less accumulation during winter months (Behrens et al., 2010).  

 

The climate changes outlined in the latest IPCC report (IPCC, 2018) are set to have 

serious effects on the behaviour and distribution of a range of both flora and fauna. 

Studies into the relationship between climate change and ecology have shown that 

plant and animal species are facing changes to their current range due to new climate 

conditions, with many expected to shift poleward and to higher altitudes, in keeping 

with expanding climate boundaries (Walther et al., 2002). Native plant and tree spe-

cies may also be threatened by competition with the range expanding non-native 

species that may be better adapted to the novel climatic conditions (Katona et al., 

2013). Such changes in plant community may affect food availability for animals as 

climate change is causing an advance in phenology, whether that be the flowering 

of a plant or breeding of an animal (Visser and Both, 2005). The shift in phenology 

of a plant species, for example, could cause the whole ecological system to become 

mistimed, posing a serious threat to the fitness of other species within the system 

which may depend on it for their own survival and reproduction (Visser and Both, 

2005). 

 

Ungulate species are expanding throughout Europe due to a combination of factors. 

These include a greater focus on conservation, displacement or removal of compet-

itors and predators, and hunting establishments introducing native and non-native 

species that may be more desirable to hunt (Apollonio et al., 2010). Land-use change 

is another important factor that has influenced ungulate populations in Europe as 

1 Introduction 
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changes to forestry practices has increased habitat size and quality, as well as more 

intense agriculture increasing high-quality crops (Kuiters et al., 1996; Cutini et al., 

2015). Supplementary feeding of ungulates has also been used as a management 

tool to improve winter survival rates, reduce forest and crop damage and attempt to 

reduce human-animal conflict (Felton et al., 2017). With an increase in warmer win-

ters in northern Europe, it is possible that ungulate species will expand further north 

as higher latitudes become more hospitable for more species (Büntgen et al., 2017). 

 

The expansion of multiple species would create a situation where native and non-

native species would occupy the same habitat areas forming novel species-rich un-

gulate communities. Where once there may have only been one or two ungulate 

species within a habitat range, one can increasingly find four to six species, increas-

ing pressure on the system supporting these species (Putman et al., 2011; Pfeffer et 

al., 2018). Such an increase in community size can have positive and negative im-

pacts on the wider ecosystem. While in some cases it could lead to overexploitation 

of food sources, damage to the plant community and greater competition (Stewart 

et al., 2011; Bowyer et al., 2016; Lecomte et al., 2016) in others, ungulates can act 

as ‘ecosystem engineers’, altering their habitat through changes to plant, soil and 

water conditions as a result of grazing, trampling, urination and excretion (Baruzzi 

and Krofel., 2017).  

 

The main threat to Sweden in terms of climate change might occur in the form of 

warmer summers, milder winters and an increase in extreme events. Scandinavia 

has seen the strongest warming in Europe, particularly in winter, since the 1980s 

and climate projections have shown temperatures could rise by up to 3 °C by 2100 

(IPCC, 2014; Eklund et al., 2015). Currently, there is a gap in the knowledge of how 

changing climatic conditions such as variations in temperature and snow depth, af-

fect the behaviour and movement of northern ungulates. Previous studies have fo-

cused to understand the relationship between a changing climate and topics such as 

supplementary feeding of ungulates, the influence of hunting on habitat selection, 

and moose-vehicle collisions (Seiler, 2004; Felton et al., 2017; Niemi et al., 2017). 
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Understanding the impact climate has on ungulate behaviour is important for their 

survival as it allows identification of any ways in which ungulates might be affected 

by future climate change.  

 

In this study, I have investigated the relationship between ungulate patch use and 

climate conditions over monthly and seasonal timescales in southern Sweden for a 

three year period from September 2015 to September 2018 using camera traps. 

1.1 Hypotheses 

I hypothesised that (I) as average monthly snow depth increases, monthly ungulate 

passage rates will decrease as snow limits movement of ungulates and covers ground 

forage. As well as this, I expect that (II) passage rates will decrease during hot 

months as ungulates choose to stay in shaded areas to maintain a lower body tem-

perature than if they were moving through patches. 
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2.1 Study Area 

The study area ‘Öster Malma’ is located in the province of Södermanland, South-

East Sweden, within the surrounding area of the city of Nyköping (Figure 1). The 

area has a temperate climate with average summer temperatures between 15.4 °C 

and 17.2 °C and mean winter temperatures between -0.6 °C and -2.6 °C (Climate-

data.org, 2015). Precipitation varies (including rain and snow) with a minimum of 

27 mm of precipitation in March and a maximum of 66 mm in August (Climate-

data.org, 2015). There are five ungulate species present in the study area, which 

include moose, fallow deer, roe deer, red deer and wild boar (Sus scrofa). 

Figure 1: Location of the study area ‘Öster Malma’, Sweden with its ten study sites 

marked in red (Ånöstam, 2017). 

