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Abstract 

Weather index insurance is a potential solution to a widely acknowledged problem of 

information asymmetries in agricultural crop insurance. Insurance where payouts depend on a 

weather index relies on accurate estimates of local weather, such as temperature and rainfall. 

Using a geostatistical kriging method and empirical weather and crop yield data from Illinois, 

I explore whether accounting for geographic approximation errors produces more desirable 

index insurance contracts. I find that switching to this so-called geographic basis risk-adjusted 

contract improves farmers’ utility for one of our two indices, but not for the other. Further, 

purchasing any index insurance contract only improves farmers’ utility during a particularly 

hot year. During a cooler year, purchasing WI insurance results in lower utility for risk neutral 

farmer, and constant utility for risk averse farmers.  
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Sammanfattning 

Jordbruksförsäkring baserat på ett underliggande väderindex, t.ex. temperatur eller nederbörd 

är en potentiel lösning på ett uppmärksammat problem med informationsassymetrier i 

försäkringsbranschen. Dessa så kallade väderindexkontrakt bygger på att förluster i jordbruket 

med viss säkerhet kan kopplas till extrema väderförhållanden. I denna uppsats använder jag 

kriging, en geostatistisk metod för prediktion av spatial data, för att beräkna variansen som 

beror på avstånd mellan punkt där temperaturen skall estimeras och väderstationer från vilka 

temperaturdata hämtas. Jag undersöker hur temperaturindexförsäkring kan förbättras genom att 

ta hänsyn till denna varians och finner att dessa s.k. basriskjusterade kontrakt presterar bättre 

när ett vanligt temperaturindex används. Indexförsäkring gynnar dock enligt mina beräkningar 

bara lantbrukare under ovanligt varma år. Under svalare år missgynnas riskneutrala bönder av 

att köpa indexförsäkring, medan riskaversa bönder är mer ambivalenta.  
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1 Introduction 

“There cannot be more people on this earth than can be fed” 

- Attenborough, D

This thesis aims to extend and build on recent work on weather index insurance in agriculture 

and sets out to answer the research question: Does accounting for geographic basis risk improve 

the market for weather index insurance contracts in Illinois corn production? Here I add to the 

existing literature by showing how contracts can be designed by using kriging interpolation to 

construct both weather indices and estimates of geographic basis risk.  

1.1 Problem background 

Climate change brings considerable uncertainty surrounding the future productivity of 

agricultural land. As ever-increasing amounts of greenhouse gases accumulate in the Earth’s 

atmosphere, an on average warming planet poses challenges for a number of species and 

ecosystems, notably those of crops on which we depend for sustenance. As the Earth is already 

committed to further decades of warming even with abatement in greenhouse gas emissions 

(Meehl et al. 2005; Solomon et al. 2009), maintaining future crop yields under a changing 

climate is therefore important to ensure food security for coming generations.  A growing body 

of research has narrowed in on the economic impact of climate change for the agricultural 

industry, and the conclusions vary. An early, controversial paper (Mendelsohn et al. 1994) finds 

that higher temperatures in all seasons excluding autumn reduce average farm values in the 

United States, while rain outside of autumn increases farm values. Cline (1996) argues that 

these estimates understate the costs of climate change by failing to acknowledge the possibility 

of higher irrigation costs, reductions in global food security and more severe warming. More 

recent work by Schlenker et al. (2005) conclude that for dryland areas the impact of a 3.8°C 

mean increase in temperatures across the US would be unambiguously negative. The estimated 

annual loss is $5 to $5.3 billion, which represented 3.7% of total US crop values in 2018 (USDA 

2019). 

These projections emphasize farmers’ need for efficient protection against weather-related 

damages and climate risk. Traditional crop insurance schemes are widespread but suffer from 

a number of problems: Insurance specifically against weather damage have historically been 

rare and commonly bundled up with protection against a host of other damages in multiple peril 

contracts (Knight et al. 1997). Second, traditional crop insurance suffers from moral hazard as 

insured farmers may invest less in risk-reducing production inputs (Nelson and Loehman 1987). 

Recent work on soybean and corn yields in the United States suggests that crop insurance is 

associated with a 43% and a 67% increase in heat sensitivity, respectively (Annan and 

Schlenker 2015). Finally, traditional crop insurance requires monitoring by the insurer which 

can be costly, particularly in developing countries.  

Index insurance is an alternative to traditional indemnity insurance (Barnett et al. 2008) where 

payoffs to policy-holders are not based on a physical loss assessment on the farm, but on an 

index that is related to crop production, such as temperature or rainfall. Farmers are indemnified 

whenever the weather index falls outside a given strike level, say above a given CDD.  
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Index insurance deals effectively with moral hazard because the index is taken to be exogenous. 

As index insurance offers important advantages such as i) symmetrical information, ii) lower 

transaction costs and iii) a solution to the moral hazard problem, designing competitive 

contracts that adequately account for basis risk would be valuable (Vroege et al. 2019).  

1.2 Problem statement 

The most cited obstacle to greater uptake of index insurance is so-called basis risk, i.e. that 

yields are not perfectly correlated with the index so that an insured farmer may suffer yield 

losses and receive no compensation (Conradt et al. 2015). There are three major kinds of basis 

risk: Local, product, and geographic basis risk. Local basis risk refers to the degree to which a 

particular weather derivative is an imperfect hedge against shortfalls for a given exposure, 

where the underlying index on the weather derivative and the exposure being hedged 

correspond to the same geographic location. In other words, the index reflects local weather 

conditions, but does not accurately hedge against weather risk because there is an imperfect 

link between the index and crop yields. Second, product risk is the difference in hedging 

effectiveness between alternative hedging instruments, for example a precipitation and 

temperature index. Finally, geographic basis risk refers to the error associated with employing 

a non-local weather derivative. For example, a weather index may be constructed from ground 

level climate station data measured some distance from the farm. While geographic basis risk 

is defined in terms of a particular site, it is possible for location indices to also be specified as 

a weighted set of locations, such as interpolations of a sample of station data points onto a 

continuous grid representing agricultural area (Woodard and Garcia 2008). This thesis will 

focus specifically on geographic basis risk, which I will estimate using a geostatistical kriging 

model.  

1.3 Aim and delimitations 

The purpose of this thesis is to a) construct two index insurance contracts against extreme heat 

using so-called kriging interpolation, and b) explore the welfare effects of switching from a 

regular index contract to one which account for geographic basis risk. Specifically, I test the 

hypothesis that variance due to geographic basis risk obscures the effect size of extreme 

temperatures on crop yields, leading to less efficient insurance contracts.  

The scope of the thesis is limited geographically to the state of Illinois in the United States. 

While index insurance contracts can theoretically be created for any crop, I choose to focus 

only on corn production. These choices are motivated on the grounds that Illinois is one of the 

most important states for agriculture in the US, and corn farming is not only significant but also 

evenly and continuously distributed across the state. This ensures that the entire sample of 

weather stations is useful. Further, Annan and Schlenker (2015) have already shown that 

traditional crop insurance provides disincentives to adapt to extreme heat among Illinois corn 

and soybean farmers. Their results therefore motivate particular study of weather index 

insurance in this context. Due to time limitations, no other crops or states were studied. As such, 

the thesis cannot confirm whether the results remain robust across different climate zones and 

crops.   
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1.4 Structure of the report 

The main part of the thesis begins with chapter 2 on theoretical perspectives and the relevant 

literature. Chapter 2 itself is split into two parts: First are subchapters 2.1 and 2.2 on the theory 

of insurance. The theoretical framework of weather index insurance is built upon older research 

on traditional indemnity crop insurance. This begins with the basics of risk and risk aversion, 

and the theory of indemnity insurance contract design. It presents the key results of risk attitudes 

beginning with von Neumann and Morgenstern (1947) and Arrow (1971) and covers key papers 

on crop insurance including Ahsan et al. (1982), Nelson and Loehman (1987) and Chambers 

(1989). These are followed in 2.3 by the theory of weather index insurance. Key papers include 

Conradt et al. (2015) and Dalhaus (2018). I explain how a weather index insurance contract is 

designed and how the payout mechanism works. Third is a subchapter (2.4) on geographic basis 

risk, and finally 2.5 on the theory of kriging interpolation. Kriging is the geostatistical method 

we use to interpolate temperature data from a sample of weather stations onto a grid of the state 

of Illinois. The kriging model is fitted using what is known as the variogram method, which I 

also explain further.  

Chapter 3 describes the data such as the sample of weather stations and the corn yield data. I 

also explain how our data is mapped geographically. I cover the basics of mapping and 

specifically how the grid of Illinois is projected. In chapter 4 I show how CDD indices are 

constructed and how the contracts are designed. I motivate our choices of model selection and 

cross-validation and explain how the main hypothesis is tested. In chapter 5 I present the 

analysis and discuss the results. These include the construction of two different index insurance 

contracts, where the first is a ‘regular’ contract and the second is a geographic basis risk-

adjusted contract. The analysis is built upon theory described in chapter 2. I present the payoffs 

to farmers and the insurer for each insurance option and test the geographic basis risk 

hypothesis. The following discussion also comments on weaknesses and possible 

improvements in the study design. Finally, chapter 6 concludes the thesis and summarizes the 

key lessons.  
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𝐸(𝑤) =
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(𝑤0 − 10) +

1
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(𝑤0 + 10)
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1
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𝑈(𝑤0 − ℎ) +
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2
𝑈(𝑤0 + ℎ)

lim
𝑤→0

𝑈(𝑤) and lim
𝑤→+∞

𝑈(𝑤) exist and are finite. 

2 Theory and literature review 

“If people don’t believe math is simple, it’s only because they don’t realize 

how complicated the world is” 

- von Neumann, J

2.1 Risk and risk aversion 

Quite simply, the purpose of an insurance contract is to offer the buyer protection against risk. 

I begin this section by briefly presenting the formal theory of modelling risk. Imagine that you 

have some initial wealth 𝑤0 and you are being offered to bet $10 on a fair coin toss. If the coin

comes up heads, you will win $10. If it comes up tails, you lose $10. Would you take the bet?  

(2.1) 

In playing this simple coin toss game, your expected terminal wealth is zero, equivalent to not 

playing at all. Recall that a rational agent maximizes utility as a function of wealth, where the 

marginal utility of wealth is strictly positive. Let us move now from a simple coin toss with two 

possible outcomes to a lottery with N possible uncertain outcomes, each associated with a given 

probability ρ. In a classic result, von Neumann and Morgenstern (1953) show that traditional 

utility theory can be simply extended to uncertain outcomes.  

The expected utility theorem: Formally, the utility function U: ℒ → ℝ has an expected utility 

form if there is an assignment of utilities {𝑢1, 𝑢2, … , 𝑢𝑁} to N outcomes such that for every

lottery 𝐿 = {𝜌1, 𝜌2, … , 𝜌𝑁} ∈ ℒ we have 𝑈(𝐿) = 𝜌1𝑢1 + 𝜌2𝑢2 + ⋯ + 𝜌𝑁𝑢𝑁. When choosing

between two different lotteries L and L´, a rational individual has the preferences 𝐿 ≿ 𝐿´ if and 

only if ∑ 𝑢𝑛𝜌𝑛
𝑁
𝑛=1 ≥ ∑ 𝑢𝑛𝜌´𝑛

𝑁
𝑛=1 . (von Neumann and Morgenstern 1947)1

A utility function U: ℒ → ℝ with the expected utility form is known as a von Neumann-

Morgenstern (v.N-M) expected utility function. The v.N-M expected utility function can be 

interpreted as the weighted sum of all possible outcomes in a lottery by their respective 

probabilities. (Mas-Colell et al. 1995) The shape of an individual’s v.N-M utility function 

depends on their risk preferences. Consider again betting on tossing a fair coin with an expected 

terminal wealth of zero. An individual who is indifferent between taking the bet and not is 

considered risk neutral. By the expected utility hypothesis, we formally represent their 

preferences as follows: 

(2.2) 

where again 𝑤0 is initial wealth and ℎ is size of the bet. Similarly, an individual is considered 

risk averse if in equation 2.2 L.H.S. > R.H.S. and risk seeking if L.H.S. < R.H.S. When making 

assumptions about risk attitudes, we consider a) that wealth is always desirable so that the 

marginal utility of wealth is strictly positive 𝑈′(𝑤) > 0 and b) that if 𝑈(𝑤) is strictly increasing 

in 𝑤 the statement that it is bounded can be written, 

 

1 For a critique of expected utility theory, see e.g. Allais (1953) and Kahneman and Tversky (1979). 
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𝛼𝐴(𝑤) = −𝑈′′(𝑤) 𝑈′(𝑤)⁄

𝑈(𝑤) =
𝑤1−𝛼 − 1

1 − 𝛼

𝐸(𝑤) = 𝑃 ∑ 𝜌𝑖𝑌(𝑋, 𝜃𝑖) − 𝐶(𝑋, 𝜔)

𝑁

𝑖=1

𝐸(𝑤) = 𝑌 − 𝜌𝐷 

The boundedness condition implies that for some positive number ε, no matter how small, we 

must have 𝑈′(𝑤) < 𝜀 for all but a set of intervals on 𝑤 whose total length is finite. This means

that 𝑈(𝑤) is concave so that 𝑈′(𝑤) is strictly decreasing as 𝑤 increases. Hence, with relatively

rare exceptions 𝑈′′(𝑤) < 0. This shows that individuals are generally risk averse (See

Appendix 1 for further reasoning). Indeed, prevalence of risk aversion can be inferred from 

economic observation. In a world of only risk neutral or risk seeking individuals, there would 

be no demand for fair insurance where expected utility is unchanging. (Arrow 1971) 

(2.3) 

Equation 2.3 shows the measure of absolute risk aversion, which represents the compensation 

required for taking risks, i.e. how much higher the potential upside in the coin bet must be for 

a risk averse individual to want to play. By multiplying equation 2.3 with terminal wealth 𝑤 we 

derive the measure of relative risk aversion 𝛼𝑅(𝑤) which is the elasticity of the marginal utility 

of wealth. For the purposes of this thesis I will use an isoelastic utility function displaying 

constant relative risk aversion (CRRA) and decreasing absolute risk aversion (DARA) which 

has empirical support in the relevant literature (Di Falco and Chavas 2009; Dalhaus et al. 2019): 

(2.4) 

where a condition for DARA is that 𝑈′′′(𝑤) > 0.2 Specifically, for equation 2.4 𝑈′′′(𝑤) =
(𝛼2 + 𝛼)𝑤−𝛼−2 > 0 for α ∈ ℝ | α > 0 (Adams and Essex 2014).

2.2 Indemnity crop insurance 

We turn now to the theory of crop insurance. The risk averse farmer aspires to maximize their 

expected utility given by equation 2.4 as a function of terminal wealth 𝑤 and a given level of 

risk aversion α. Terminal wealth is a function of crop yield which varies from year to year 

depending on some state of nature θ each associated with a probability ρ. The farmer’s expected 

terminal wealth can be represented as: 

   (2.5) 

The price P is exogenously given (for simplicity we set it equal to 1) and ∑ 𝜌𝑖 = 1. The cost C

is a function of inputs and input prices, but since it only factors into insurance decisions when 

we consider a choice between risky and risk-reducing inputs (Nelson and Loehman 1987) it is 

beyond the scope of this thesis. To simplify further we can separate the yield distribution into 

a constant optimal yield minus damages occurring with probability ρ. When we consider 

terminal wealth purely in terms of yield we get: 

(2.6) 

2 The proof is left as an exercise for the reader. Solution in Levy (1994). 
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max
𝛼≥0

 (1 − 𝜌)𝑈(𝑌 − 𝛼𝜑) + 𝜌𝑈(𝑌 − 𝛼𝜑 − 𝐷 + 𝛼) 

𝑈′(𝑌 − 𝐷 + 𝛼∗(1 − 𝜌)) − 𝑈′(𝑌 − 𝛼∗𝜌) ≤ 0

𝛼∗ = 𝐷

𝑌 − 𝐷 + 𝛼∗(1 − 𝜌) = 𝑌 − 𝛼∗𝜌

Now imagine that the farmer can purchase insurance at a price φ per unit which pays one yield 

unit if damages occur. If the farmer buys α units of insurance, his expected terminal wealth will 

now be 𝑌 − 𝜌𝐷 + 𝛼(𝜌 − 𝜑). Following equation 2.2 the farmer’s utility maximization problem 

in choosing α is therefore: 

(2.7) 

We differentiate equation 2.7 with respect to α. If 𝛼∗ is an optimum, it must satisfy the first-

order condition: 

(2.8) 

Suppose that the premium φ of one unit of insurance is actuarially fair, which means that it is 

equal to the expected payout of the insurance, ρ. Such a premium implies a non-profit insurance 

provider, which is realistic given a public crop insurance model, and absence of moral hazard, 

adverse selection, and transaction costs, which is less realistic. (Mas-Colell et al. 1995)  

For 𝜑 = 𝜌 the first-order condition requires that 

(2.9) 

In chapter 2.1 we showed that 𝑈′′(𝑤) < 0 and so it follows that 𝑈′(𝑌 − 𝐷) > 𝑈′(𝑌). From

there it also follows from equation 2.9 that 𝛼∗ > 0. We rearrange equation 2.9 and because

𝑈′(𝑤) is strictly decreasing, we can reduce it to 

  (2.10) 

(2.11) 

Deriving equation 2.11 reveals an important result. With a fair premium, the risk averse farmer 

will insure completely and buy insurance to cover all damages. This extends similar results in 

the standard insurance literature (Arrow 1971; Rothschild and Stiglitz 1976; Raviv 1979) to 

agricultural crop insurance. However, Ahsan et al. (1982) shows that when insurers cannot 

distinguish between high-risk and low-risk farmers, market failure will occur, and this result 

does not hold.  

Absence of competitive insurance markets can largely be explained through information 

asymmetries, the authors argue. Further, Chambers (1989) shows that since damages across 

farms are highly covariate, the insurer stands to suffer large losses simultaneously. Finally, 

Annan and Schlenker (2015) show empirically how insured farmers have less incentive to adapt 

to damage from extreme heat. All of this indicate that insurers may need to set higher premiums 

than what is actuarially fair. In the upcoming section I will explore how weather index contracts 

deals with these problems in insuring against weather damages.  