2 Methods 
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2.2 Site Characteristics 

The study area consists of ten individual sites (Table 1). Nine of the ten sites were 

clear cut in 2014 and replanted with Norway spruce (Picea abies) or Scots pine 

(Pinus sylvestris) in 2015. Horn was the only site that was clear cut in 2013 and 

naturally regenerated with pine. The experiment (see description below) started in 

autumn 2015 and is still ongoing. Today some sites are dominated by one or two 

tree species, mainly spruce and pine, while others have much more species diversity, 

including silver birch (Betula pendula), downy birch (Betula pubescens), aspen 

(Populus tremula), willow (Salix) and rowan (Sorbus). 

 

Table 1: Latitudes and longitudes of the ten sites. 
Site Latitude Longitude 

Elghammar 59.06579 -17.0917 

Grundsdal 59.00261 -17.2265 

Horn 58.73905 -17.138 

Jakobsberg 59.00117 -17.1395 

Klippan 58.95803 -17.1809 

Kristineholm 58.8511 -16.9143 

Marö 58.93267 -17.3262 

Nygård 58.96657 -17.1577 

Trollesund 58.91737 -17.163 

Vibyholm 58.97424 -16.9005 

 
 

Each of the ten sites consists of four exclosures that measure 14x14 m. All exclo-

sures were set up in 2015 before the experiment began. The exclosures have four 

different treatment conditions: control, closed, summer, and winter. The control ex-

closures are open all year and are therefore constantly accessible by all animals. The 

closed exclosures are closed and fenced off all year to prevent animals from entering 

and accessing the vegetation within them. Summer exclosures are closed and fenced 

off during the vegetation period (April to October) only and are then opened during 
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the months October to April. The winter exclosures are the opposite and are there-

fore closed during the non-vegetation period (October to April) and opened during 

the vegetation period. 

 

2.3 Camera Traps 

Each control exclosure is permanently equipped with a camera trap (Reconyx Hy-

perfire HC500) in the south-east corner all year round. A second camera trap is 

shared between the summer and winter exclosures, being switched interchangeably 

during opening months. The cameras are set up to monitor the wildlife using the 

exclosures with a focus on the four ungulate species; moose, red deer, fallow deer, 

and roe deer. As the closed exclosure is permanently free from animals, there is no 

camera covering that area. The cameras have been in place and continuously taking 

photographs since they were first installed at the end of September 2015 and are 

checked regularly to ensure that they are still operating correctly and have sufficient 

battery power. 

 

A passive infrared sensor triggers the cameras, when the sensor registers a differ-

ence in thermal infrared between moving objects and their background in the detec-

tion zone, such as the temperature of the background vegetation or soil and a moving 

animal (Welbourne et al., 2016). Once triggered, the camera takes a series of three 

images at one-second intervals to capture the event detected (see for an example, 

Figure 2). Each camera also records a time-lapse image per day at 13:00 to check 

the camera is still functioning. 

Figure 2: Example of a trigger event from a camera on-site showing a female fallow 
deer foraging on a grass species. 
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2.4 Image Classification 

Images captured by the camera traps were classified to create a data set of the ani-

mals seen in the area. I classified images taken from September 2017 to September 

2018 from eight out of the ten sites (Nygård & Vibyholm were excluded due to time 

constraints). Images taken between September 2015 and September 2017 were pre-

viously classified and therefore included in my analysis (excluding Nygård and 

Vibyholm). The classification process involved identifying a number of variables 

including the species present, the number of animals present per species and whether 

individuals were foraging. Foraging was identified where an animal had its head to 

the ground or could clearly be seen eating leaves from plants or trees. Foraging be-

haviour was not separated by species, therefore if there was an image containing 

two species where one was foraging but the other wasn’t, it was classified as a for-

aging event. Anything else was marked as ‘other behaviour’. Species identification 

could be done due to obvious differences in the appearance of the four ungulate 

species in question, such as body size and shape. In some instances it was not pos-

sible to identify the species present due to blurred images or very dark night images, 

therefore the animal present was recorded as ‘unknown species’ and excluded from 

the analyses. Other details such as gender, age and male antler points were also 

recorded. However, these characteristics were not relevant in this study and thus 

have not been included here for further analysis. 

 

For my analysis, I used passage events as a measure of patch use. A single passage 

event represents a sequence of continuous pictures triggered by an individual or 

group of animals. To determine the end of one sequence and the start of a new se-

quence, I implemented a time gap of 5 mins between two triggers. If the second 

trigger was taken >5 mins after the initial sequence of images, it was deemed to be 

a separate passage event. 
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2.5 Climate Data 

I extracted data for daily temperature and snow depth from the webpage of the Swe-

dish Meteorological and Hydrological Institute (SMHI, 

https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observa-

tioner#param=airtemperatureInstant,stations=all). Since there has been no weather 

station located directly in the study area, I extracted daily temperature data from 

three weather stations surrounding Öster Malma; Floda A, Södertälje and Ox-

elösund (Figure 3). Based on the data of these three stations, I calculated an average 

daily temperature for the whole study area. These average daily temperatures were 

used to extract average values per month and season. Snow depth data was only 

available from one weather station around Öster Malma, Södertälje (Figure 3). 