−𝜑(1 − 𝜌)𝑈′(𝑌 − 𝛼∗𝜑) + 𝜌(1 − 𝜑)𝑈′(𝑌 − 𝐷 + 𝛼∗(1 − 𝜑)) ≤ 0
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𝑌𝑖𝑡 = 𝑔𝑖(𝑊𝐼𝑖𝑡) + 𝜀

𝑌𝑖𝑡 = ℎ𝑖(𝑊𝐼𝑖𝑡) + 𝜗 + 𝜀

𝑆 = 𝑔𝑖
−1(�̅�)

2.3 Weather index insurance 

Weather index insurance is an alternative to traditional indemnity insurance (Barnett et al. 

2008) where payoffs to policy-holders are not based on a physical loss assessment on the farm, 

but on an index that is related to crop production, such as air temperature or rainfall. Weather 

is exogenously given and cannot be influenced by farmers. Further, historical weather data is 

public information. Because of this, with weather index (WI) insurance there are no information 

asymmetries and opportunities for moral hazard. These qualities have attracted further research 

into WI insurance in recent years (Nadolnyak and Vedenov 2013; Conradt 2015; Dalhaus 

2018). In this section I will show in some detail how WI insurance contracts are designed and 

discuss their weaknesses.  

WI insurance theory rests on the empirical fact that crop yields are correlated with the weather. 

A common index in WI research is rainfall, where e.g. Conradt et al. (2015) and Dalhaus (2018) 

use average rainfall over the growing season. Rainfall has been shown to be negatively 

correlated with crop yield for very low and very high values, and positively correlated in 

between (Lobell et al. 2007). Here I will focus on WI insurance against extreme heat, as the 

results of Annan and Schlenker (2015) indicate a need for protection without moral hazard. A 

farmer who buys a heat index contract receives payout not as a function of damages as in 

indemnity insurance. Instead, payouts occur whenever the heat index goes above a certain 

temperature limit, known as the strike level S. The strike level depends on the sensitivity of 

crop yields to extreme heat, and it is determined as follows: 

Following from Conradt et al. (2015) and Dalhaus (2018) assume crop yield 𝑌𝑖𝑡 of farmer 𝑖 in 

year 𝑡 to be a function 𝑔𝑖(𝑊𝐼𝑖𝑡) of the weather index. Crop yield can be estimated using the 

linear model 

(2.12) 

where ε is a bundle of all contributors to yield variations that are uncorrelated with weather. 

These include production inputs, soil characteristics and pests. In a perfect world ε would not 

include any weather-related losses as they would all be captured by 𝑔𝑖(𝑊𝐼𝑖𝑡). In reality, 

𝑔𝑖(𝑊𝐼𝑖𝑡) can only be approximated by an estimate ℎ𝑖(𝑊𝐼𝑖𝑡) which comes with its own error 

term ϑ which captures basis risk. The final regression model is therefore 

(2.13) 

By basis risk ϑ we mean error in ℎ𝑖(𝑊𝐼𝑖𝑡) due to how we approximate local weather from non-

local weather station data. WI insurance depends on the idea that weather indices correlate with 

crop yields, and the strike level S is set such that unless the weather index falls outside this 

level, the farmer can expect average yield that year. The strike level is given by 

(2.14) 

where the average yield over previous years are plugged into the inverse of the regression 

model. In other words, S is maximum value the index can reach while maintaining average 

yields. (Dalhaus 2018) When the index exceeds the strike level, payout to the insured farmer is 

determined based on the difference between the index and the strike level, as well as the effect 

size of the index on yield. This ensures that the size of the payout will be proportional to the 

damages associated with a given level of heat.  
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𝛿𝑖𝑡 = Τ𝑖𝑡 ∗ max{0, 𝑆𝑖𝑡 − 𝑊𝐼𝑖𝑡} (2.15) 

where Τ𝑖𝑡is the regression coefficient, known as the tick size, which describes how yield varies 

with one unit change in temperature. Just like with traditional indemnity insurance, assume a 

non-profit, risk neutral insurance provider that set the premium φ equal to expected payout. The 

farmer’s decision problem therefore ultimately the same as with indemnity insurance. He 

chooses insurance so as to maximize expected utility as a function of terminal wealth 

(2.16) 

The biggest obstacle to attractive WI insurance is basis risk. When the weather index fails to 

accurately predict crop yields, insured farmers may not be compensated. If damages occur but 

the index does not exceed the strike level, payouts will be zero. Similarly, a WI contract will 

pay out whenever the index exceeds the strike level even in the absence of damages. (Vroege 

et al. 2019; Dalhaus 2018) In the next sections I will cover geographic basis risk and how 

kriging interpolation can be used to measure it. 

2.4 Geographic basis risk 

As I have discussed in the previous section, weather index insurance payouts depend on the 

realization of a weather index, such as precipitation or temperature. Naturally, crop yields at a 

given farm are assumed to be realized weather at the farm location, which is at best similar to 

weather elsewhere. The potential for differences between weather at the farm itself and nearby 

weather stations is known as geographic basis risk. Put simply, geographic basis risk is the 

additional risk that arises by using a non-local contract. Geographic basis risk is defined in 

Woodard and Garcia (2008) in terms of a particular site, but it is possible for weather indices 

to be specified in terms of a weighted set of different locations.  

When geographic basis risk was measured as the difference in hedging effectiveness between 

local and non-local derivatives, Woodard and Garcia (2008) find that the hedging effectiveness 

was about 8% better when hedging with a non-local average index derivative relative to the 

implied hedging effectiveness of a derivative written on an average index of the local indexes. 

They sampled temperature data from one ‘central’ weather station in each of nine crop reporting 

districts in Illinois, as well as six cities. The authors suspect that the reason for this result is that 

aggregating the hedging instruments across such a large geographic area results in a portfolio 

that has a very high systemic component, which can be associated with production shortfalls, 

relative to idiosyncratic component.  Since the non-local cities are spread out over a larger 

geographic area than the local weather stations, the idiosyncratic components are more 

diversified in the case of the cities. At the state level, the estimated basis risk was 5,97% of the 

Root Mean Square Loss. (Woodard and Garcia 2008) 

When designing a WI insurance contract, the underlying index is supposed to reflect local 

weather conditions at the farm, but in practice we only have a sample of weather stations. This 

means that we will need to estimate local weather from my sampled locations, as well as 

magnify the size of geographic basis risk. It turns out that kriging interpolation, which is 

covered in the next section, comes to our aid in both respects. 

𝑤 = 𝑌 − 𝐷 − 𝜑 + 𝛿 + 𝑤0 
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𝛾(ℎ) =
1

2|𝑁(ℎ)|
∑ (𝑧𝑖 − 𝑧𝑗)

2

𝑁(ℎ)

Figure 2-1 Sample variogram 

2.5 The theory of kriging 

Ordinary kriging, also known as Weiner-Kolmogorov prediction, is a commonly used method 

for interpolation of spatial data. Interpolation is a process where a range of values is 

approximated from a sample of data points. A spatial interpolation method exploits spatial 

patterns in the sample to “fill in the gaps” in some field, or geographic region in the 2D case. 

In geostatistical models, sampled data is interpreted as the result of a random process 𝑍(𝒔). The 

fact that these models incorporate uncertainty in their framework does not mean that the 

phenomenon – the forest, the farmland or mine etc. – has resulted from a random process, but 

rather it allows the researcher to build a methodological basis for the spatial inference of 

quantities in unobserved locations, and to quantify the uncertainty associated with the estimator. 

(Chiles and Delfiner 1999) 

The unknown value 𝑍(𝒔0) which to estimate is interpreted as a random variable located at 𝒔0 

and the weighted average of values in neighboring locations 𝑍(𝒔𝑖), 𝑖 = 1, … , 𝑁. Intuitively, we

posit that observations closer to the interpolated point should have higher weights than more 

remote observations. Unlike a simpler method like inverse-distance weighting which calculates 

weights only based on distances, ordinary kriging also accounts for variances between points. 

In practice, the sample variogram method is used, described below: 

The variogram is defined as the variance of the difference between field values at two locations 

𝑖 and 𝑗. Given a sample of observations 𝑍(𝑠𝑖) = 𝑧𝑖 for 𝑖 = 1, … , 𝑘 at locations 𝑠 = (𝑥, 𝑦) in 2D

space with coordinates 𝑥 and 𝑦, the sample variogram is given by: 

(2.17) 

where 𝑁(ℎ) is the set of all pairwise Euclidian distances 𝑖 − 𝑗 = ℎ and |𝑁(ℎ)| is the number of 

distinct pairs in 𝑁(ℎ).  
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𝛾(ℎ) = {

0,  𝑖𝑓|ℎ| = 0

𝑎 + (𝜎2 − 𝑎) (1 − 𝑒𝑥𝑝 (
−3|ℎ|

𝑟
)) , 𝑖𝑓|ℎ| > 0

 
𝐶(ℎ) = {

𝑎 + (𝜎2 − 𝑎),  𝑖𝑓|ℎ| = 0

(𝜎2 − 𝑎)𝑒𝑥𝑝 (
−3|ℎ|

𝑟
) ,  𝑖𝑓|ℎ| > 0

Figure 2.1 shows the plot of a sample variogram. It is characterized by some key features: 

Continuity: Most environmental variables are continuous and therefore we should expect γ(h) 

to pass through the origin at h = 0. In practice, however, the variogram often appears to approach 

the y-axis at some positive value as h approaches zero which suggests that the process is 

discontinuous. This discrepancy is known as the nugget variance (see the intercept 0,3 in Figure 

2.1). For properties that vary continuously the nugget variance usually includes some 

measurement error, but mostly comprises variation that occurs over distances less than the 

shortest sampling interval. 

Monotonic increase. Figure 2.1 shows that the variance increases with increasing lag distance. 

This indicates that at short distances the values of the 𝑍(𝒔) are similar, but as the lag distance 

increases they become increasingly dissimilar on average. The monotonic increasing slope 

indicates that the process is spatially dependent. (Chiles and Delfiner 1999) 

Once we calculate an experimental variogram, we can fit it using some of the authorized 

variogram models, such as linear, spherical, exponential or gaussian (Isaaks and Srivastava 

1989; Goovaerts 1997). The variograms are commonly fitted by iterative reweighted least 

squares estimation, where the weights are determined based on the number of point pairs or 

based on the distance. 

Bins. When plotting a sample variogram, the researcher needs to decide on the size of 

increments in the distance h. In figure 2.1 the maximum distance is 800 kilometers, reflecting 

the largest distance between two data points (e.g. stations) in the sample. This distance can be 

split into a number n of incremental chunks, or bins, of length 800 𝑛⁄  kilometers. A larger 

number of relatively small bins means a larger number of points on the variogram because there 

is a larger number of distances between pairs for which variances can be estimated. This makes 

it easier to fit a model such as the exponential to the sample variogram because its shape is 

more visible. However, such a variogram with many bins is less statistically robust because 

with more bins of smaller distance increments their will be fewer location pairs for each 

distance. The researcher should select the number of bins so as to achieve an approximate 

variogram model, while maintaining a minimum number of pairs in each bin. A rule of thumb 

is at least 30 pairs per bin. (Chiles and Delfiner 1999)  

To compute kriging estimates, we will need the covariances among all points and between each 

of the observed points and the point to be predicted. The usual way to obtain these is through a 

covariance function, such as the commonly used exponential covariance function. The 

exponential variogram has the form:  

(2.18) 

where: a = nugget effect, r = range, and 𝜎2 = sill or variance where there is no correlation

present, i.e. the maximum of γ(h) in Figure 2.1. The corresponding exponential covariance 

function has the form: 

(2.19) 

Ordinary Kriging gives us the unbiased linear estimator for the unknown value at point 𝒔0 
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�̂�0 = ∑ 𝑤𝑖𝑍𝑖

𝑁

𝑖=1

 

𝑫 = [
𝐶10

⋮
𝐶𝑁0

] 

𝜎𝐸
2 = 𝐸 {(𝑍0(𝒔) − 𝑍0̂(𝒔))

2
} = 𝐶00 + 𝒘𝑇𝑪𝒘 − 2𝒘𝑇𝑫

ℒ = 𝐶00 + 𝒘𝑇𝑪𝒘 − 2𝒘𝑇𝑫 + 2𝜆(𝒘𝑇𝟏 − 1)

(2.20) 

where ∑ 𝑤𝑖 = 1𝑁
𝑖=1 . Using the covariance function, let 

(2.21) 

Using this, the mean squared error expression can be written 

(2.22) 

Equation 2.22 is minimized under the constraint that 𝒘𝑇𝟏 = 1 using the Lagrange optimization

method. Introducing the Lagrange multiplier −2𝜆 and minimizing  

(2.23) 

we eventually get the solution for the kriging weights 𝒘 = 𝑪−1[𝑫 − 𝜆𝟏]. Similarly, the

minimized Ordinary kriging variance is 𝜎𝑖
2 = 𝐶00 − 𝒘𝐶0𝑖 + 𝜆. It shows that the kriging

variance increases with lower weighted covariances 𝒘𝐶0𝑖 between sampled points and the point 

to interpolate 𝒔0. (Chiles and Delfiner 1999) The kriging variance shows the uncertainty 

associated with the interpolated temperature estimates, but also indicates in relative terms 

whether an interpolated location is near or far away from sampled locations. This is a useful 

property for my purposes because theory shows that geographic basis risk in WI insurance is 

higher when distances between weather stations are larger (Dalhaus 2018). This means that I 

can use the kriging variance as a proxy for geographic basis risk. My approach introduces a few 

improvements to Woodard and Garcia (2008): First it has potential for much higher resolution. 

Woodard and Garcia extrapolate temperature measurements at one location in each of nine crop 

reporting districts in Illinois. Meanwhile, kriging can be performed on a high-resolution grid 

where limits are only set by computing power. Even with very modest computing resources, I 

can estimate temperatures at 62,833 five square kilometer areas. Second, my method offers a 

straight-forward way to create geographic basis risk-adjusted WI contracts using the kriging 

variance. Finally, my method is easy to automate and the same approach can quite simply be 

applied to other states or even countries using the same framework.  
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3 Data 

“There are three kinds of lies: Lies, damn lies, and statistics” 

- (popularized by) Twain, M.

For the empirical part of this thesis I use exclusively publicly available data from three sources. 

Temperature data from Illinois weather stations is obtained from the ‘Daily Summaries’ dataset 

provided by the National Oceanic and Atmospheric Administration (NOAA) of the United 

States. Data on annual corn yields were obtained from annual surveys provided by National 

Agricultural Statistics Service (NASS) in the US Department of Agriculture. Finally, the 

geographic boundary shapefile of Illinois, the coordinate reference system, and projection 

datum were downloaded from the US Census Bureau. All data manipulation, statistical 

estimation, simulations and plots were made using the R language within RStudio. Code and 

data are available upon request to promote replication.  

3.1 Temperature data 

Daily temperature data where obtained from the NOAA ‘Daily Summaries’ dataset which 

includes daily measurements of minimum, maximum and average temperatures over 24-hour 

cycles measured at ground level at weather stations. The temperature is supplied in degrees 

Fahrenheit and was not converted to Celsius. Daily summaries were downloaded from May 1st 

through September 31st based on estimates for the growing season of corn in Illinois (USDA 

2010). Since I am interested in estimating the impact of extreme heat, I am not interested in 

nighttime temperatures and only maximum temperature over the 24-hour cycle was chosen. 

Following Annan and Schlenker (2015) I consider extreme heat to be degree days over 29 

degrees Celsius or 84 degrees Fahrenheit. However, to more easily reference previous work on 

temperature interpolation (Holdaway 1996; Nguyen et al. 2015; Cronqvist 2018) I do not 

transform degrees Fahrenheit to degree days until after kriging interpolation has been 

performed.  

Temperatures over the growing season for all stations where then averaged by station to get 

mean temperatures over the growing season for each station. This was done for four years; 

2017, 2016, 2012, and 2011. Two sets of sequential years (2016, 2017) and (2011, 2012) were 

chosen to perform two insurance simulations. The first is based on 2017 data where expected 

payout is calculated from previous year’s payout (2016) and similarly again with 2012 and 

2011. The 2017 data included measurements from 135 weather stations, 2016; 136, 2012; 152, 

and 158 for 2011. Each station has a unique name and so the merge-function in R was used to 

perform an inner join by station name such that the data for all the different years consist of the 

same stations.  

This resulted in 126 common stations. Each station 𝑖 for 𝑖 ∈ 1, … ,126 is associated with a mean 

degree day value per year 𝑡, a latitude and a longitude. The coordinates were used to transform 

the data table into a data frame of spatial points. In Figure 3.1 all stations are displayed on a 

map of Illinois. The stations were relatively evenly distributed geographically. Effective kriging 

interpolation requires that pairs of stations can be found for a wide range of different distances 

between the pair. A relatively dense sample of observations ensures that a reasonably realistic 

sample variogram can be fitted.  
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The temperature data largely followed a normal distribution (see Appendix 2) and ranged 

between about 70 degrees and 90 degrees Fahrenheit. The hottest season was in 2012 with an 

average temperature of 84 degrees F across the five months. The coolest was 2017 with an 

average temperature of 80,7 degrees F. 2012 was the third hottest summer on record in Illinois 

(NOAA 2019) since records began in 1873 (the first were 1955 and 1995) which made it an 

interesting robustness check to see how our insurance contract performs under relatively 

extreme heat conditions.  

Exploratory analysis of the temperature data reveals some apparent outliers. Consider the plot 

3.1 (b) of observed temperatures at the 126 stations for the growing season 2017. Two stations 

(USC00118186 at latitude 39,84, longitude -89,63 and USC00116910 at latitude 40,88, 

longitude -88,63) have much lower temperature values than neighbouring stations, both at 70 

degrees while the immediate surrounding area uniformly shows temperatures above 80 degrees. 

Similar observations were made for only one station in the 2016 data set. 2017 outliers are 

shown in red circles on figure 3.1. No outliers were spotted in the 2011 and 2012 data. Recall 

from chapter 2.4 that variogram modelling relies on the assumption that covariances are higher 

between neighbouring sites than between distant sites. Outlier values at a particular site 

therefore skew the estimates for all neighbouring sites by fitting an incorrect variogram model 

to the pairwise variances. I solved this issue by replacing the three outliers with averages of 

observed values at the two nearest stations. Another option would have been to simply remove 

the outliers, but a priority was set to preserve sample size when possible.  

Figure 3-1 Station sample 



14 

I also referenced historical local weather reports to ensure that outliers were not the result of 

some extreme localized event (Illinois State Water survey 2017; 2016). In any case it is 

unrealistic to expect average temperatures across a five-month period to differ more than 10 

degrees within a 10 km radius. I therefore feel justified in my approach. A digital elevation 

model (DEV) was not used for temperature prediction. The average elevation of Illinois is 180 

meters above sea level and is very flat, with first and third quartiles only differing by 40 meters. 