Therefore, I used the snow depth data from this individual station only to calculate 

monthly and seasonal averages for the study area. To define a season I used each 

seasons’ start and end date (SMHI, https://www.smhi.se/en/weather/sweden-

weather/season-map/, see also Table 2) and rounded them to receive full months. 

Rounding to months was done due to a delay in finding the exact start and end dates 

of each season. 

 
Table 2: Definition of which months form each season. 

 
 
 
 
 
 

 

Season Months 

Spring March/April/May 

Summer June/July/August 

Autumn September/October/November 

Winter December/January/February 
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Figure 3: Location of the three SMHI weather stations. Weather stations used for 
temperature data are marked with red spots while snow depth data is marked with a 
blue spot (Google Maps., 2019). 
 
 
2.6 Data Analysis 

I used the data on passage events to calculate a species and site-specific daily index 

(passage rate per day) as the sum of passages per species, per site, per day. Similarly, 

I calculated a monthly and seasonal passage rate per species by taking a sum of all 

passage events divided by the number of days covering those specific time periods, 

for example, the fallow deer passage rate in June 2018 would be the sum of fallow 

deer passage events divided by 30 days. I repeated this step for every month between 

September 2015 and September 2018 and similarly each season from autumn 2015 

to autumn 2018. This allowed for a monthly and seasonal passage rate to be calcu-

lated for each species for the whole study period as seen below: 
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Passage rate = number of passages/number of days camera was active (per month 

or season) 

 

I first used this dataset to run linear regression tests to identify any relationship be-

tween the passage rates of each species separately and the climate variables. My 

dependent variables were monthly and seasonal passage rates of the four species, 

where I ran separate models for the monthly and seasonal variables, with two co-

variates, temperature and snow depth. I then ran general linear mixed effect models 

in which the passage rate was always the dependent variable. In the initial models, 

I used the passage rates of all four ungulate species together. I then ran separate 

models for each species individually to identify species-specific responses to the 

climate variables, using the passage rate of each individual species as the dependent 

variable. I included ungulate species as a fixed effect, temperature, temperature² and 

snow cover as covariates, and site and year as random factors. Again, I ran separate 

models for monthly and seasonal response variables. I performed all statistical anal-

yses in SPSS Statistics 25. 
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3.1 Climate Variations 

Winter 2016/17 was on average approximately 3 °C warmer than the winters of 

2015/16 and 2017/18 (Figure 4). The summer of 2018 was on average approxi-

mately 3 °C warmer than the two previous summers (Figure 4). Snow depth in the 

study area varied across the three year study period with winter 2016/17 having the 

lowest snow depth and winter 2017/18 having the highest snow depth (Figure 4). 

Summer months always had a snow depth of 0 m, while during spring months (usu-

ally in March) there was a very small amount of snow present before it melted to 0 

m (Figure 4). 

Figure 4: Average monthly temperature variations (in red) and average monthly 
snow depth variations (in blue) from September 2015 to September 2018 with stand-
ard error. 
 
 
3.2 Monthly Passage Rates per Species 

During the study period, fallow deer and roe deer strongly dominate the visits to the 

sites, followed by red deer and then moose. The passage rates for all four species, 

and in all years, dropped strongly during mid-winter. Overall, there appears to be a 

3 Results 
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general trend towards passage rates of fallow deer and roe deer declining slightly 

over the years. There also seems to be a general trend towards moose and red deer 

passage rates increasing slightly over the same time period. 

Figure 5: Monthly passage rates of moose (blue), red deer (orange), fallow deer 

(green) and roe deer (yellow) from September 2015 to September 2018. Grey 

vertical lines represent seasons. 

 

 

3.3 Monthly Passage Rates per Species and Temperature 

Temperature and temperature² had a strong effect on the dependent variable, 

monthly passage rates (p = <.001) (Table 3). Ungulate species also had a significant 

effect on the dependent variable (p = .002). However year and site, the two random 

factors did not have a significant effect on monthly passage rates (p = .169; p = .732) 

(Table 3). Among the four species, roe deer had the highest R² value (0.3817) (Table 

4). When looking at the influence of temperatures on the monthly passage rates of 

the four species individually, it can be seen that temperature had a positive effect on 

the monthly passage rates of roe deer (estimate = 0.005; p = <.001) (Table 4). 
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Moose, red deer and fallow deer however, were not significantly influenced by tem-

perature (estimate = <.001, p = .124; estimate = .001, p = .235; estimate = .001, p = 

.616) (Table 4). 

Figure 6: Monthly passage rate of moose (blue), red deer (orange), fallow deer 

(green), and roe deer (yellow) in relation to temperature. Dotted lines indicate pol-

ynomial regressions. 

 

Table 3: Univariate statistical analysis for the effect of temperature, temperature², 

species, year and site, on the dependent variable, monthly ungulate passage rates. 