(NOAA 2017) Previous research suggests that elevation does not strongly correlate with 

temperature at those altitudes (Cronqvist 2018).  

3.2 Corn yield data 

Data on corn yields were downloaded from the USDA NASS ad-hoc Quick Stats online search 

tool, providing users with free access to .csv-files of annual surveys conducted by NASS. The 

Agricultural Yield survey provides farmer reported survey data of expected crop yields used to 

forecast and estimate crop production levels throughout the growing season. Farm operators 

provide data for small grain crops, row crops (including corn), tobacco, and hay being produced 

on the operation. Hay stocks data are also collected. Acreage planted, acreage for harvest, and 

expected yield per acre are collected from each operator for the crop of interest the first month. 

In following months, the same sample of operators are contacted to update expected yield per 

acre data. Updating reported information from the same sample of operators each month 

provides a measure of change resulting from growing conditions. Sample sizes range from 

5,500 in June to 27,000 in August. (USDA 2018) A more comprehensive survey called the 

agricultural census with larger sample sizes are conducted every five years.  

However, exploratory analysis of the census, comparing census with survey data, reveals that 

the annual version is acceptable. NASS survey data has been used in multiple previous studies, 

including Goodwin and Hungerford (2014), Annan and Schlenker (2015) and others.  It is 

however important to note that survey data is always subject to errors. Most importantly, 

samples of survey respondents may not be representative of the population of farmers.  
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Figure 3-2 Histograms of corn yields 

Yield data are supplied on a per county level, and includes 99 out of 102 counties in 2011, 

95/102 in 2012, 96/102 in 2016 and 100 out of 102 in 2017. Data sets were merged by county 

name to ensure the same sample for all years. Exploratory analysis of the yield data reveals that 

their distributions differ between years. For example, in 2017 yields ranged between 120 and 

250 bushels per acre (bu/ac) or 4,000 square meters, with a mean of 190,6 bu/ac. One bushel of 

corn grains is approximately 25,4 kilograms. In 2012, yields ranged between 14 bu/ac and 180 

bu/ha, with a mean of 91,4. Corn is the most intensely farmed crop in Illinois, followed by 

soybeans, and is grown across the entire state. Because of the importance of corn as a staple in 

US agriculture, its dependency on weather and other variables has been studied before.  

In a comprehensive study of 2,000 US counties for 54 years between 1950 and 2004, Schlenker 

and Roberts (2006) show that corn yield follows a nonlinear trend with regards to temperatures. 

Between 10 and 25 degrees Celsius, corn yield and temperature are positively correlated. 

However, beyond 25 degrees, the relationship reverts to a negative contribution from 

temperatures on yield. Beyond 30 degrees, the effect is very significant and just one day of 38 

degrees (100 degrees F) will lower annual yields by 5% on average. Such temperatures and 

beyond were measured in 1200 instances across 152 weather stations in Illinois in 2012, the 

warmest year in our data set. Figure 3.2 also shows that yields were on average considerably 

lower that year.   
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3.3 Geographic boundary data 

The geographic boundary shapefile of Illinois was downloaded from the US Census Bureau, 

which could be read into RStudio using the readOGR-function which is used to load spatial 

objects. The state of Illinois boundaries was then used as a template to create a grid of 5 square 

kilometer (5000m x 5000m) pixels that cover the entire area of Illinois. This resulted in 62,833 

pixels to interpolate over. When choosing a pixel size, one has to make a trade-off between 

high resolution and reasonable computing speed. Because the kriging algorithm works 

sequentially across the whole grid, more pixels lead to lower computing speed and kriging may 

become prohibitively expensive when the size or resolution of the grid are too high (Park et al. 

2018). 

Knowledge of the data to interpolate can help guide decisions about the resolution. We know 

that surface temperature is generally not subject to very local variation but in Illinois mainly a 

latitude trend with increasing temperatures in the north-south direction. (Wallace and Hobbs 

2006, p. 391) Large urban areas may be warmer on average than less populated areas due to 

human activity such as modification of land surfaces and radiative forcing due to air pollution. 

This so-called urban heat island effect is generally more noticeable for nighttime temperatures 

than daytime temperatures. (ibid. p. 411) The main urban center of Illinois (Chicago) is much 

larger than 5 square kilometers. I therefore conclude the choice of 5km x 5km pixels for the 

purposes of kriging interpolation is appropriate. 

3.1.1 Projection and coordinate system 

When mapping sufficiently small areas, it is 

acceptable to approximate the Earth as flat. For 

small-scale maps, those that encompass a large 

area, we must consider the Earth’s shape.  The 

assumption that the Earth is round or spherical does 

not accurately represent it.  The Earth’s constant 

spinning causes it to bulge slightly along the 

equator, ruining its perfect spherical shape. 

Creating a 2D map from a 3D shape is impossible 

without introducing some error. Figure 3.3 shows 

three types of projections (planar, conic, and 

cylindrical) and how they pan out on a 2D map. 

Planar projection is appropriate only for mapping 

of the poles. Conic projections are very accurate 

along a given latitude, or circumference around the 

globe, where the cone ‘touches’ the Earth. This is 

good for mapping the mid latitudes. Cylindrical 

projections wrap a cylinder around the globe and 

are particularly accurate around the equator. 

(Campbell and Shin 2012) Figure 3-3 Map projection, Campbell and Shin (2012)
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For my purposes mapping a relatively small area (Illinois extends 338 km in the East-West 

direction and 628 km in the North-South direction) I am not overly concerned about choice of 

projection so long as the same one is used uniformly across our spatial datasets. Because Illinois 

extends further in latitude than in longitude, I chose the transverse Mercator projection, which 

caters well to that attribute.  

The North American Datum of 1983 (NAD83) was applied as the coordinate reference system 

(CRS) for the Illinois grid. A geodedic datum is a coordinate system and a set of reference 

points, used to locate places on the Earth. Because the Earth deviates significantly from a 

perfect ellipsoid, the ellipsoid that best approximates its shape varies region by region across 

the world. Therefore, most regions of the world used ellipsoids measured locally to best suit 

the vagaries of Earth's shape in their respective locations. While ensuring the most accuracy 

locally, this practice makes integrating and disseminating information across regions difficult. 

However, for the purposes of mapping Illinois, using NAD83 is straight-forward and obvious. 

Latitude and longitude were converted from degrees to meters using the SPTransform-function 

in R’s sp-package. Using meters instead of degrees makes the variograms much easier to 

interpret because I can see how covariances between points vary by distance in terms of meters 

and kilometers.  
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Tit = α + β1Lati + β2Loni + β3lake 

4 Method 

“See first, think later, then test. But always see first. Otherwise you will only see what you 

were expecting. Most scientists forget that.” 

- Adams, D.

Because the purpose of this thesis is to explore whether Illinois corn farmers benefit from an 

insurance contract which accounts for geographic basis risk, I need a reliable estimate of such 

risk. As described in better detail in chapter 2.4 geographic basis risk is defined here as the error 

in estimates of correlation between temperatures and crop yields that arises because temperature 

data is estimated at a weather station some distance away from the farm. The weather index 

constructed from data measured at that station is therefore only an approximation of local 

temperatures at the farm. Theory posits that this error becomes larger as distances between 

farms and stations grow larger, because the correlation between temperatures at two locations 

becomes weaker the greater the distance between the locations. As described in chapter 2.5, 

kriging interpolation estimates unknown temperatures across the whole study area from 

measured temperatures at a sample of locations. How heavily temperatures at a particular 

sampled location is weighted in estimating an unknown location depends on the distance 

between the two. Before kriging can be performed, a variogram model must be selected to fit 

the sample variogram. I will fit three different models; exponential, spherical, and gaussian. A 

model will be selected based on leave-one-out cross-validation, where the lowest mean error 

will be selected for kriging. 

The variogram function in R plots an omnidirectional variogram, which means that distances 

in all directions in 2D space are treated the same. To perform kriging, the intrinsic hypothesis 

must be satisfied (Journel and Huigbregts 1978). The intrinsic hypothesis requires that the mean 

and the variance depend strictly on the separation distance between samples and not on the 

coordinate position of the data. When the intrinsic hypothesis is not satisfied it is because the 

data has some trend which must be removed before the data can be adequately interpolated with 

kriging (Vieira et al. 2010). I suspect that there may be directional trends in latitude or 

longitude. For example, there may be a trend towards lower temperatures as one moves 

latitudinally from south to north. In such a case the mean and variance are not independent of 

the coordinate position because the northernmost pixels will be overestimated, i.e. predicted to 

be warmer than the real temperature. We have learned from Cronqvist (2018) that altitude 

trends are not discernable in areas as flat as Illinois. Holdaway (1996) also shows a so-called 

lake trend, where summer temperatures are cooler in the immediate vicinity of a large lake or 

ocean. The north-eastern corner of Illinois borders Lake Michigan, which may impact three 

shoreline stations in our sample. Lake Michigan is the only large body of water in Illinois. Tests 

for trends can be performed via a simple linear regression. I run the following regression model: 

(4.1) 

where the Tit is the temperature at station i at year t and the explanatory variables are latitude, 

longitude, and a lake dummy. The lake dummy takes the value 1 for the three weather stations 

bordering Lake Michigan, and zero otherwise. Regression coefficients for latitude range from 

-1,17 to -1,57 for the four years in our sample, while coefficients for longitude range from -

0,15 to -0,39. Moving 10 kilometers west in the east-west direction was associated with on

average 0,01 degrees cooling. The dummy coefficient ranges between -0,9 and -2,2 which

means that summer max temperatures are on average ca 1,5 degrees F cooler immediately by

Lake Michigan.
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𝑇𝑟𝑒𝑠(𝑥, 𝑦) = 𝑇(𝑥, 𝑦) − �̂�(𝑥, 𝑦)

With latitude and longitude expressed in meters, moving 10 kilometers in a north direction was 

associated with 0,04 degrees cooling on average. However, only the latitude trend is statistically 

significant for all four years. The R2-statistic is 0,73 which means that the model explains

geographic temperature variation rather well.  