Explanatory Variables df f p 

Temperature Hypothesis 1 32.310 .000 

Error 1010 

Temperature² Hypothesis 1 12.687 .000 

Error 1010 

Ungulate Species Hypothesis 3 6.538 .002 

Error 22.236 

Year Hypothesis 3 2.033 .169 

Error 10.755 

Site Hypothesis 7 .623 .732 

Error 22.374 
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Table 4: Regression coefficient estimates, standard error, significance (p) and R² 
for the effect of temperature on the monthly passage rates per species. 
Species Estimates Standard 

Error 
t p R² 

Moose .000 .000 1.542 .124 0.0908 
Red Deer .001 .001 1.190 .235 0.1215 
Fallow Deer .001 .002 .502 .616 0.1299 
Roe Deer .005 .001 3.846 .000 0.3817 
 

 

3.4 Monthly Passage Rates per Species and Snow Depth 

Snow depth had a strong effect on the dependent variable, monthly passage rates (p 

= <.001) (Table 5). Ungulate species also had a significant effect on the dependent 

variable (p = .002). Year and site did not have a significant effect on monthly pas-

sage rates (p = .197; p = .732) (Table 5). Fallow deer had the highest R² value out 

of the four species (0.3214) (Table 6). The individual analysis of the effect of snow 

depth on the monthly passage rate of each species shows that snow depth had a 

strong effect on fallow deer monthly passages (estimate = -1.289, p = .001) (Table 

6). Moose, red deer and roe deer were not significantly influenced by snow depth 

(estimate = .004, p = .952; estimate = -.202, p = .342; estimate = -.354, p = .249) 

(Table 6). 
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Figure 7: Monthly passage rate of moose (blue), red deer (orange), fallow deer 

(green), and roe deer (yellow) in relation to snow depth. 

 

Table 5: Univariate statistical analysis for the effect of snow depth, ungulate spe-

cies, year, and site on the dependent variable, monthly ungulate passage rates. 

 

 

Monthly Passages Df f p 

Snow Depth Hypothesis 1 68.754 .000 

Error 7.224 

Ungulate Species Hypothesis 3 6.538 .002 

Error 22.236 

Year Hypothesis 3 1.865 .197 

Error 10.409 

Site Hypothesis 7 .622 .732 

Error 22.379 

0

0.5

1

1.5

2

2.5

0 0.02 0.04 0.06 0.08 0.1 0.12

P
as

sa
ge

 R
at

e 
pe

r 
M

on
th

Snow Depth (m)

Moose Red Deer Fallow Deer Roe Deer



22 
 

 

Table 6: Regression coefficient estimates, standard error, significance (p) and R² 

for the effect of snow depth on the monthly passage rates per species. 

Species Estimates Standard 
Error 

t p R² 

Moose .004 .072 .060 .952 0.045 
Red Deer -.202 .212 -.951 .342 0.1332 
Fallow Deer -1.289 .392 -3.285 .001 0.3214 
Roe Deer -.354 .306 -1.156 .249 0.2394 
 

 

 

 

3.5 Effect of Temperature on Seasonal Passage Rates 

On a seasonal time scale temperature, temperature² and snow depth all have a strong 

effect on ungulate passage rates (p = .001; p = .015; p = <.001) (Tables 7 & 8). In 

the temperature model ungulate species is also significant (p = .003) (Table 6). Nei-

ther year nor site, the two random factors, were statistically significant (p = .553; p 

= .679) (Table 7). Similarly, in the snow depth model, ungulate species was statis-

tically significant while year and site were not statistically significant (p = .003; p = 

.533; p = <.680) (Table 8). 

 

Individually, none of the four species’ seasonal passage rates are significantly influ-

enced by temperature (Table 9). There is a strong effect of snow depth on fallow 

deer seasonal passage rates (estimate = -2.735, p = .019) (Table 10). There is no 

effect of snow depth on the seasonal passage rates of moose, red deer or roe deer (p 

= .334; p = .892; p = .373) (Table 10).  
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Table 7: Univariate statistical analysis for the effect of temperature, temperature², 

ungulate species, year and site on the dependent variable, seasonal ungulate pas-

sage rates. 

Seasonal Passages df f p 

Temperature Hypothesis 1 11.613 .001 

Error 274 

Temperature² Hypothesis 1 9.951 .015 

Error 274 

Ungulate Species Hypothesis 3 6.437 .003 

Error 22.582 

Year Hypothesis 3 .763 .533 

Error 14.125 

Site Hypothesis 7 .691 .679 

Error 24.520 
 

Table 8: Univariate statistical analysis for the effect of snow depth, ungulate spe-
cies, year and site, on the dependent variable, seasonal ungulate passage rates. 

Seasonal Passages df f p 

Snow Depth Hypothesis 1 27.562 .000 

Error 275 

Ungulate Species Hypothesis 3 6.437 .003 

Error 22.582 

Year Hypothesis 3 .765 .533 

Error 13.313 

Site Hypothesis 7 .690 .680 

Error 24.552 
 

 

Table 9: Regression coefficient estimates, standard error, significance (p) and R² 
for the effect of temperature on the seasonal passage rates per species. 
 

 

 

 

 

Species Estimates Standard 
Error 

t p 

Moose .001 .001 1.810 .073 
Red Deer .002 .002 .835 .406 

Fallow Deer -.003 .003 -.891 .375 
Roe Deer .004 .003 1.433 .155 
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Table 10: Regression coefficient estimates, standard error, significance (p) and R² 
for the effect of snow depth on the seasonal passage rates per species. 
 Species Estimates Standard 

Error 
t p 

Moose .206 .213 .970 .334 
Red Deer -.096 .708 -.136 .892 

Fallow Deer -2.735 1.150 -2.378 .019 
Roe Deer -.750 .839 -.894 .373 
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4.1 Effect of Climate Variations on Ungulate Passage Rates 

I carried out this study to understand the influence climate has on the patch use of a 

multi-species ungulate community in the south of Sweden. As Sweden’s ungulate 

communities are expanding in both density and range it is important to understand 

how the climate affects their behaviour. With climate projections showing a strong 

likelihood of future warming, up to 3 °C warmer by 2100 (IPCC, 2014), understand-

ing the response of ungulates to these factors is important. I investigated the effect 

of climate on ungulate patch use by using data collected from camera traps to assess 

whether climate changes were having any influence on ungulate passage rates in 

southern Sweden. The outcome of this study is that temperature only had a strong 

effect on the monthly passage rates of roe deer, suggesting that as temperature in-

creases, roe deer visitation increases. Snow depth only had a strong effect on the 

monthly and seasonal passage rates of fallow deer. Fallow deer passage rates were 

negatively affected over a monthly and seasonal scale in relation to snow depth, 

which suggests that their visitation rates decline as snow depth increases.  

 

Hypothesis I, that as average monthly snow depth increases, monthly ungulate 

passage rates will decrease, is only supported by fallow deer as the estimates show 

that the effect of snow depth on them was found to be significant, their monthly 

and seasonal passage rates decreasing as snow depth increased (Tables 6 and 10). 

The relationship between increasing snow depth and decreasing fallow deer pas-

sage rates could be caused by the snow covering the field layer forage therefore 

covering a major food source for the fallow deer. Supplementary feeding sites 

could also influence passage rates as supplementary feeding has been found to 

maintain higher densities of fallow deer in areas around feeding sites than would 

normally occur (Felton et al., 2017), therefore suggesting that feeding sites are an 

important determinant in fallow deer habitat patch selection.  

 

The reduction in passage rates as snow depth increases has also been reported in 

other studies, especially in larger ungulates as the movement in snow requires a 

4 Discussion 
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greater expenditure of energy (Rivrud et al., 2010). Moose, in particular, have 

been previously found to have their movement limited by snow cover (van Beest 

et al., 2011) however my results do not support this. Again this could be due to the 

low density of moose in the area giving a poor representation of how patch use of 

moose in Sweden is influenced by climate variations.  

 

Hypothesis II, that passage rates will decrease during hot months, was not supported 

by these results. Over the years moose and red deer summer passage rates increased 

while there was a general trend towards decreasing summer passage rates for fallow 

deer and roe deer (Figure 5). This differs to other studies into the effect of tempera-

ture no movement, which have found that high summer temperatures have a nega-

tive effect on the movement of cervids (Hayes and Krausman., 1993; Rivrud et al., 

2010). A possible explanation for moose and red deer summer month passage rates 

increasing during the study period could be related to the set-up of the study area. 

When the ten sites were clear cut and replanted in 2014/2015, grasses and small 

trees were the dominant species. This would have suited the smaller species, fallow 

deer and roe deer, as their dietary preferences are grasses, herbs and small trees. 

However, during the following years, the trees have grown taller with bigger 

branches, therefore being more favourable for the larger species, moose and red 

deer. This would mean that there was higher forage availability for moose and red 

deer in summer 2018.  
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4.2 Limitations 

A major limitation of this study is the short time period during which the camera 

traps were taking images at the ten sites. Three years of continuous data was used 

as this is what was available to me at the time. However, when trying to assess the 

influence of weather on another variable, in this case, ungulate passage rates, it 

would be preferential to have at least 30 years of data as climate often refers to 

average weather patterns during the previous 30 years (NASA, 2017).  

 

The snow depth data is also a limiting factor to this study. Only one weather station 

around the study area, Södertälje, had snow depth data available for the time period 

covering this study. This data is collected manually by SMHI either with a ruler, or 

fixed measuring stick (SMHI, 2013). This measurement is also not always carried 

out daily. If this is the case then the snow depth from the nearest weather station 

also recording snow depth is taken. This leads to the possibility of erroneous read-

ings through human error as well as having to rely on the readings of different 

weather stations that is potentially tens of kilometres away from the study area. The 

other issue with snow depth data is that snow depth may vary significantly across 

small scales as it is influenced by the topography of the area, for example, slope or 

canopy cover (Zheng et al., 2016). As this is not uniform across the study area there 

will be areas which are deeper or shallower than the SMHI measurements. 