In my temperature data sample, I generate a new variable containing the residuals, or error 

terms, from the regressions following Vieira et al. (2010). Because the effect sizes of the trends 

are captured in the regression coefficients β, the residuals are independent of the explanatory 

variables. As described in detail in this literature on linear detrending of spatial data, the 

detrended variables are constructed as follows (Vieira 2000; Vieira et al. 2010): 

(4.2) 

where 𝑇(𝑥, 𝑦) is the actual observed temperature at stations located at coordinates x and y, 

while �̂�(𝑥, 𝑦) is the estimated temperatures in from the regression model. I choose to only 

account for the latitude (north-south) trend as it was the only one showing significance for all 

years. As seen in figure 4.1 there is a clear correlation between temperature and latitude. 

However, in our detrended variable the correlation is successfully removed. Therefore, I will 

fit a version of the variograms to the residual variables where the trend is removed.  

Figure 4-1 : Scatterplot of latitude versus temperature (above) and residuals (below) 
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As figure 4.1 shows, the residuals are decoupled from the latitude, and have a mean centred 

around zero. I create sample variograms both for the original temperature variables and the 

detrended variables. I then fit three different types of models to our sample variograms. 

Following Cronqvist (2018) and Vieira (2010) I fit an exponential model, a spherical model 

and a gaussian model. The exponential model increases more sharply close to zero distance, 

and then continues to strictly increase but flattens out until it reaches its sill at a distance where 

there is no longer any covariance between locations. The spherical model is similar in shape 

but reaches its sill earlier than the exponential function. This model also actually reaches the 

sill, while the exponential model merely approaches it. Hence, the exponential model is 

appropriate in cases where two locations of data are never completely decoupled, even when 

the distance between them is very large. The spherical model is more appropriate when you 

assume the covariance between the two to eventually reach zero. The gaussian model, in 

contrast, initially has a negligible slope at low distances which later increases, and then tapers 

off again approaching the sill. (Christakos 1992; Cronqvist 2018) 

I fit the variogram models using the fit.variogram- and vgm-functions from the gstat-package 

in R. These functions automatically select nugget variance, range and sill to fit the model as 

close as possible with the data. It also selects the bin size to ensure that each bin contains at 

least 30 station pairs. I do this for all three model types, and both observed temperatures and 

detrended temperature residuals. Variogram plots are presented in Appendix 2. To decide on 

model selection we will perform leave-one-out cross-validation on how kriging would perform 

with the different models. Leave-one-out cross-validation works by separating the sample into 

a single observation as the validation set and the remaining observations as the training set. 

Since kriging predicts unknown temperatures at a set of locations based on observed 

temperatures at sampled locations, the accuracy of the kriging model can be measured by 

removing one observed location and compare the estimated value at that location with the 

observed value. This can be done for every observation in the sample. Put simply, this is what 

leave-one-out cross-validation is doing. (James et al. 2015, p. 192) I want to select the model 

for which the mean square error between estimated and observed values is the lowest, a measure 

of model accuracy. 

Table 4-1 Leave-one-out cross-validation for model selection 

Model Year MSE Detrended MSE 

Exponential 2011 1.265 1.285 

Exponential 2012 1.097 1.853 

Exponential 2016 2.078 2.827 

Exponential 2017 1.975 3.356 

Spherical 2011 1.261 6.547 

Spherical 2012 1.099 1.831 

Spherical 2016 2.077 2.764 

Spherical 2017 1.974 3.889 

Gaussian 2011 1.241 1.250 

Gaussian 2012 1.164 5.522 

Gaussian 2016 2.219 4.161 

Gaussian 2017 2.169 3.925 
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As shown in figure 4.2, the best performing model for the original temperature variable is a 

spherical model. The same conclusion is reached in Cronqvist (2018) for temperature kriging 

in Sweden. That I replicate their results in another country with a different data sample suggests 

that I have successfully captured a physical relationship. For the detrended variable, the 

exponential model is a better fit. To explore whether the results of our economic analysis remain 

robust for both the original and detrended data, I will estimate a set of WI insurance contracts 

for both.  

Using the two selected models from cross-validation, I perform kriging as described in chapter 

2.4. The result is interpolated temperature fields at 62,833 locations with size five square 

kilometers for each of the four growing seasons. Each temperature field is associated with its 

respective kriging variance. 

Figure 4-2 Interpolated maximum temperatures (degrees F) over the growing season using ordinary kriging. Spherical 

model with original temperature values. 
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Figure 4.2 shows that northern Illinois is cooler than the southern part of the state, and it also 

shows once again that the growing season of 2012 is the hottest out of the four. The kriging 

variance heat maps in figure 4.3 are somewhat difficult to interpret, but a comparison with the 

map of station locations in figure 3.1 reveals that variances are higher in areas where the density 

of stations is lower. Consider for example the whiter area in the mid-latitudes, towards the 

western part of the state: Kriging variance is somewhat higher here compared to the surrounding 

areas in blue. This corresponds to an area in figure 3.1 approximately at (-90.5, 40) where there 

is a lack of stations. As discussed in chapter 2.5, kriging variance is higher when distances to 

stations are higher.  

Next, I convert our interpolated temperature values into degree days over 84 degrees F (or 29 

degrees Celsius). Here, we follow Annan and Schlenker (2015) and Schlenker and Roberts 

(2006) where 84 degrees is the temperature where negative impacts on corn are noticeable.  

 Figure 4-3 Kriging variances; Spherical model with regular temperature field 
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�̂�(𝜏) = argmin
𝛽∈ℝ

(𝜏 ∗ ∑ |𝑦𝑖 − 𝑥𝑖
𝑇𝛽| + (1 − 𝜏) ∗ ∑ |𝑦𝑖 − 𝑥𝑖

𝑇𝛽|

𝑦𝑖<𝑥𝑖
𝑇𝛽𝑦𝑖≥𝑥𝑖

𝑇𝛽

) 

The degree day index will take the value 0 whenever temperature at a particular location and 

year is below 84 degrees. Temperature fields were converted into degree days using the 

following function: 
DD_converter <- function(TMAX){ 

DD <- pmax((TMAX - 84), 0) 

return(DD) 

} 

where the function pmax simply returns the larger of two values; temperature in Fahrenheit 

minus 84, or 0. Next, I want to estimate the effect of heat on crop yields to determine the WI 

insurance strike level. Following Conradt et al. (2015) and Dalhaus (2018) a quantile linear 

regression (QR) model is used. QR, which can be regarded as an extension of the basic OLS 

(Koenker and Bassett 1978). It defers the focus away from the conditional mean to the 

conditional median or any other quantile of interest. The conditional QR model leads to the 

following minimization problem: 

(4.3) 

QR minimizes the sum of absolute residuals, which are asymmetrically weighted. The 

weighting factor depends on the sign of the residuals: positive residuals receive a weighting 

factor of τ, negative residuals are weighted by (1- τ). There are two important differences 

between the OLS and QR estimator. First, the OLS estimator relies on squared deviations 

whereas the QR estimator uses absolute value of deviations. Second, QR specifies a weighting 

factor τ, while OLS gives equal weights. With respect to the second property, for QR it is 

possible to characterize the entire conditional yield distribution and to specify any 

predetermined position, since in the QR framework β is a function of τ, β(τ) with τ ∈ (0,1). This 

is an advantage with regard to insurance solutions since the differential impact of x (here the 

weather index WI) on y may be analyzed and τ may be set in such a way to be consistent with 

the research interest.  

For insurance solutions, the interest lies in the tails and QR is more efficient in representing the 

tail dependency than a mean-based estimator such as OLS. (Conradt et al. 2015) QR is also less 

sensitive to non-normal distributions and outliers which makes it easier to use than OLS. 

Following Condradt et al. (2015) and Dalhaus (2018) I select τ = 0.3 for the insurance contracts 

which means that I look at the effect size of degree days on yields at the third decile of the yield 

distribution. Figure 4.4 shows QR plots for the four years, with the log of corn yield as the 

dependent variable and degree days as the explanatory variable. τ is plotted along the x-axis 

and so 4.4 shows how the effect size of heat on corn yields vary along the yield distribution. 