 

Regarding image classification, a limitation arises due to the fact that it has been 

carried out by at least three different people, including myself. This could lead to 

human errors such as the misidentification of a species or misinterpretation of be-

haviour such as foraging (Young et al., 2018). While this is not likely to lead to 

significant errors that would be detrimental to the study, it is something that future 

studies should take into consideration. The image classification should be done con-

sistently by the same individual to remove the human error.  

 

The camera traps work with a passive infrared sensor which detects heat differences 

between the background and a moving object (such as an animal). On extremely hot 
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days the background, such as vegetation and rocks, may heat up to the point where 

there is no detectable difference between the background and an animal walking in 

front of the camera (van Berkel, 2014). This is more of an issue with smaller species 

as they emit less body heat than larger species. Detection distance is another issue 

related to body size as detection of smaller species could decrease compared to the 

larger species the further away from the camera they are (Apps and McNutt, 2018). 

This would, therefore, mean that some passage events could be missed on an ex-

tremely hot day and therefore affect the outcome of the study by giving a false rep-

resentation of the hottest days. Detectability and passage rates can also be affected 

by differences in insulation of summer and winter fur. As ungulates grow a winter 

coat to better insulate themselves during the colder months, there will be a difference 

in their heat signature in summer and winter, thereby leading to the possibility of 

being less detectable by the sensor in the camera trap (Hofmeester et al., 2019). This 

could mean that during winter, the ungulates are more detectable than in summer as 

there will be a bigger difference in the background temperature and their body tem-

perature which is increased due to better-insulated fur.  
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Understanding the effect of climate variations on ungulate patch use can help to 

develop management strategies and further our knowledge on how climate change 

could affect multi-species ungulate communities. Here, I have shown that tempera-

ture and snow depth may have an effect on ungulate passage rates but that effects 

varied widely among species. Temperature was found to strongly affect the monthly 

passage rates of roe deer while snow depth was found to strongly affect both the 

monthly and seasonal passage rates of fallow deer. While climate variations have 

been found to have an effect on ungulate passage rates, it is more likely that other 

factors had more of an influence on changes to ungulate passage rates, such the setup 

of the study site and forage availability. After being clear cut and replanted, the 

smaller species (fallow deer and roe deer) initially benefitted from the vegetation 

available, However as the tree species in the sites have grown they are now more 

desirable for the larger species, moose and red deer. While some strong effects of 

both temperature and snow depth were found in my study there is still a lot of un-

certainty and further studies should be carried out to better understand how climate 

variations affect ungulate patch use.   

 

 

5 Conclusion 



30 
 

Ånöstam, F., 2017. Timing of ungulate browsing and its effect on sapling height 

and the field layer vegetation. Examensarbete i ämnet biologi / Sveriges lantbruks-

universitet, Institutionen för vilt, fisk och miljö, 2017(4), pp.1-28. 

Apollonio, M., Andersen, R. and Putman, R. eds., 2010. European ungulates and 

their management in the 21st century. Cambridge University Press. 

Apps, P.J. and McNutt, J. W., 2018. How camera traps work and how to work 

them. African Journal of Ecology, 56, pp.702-709. 

Baruzzi, C. and Krofel, M., 2017. Friends or foes? Importance of wild ungulates as 

ecosystem engineers for amphibian communities. North-Western Journal of Zool-

ogy, 13(2), pp.320-325. 

Behrens, A., Georgiev, A. and Carraro, M., 2010. FUTURE IMPACTS OF CLI-

MATE CHANGE ACROSS EUROPE. CEPS WORKING DOCUMENT, 324, 

pp.1-27. 

Bowyer, R.T., Bleich, V.C., Stewart, K.M., Whiting, J.C. and Monteith, K.L., 

2014. Density dependence in ungulates: a review of causes, and concepts with 

some clarifications. California Fish and Game, 100(3), pp.550-572. 

Büntgen, U., Greuter, L., Bollmann, K., Jenny, H., Liebhold, A., Galván, J.D., 

Stenseth, N.C., Andrew, C. and Mysterud, A., 2017. Elevational range shifts in 

four mountain ungulate species from the Swiss Alps. Ecosphere, 8(4), p.1761. 

Climate-Data.org. 2015. CLIMATE NYKÖPING. (Online) Available at: 

https://en.climate-data.org/europe/sweden/soedermanlands-laen/nykoeping-19/.  

Cutini, A., Chianucci, F. and Apollonio, M., 2015. WILD UNGULATES AND 

FORESTS IN EUROPE: INSIGHTS FROM LONG TERM STUDIES IN CEN-

TRAL ITALY. Atti del II Congresso Internazionale di Selvicoltura. Progettare il 

futuro per il settore forestale, Firenze, 26-29 novembre 2014. Firenze: Accademia 

Italiana di Scienze Forestali, 1, pp.509-517.van 

Eklund, A., Axén Mårtensson, J., Bergström, S., Björck, E., Dahné, J., Lindström, 

L., Olsson, J., Simonsson, L. and Sjökvist, E., 2015. Sveriges framtida klimat: Un-

derlag till Dricksvattenutredningen. SMHI. 

References 



31 
 

Felton, A.M., Felton, A., Cromsigt, J.P., Edenius, L., Malmsten, J. and Wam, 

H.K., 2017. Interactions between ungulates, forests, and supplementary feeding: 

the role of nutritional balancing in determining outcomes. Mammal Research, 

62(1), pp.1-7. 

Google Maps, 2019, Öster Malma, Nyköping, Sweden (Online). Available at: 

https://www.google.co.uk/maps/place/%C3%96ster+Malma/@58.9323978,16.990

4486,9.88z/data=!4m8!3m7!1s0x465f2496792779d9:0xcb88af3d4cd3fd6d!5m2!4

m1!1i2!8m2!3d58.950833!4d17.158055.  

Hayes, C.L. and Krausman, P.R., 1993. Nocturnal Activity of Female Desert Mule 

Deer. Journal of Wildlife Management, 57, pp.897-904. 

Hofmeester, T., Cromsigt, J.P.G.M., Odden, J., Andrén, H., Kindberg, J. and Lin-

nell, J.D.C., 2019. Framing pictures: A conceptual framework to identify and cor-

rect for biases in detection probability of camera traps enabling multi-species com-

parison. Ecology and Evolution, 2019, pp.1-17. 

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working 

Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel 

on Climate Change, Core Writing Team, Pachauri, R.K. and Meyer, L.A. (eds.) (p. 

151). IPCC, Geneva, Switzerland. 

IPCC, 2018: Summary for Policymakers. In: Global warming of 1.5°C. An IPCC 

Special Report on the impacts of global warming of 1.5°C above pre-industrial 

levels and related global greenhouse gas emission pathways, in the context of 

strengthening the global response to the threat of climate change, sustainable de-

velopment, and efforts to eradicate poverty. Masson-Delmotte, V., Zhai, P., Pört-

ner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., 

Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, 

M.I., Lonnoy, E., Maycock, T., Tignor, M. and Waterfield, T. (eds.) (p. 32). IPCC, 

Geneva, Switzerland. 

Jones, G.V., White, M.A., Cooper, O.R. and Storchmann, K., 2005. CLIMATE 

CHANGE AND GLOBAL WINE QUALITY. Climate Change, 73, pp.319-343. 

Katona, K., Kiss, M., Bleier, N., Székely, J., Nyeste, M., Kovács, V., Terhes, A., 

Fodor, Á., Olajos, T., Rasztovits, E. and Szemethy, L., 2013. Ungulate browsing 



32 
 

shapes climate change impacts on forest biodiversity in Hungary. Biodiversity and 

conservation, 22(5), pp.1167-1180. 

Kelemen, A., Munch, W., Poelman, H., Gakova, Z., Dijkstra, L. and Torighelli, B., 

2009. Regions 2020 The Climate Change Challenge for European Regions. Euro-

pean Commission Directorate General for Regional Policy, 1, pp.1-27. 

Kuiters, A.T., Mohren, G.M.J. and van Wieren, S.E., 1996. Ungulates in temperate 

forest ecosystems. Forest Ecology and Management, 88, pp.1-5. 

Lecomte, X., Fedriani, J.M., Caldeira, M.C., Clemente, A.S., Olmi, A. and 

Bugalho, M.N., 2016. Too Many Is Too Bad: Long-Term Net Negative Effects of 

High Density Ungulate Populations on a Dominant Mediterranean Shrub. PLoS 

ONE, 11(7), pp.1-14.F 

NASA. 2017. NASA - What's the Difference Between Weather and Climate? 

(Online) Available at: https://www.nasa.gov/mission_pages/noaa-n/climate/cli-

mate_weather.html.  

Niemi, M., Rolandsen, C.M., Neumann, W., Kukko, T., Tiilikainen, R., Pusenius, 

J., Solberg, E.J. and Ericsson, G., 2017. Temporal patterns of moose-vehicle colli-

sions with and without personal injuries. Accident Analysis & Prevention, 98, 

pp.167-173. 

Pfeffer, S.E., Spitzer, R., Allen, A.M., Hofmeester, T.R., Ericsson, G., Widemo, 

F., Singh, N.J. and Cromsigt, J.P., 2018. Pictures or pellets? Comparing camera 

trapping and dung counts as methods for estimating population densities of ungu-

lates. Remote Sensing in Ecology and Conservation, 4(2), pp.173-183. 

Putman, R., Apollonio, M. and Andersen, R. eds., 2011. Ungulate management in 

Europe: problems and practices. Cambridge University Press. 

Rivrud, I., Loe, L.E. and Mysterud, A., 2010. How does local weather predict red 

deer home range size at different temporal scales? Journal of Animal Ecology, 79, 

pp.1280-1295. 

Seiler, A., 2004. Trends and spatial patterns in ungulate-vehicle collisions in Swe-

den. Wildlife Biology, 10(4), pp.301-313. 