With the exception of 2011, the damage from heat is worse towards the left tail of the yield 

distribution, implying that areas where corn yields are low hurt more from an increase in 

temperature. Coefficients at τ = 0.3 range from -0.1 to -0.35 which means that one additional 

degree over 84° F in average temperature over the growing season is associate   with a 10-30% 

decrease in end-of-year corn yields. The effect size of heat on corn yields are largest in 2012 

which is also the hottest year in the data set. 
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𝑤𝑖𝑡 = 𝑦𝑖𝑡 + 𝛿𝑖𝑡 − 𝜑𝑖𝑡 

I then proceed to calculate the outcomes of the WI insurance contracts following the theoretical 

framework developed in chapter 2.3. I begin by running quantile regressions for the third decile 

following Conradt et al. and Dalhaus. I will calculate insurance outcomes both for contracts 

based on a regular temperature index and a degree day (over 84 degrees) index. The strike level 

is then calculated by plugging in the Illinois-wide average yield into the inverse linear 

regression function 𝑆 = 𝑔−1(�̅�) so that the strike level S equal the degree days for which the

expected yield is the average yield. The WI insurance payout is determined by the following 

function: 

(4.4) 

where T is the ticksize, or regression coefficient. The intuition is that the marginal impact on 

yield per degree hotter temperature times the number of degrees above the strike level equals 

the expected yield loss. If the index is lower than the strike level, payout is zero.  

Recall from chapter 2.2 and 2.3 that the risk neutral insurer sets the premium equal to expected 

payouts. For simplicity expected payout is assumed to be equal to last year’s payout. Therefore, 

the premium in 2017 is set as equal to the calculated payout based on the 2016 data, and the 

premium in 2012 is equal to the 2011 payout. Following Dalhaus (2018) I calculate terminal 

wealth as follows: 

(4.5) 

where y is the realized corn yield, δ is the WI insurance payout and φ is the insurance premium. 

Figure 4-4 Quantile Regression output: yield~temperature, yield deciles on x-axis 



25 

𝑦𝑖𝑒𝑙𝑑 =  𝛽0 + 𝛽1𝑊𝐼 + 𝛽2𝜎𝑂𝐾
2

The geographic basis risk adjusted contract is contract is constructed in a very similar way to 

the regular contract. However, the inverse function 𝑔−1 from which to solve the strike level

now has two variables; the average yield and the kriging variance. The regression now has the 

following form: 

(4.6) 

Including the kriging variance means that the strike level will better contain the information on 

how much the weather index itself contributes to corn yields.  

For the utility calculations, I choose an isoelastic utility function which exhibits CRRA and 

DARA. Such a utility function, introduced formally in chapter 2.1, has empirical justification 

in the literature (Dalhaus 2018). I calculate utilities for each of 62,833 hypothetical farms, each 

of a size of five square kilometers. Utilities were calculated for different degrees of risk 

aversion, where the Arrow-Pratt measurement of risk aversion (α in chapter 2.1) increases from 

0 to 1.0 in increments of 0.2. I do this to see how the expected utility of our WI insurance 

contracts changes with changes in risk aversion. I test the hypothesis that the terminal wealth 

of a farmers purchasing the basis risk adjusted contract are on average better off than those 

purchasing the regular contract.  
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5 Analysis and discussion 

“Not explaining science seems to me perverse. When you’re in love, 

you want to tell the world” 

- Sagan, C

In analyzing the results, there are essentially three comparisons to make: First, to compare the 

results for two different years 2017 and 2012, where the latter is a historically very hot year. 

Comparing the two years may give insight into how the geographic basis risk adjusted contract 

performs relative to the regular contract under extreme heat conditions. Second, to compare the 

degree day over 84° F index with the regular temperature index. Third, to compare how the 

geographic basis risk adjusted contract performs based on detrended variances with how it 

performs without any detrending. 

Throughout this section, I will refer to the regular WI insurance without basis risk adjustment 

as Contract 1, while the geographic basis risk adjusted contract is called Contract 2. I look at 

terminal wealth for each contract and underlying index, then I will analyze utilities under 

various degrees of risk aversion for the most attractive contract.  

Table 5-1 Terminal wealth for farmers at the end of the 2017 season, Temperature Index. 

Contract 1st Quartile Median Mean 3rd Quartile 

No insurance 181.7 202.6 196.6 215.8 

Contract 1 177.6 201.8 194.8 217.7 

Contract 2 177.8 202.1 195.0 217.8 

Contract 2 detrended 177.1 201.0 193.7 216.5 

Table 5-2  Terminal wealth for farmers at the end of the 2012 season, Temperature Index. 

Contract 1st Quartile Median Mean 3rd Quartile 

No insurance 77.4 104.2 98.9 123.6 

Contract 1 94.6 110.2 109.3 125.4 

Contract 2 94.5 110.6 109.5 125.6 

Contract 2 detrended 93.3 111.3 109.3 125.0 

With the regular temperature index, Contract 2 is an improvement over Contract 1 both in 2017 

and 2012. However, purchasing insurance at all only increases farmers’ wealth in 2012. 

Contracts based on the detrended temperature variance were generally not an improvement over 

a non-detrended Contract 2. 

Table 5-3 Terminal wealth for farmers at the end of the 2017 season, Degree Day Index. 

Contract 1st Quartile Median Mean 3rd Quartile 

No insurance 181.7 202.6 196.6 215.8 

Contract 1 177.3 202.6 194.9 220.0 

Contract 2 177.7 202.7 194.9 219.8 

Contract 2 detrended 177.8 202.9 194.7 219.3 
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Table 5-4 Terminal wealth for farmers at the end of the 2012 season, Degree Day Index. 

Contract 1st Quartile Median Mean 3rd Quartile 

No insurance 77.4 104.2 98.9 123.6 

Contract 1 94.2 108.9 108.9 123.7 

Contract 2 93.5 108.6 108.5 122.8 

Contract 2 detrended 93.3 108.3 108.3 122.7 

Tables 5.3 and 5.4 show the terminal wealth of purchasing WI insurance where the underlying 

index is degree days over 84° F. Similar to the ordinary temperature index, farmers only benefit 

from buying any of the contracts in 2012. That this result remains across two different 

underlying index constructions suggests that temperature index insurance is desirable when the 

growing season is expected to be hotter than last year, as the payout is then more likely to be 

higher than the premium. When considering mean terminal wealth, farmers benefit from the 

geographic basis risk adjusted contract over the regular contract only when the underlying index 

is a normal temperature index. However, for the degree day index, accounting for geographic 

basis risk does not seem to improve the wealth position of farmers on average. Once again, 

detrending the temperature variable does not result in any improvement in terms of wealth.  

Figures 5.1 and 5.2 show the difference in terminal wealth from holding insurance contract 2 

versus no insurance for all theoretical 5x5 km farms in 2012 and 2017. Given my choice to set 

premiums equal to last year’s payout, the results make sense: In 2012, which was hotter than 

2011, farms in the hotter southern part of the state benefit more from heat protection. In 2017, 

which was cooler than the previous year, southern farms face relatively higher premiums and 

suffer a loss from buying insurance.  

Figure 5-2 Wealth difference Insurance 

vs. No insurance 2012 
Figure 5-1 Wealth difference Insurance 

vs. No insurance 2017 
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Below are utility calculations for 2017 and 2012 using the regular temperature indices and a 

range of risk aversion coefficients: 

Table 5-5 Utilities for no insurance, contract 1 and contract 2 for various levels of risk  aversion 2017; 0 risk 

neutral, 1 very risk averse. 

α 0 0.2 0.4 0.6 0.8 1.0 

U(0) 195.5 84.1 37.9 18.1 9.4 5.3 

U(C1) 193.8 83.4 37.6 18.0 9.4 5.3 

U(C2) 193.9 83.5 37.6 18.0 9.3 5.3 

Table 5-6 Utilities for no insurance, contract 1 and contract 2 for various levels of risk 2012  aversion; 0 risk 

neutral, 1 very risk averse. 

α 0 0.2 0.4 0.6 0.8 1.0 

U(0) 76.4 39.3 21.0 11.7 6.9 4.3 

U(C1) 108.3 51.9 23.8 12.9 7.4 4.5 

U(C2) 108.5 52.0 26.0 13.7 7.7 4.7 

Analysis of utility outcomes for various degrees of risk aversion reveals that for years when 

realized crop damages are low, the gain or loss in utility from buying insurance is minimized 

when risk aversion is very high. In a year with little crop damage, risk neutral farmers will not 

buy insurance, while highly risk averse farmers will be indifferent between buying and not 

buying insurance. In years with heat-related high damages, purchasing temperature index 

insurance results in realized utility improvements for all levels of risk aversion. The basis risk 

adjusted contract is also an improvement in all cases, and the improvement is more significant 

when risk aversion is high.  

This result is can be theoretically motivated by recalling that accounting for geographic basis 

risk is supposed to decrease the variability in insurance payouts and better capture how heat 

affects crop yields. However, our results also show that switching from Contract 1 to Contract 

2 was only preferred when the underlying index was the regular temperature index. No 

improvement in terminal wealth or utility was detected for a degree day index when switching 

from contract 1 (regular) to contract 2 (basis risk adjusted). I did not manage to isolate a cause 

for this result, but it is conceivable that errors were introduced when extreme daily temperatures 

were averaged out across five months into a growing season index. Taking an average of 

temperatures in degree Fahrenheit would contain less information loss.  