33 
 

SMHI. 2013. Hur mäts snödjup? (Online) Available at: https://www.smhi.se/kun-

skapsbanken/meteorologi/hur-mats-snodjup-1.27291.  

SMHI. 2019. Ladda ner meteorologiska observationer. (Online) Available at: 

https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observa-

tioner#param=airtemperatureInstant,stations=all.  

SMHI. 2019. Season Map. (Online) Available at: 

https://www.smhi.se/en/weather/sweden-weather/season-map/.  

Stewart, K.M., Bowyer, R.T., Dick, B.L. and Kie, J.G., 2011. Effects of density 

dependence on diet composition of North American elk Cervus elaphus and mule 

deer Odocoileus hemionus: an experimental manipulation. Wildlife Biology, 17, 

pp.417-430. 

van Beest, F.M., Rivrud, I.M., Loe, L.E., Milner, J.M. and Mysterud, A., 2011. 

What determines variation in home range size across spatiotemporal scales in a 

large browsing herbivore? Journal of Animal Ecology, 80(4), pp.771-785. 

van Berkel, T., 2014. Camera Trapping for Wildlife Conservation. Expedition 

Field Techniques, 1, pp.1-122. 

Visser, M.E. and Both, C., 2005. Shifts in phenology due to global climate change: 

the need for a yardstick. Proceedings of the Royal Society B: Biological Sciences, 

272(1581), p.2561. 

Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J., Fro-

mentin, J.M., Hoegh-Guldberg, O. and Bairlein, F., 2002. Ecological responses to 

recent climate change. Nature, 416(6879), p.389. 

Welbourne, D.J., Claridge, A.W., Paull, D.J. and Lambert, A., 2016. How do pas-

sive infrared triggered camera traps operate and why does it matter? Breaking 

down common misconceptions. Remote Sensing in Ecology and Conservation, 

2(2), pp.77-83. 

Young, S., Rode-Margono, J. and Amin, R., 2018. Software to facilitate and 

streamline camera trap data management: A review. Ecology and Evolution, 8(19), 

pp.9947-9957. 



34 
 

Zheng, Z., Kirchner, P.B. and Bales, R.C., 2016. Topographic and vegetation ef-

fects on snow accumulation in the southern Sierra Nevada: a statistical summary 

from lidar data. The Cryosphere, 10, pp.257-269. 

 



35 
 

I would like to thank my supervisors Joris Cromsigt, Tim Hofmeester, and Sabine 

Pfeffer for their help and support throughout the duration of my study and for 

providing me with the opportunity to take on this study overseas in Sweden. Also, 

thanks to Sabine for enabling me to take part in fieldwork. I would also like to ex-

tend my thanks to SLU and Beyond Moose for allowing me to use their facilities 

and data for this study. Special thanks to thank my family for the support they have 

given me over the course of my thesis and my two years in Utrecht. Finally, thanks 

to my friends, especially Joel, Rosie and Nathan for their continued support over the 

course of both of my degrees. 

Acknowledgements 



Latest issue number in our series Examensarbete/Master's thesis   

 
2019:5   Romsugning i Alterälven för att utreda sikens lekhabitatpreferenser 
  Author: Simon Sundberg 
 
2019:6   How Does White Rhino Respond to Fires During Dry Season? 
  Author: Tim Herkenrath 
 
2019:7  The role of predation in mass mortality of wood lemmings (Myopus schisticolor) 
  Predationens roll i massdöd av skogslämlar (Myopus schisticolor) 
  Author: Björn Wallgren 
 
2019:8  An investigation into whether poaching creates an ecological trap for white 

rhinoceros in Hluhluwe‐iMfolozi Park, South Africa 
Author: Alice Michel 

 
2019:9  Evaluating effects of preventive actions to reduce wild boar damage in the 

agricultural landscape 
  Author: Matilda Söderqvist 
 
2019:10  Fire effects in a landscape of fear ‐ food availability and predation risk as 

determining factors in microhabitat utilization prey in a heterogeneous landscape 
Author: David Kymmell 

 
2019:11  Effect of variant ovarian fluid on sperm performance and egg fertilization rates of 

Arctic charr (Salvelinus alpinus L.) 
  Author: Lwabanya Mabo 
 
2019:12  Pedigree reconstruction reveals large scale movement patterns and population 

dynamics of wolverines (Gulo gulo) across Fennoscandia 
  Author: Stephanie Higgins 
 
2019:13  Community structure of polyporous fungi after wildfire in boreal forest 

Author: Isak Vahlström 
 
2019:14  Population ecology of golden eagles (Aquila chrysaetos) using remote cameras 

Author: Andressa L. A. Dahlén 
 
2019:15  Variations in nutritional content of key ungulate browse species in Sweden 

Author: Leonardo Capoani 
 
2019:16  Assessing trust in the Swedish survey system for large carnivores among 

stakeholders 
Author: Philip Öhrman 

 
2019:17  Beavers and environmental flow – the contribution of beaver dams to flood and 

drought prevention 
Author: Wali Uz Zaman 

 
 
The entire list of published numbers can be found at www.slu.se/viltfiskmiljo 