A further weakness in the study design involve the assumption that expected payouts equal 

previous year’s payouts. More likely, insurers base their payout expectations on an average of 

multiple prior years, and trends like climate change are also likely taken into account when 

setting premiums year on year. This assumption was made mainly to cut down time spend on 

data processing. I consider this a drawback for the reliability of my comparison between 

insurance and no insurance, and one of the first things I would extend upon given more time 

and resources. Interested readers should consult other papers on pricing of weather derivates 

such as Goodwin and Hungerford (2014), Conradt et al. (2015) and Park et al. (2019). However, 

my result indicate with some confidence that the basis risk-adjusted contract remains an 

improvement over the regular contract.  
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5.1 Sample size sensitivity 

As was shown in chapter 2.5, the kriging predictions rely on a sufficient number of observation 

pairs (≥30) for each distance at which the semivariance is to be calculated. This means that 

there is a minimum sample size of weather stations for which the kriging method is applicable. 

To check the robustness of my results with a smaller sample size, I took a random sample of 63 

stations from my original dataset of 126 stations, which is half the initial number of stations. I 

then ran the code again with this smaller sample.  

Table 5-7 LOOCV for model selection; half sample size 

Model Year MSE  MSE (N=63) 

Exponential 2011 1.265 1.162 

Exponential 2012 1.097 1.142 

Exponential 2016 2.078 1.646 

Exponential 2017 1.975 1.764 

Spherical 2011 1.261 1.167 

Spherical 2012 1.099 1.145 

Spherical 2016 2.077 1.635 

Spherical 2017 1.974 1.765 

Gaussian 2011 1.241 1.362 

Gaussian 2012 1.164 1.312 

Gaussian 2016 2.219 1.631 

Gaussian 2017 2.169 2.124 

Leave-one-out cross validation shows mean squared errors consistent with those for the full 

sample. Curiously MSEs for some models are marginally lower than for the full sample, 

indicating higher predictive accuracy. However, the differences are generally small and not 

consistent. Once again I choose a spherical model.   

Table 5-8 Terminal wealth 2017; half sample size 

Contract 1st Quartile Median Mean 3rd Quartile 

No insurance 181.7 202.6 196.6 215.8 

Contract 1 177.6 201.8 194.8 217.7 

Contract 1: N=63 176.5 201.7 193.3 215.6 

Contract 2 177.8 202.1 195.0 217.8 

Contract 2: N=63 178 203.7 195.2 220.1 

Table 5-9 Terminal wealth 2012; half sample size 

Contract 1st Quartile Median Mean 3rd Quartile 

No insurance 77.4 104.2 98.9 123.6 

Contract 1 94.6 110.2 109.3 125.4 

Contract 1: N=63 94.6 110.4 109.5 125.3 

Contract 2 94.5 110.6 109.5 125.6 

Contract 2: N=63 94.5 110 109.4 125.4 
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Tables 5.8 and 5.9 display terminal wealth for the years 2017 and 2012 using the reduced 

sample size of stations as compared with the full sample. With the full sample, switching from 

contract 1 to 2 improves wealth marginally on average both in 2017 and 2012. However, with 

the reduced 63-station sample, switching represents an improvement only in 2017.  

Assessing the sensitivity of my kriging method for WI insurance design to sample size is 

important to rate the universality of this approach. The United States and other high-income 

countries have high densities of weather stations. However, in lower income countries in South 

America, Central Asia and North Africa, the number of stations can be lower (Gubler et al. 

2017). In rural areas of low-income countries, formal insurance markets are typically 

incomplete and often nonexistent. This is particularly true for insurance that protects against 

crop production shortfalls or livestock mortality. A common reason for insurance market failure 

is the lack of effective legal systems to enforce insurance contracts (Barnett et al. 2008). These 

issues make the benefits of WI insurance particularly important in low-income countries, but 

the method laid out here only works if the availability of weather stations ensures reasonably 

accurate weather predictions.  
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6. Conclusions

In this thesis I have attempted to put forward a framework for contract design of temperature 

index crop insurance which accounts for geographic basis risk. I have used a kriging 

interpolation technique to extend work in Woodard and Garcia (2008) and Dalhaus (2018) on 

the issue on basis risk in WI insurance. The kriging variance is the error in prediction of spatial 

data that arises from distances between observations and unknown locations. The purpose was 

to explore how accounting for this variance – the geographic basis risk - in WI insurance can 

produce more attractive insurance contracts. My framework has yielded some success in 

improving farmers’ economic outcomes from insuring against damages from extreme heat. My 

results have shown that while the basis risk adjusted contract was an improvement over the 

regular contract, WI insurance was overall desirable only for the hotter of the two years in my 

study. As one might suspect, the utility gain from not insuring during a low-damage year 

disappeared for the most risk-averse theoretical farmers in my simulation. To further explore 

the viability of large-scale WI insurance, research into the risk attitudes of farmers, particularly 

regarding weather risk, will be useful. My analysis is quite rudimentary and more detailed study 

is required to draw conclusions with more certainty. In particular, future research ought to 

explore how the economics of these WI markets change when premium setting is more refined 

than the simplified model I use here. Not only based on richer data on past damages, but also 

predictions about future risks. 

Still, I can say with some confidence that markets ought to further examine the potential of 

geostatistical techniques in pricing weather derivatives. My method has provided some support 

to the theoretical discussion on geographic basis risk management, but also practical 

application. Having shown that kriging interpolation is a viable way to design WI contracts 

means that it can be applied in a wide variety of settings. In the United States, crop insurance 

is sold in a federal program managed by the USDA Risk Management Agency. India also has 

a government program. However, in many developing countries high transaction and 

monitoring costs for traditional insurance make potential innovations even more important. 

While characterized by lower transaction and monitoring costs, WI insurance depends on 

weather stations to construct indices and these may be lacking in developing countries. My 

robustness checks with a smaller sample of stations are inconclusive, but the results indicate a 

reduction in wealth improvement. This is a potential challenge to WI insurance adoption, which 

given the benefits of WI options warrants further study.  

I argue that I have found a promising angle in to branch out the literature on improving WI 

insurance, and that future research may have important economic benefits in a world where 

climate may be an increasing threat to food security. If the issues with data availability I have 

just discussed can be addressed, competitive WI contracts may prove particularly useful in 

regions where agricultural production is not only more vulnerable, but monitoring costs 

associated with traditional insurance also much higher.  
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Appendix 1: More on risk aversion 

A decision-maker is a risk averter (or exhibits risk aversion) if for any lottery F the degenerate 

lottery that yields the amount ∫ 𝑤 𝑑𝐹(𝑤) with certainty is at least as good as the lottery F itself. 

If the decision-maker is always indifferent between these two lotteries, we say that he is risk 

neutral. We say that he is strictly risk averse if he is indifferent only and only if the two lotteries 

are the same, i.e. the yield w of F is also certain (degenerate).  

Equation a: Jensen's Inequality 

∫ 𝑈(𝑤)𝑑𝐹(𝑤) ≤ 𝑈 (∫ 𝑤𝑑𝐹(𝑤))  𝑓𝑜𝑟 𝑎𝑙𝑙 𝐹 

Equation a is known as Jensen’s Inequality (Mas-Colell 1995) and is the defining property of a 

concave function. Hence, we see that risk aversion is equivalent to the concavity of U. This also 

means that risk neutrality implies linearity of U in w. Strict concavity means then that the 

marginal utility of wealth is decreasing. Hence, at any level of wealth the utility gain from an 

extra dollar is smaller than (the absolute value of) the utility of having a dollar less. It follows 

that the bet of losing a dollar or winning a dollar with equal probability is not worth taking.  

Figure 0-1 CARA utility curve (black) versus risk neutral utility curve (red). 

In the above figure we consider a gamble where your initial wealth is $1 and you play to either 

win $0.5 or lose $0.5 with equal probability. The von Neumann-Morgenstern utility (recall 

chapter 2.1) of taking the bet 1 2⁄ (0.4) + 1 2⁄ (0.8) = 0.6 is strictly lower than that of the 

initial certain position of $1. However, once you consider the risk neutral (non-concave) utility 

function in red, you notice that the risk neutral player would be indifferent between gambling 

and not gambling.  
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Appendix 2: Plots 

Temperature distributions 
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Sample variograms 
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Detrended kriging variance 
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Utility distribution 2012: No insurance 



41 

Utility distribution 2012: Contract 1 
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Utility distribution 2012: Contract 2 (geographic basis risk 
adjusted) 
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Geographic trends 

Geographic Trend Regression 
========================================================================= 

 Dependent variable: 
 ------------------------------------------ 

 T11  T12  T16  T17 
(1) (2) (3) (4)

------------------------------------------------------------------------- 
Lat -1.552***  -1.511***  -1.151*** -1.462***

(0.069)    (0.067)    (0.087)   (0.086)

Lon -0.329** -0.121 -0.326**  -0.328**
(0.099) (0.096)  (0.125)  (0.124)  

lake -1.083 -0.954 -1.278 -2.183***
 (0.669)  (0.645) (0.842) (0.833)

------------------------------------------------------------------------- 
Observations  126  126  126  126 
R2  0.819  0.819  0.622  0.733 
Adjusted R2  0.815  0.814  0.613  0.726 
Residual Std. Error (df = 122)  1.096  1.057  1.380  1.366 
F Statistic (df = 3; 122)  184.547*** 183.898*** 66.980*** 111.614*** 
========================================================================= 
Note: *p<0.1; **p<0.05; ***p<0.01
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Half size station sample (N = 63) 


	Blank Page
	Blank Page
	Blank Page



